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A deterministic mathematical model of the Middle East respiratory syndrome (MERS) disease is introduced. Medical
masks, supportive care treatment and a government campaign about the importance of medical masks will be involved in
the model as time dependent variables. The problem is formulated as an optimal control one to minimize the number of
infected people and keep the intervention costs as low as possible. Assuming that all control variables are constant, we
find a disease free equilibrium point and an endemic equilibrium point explicitly. The existence and local stability criteria
of these equilibria depend on the basic reproduction number. A sensitivity analysis of the basic reproduction number with
respect to control parameters tells us that the intervention on medical mask use and the campaign about the importance
of medical masks are much more effective for reducing the basic reproduction number than supportive care intervention.
Numerical experiments for optimal control problems are presented for three different scenarios, i.e., a scenario of different
initial conditions for the human population, a scenario of different initial basic reproduction numbers and a scenario of
different budget limitations. Under budget limitations, it is much better to implement the medical mask intervention in the
field, rather than give supportive care to control the spread of the MERS disease in the endemic prevention scenario. On
the other hand, the medical mask intervention should be implemented partially together with supportive care to obtain the
lowest number of infected people, with the lowest cost in the endemic reduction scenario.
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1. Introduction

MERS is a respiratory disease caused by a coronavirus
or MERS-CoV, first found in Saudi Arabia in 2012
(Al-Tawfiq et al., 2012; Gautret, 2013; Zaki et al., 2012).
More than 1791 cases have already been reported, with
more than 640 ending in death up to 2016 (WHO, 2016).
Infection with MERS can occur through direct contact
between persons and/or camel to person (Reusken et al.,
2013). The virus is not the same as the coronavirus
that caused SARS (severe acute respiratory syndrome) in
2003. It apparently evolved by a coronavirus that existed
in bats and camels. The virus can be transmitted from
direct contact with infected people or through the air after
sneezing (Assiri et al., 2013; Haagmans et al., 2014). The
symptoms of MERS can be varied, and include fever,
cough, shortness of breath, etc. Moreover, polymerase
chain reaction (PCR) tests are now available to detect
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MERS-CoV in humans.

There is no specific treatment for MERS patients and
no vaccine to protect people from the MERS infection,
although efforts to find the vaccine are still in progress
(Omrani et al., 2013; WHO, 2013). The main treatment
for the MERS disease is to provide supportive care to
the patients. To prevent the spreading of the MERS
infection, the patient should be isolated properly and the
carers should use personal protective equipment to avoid
infection.

Mathematical models for some kinds of
non-respiratory and respiratory diseases have been
developed by many authors. The diseases include
HIV-AIDS (Saha and Roy, 2017; Obaid et al., 2013),
dengue (Aldila et al., 2012; Paez Chavez et al., 2017),
influenza (Novkaniza et al., 2016; Xu and Ai, 2016),
swine flu (Aldila et al., 2014; Pattnaik et al., 2013),
tuberculosis (Gerberry, 2016; Okuonghae, 2013),
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and also MERS (Cauchemez et al., 2014; Chowell
et al., 2014; Ejima et al., 2014; Malik et al., 2015; Poletto
et al., 2014; Xia et al., 2015).

Cauchemez et al. (2014) estimated the incubation
period and generation time from case cluster data.
Chowell et al. (2014) studied a MERS-CoV transmission
model with index cases and secondary cases. Ejima
et al. (2014) found that the information of the incubation
period upon the emergence of a novel disease and
its initial growth rate is helpful in understanding the
spread of the MERS. Malik et al. (2015) introduced
a mathematical model for the MERS disease with a
deterministic approach and accommodated vaccination
to susceptible humans as well as quarantine to infected
people as the intervention programs. The model was
developed with a human population split into two groups
(local residents and visitors). They found that the effective
contact rate and the MERS-induced death rate are some
of the most influential parameters to determine the spread
of MERS. Poletto et al. (2014) proposed an integrative
maximum likelihood to assess the MERS transmission
scenario and incidence of sporadic infections. Xia et al.
(2015) simulated the propagation process from the data
for two different dynamical models and calculated the
basic reproduction number R0.

In this article, a mathematical model of the MERS
disease with a deterministic approach will be introduced
as an optimal control problem. The medical mask
intervention, a health campaign about the importance of
medical masks and also intervention using a supportive
care treatment are introduced into the model as a time
depending variable. A mathematical model will be
introduced in the next section with a mathematical
analysis given in the following section. In Section 4,
an optimal control problem characterization will be
presented and followed by numerical simulations. Some
conclusions will be given in the last section.

2. Mathematical model for optimal control
of the MERS disease

In this section, we formulate an optimal control model for
the MERS disease in order to derive optimal prevention
and treatment strategies with minimal implementation
costs. Intervention to prevent people from contracting
the MERS disease includes medical mask use and a
government campaign about the importance of using
medical masks to prevent people from contracting MERS.
On the other hand, intervention to treat infected people
is also included in the model as a supportive care
intervention. Adding these interventions, it is expected
that the number of healthy people can be increased at the
end of the intervention period.

The control functions u1(t), u2(t) and u3(t)
represent time-dependent efforts of the medical mask use

rate, drop-out rate and supportive care rate, respectively.
Prevention efforts include how government conducts a
campaign in the mass media about how important it is
to use medical masks to prevent people from contracting
MERS-Cov. If this campaign is a success, many people
will use medical masks (u1), reducing the number of
those who stop using them (drop out rate, u2(t)). On
the other hand, supportive care efforts are carried out
by screening patients, and by supervising drug intake
and patients’ conditions. To develop the model, we

S1 S2

I1 I2

R

θ

μS1 μS2

u1(t)S1

u2(t)S2

δR

βS1I1

u1(t)I1

u2(t)I2

(μ+ ξ)I1 (μ+ ξ)I2

(γ0 + γ1)u3(t)I1γ0(1− u3(t))I1

(γ0 + γ1)u3(t)I2

γ0(1− u3(t))I2

μR

Fig. 1. Transmission diagram to construct the MERS model in
the system (1).

divide the human population into five categories using
S1(t), S2(t), I1(t), I2(t) and R(t) to describe the total
number of susceptible humans, susceptible humans
with medical masks, infected humans, infected humans
with medical masks and recovered/temporary immune
humans, respectively. Susceptible humans S1(t) who
use medical masks will be separated into the category
of susceptible humans with medical masks (S2(t)) and
will be placed back into S1(t) if they stop using medical
masks. The same process happens with the category
of infected humans, I1(t) and I2(t). Members of the
infected human I1(t) and I2(t) will get treatment which
will improve their natural immune system from γ0 to
γ0 + γ1. See Fig. 1 for the complete transmission process
between all categories.

To simplify, let S1(t) = S1, S2(t) = S2, I1(t) = I1,
I2(t) = I2 and R(t) = R. According to all assumptions
explained before and the transmission diagram in Fig. 1,
the mathematical model for the spread of MERS including
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medical mask intervention and supportive care is given by

dS1

dt
= θ − βS1I1 − u1(t)S1 + u2(t)S2 (1a)

+ δR− μS1,

dS2

dt
= u1(t)S1 − u2(t)S2 − μS2, (1b)

dI1
dt

= βS1I1 − u1(t)I1 + u2(t)I2 (1c)

− γ0(1 − u3(t))I1(γ0 + γ1)u3(t)I1

− (μ+ ξ)I1,

dI2
dt

= u1(t)I1 − u2(t)I2 − γ0(1 − u3(t))I2 (1d)

− (γ0 + γ1)u3(t)I2 − (μ+ ξ)I2,

dR

dt
= γ0(1 − u3(t))I1 + (γ0 + γ1)u3(t)I1 (1e)

+ γ0(1 − u3(t))I2 + (γ0 + γ1)u3(t)I2

− μR− δR,

with nonnegative initial conditions for all categories
(S1(0) ≥ 0, S2(0) ≥ 0,I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0).
The total population size of humans is

N = S1(t) + S2(t) + I1(t) + I2(t) + R(t)

= θ − μN − ξ(I1(t) + I2(t)),

where θ, μ and ξ are the constant recruitment rate, natural
death rate and death rate caused by MERS, respectively.
Note that u3(t) is the rate of infected humans who
received treatment. Therefore, 1 − u3(t) means the
number of infected humans who did not get treatment.
The rest of the functions and parameters in the model are
defined as follows:

• θ: constant per capita recruitment rate
[individual/day];

• β: infection rate per capita [(time × day ×
individual)−1]. For example, if the infection rate of
the MERS disease is 0.1 and we a total population is
N , then β is 0.1/N .

• ui(t) for i = 1, 2, 3 described in the previous
paragraph [day−1].

• μ, ξ: natural death rate and death rate caused by
MERS [day−1].

• γ0, γ1: natural recovery rate and effective treat-
ments rate to increase the natural recovery rate,
respectively, [day−1]. Thus, γ0(1 − u3(t))Ii for i =
1, 2 describes the number of humans who recovered
naturally, since they did not get treatment. On the
other hand, (γ0 + γ1)u3(t)Ii for i = 1, 2 describes
the number of humans who recovered because of
treatment intervention.

• δ: drop-out rate from R to S1 because temporary
immunity vanished [day−1].

For meaningful biological purposes, we assume that
the recruitment rate is always positive and bounded by the
upper bound θ1. From the system equation (1), we find
that

dN

dt
= θ − μN − ξ(I1 + I2) ≤ θ − μN. (2)

Since we assume that N is constant, we obviously have
N ≤ θ/μ for the initial value N(0) ≤ θ/μ.

Based on the above discussion, we define

Γ =

{
(S1, S2, I1, I2, R) ∈ R

5
+, 0 ≤ N ≤ θ

μ

}
. (3)

In the remaining part of this article, we will restrict our
human variable (further called a state variable) to this set.

Theorem 1. Let ui(t) = ui for i = 1, 2, 3. Γ is positively
invariant under the system (1).

Proof. Let

G1 = −(β + u1 + μ),

G2 = −(u2 + μ),

G3 = − (u1 + γ0(1 − u3) + (γ0 + γ1)u3 + μ+ ξ) ,

G4 = − (u2 + γ0(1 − u3) + (γ0 + γ1)u3 + μ+ ξ) ,

G5 = −(δ + μ).

It is possible to get

dXi

dt
≥ GiXi

with Xi for i = 1 − 5 replaced with S1, S2, I1, I2, R,
respectively, and for Xi(0) ≥ 0. Therefore, solutions with
an initial value in Γ remain nonnegative for all t ≥ 0.
Moreover, since

5∑
i=1

Xi = N,

from (2) we find that

N ≤ θ

μ
.

Therefore, Γ is positively invariant under the system (1).
�

Together with the mathematical model of MERS
as described in the system (1), we consider an optimal
control problem with the objective functional given by

J(Xi, Ui) =

∫ Tf

0

⎛
⎝ 5∑

i=1

ωiX
2
i +

3∑
j=1

ϕiu
2
i

⎞
⎠ dt, (4)
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with Xi described as in Theorem 1. Here ωi, i = 1, . . . , 5
is the weight cost for the human population, whereas
ϕj , j = 1, 2, 3 denote weight constants for the control
variable. Coefficient ωi signifies a weight parameter for
cost that relates to a consequence of the presence of
infected people, while ϕj means a weight parameter for
cost that occurs because of the intervention that has to
be undertaken to control the spread of MERS. Since we
would like to minimize the number of infected humans
and interventions efforts in Eqn. (4), we set ωi ≥ 0 for
i = 3, 4 and the rest are zero. Since higher values of
u1 and u3 will lead to a higher intervention cost, we set
ϕ1 > 0 and ϕ3 > 0. On the other hand, since a higher
value of u2 entails a lower effort in the campaign about
medical mask importance, we set ϕ2 < 0. To balance the
objective functional cost, ωi and ϕi should satisfy

ωi

ϕj
≈ u2

j

X2
i

.

From the point of view of mathematics, to guarantee
the existence of a solution to the optimal control problem,
a convex and differentiable function for J should be
chosen. One alternative option is using a convex quadratic
function. For this purpose, we assumed that the cost for
medical masks, the drop-out rate and also treatment are in
quadratic form, that is, ϕ1u

2
1 is the cost for medical mask

use, ϕ2u
2
2 is the cost to reduce the drop-out rate from the

with-medical-mask category to the without-medical-mask
category, and ϕ3u

2
3 is the cost for the supportive care

effort. The cost of reducing the drop-out rate results from
the government effort to implement a campaign on how
important it is to wear a medical mask to reduce the spread
of MERS, while the cost for treatment could come from
the cost of drugs. Here ω3x

2
3 and ω4x

2
4 describe the cost

of hospitalization and that resulting from an impact of the
number of infected humans in the field, respectively. A
higher number of infected humans will increase the cost
function.

Overall, the preference of using the quadratic
function as the cost function type from the biological point
of view is given as follows. If the number of infected
humans is still low, for example, less than 10 infected
humans, then the cost to be spent to handle the infected
people accounts only for the cost related to the number
of infected people (almost linearly with respect to the
number of infected people). On the other hand, if the
number of infected people becomes larger and larger,
say, than 10, then the cost will not only relate to the
treatment of the infected people, but also to improving
the quality and quantity of hospital services, the cost of
training health workers about MERS disease spreads, the
cost related to the health campaign, etc. Therefore, the
quadratic function for the cost function is one of possible
options.

From the optimal control problem description in the
previous paragraph, we want to seek an optimal control
function (u∗

1, u
∗
2, u

∗
3) such that

J(u∗
1, u

∗
2, u

∗
3)

= min {J(u1, u2, u3, Xi)|(u1, u2, u3) ∈ Ψ}

subject to the system equation (1) and where the control
set

Ψ = (u1, u2, u3)|uj(t) (5)

is a piecewise continuous function on [0, Tf ], aj ≤ uj ≤
bj , while aj and bj for j = 1, 2, 3 are lower and upper
bound control values, respectively, in [0, 1].

3. Mathematical model analysis for an
autonomous system

In this section, a mathematical analysis to find the
equilibrium points of the system (1) and then study their
existence and stability criteria will be conducted. The
basic reproduction number as an endemic criterion will
also be shown in this section.

Let assume that all control variables are constant
in time, uj(t) = uj for j = 1, 2, 3. Therefore, the
autonomous system (1) now has the form

dS1

dt
= θ − βS1I1 − u1S1 + u2S2 + δR− μS1, (6a)

dS2

dt
= u1S1 − u2S2 − μS2, (6b)

dI1
dt

= βS1I1 − u1I1 + u2I2 − γ0(1− u3)I1 (6c)

− (γ0 + γ1)u3I1 − (μ+ ξ)I1,

dI2
dt

= u1I1 − u2I2 − γ0(1− u3)I2 (6d)

− (γ0 + γ1)u3I2 − (μ+ ξ)I2,

dR

dt
= γ0(1− u3)I1 + (γ0 + γ1)u3I1 (6e)

+ γ0(1 − u3)I2 + (γ0 + γ1)u3I2

− μR− δR.

Theorem 2. (Equilibrium points) The autonomous sys-
tem (6) has two different equilibrium points, which we call
disease-free equilibrium Ω1 point given by

(S1, S2, I1, I2, R)

=

(
θ(u2 + μ)

μ(u1 + u2 + μ)
,

θu1

μ(u1 + u2 + μ)
, 0, 0, 0

)
,

(7)
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and an endemic equilibrium Ω2, given by

(S1, S2, I1, I2, R)

=

(
E(u1 + u2 + E)

β(u2 + E)
,
u1E(u1 + u2 + E)

β(μ+ u2)(u2 + E)
,

(δ + μ)(R1 − 1)

βG(u2 + E)(u1 + u2 + E)(μ+ u2)
,

u1(δ + μ)(R1 − 1)

βG(u2 + E)(u1 + u2 + E)(μ+ u2)
,

(u3γ1 + γ0)(R1 − 1)

βG(μ + u2)(u2 + E)

)

with

E = u3γ1 + μ+ ξ + γ0,

G = μu3γ1 + (δ + μ)(μ+ ξ) + μγ0

and

R1 =
β θ (μ+ u2)

μ (u3 γ1 + μ+ ξ + γ0) (μ+ u1 + u2)

× u3 γ1 + μ+ u2 + ξ + γ0
u3 γ1 + μ+ u1 + u2 + ξ + γ0

. (8)

Proof. Setting the right hand sides of the system (6)
to zero and then solving these equations for S1, S2, I1, I2
and R will yield the desired result. �

As a biological interpretation, the disease free
equilibrium point describes when all non-susceptible
human categories are equal to zero. At this equilibrium
point, we find that the total human population is given by
N = θ/μ. On the other hand, the endemic equilibrium
point Ω2, illustrated as a condition when all categories are
positive, with a positive value criterion, is given by the
next theorem.

Theorem 3. (Existence criteria) A disease-free equilib-
rium point Ω1 is always positive without any criteria,
while the endemic equilibrium point will be positive if and
only if R1 > 1.

The next theorem will describe a criterion about of
stability of the disease-free equilibrium point.

Theorem 4. (Ω1 local stability criteria) A disease-free
equilibrium point Ω1 will be locally asymptotically stable
if R1 < 1 and R2 < 1 with R1 given in Eqn. (8) and

R2 =
βθ

μ(μ+ u1 + u2)

× μ+ u2

2u3γ1 + 2μ+ u1 + u2 + 2ξ + 2γ0

and unstable otherwise.

Proof. Linearize the system (6) around Ω1 to form the
Jacobian matrix

JΩ1 =

[
J11 J12 J13

J21 J22 J23

]
, (9)

with

J11 =

⎡
⎢⎢⎣

−μ− u1 u2

u1 −μ− u2

0 0

⎤
⎥⎥⎦ ,

J12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− β θ (μ+ u2)

μ (μ+ u1 + u2)

0

( β θ (μ+ u2)

μ (μ+ u1 + u2)
− u1 − γ0 (1− u3)

− (γ0 + γ1)u3 − μ− ξ
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

J13 =

⎡
⎢⎢⎣

0 δ

0 0

u2 0

⎤
⎥⎥⎦ ,

J21 =

[
0 0

0 0

]
,

J22 =

[
u1,

γ0 (1− u3) + (γ0 + γ1)u3

]
,

J23 =

[ −u2 − γ0 (1− u3)− (γ0 + γ1)u3 − μ− ξ

γ0 (1− u3) + (γ0 + γ1) u3

0
−δ − μ

]
.

The eigenvalues of JΩ1 are −(δ + μ),−μ,−(μ + u1 +
u2) and the other two will be given from the second order
characteristic polynomial

P (λ)

= (−μ2 − μu1 − μu2)λ
2

+ β θ (μ+ u2) (u3 γ1 + μ+ u2 + ξ + γ0)

− (u3 γ1 + μ+ ξ + γ0)

× (u3 γ1 + μ+ u1 + u2 + ξ + γ0)λ

+ β θ (μ+ u2)− μ (μ+ u1 + u2)

× (2 u3 γ1 + 2μ+ u1 + u2 + 2 ξ + 2 γ0) .

The other two roots will be negative if and only if

R1 =
β θ (μ+ u2)

μ (u3 γ1+μ+ξ+γ0) (μ+u1+u2)

× u3 γ1+μ+u2+ξ+γ0
u3 γ1+μ+u1+u2+ξ+γ0

< 1, (10)
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R2 =
β θ

μ (μ+ u1 + u2)

× μ+ u2

2 u3 γ1 + 2μ+ u1 + u2 + 2 ξ + 2 γ0
< 1.

�

Theorem 5. (Basic reproductive ratio) The basic repro-
ductive ratio as the endemic criterion of the system (6) is
given by

R0 =
β θ (μ+ u2)

μ (u3 γ1 + μ+ ξ + γ0) (μ+ u1 + u2)

u3 γ1 + μ+ u2 + ξ + γ0
u3 γ1 + μ+ u1 + u2 + ξ + γ0

.

(11)

Proof. The basic reproduction number is defined as the
expected number of secondary infection cases produced
by a typical infected individual during its entire period
of infectiousness in a completely susceptible population
(see Diekmann and Heesterbeek, 2000; Diekmann et al.,
1990). Using the next generation matrix approach
(Diekmann et al., 2010), we will find the basic
reproduction number corresponding to (6). From the
system (6), the transition matrix is given by

A =

[ −u1 −K1 − μ− ξ u2

u1 −u2 −K1 − μ− ξ

]
,

(12)
with K1 = γ0(1 − u3) + (γ0 + γ1)u3, while
the transmission matrix evaluated in the disease-free
equilibrium point Ω1 is given by

B =

⎡
⎢⎣

β θ (u2 + μ)

μ (u1 + u2 + μ)
0

0 0

⎤
⎥⎦ . (13)

From the work of Diekmann et al. (2010), the basic
reproduction number is taken from the spectral radius of
the next generation matrix. The next generation matrix of
the system (6) is given by −BA−1 in the form

NGM =

[
K2 (u2 +K1 + μ+ ξ) K2u2

0 0

]
, (14)

with

K2 =
β θ (u2 + μ)

μ (u1 + u2 + μ)K3
, (15)

where K3 = u1K1+u1μ+u1ξ+K1u2+K1
2 +2K1μ+

2K1ξ + μu2 + μ2 + 2μ ξ + ξ u2 + ξ2. Therefore, the
spectral radius of NGM as the basic reproduction number
of the system (6) is now given by

R0 =
β θ (μ+ u2)

μ (u3 γ1 + μ+ ξ + γ0) (μ+ u1 + u2)

× u3 γ1 + μ+ u2 + ξ + γ0
u3 γ1 + μ+ u1 + u2 + ξ + γ0

.

Furthermore, we find out that R1 = R0. �

As a note, when ui in the basic reproduction number
R0 is 0, we have an initial basic reproduction number
before the intervention applied, which is given by

R∗
0 =

βθ

μ(γ0 + μ+ ξ)
. (16)

This R∗
0 could be represented as the product of the

total infection rate in an entire population βθ/μ and the
infection period of infected individuals (γ0 + μ+ ξ)−1.

The next generation matrix element for the row
and column describes infected humans I1 and infected
humans with medical masks I2. Each element of the
NGM matrix describes the number of secondary cases
in the column space caused by one individual infected
human in the row category. For example, one infected
human I1 will give a number NGM1,2 of new cases in the
category of infected humans with medical masks I2, since
I1 do not use medical masks. Therefore, the infection
process still could happen in this category. In contrast,
category I2 could not produce a secondary infection in
category I1 and/or I2, since category I2 always uses
medical masks and we also assume that medical masks
could definitely reduce the spread of MERS viruses.

In Figs. 2 and 3, we give a sensitivity analysis of each
of the parameters involved in the model (6) with respect
to the basic reproduction number in Eqn. (11). In Fig. 2,
a sensitivity analysis of R0 with respect to u1 and u2 as
well as u1 and u3 is given. In Fig. 2(a), it can be seen that
a larger u1 will reduce R0 while a larger u2 will enlarge
R0. For example, choosing the medical mask use rate
constant as 0.012 and the drop-out rate as 0.037 and 0.11
will give R0 values of 0.54799 and 1.092, respectively.
A larger drop-out means that the government campaign
to build awareness of the importance of medical masks
has been far from successful. Figure 2(b) shows that a
larger number of u1 and u3 will reduce the number of
R0. Figure 2(b) also tells us that medical mask use as a
preventive effort is much more effective than a supportive
care intervention in reducing R0.

In Fig. 3, level sets of R0 with respect to u2 and u3

as well as γ1 and ξ are given. Similarly to the previous
figure interpretation, a larger value of u3 will reduce R0

while enlarging the value of u2 will increase R0. It is
also shown that u2 is much more sensitive to determining
the value of R0 than u3. A smaller value of u2 is much
better for reducing R0 but, as a consequence, a greater
effort in the government campaign (for example, in mass
media) should be made, even though this would be more
expensive than the effort regarding the supportive care
intervention (this result will be discussed in more detail
in optimal control simulation in Section 5). Figure 3(b)
shows the level set of R0 for various values of γ1 and ξ. It
can be seen that γ and ξ are inversely proportional to R0.
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Fig. 2. Level set of R0 depends on u1 and u2 (a) as well as
on u1 and u3 (b). For (a), parameter values are θ =
1000

65×365
, β = 0.1

1000
, μ = 1

65×365
, ξ = 0, γ0 = 1

30
, γ1 =

1
30
, u3 = 0, while those for (b) are θ = 1000

65×365
, β =

0.1
1000

, μ = 1
65×365

, ξ = 0, γ0 = 1
30
, γ1 = 1

30
, u2 = 0.2.

4. Optimal control characterization

The optimal control characterization of the system (1)
will be discussed in this section. The optimality system,
which includes state equations, adjoint equations and a
cost function, can be used to compute candidates for
the optimal control trajectory from t = t0 to t = Tf .
Before we construct the optimal control characterization,
we will use a dimensionless process with the system (1).
Assuming ξ = 0, we have that a total human population is
constant (N = θ/μ). Using the following transformation:

s1 =
S1

N
, s2 =

S2

N
, i1 =

I1
N

, i2 =
I2
N

, (17)

r =
R

N
= 1− s1 − s2 − i1 − i2,
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Fig. 3. Level set of R0 depends on u2 and u3 (a) as well
as on γ1 and ξ (b). For (a), parameter values are
θ = 1000

65×365
, β = 0.1

1000
, μ = 1

65×365
, ξ = 0, γ0 =

1
30
, γ1 = 1

30
, u1 = 0.01, while for (b) the values are

θ = 1000
65×365

, β = 0.1
1000

, μ = 1
65×365

, γ0 = 1
30
, u1 =

0.01, u2 = 0.1, u3 = 0.1.

we have that
dS1

dt
=

d(s1N)

dt

becomes

ds1N

dt
=

ds1
dt

N

= μN − βs1Ni1N − u1s1N + u2s2N

+ δrN − μs1N.

Dividing each side by N , we get

ds1
dt

= μ− βs1i1N − u1s1 + u2s2 + δr − μs1.

Repeating this process with the other equations in the
system (1), we reduce our five-dimensional system to the
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four-dimensional system given as

ds1
dt

= μ−Nβ s1 i1 − u1 (t) s1 + u2 (t) s2

+ δ (1− s1 − s2 − i1 − i2)− μ s1, (18a)

ds2
dt

= u1 (t) s1 − u2 (t) s2 − μ s2, (18b)

di1
dt

= Nβ s1 i1 − u1 (t) i1 + u2 (t) i2

− γ0 (1− u3 (t)) i1, (18c)

di2
dt

= u1 (t) i1 − γ0 (1− u3 (t)) i2

− u2 (t) i2 − (γ0 + γ1)u3 (t) i2. (18d)

Note that s1, s2, i1, i2 and r represent the proportion of
each compartment with respect to the total of human
population N .

In the next step we define the Lagrangian. Let xi ∈
Γ2 for i = 1, 2, 3, 4, represent s1, s2, i1, i2, respectively,
as state variables and Ui = (u1, u2, u3) ∈ Ψ with
Γ2 ∈ [0, 1], and Ψ defined in (5). The Lagrangian for
our problem consists of the integrand of the objective
functional given by

J(xi, ui) =

∫ Tf

0

( 4∑
i=1

ωix
2
i +

3∑
j=1

ϕiu
2
i

)
dt (19)

and the inner product of the right hand sides of the
state equations (18) and the adjoint variables Λ =
(λ1, λ2, λ3, λ4). Now, let us define the Lagrangian
L(Xi, Ui,Λ) as below:

L =

4∑
i=1

ωix
2
i +

3∑
j=1

ϕiu
2
i (20)

+ λ1 (μ−Nβ s1 i1 − u1 (t) s1 + u2 (t) s2

+δ (1− s1 − s2 − i1 − i2)− μ s1)

+ λ2 (u1 (t) s1 − u2 (t) s2 − μs2)

+ λ3 ( Nβ s1 i1 − (u1(t) + μ+ ξ)i1 + u2 (t) i2

−γ0 (1− u3 (t)) i1 − (γ0 + γ1)u3 (t) i1)

+ λ4 (u1 (t) i1 − u2 (t) i2

−γ0 (1− u3 (t)) i2 − (γ0 + γ1)u3 (t) i2

− (μ+ ξ) i2) .

Theorem 6. Given an optimal control function
(ū1, ū2, ū3) and trajectory solutions for s1, s2, i1, i2 of the
corresponding system (18), there exist adjoint variables

Λ1, . . . ,Λ4 satisfying

λ̇1 = λ1Nβi1 + (λ1 − λ2)u1 + λ1μ

− λ3Nβi1, (21a)

λ̇2 = (λ2 − λ1)u2 + λ1δ + λ2μ, (21b)

λ̇3 = −2ω3i1 − λ1 (−Nβs1 − δ)

+ λ3γ0 (1− u3) + λ3 (γ0 + γ1)u3

− λ3Nβs1 + λ3μ+ (λ3 − λ4)u1, (21c)

λ̇4 = −2ω4i2 + λ4μ+ λ4ξ

+ λ4γ0 (1− u3) + λ4 (γ0 + γ1)u3

+ λ1δ (λ4 − λ3)u2, (21d)

with the terminal condition

λi(Tf ) = 0 for i = 1, 2, 3, 4. (22)

Furthermore, ū1, ū2 and ū3 are represented by

ū1 = max (a1,min (b1,

s1(λ1 − λ2) + i1(λ3 − λ4)

2ϕ1

))
, (23a)

ū2 = max (a2,min (b2,

s2(λ2 − λ1) + i2(λ4 − λ3)

2ϕ2

))
, (23b)

ū3 = max (a3,min (b3,

γ1i1(λ3 − λ5) + γ1i2(λ4 − λ5)

2ϕ3

))
, (23c)

with ai and bi for i = 1, 2, 3 being the lower and the upper
bounds for each control variable, respectively.

Proof. First, we differentiate the Lagrangian (20) with
respect to each state variable and then get the equations
for as the adjoint variables

λ̇1 = − ∂L

∂s1
, λ̇2 = − ∂L

∂s2
,

λ̇3 = − ∂L

∂i1
, λ̇4 = − ∂L

∂i2
,

with the terminal conditions λi(Tf) = 0 for i = 1, 2, 3, 4.
To obtain the optimality conditions (23), we will also

differentiate the Lagrangian (20) with respect to u1, u2

and u3, which gives

∂H

∂u1
=2ϕ1u1 − λ1s1 + λ2s1 − λ3i1 + λ4i1 = 0,

∂H

∂u2
=2ϕ2u2 + λ1s2 − λ2s2 + λ3i2 − λ4i2 = 0,

∂H

∂u3
=2ϕ3u3 + λ3 (γ0i1 + (γo + γ1) i1)

+ λ4 (γ0i2 − (γ0 + γ1) i2) = 0,
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and set these equations equal to zero. Solving them with
respect to each control variable, we obtain

ū1(t) =
1

2ϕ1
(λ1s1 − λ2s1 + λ3i1 − λ4i1) , (24a)

ū2(t) =
1

2ϕ2
(−λ1s2 + λ2s2 − λ3i2 + λ4i2) , (24b)

ū3(t) =
1

2ϕ3
(λ3 (γ0i1 − (γo + γ1) i1) (24c)

−λ4 (γ0i2 − (γ0 + γ1) i2)) . (24d)

To determine an acceptable control variables value
based on the needs and ability in field applications (lower
and upper bounds), the optimal control variable now is

ū1 = max (a1,min (b1,

s1(λ1 − λ2) + i1(λ3 − λ4)

2ϕ1

))
,

ū2 = max (a2,min (b2,

s2(λ2 − λ1) + i2(λ4 − λ3)

2ϕ2

))
,

ū3 = max (a3,min (b3,

γ1i1(λ3 − λ5) + γ1i2(λ4 − λ5)

2ϕ3

))
,

with ai and bi for i = 1, 2, 3 being the lower and upper
bounds for each control variable, respectively. �

Now, we point out that the optimality system
consists of the state system (18) with the initial condition
(s1(0), s2(0), i1(0), i2(0)), the adjoint system (21) with
the terminal condition λi(Tf ) = 0, and the optimality
conditions (23). Any optimal control trajectories must
satisfy this optimality system. A numerical simulation for
this situation will be given in the next section.

5. Numerical simulation results

In this section, numerical simulations of the MERS
disease spread are reported. We discuss results for the
autonomous model (6) and the optimal control problem
for various scenarios.

5.1. Simulation of an autonomous model. In this
section, various scenarios of constant parameters and
initial conditions are presented to show the possible
dynamics of the system (6). The first simulation is
presented for two different cases: before (R0 = 2.996)
and after intervention (R0 = 0.737), as shown in Fig. 4
(cf. Table 1 for details about various scenarios for the
value of ui). It can be seen that the intervention of all
control variables (ui) partially succeeds in reducing the
basic reproduction number and makes the trajectory move
from an endemic equilibrium to a disease-free equilibrium
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Fig. 4. Trajectory solutions for the total of susceptible hu-
mans (S1(t) + S2(t)) and total infected humans
(I1(t) + I2(t)) without control (dotted line) and with
control (dashed line). We use a constant control value
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point. We use some different initial conditions to give
a better simulation result. From Theorem 1, it can be
seen that in Fig. 4 the trajectories remain positive all
the time and tend to two different equilibrium points as
already stated in Theorem 2. It is clear from Theorem 4,
that disease-free equilibrium points Ω1 are locally stable
for R0 < 1. The trajectories tend to a disease-free
equilibrium point for R0 < 1 and to an endemic
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equilibrium point for R0 > 1.

The next simulation is given in Figs. 5 and 6 to
represent two different intervention scenarios, i.e., with
the medical mask intervention only (u1 > 0, u2 >
0, u3 = 0) and with supportive care only (u1 = 0, u2 =
0, u3 > 0), respectively. All parameter values are the
same as in the previous simulation in Fig. 4, except for
ui for i = 1, 2, 3.

Figure 5 shows the effect of medical mask
intervention to reduce the basic reproduction number and
the number of infected people. We can see that we need
a specific level of u2 to reduce the basic reproduction
number to less than 1 so that we can move the dynamic
from the endemic equilibrium point to the disease-free
equilibrium point. This confirm our result for the level
set of the basic reproduction number with respect to u1

and u2 in Fig. 2(a) that increasing u1 and reducing u2 will
reduce the basic reproduction number to less than one,
which will make the disease free equilibrium point stable.

In contrast to Fig. 5, Fig. 6 shows the effect of the
supportive care intervention only to reduce the magnitude
of the basic reproduction number. As shown in Table 1,
with only the intervention of u3, the basic reproduction
number cannot be reduced to less than 1 since with u3 = 1
we can only reach the magnitude of the basic reproduction
number of 1.578 as the minimum possibility. However,
we can reduce the total number of infected people to a
lower level with this scenario, even though not until no
more infected people exist in the environment, as shown
in Fig. 6.

5.2. Simulation of the optimal control problem. The
optimality system is a two-point boundary value one,
since we know the initial condition for the state variable
(xi(0)) in Eqn. (18) and the final condition for the adjoint
system (λi(Tf)) in Eqn. (21). In this optimal control
problem, we use an iterative method based on the gradient
descent algorithm, given in Algorithm 1.

To simulate the optimal control problem of the
system described in Theorem 6, we will give some
different scenarios.

5.2.1. Simulation for different initial conditions.
This section will describe how control variables adapt to
different situations for the initial value of each category
(xi(0)), Let us call it an endemic prevention scenario
(when the initial number of infected people is at a low
level), and an endemic reduction scenario (when the initial
number of infected people is at a high level). Table 2
details the initial condition.

Algorithm 1. Gradient descent.
Step 1. Fix a constant initial guess for u1, u2, u3 for t ∈
[0, Tf ].

Step 2. Solve the state equation (18) with respect to the
initial value of the control variable and the initial condition
of the state variable forward in time.

Step 3. Calculate the cost function (19).

Step 4. Solve the adjoint system (21) with final time
λi(Tf ) = 0 for i = 1, 2, 3, 4 backward in time.

Step 5. Solve the gradient equation to get the descent
vector u∗

i supplemented with xi and λi from Steps 2 and
4. Use the actual values {u∗

i } at particular times to update
the values of ui in Step 1.

Step 6. Go to Step 2 and iterate until convergence criteria
are achieved.

The first simulation is given for the endemic
prevention scenario. The trajectories of total susceptible
and infected people are given in Fig. 7 as a result
of control intervention that varied in time, shown in
Fig. 8. Table 3 describes the effect of interventions on
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Fig. 7. Dynamics of total susceptible (left panel) and infected
(right panel) humans with and without intervention
strategies in the endemic prevention scenario.
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Fig. 8. Dynamics of control intervention for the endemic pre-
vention scenario.
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Table 1. Equilibrium points of the system (6) for Figs. 4–6.
Figure ui R0 Categories

S1 S2 I1 I2 R

Fig. 4 u1 = 0, u2 = 0, u3 = 0 2.996 333.75 0 454.34 0 211.91
u1 = 0.3, u2 = 0.5, u3 = 0.65 0.737 625.02 374.98 0 0 0

u1 = 0.1, u2 = 1, u3 = 0 2.484 366.05 36.6 371.41 35.49 189.98
Fig. 5 u1 = 0.1, u2 = 0.5, u3 = 0 2.103 396.29 79.25 301.15 56.43 166.79

u1 = 0.1, u2 = 0.1, u3 = 0 0.856 500.1 499.9 0 0 0
u1 = 0, u2 = 0, u3 = 0 2.996 333.75 0 454.34 0 211.9

Fig. 6 u1 = 0, u2 = 0, u3 = 0.5 1.998 500.42 0 293.94 0 205.63
u1 = 0, u2 = 0, u3 = 0.9 1.578 633.75 0 194.17 0 172.07

Table 2. Initial condition of each category for the endemic prevention and reduction scenario.
Scenario Compartments

s1(0) s2(0) i1(0) i2(0) r(0)

Endemic prevention 0.95 0 0.05 0 0
Endemic reduction 0.7 0 0.3 0 0

increasing/decreasing the total susceptible and infected
categories.

The second simulation is given for the endemic
reduction scenario, when the initial infected population
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Fig. 9. Dynamics of total susceptible (left panel) and infected
(right panel) populations with and without intervention
for the endemic reduction scenario.
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Fig. 10. Dynamics of control intervention for the endemic re-
duction scenario.

was higher than in the endemic prevention scenario. The
dynamics of the control variables in Fig. 10 will have
the effect of increasing the susceptible population and
decreasing the infected population, as shown in Fig. 9.

From both the simulations above, intervention using
all control variables succeeded in increasing the total
susceptible population to more than 90% and suppressing
the infected population to less than 6%. Nonetheless,
different behavior was apparent in the control simulation.
It can be seen that a more intense intervention should be
applied in the endemic reduction scenario, rather than in
the endemic prevention scenario. The magnitude of the
cost function for these scenarios is 0.0288 and 0.2585 for
the endemic prevention and endemic reduction scenarios,
respectively. It is shown that, from t = 0, intervention
using a medical mask (u1) should occur at a high rate
(about 50% of the total population should use medical
masks) in the endemic reduction scenario. Compared with
the endemic prevention scenario, control using medical
masks only needs the compliance of about 16% of the
total population who should use medical masks at the
initial time. To guarantee the success of medical mask
use interventions, the government campaign about the
importance of medical mask use should be intensified.
An extreme result is shown in the endemic reduction
scenario, since u2(t) reached zero early in the simulation.
This means that in the endemic reduction scenario, no
individual in S2 should be allowed to take off their
medical masks for a certain period during the simulation.

5.2.2. Simulation with different R∗
0 scenarios. In

this subsection, we report two different scenarios for
each simulation. The first simulation is for R0 < 1,
which describes a healthy environment where with or
without the intervention of control variables the dynamics
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Table 3. Numerical result for control intervention in endemic prevention and endemic reduction scenarios.
Compartment Endemic prevention (t = 100) Endemic reduction (t = 100)

without control with control without control with control

s1 + s2 0.3302 0.9425 0.3302 0.9205
i1 + i2 0.4590 0.0397 0.4590 0.0529

of the system will tend to move towards a disease-free
equilibrium point. In this case, intervention is needed to
accelerate the disappearance of MERS in the population.
On the other hand, the second simulation is for R0 >
1, which describes an unhealthy environment, i.e., the
dynamics of the system will tend to move towards an
endemic equilibrium point if interventions are not present
to the population. For this purpose, we set all parameters
for each simulation to remain the same except for β, i.e.,
β = 0.000028 for R0 = 0.84 and β = 0.000081 for
R0 = 2.43.

As already stated in Theorem 4, the disease-free
equilibrium will be locally asymptotically stable if R0 <
1 and unstable otherwise. With the intervention of all
control variables simultaneously, as shown in Fig. 12, we
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Fig. 11. Dynamics of total susceptible (left panel) and infected
(right panel) populations with and without intervention
for different magnitudes of R0.
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Fig. 12. Dynamics of control intervention for different magni-
tudes of R0.

can accelerate the increase in the susceptible population
for the scenario of R0 < 1 , and push the dynamics of the
susceptible population into a disease-free equilibrium for
the case of R0 > 1, as shown in Fig. 11. The dynamics
of the control variables for both the scenarios are almost
the same. However, a greater effort should be applied in
the government campaign when R0 > 1 since it needed
u2 almost twice as low as in the case of R0 < 1 . As a
result, we have a higher cost function value for the case
of R0 > 1, which reaches 0.2483 and only 0.2117 when
R0 < 1.

5.2.3. Simulation with different budget limitations.
In this section, simulations were based on different
preferences for the control strategy and conducted with
different initial conditions (the endemic prevention and
reduction scenarios). For this scenario, we assume that
the government as a stage holder had limited preferences
with regard to conducting an intervention to control the
MERS disease. They had to choose between making an
intervention using only medical masks (u3 = 0, u1, u2 >
0) or supportive care only (u1 = u2 = 0, u3 > 0). This
situation might arise when the government has a limited
budget to control the spread of MERS.

Table 4. Table of numerical results for 4 different intervention
strategies.

Scenario Endemic prevention
s1 + s2 i1 + i2 J

ui = 0 0.3302 0.4590 1.2465
u1, u2 > 0, u3 = 0 0.9434 0.0392 0.0269
u1 = u2 = 0, u3 > 0 0.3627 0.4310 1.1366

ui ≥ 0 0.9425 0.0397 0.0288

Scenario Endemic reduction
s1 + s2 i1 + i2 J

ui = 0 0.3329 0.4546 1.9643
u1, u2 > 0, u3 = 0 0.9211 0.0527 0.265
u1 = u2 = 0, u3 > 0 0.3658 0.4267 1.7988

ui ≥ 0 0.9205 0.0529 0.2585

In both endemic prevention and reduction scenarios,
an interesting finding is that the medical mask intervention
only (u1, u2 > 0) is the best option for reducing
the number of infected humans as low as possible and
increasing that of susceptible humans as high as possible
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(see Table 4 for details), rather than carrying out both
interventions (medical mask and medical treatment, ui >
0, i = 1, 2, 3). From the dynamics of infected individuals
for endemic prevention and the reduction scenario with
respect to time in Figs. 13 and 14, respectively, it can
be seen that the medical mask intervention only and
intervention using both medical masks and supportive
care had only slightly different results. On the other hand,
pushing intervention only through supportive care is the
most ineffective strategy to be implemented. These results
are a consequence of control trajectories, as shown in
Fig. 15 for the endemic prevention scenario and in Fig. 16
for the endemic reduction scenario.

If we rely on the magnitude of the functional cost,
from Table 4 also we can see that the medical mask
intervention in endemic prevention is the cheapest strategy
(J = 0.0269) to implement in the field, rather than
including all interventions to be implemented (J =
0.0288). Therefore, we could conclude that, instead
of sharing the medical mask intervention budget with
supportive care to infected people, it would be better to
maximize the budget effort for medical mask intervention
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Fig. 13. Dynamics of infected individuals for the endemic pre-
vention scenario with the preference of control strate-
gies.
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Fig. 14. Dynamics of infected individuals for the endemic re-
duction scenario with the preference of control strate-
gies.
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Fig. 15. Dynamics of ui(t) for various control strategies to pro-
duce the dynamics in Fig. 13.
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Fig. 16. Dynamics of ui(t) for various control strategies to pro-
duce the dynamics in Fig. 14.

use and campaign about its importance only in the
endemic prevention scenario.

In contrast to the endemic prevention scenario, in
the endemic reduction case, although the medical mask
intervention only is the best strategy to control MERS,
it entails a higher cost, rather than integrating medical
mask use and supportive care together (see Table 4 for
details). Therefore, with a limited budget available to
control MERS spread in the endemic reduction scenario,
interventions with supportive care should be implemented
to cure infected people and protect the rest of the
population from the possibility of a new infection by using
a medical mask.

6. Conclusions

In this article, we derived and analyzed a mathematical
model for controlling the MERS disease with medical
masks along with a campaign to promote the importance
of this and of supportive care interventions. The problem
is formulated as an optimal control one to minimize the
number of infected people at a smaller cost.

Before the optimal control problem characterization,
the autonomous system is analyzed to find all equilibrium
points. We find the disease-free and endemic equilibrium
points whose existence and local stability depend on the
basic reproduction number (R0). We learn that the
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endemic equilibrium point will always be positive for all
categories if R0 > 1. We also find that the disease-free
equilibrium will be locally asymptotic stable if and only if
R0 < 1.

From the sensitivity analysis of the basic
reproduction number with respect to all control variables,
we find that medical mask intervention (u1 and u2)
is much more better for effecting a change in the
basic reproduction number. The implication of this
phenomenon is that, for effective eradication and control
strategy for MERS, the focus should be on the medical
mask intervention rather than the supportive care strategy.

To assess the impact of control variables for different
scenarios, we conducted some simulations of the optimal
control problem. According to the numerical results, an
intervention should be conducted at the beginning of a
MERS epidemic (endemic prevention scenario) to avoid
high cost for interventions and achieve the lowest level of
number of infected people. If there is a limited budget for
interventions, concentrating on medical mask intervention
for the endemic prevention scenario is the cheapest and
best way to control the MERS spread. On the other
hand, if an intervention is implemented in the middle of
a MERS epidemic, medical mask intervention should be
accompanied with the supportive care intervention.

From many studies (Muller et al., 2015), the camel
is suspected to be the vector for spreading MERS
under some circumstances. Therefore, a mathematical
model involving the camel and constructing the model
as a vector-borne disease model are important for the
analysis. For the optimal control problem, intervention
using a control function should be tried as a pulse
control (Abboubakar et al., 2015) to find a more relevant
intervention for practical purposes.
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