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Abstract— The definition of a performance index for the
optimization design and optimal control problem of a Hybrid
Electric Vehicle is not often considered and analyzed explicitly.
In literature, there is no study about proposing a method
of building or evaluating whether a performance index is
appropriate. In this paper a method of objectively analyzing
the performance index for the optimal control problem of a
parallel Hybrid Electric Vehicle is introduced. The correlations
and interdependencies among the objectives of the performance
index are addressed by using the Singular Value Decomposi-
tion method. It is found that a simplified performance index
consisting of fuel consumption and comfort can be obtained
without sacrificing the vehicle performance compared to the
case with the original one including fuel consumption, comfort
and driveability.

I. INTRODUCTION

In a Hybrid Electric Vehicle (HEV), the number of design

and control objects is larger than that of a conventional

vehicle due to the presence of the secondary power source

which is mostly an electric machine powered by the battery

system. The optimization and optimal control design problem

have been actively chosen to achieve the objectives and

optimal parameters for HEVs. Coordination between the

design objectives and the design parameters for the hybrid

propulsion system in general will bring better fuel economy,

emissions, performance driveability and comfort, etc. The

design process can be performed through a ‘parametric

optimization procedure’, see [1], to investigate the system’s

parameter variations on a certain design objective and as

a result, the optimal set of the design parameters can be

obtained. Regardless of the chosen method for the design

and control problems, the starting point is to define a

performance index or a cost functional which consists of a

single or multiple objectives. For the case of multi-objective

problems, the cost functional is built up by summing all the

objectives multiplied by the corresponding weight factors.

However, defining an appropriate cost functional with the

optimum weight factors for a specific hybrid powertrain is a

complicated task. This is due to the fact that there might be

strong interdependencies of the design parameters and the

unknown sensitivities of the design parameters to the design

objectives, [1]. So a cost functional is appropriate when it

satisfies the tradeoffs among objectives and it can reduce the

parameter interdependencies of the design process [1]–[3],

[19].
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In literature, there is no study about designing and analyz-

ing the performance index for a hybrid powertrain system.

The cost functional is defined based upon the powertrain con-

figurations, the method of parametric optimization design,

the approach of designing the controller and the designers’

subjective reasonings. The question of whether the proposed

performance index is suitable is mostly not addressed. In this

paper, a method of objectively analyzing the performance

index of a HEV is proposed. The method uses the Singu-

lar Value Decomposition (SVD) technique to analyze the

structural behavior of the powertrain system based on data

obtained from the correspondingly optimal control problem.

The content of this paper is organized as follows: in Sec-

tion II, the performance indexes for the optimization design

and the optimal control problems of HEVs are reviewed.

In Section III, a multi-objective optimal control problem is

formulated for a parallel HEV. In Section IV, a data-based

structural analysis method based on the SVD is discussed.

Analysis of the interdependencies among objective is given.

Application to the parallel HEV is addressed to show that

a simplified cost functional can be attained for the optimal

control problem. Finally, conclusions and future research will

be outlined in Section V.

II. A REVIEW OF PERFORMANCE INDEXES

Optimal control problems for the Energy Management

Systems (EMS) of HEVs are formulated by defining a cost

functional or performance index describing the vehicle per-

formances. The optimal solutions are obtained by minimizing

or maximizing the defined cost functional over a specified

drive cycle meanwhile fulfilling the vehicle dynamics and

constraints. The most concerned performance index for the

optimal controls of HEVs is the fuel consumption, see [1]–

[5] and the references therein. The cost functional can be

expressed as follows.

J =
N−1

∑
k=0

ṁ f (k)∆t

The EMSs usually require the battery State Of Charge

(SOC) at the beginning and the end of the drive cycle to be

equal. However this never happens in practice. Therefore,

it is often assumed that the SOC needs to stay within

a predefined operating range to avoid any damage to the

battery. The cost functionals proposed in [6]–[9] took into

account the SOC deviation as a penalty besides the fuel

consumption.

Emission regulations have been increasingly restricted due

to the environmental problem. Hence, the engine emissions

such as CO2,NOx,CO,PM,HC can be incorporated into the
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cost functional in order to achieve the optimum set of fuel

economy and emissions, see in [2] and the references therein.

Furthermore, the cost functionals consisting of the fuel

consumption, the SOC deviation and the engine emissions

can be seen in [2] and the references therein.

Driveability is a comprehensive terminology for vehicle

responsiveness. It can be determined as the instant available

engine power, or the instant available drive torque or the

tracking ability of vehicle. In [10], the cost functional was

proposed including the fuel consumption, the SOC deviation

penalty and the tracking ability.

The main comfort indexes for passengers can be listed

as a jerk, a shifting time or a shifting frequency cost, etc.

The authors in [11]–[14] defined the cost functional for

the optimal control problems of HEVs consisting of the

fuel consumption, the equivalent energy consumption from

battery, the emissions, the SOC deviation penalty and the

comfort indexes.

The more complex cost functional consisting of the fuel

consumption, the SOC deviation penalty, the driveability

and the comfort indexes can be found in [15]. Due to the

complexity of this cost functional, the authors suggested

a method to solve for optimal solution by eliminating the

driveability and comfort criteria out of the cost functional

for a simplified performance index. Then, these criteria are

checked and ensured after the optimal solution was already

found.

III. OPTIMAL CONTROL FOR A PARALLEL HEV

A. Powertrain topology

The parallel hybrid powertrain topology under investiga-

tion in this paper is shown in Fig.1.

Fig. 1: A parallel hybrid electric vehicle topology.

With aiming at deriving an EMS based on optimal control,

static models of the powertrain components are chosen when

dynamics are faster than 1Hz. Hence, a discretized model

with time step of one second is chosen for this vehicle model.

The clutch system is considered as a switch to connect and to

disconnect the engine immediately to and from the driveline.

The longitudinal motion of the vehicle is given by

ωw(k+1) = ωw(k)+
1

Jv

(

Tw(k)−Tload(k)
)

∆t (1)

with

ωe(k) = ωm(k); ωw(k) =
ωe(k)

rg

(

ng(k)
)

where:ωw(k) is the vehicle speed; Tw(k) denotes the required

torque at the wheel; Tload(k) is the load torque acting on

the vehicle; Jv is the vehicle inertia; rg

(

ng(k)
)

denotes the

discrete gear ratio depending on the gear position ng(k); ∆t

is the length of time step. The gearbox efficiency is assumed

to be 100%.

1) Start-stop system: The start-stop system can be mod-

eled by a decision variable se(k) to control the engine on

or off state. When engine is off, no fuel consumed by the

engine.

se(k) =

{

1, if engine on,

0, if engine off.
(2)

2) Engine model: the engine fuel rate model ṁ f (k) is

defined by interpolation from the static fuel rate map. Con-

straints on engine speed ωe(k) and engine power Pe(k) are

as follows.

ωe min ≤ ωe(k) ≤ ωe max (3a)

0 ≤ Pe(k) ≤ Pe max

(

ωe(k)
)

(3b)

3) Electric machine: we assume the efficiency η is con-

stant. Therefore the power flowing in and out of the electric

machine in motoring mode and generating mode is expressed

as follows.

Pm(k) = ηPelec(k), motoring (4a)

Pm(k) =
1

η
Pelec(k), generating (4b)

Constraints on electric machine speed ωm(k) and electric

machine power Pm(k)

0 ≤ ωm(k) ≤ ωm max (5a)

Pm min

(

ωm(k)
)

≤ Pm(k) ≤ Pm max

(

ωm(k)
)

(5b)

4) Battery system: the battery dynamical system describ-

ing the battery state of energy es(k) is assumed as a function

of chemical power Ps(k).

es(k+1) = es(k)+Ps(k)∆t (6)

Constraints on the battery system are as follows.

Ps min ≤ Ps(k) ≤ Ps max (7)

Es min ≤ es(k) ≤ Es max (8)

The battery chemical power Ps is modeled as a quadratic

function of electrical power Pelec expressed by (9).

Ps(k)≈ b0P2
elec(k)+b1Pelec(k)+b2 (9)

5) Automated Manual Transmission (AMT): the next gear

position ng(k + 1) is expressed through the current gear

position ng(k) and the shift command ug(k) as follows.

ng(k+1) = ng(k)+ug(k) (10)

The shift command at step k is as follows

ug(k) =











−1, downshift

0, sustaining

1, upshift

(11)

Constraint on gear position is as follows.

1 ≤ ng(k) ≤ 6 (12)
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6) Power flow model: at any time step k, the power flow

equilibrium in the prototype hybrid powertrain is expressed

as

Pe(k) = Pw(k)+Pm(k) (13)

B. Multi-objectives cost functional proposal

The operating points for the hybrid powertrain topology

are governed by the gear position and the power split ratio

between power produced by the diesel engine and the electric

machine. Therefore, optimizing power split ratio and gear

shifting improve fuel economy more than the case of opti-

mizing only power split ratio. However, changing the operat-

ing points by extra optimizing the gear shifting would affect

driveability (power reserve) and comfort (shifting frequency)

of the powertrain system. The future trends of designing

HEVs should be focused on multi-objective optimization and

optimal control problems in which defining an appropriate

cost functional is a core to achieve the vehicle performances.
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Fig. 2: Power reserve of the hybrid powertrain of a 68kW

engine and a 6kW electric machine.

Demonstrated in Fig.2, the power reserve is decreased

when vehicle performs up-shift and vice versa. Intuitively,

when the driver allows more up-shifts, the engine oper-

ating points will be moved to a region of higher torque

and lower speed which results a low power reserve. Vice

verse, when reducing up-shifts, the engine operates at region

of lower torque and higher speed which increases power

reserve. Furthermore, fuel flow is a function of engine power,

therefore engine power reserve has correlations with fuel

consumption and shifting cost. To balance the tradeoffs

among those objectives, the cost functional for the optimal

control problem of this powertrain is proposed as follows.

J =
N−1

∑
k=0

L
(

x(k),u(k),k
)

=
N−1

∑
k=0

[

ṁ f (k)+w1|ug(k)|+w2

(

∆Pe(k)+∆Pm(k)
)−1

]

∆t

(14)

In (14), the first term represents the fuel consumption, the

second term represents the comfort related to the gear shift;

the third term stands for the driveability related to the power

reserve for both the engine and electric machine. The weight

factors w1 and w2 are designed to meet the balances among

the objectives.

C. Optimal control problem

The hybrid powertrain system dynamics and constraints

described by (1)-(13) can be rewritten in a generic form as

follows.

x(k+1) = x(k)+ f
(

x(k),u(k),k
)

(15)

Ceq

(

x(k),u(k)
)

= 0 (16)

Cin

(

x(k),u(k)
)

≤ 0 (17)

wherein: x(k) =
[

se(k), es(k), ng(k)
]

; and u(k) =
[

Ps(k), ug(k)
]

.

Problem: given a drive cycle v(k) with time length of N,

find an optimal control law u∗(k) that minimizes the fuel

consumption cost functional J as in (14) over the entire drive

cycle, subject to:

(15)-(17)

x(N) = x(0) (18)

For reasons of acceptable comfort, the set of discrete shift

command values is chosen as [−1,0,1] to avoid a large

variation of engine speed for a certain shift at a certain

time step k. One gear down or upshift or sustaining for each

time step of one second are reasonably, because the average

shifting time for a standard AMT is typically less than one

second.

Dynamic Programming (DP) [20] is well known as a

powerful tool to solve a non-linear optimization problem

with constraints while obtaining a globally optimal time-

variant, state feedback solution. To apply DP to the optimal

control problem (14)-(18), we need to

• grid the state variables x(k);
• grid the corresponding control variables u(k);
• calculate the cost matrix for the whole drive cycle;

Then, the optimal cost-to-go path is defined as

Step k = N:

J∗N = 0, (19)

Step k, 0 ≤ k < N:

J∗k
(

xi(k),k
)

= min
ui j(k)

[

L
(

xi(k),ui j(k),k
)

+

+ J∗k+1

(

x j(k+1),k+1
)

]

(20)

Repeatedly solving the optimal cost-to-go path backwards

until k= 0, the optimal solution u∗(k) is obtained correspond-

ingly with a specific initial value of x(0).

D. Simulation results and discussions

1) Baseline problem: the baseline optimal control prob-

lem for the hybrid powertrain described in Section III-A

is formulated with the cost functional consists of only the

fuel consumption. DP is applied to solve for the globally

optimal engine start decision and optimal power split ratio

between the engine and the electric machine. The New

European Drive Cycle (NEDC) is chosen for simulation. The

prescribed gear shift schedule is used to shift the transmis-

sion, see Fig.3. Simulation result of the fuel consumption is

332.33gr.
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Fig. 3: NEDC and a prescribed gear shift schedule.
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Fig. 4: Fuel economy and accumulative power reserve im-

provements for a HEV with mild configuration.

2) Simulation results and discussions: the primary power

source is a diesel engine of maximum power of 68kW. The

secondary power source is a 6kW electric machine with a

battery system of 6Ah, 110V. The AMT type is of 6 gears.

The sizings of the electric machine and battery pack classify

the vehicle as a mild hybrid configuration.

At w1 = 0 and w2 = 0, the optimal control problem de-

scribed in III-C optimizes the system for only fuel economy

improvement up to 9.3% meanwhile the accumulative power

reserve is degraded up to 28.1% compared to the baseline.

With the purpose of studying the effects among the fuel

economy, comfort and driveability of the cost functional (14),

the weight factors w1 and w2 are varied as in (21)-(22).

w1 ∈ {1,2,3,4} (21)

w2 ∈ {200,400,600,800,1000} (22)

Simulation results of the fuel economy and the accumu-

lative power reserve improvements for every combination of

w1 and w2 are shown in Fig.4. It can be observed that by

increasing the weight factors for comfort and driveability

separately or simultaneously leads to a decrease of fuel

economy and an increase of power reserve respectively.

Apparently, the objectives in the cost functional (14) affect

each other. Therefore tuning the weight factors to achieve

the Pareto optimal set is not straightforward.

Reducing the cost functional to a simple form so that the

weight factors can be tuned easily meanwhile the control al-

gorithm can achieve the desired performances is the ultimate

goal. In order to do so, we need to study the correlations

and dependencies among the objectives of the performance

index. Then the dependent ones can be eliminated so that a

simplified cost functional can be obtained. Clearly, this boils

down to a rank analysis which will be introduced next.

IV. DATA BASED STRUCTURAL ANALYSIS

SVD is a widely used method in the structural analysis and

rank analysis of systems. A similar usage of rank conditions

using the SVD is to measure the interactions between the

inputs and the outputs of the MIMO systems [16], [17].

Furthermore, a special application of the SVD method is that

it can be used to evaluate the system’s performance by doing

the data-based structural analysis [18]. A brief introduction

of the SVD-based structural analysis is given as followings.

A. Singular value decomposition

Consider a linear algebraic equation as

Ax = b; A ∈ RNxM (23)

SVD of the matrix A is given

A =UΣV T

wherein:

U =
[

u1,u2, · · ·uN

]

∈ RNxN

V =
[

v1,v2, · · ·vM

]

∈ RMxM

Σ = diag(σi|0) ∈ RNxM

(24)

The column vectors vi’s of V and ui’s of U are known

as the right input singular vectors and left output singular

vectors of matrix A, respectively. They hold an important

relation:

Avi = σiui (25)

This equation states that each right input singular vector

is mapped by the system A onto the corresponding left

output singular vector with the magnification factor being

the corresponding singular value. From (25), if σi = 0, then

Avi = 0, i.e., vi forms the null space of A. Thus any change

made in the direction corresponding to the singular value

σi = 0 maps into the zero vector in the output space. In

other words, any input in that direction is not reflected in

the output space.

By using (24), the solution x to the (23) is directly obtained

as linear combination of the scaled right input singular

vectors

x =
rank(A)

∑
i

uT
i ·b

σi

vi =
rank(A)

∑
i

qivi (26)

Any target vector b can be achieved by a linear combina-

tion of the scaled left output singular vectors as

b =
rank(A)

∑
i

σiqiui =
rank(A)

∑
i

(uT
i ·b)ui (27)

B. Structural analysis

In the structural analysis of this study, vi is called input

mode vector and ui is call output mode vector. From (26) the

control input vector x is a linear combination of input mode

vectors vi’s multiplied by the corresponding input weight

factors qi’s. So, the designer can assess the control input

distribution pattern through the input weight factors qi’s.
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Similarity, we can use the output mode vectors ui’s to assess

tradeoffs among the contributions of them to the target vector

b as in (27).

For example, consider the input weight factor q1 in (27)

to be much larger than the other weights in the linear

combination. Since σ1 is the largest singular value, q1σ1 is

dominant among the coefficients of the linear combination

then the actual target vector b will be largely dependent on

the first output mode vector u1.

Input mode vectors vi’s and output mode vectors ui’s

obtained from SVD are paired by the corresponding singular

values σi’s. Thus, truncating any input mode vector vi would

affect the corresponding output mode vector ui, and vice

versa. Truncating the output mode vector ui that is part of the

linear combination of the target vector b would degrade the

total performance. If, however, the truncated output mode

vector contributes little to the target vector b, then there

would be little performance degradation and it would be

possible to save control effort equal in size to the weighted

input mode vector that is paired with the truncated output

mode vector.

Cutting off any input mode vector vi that consumes

large control input, i.e., one with a large weight qi, but

contributes little to the total performance of target vector

b, will reduce the complexity of control system design with

little performance degradation.

From (27), it is clear that the output mode vector ui that

lines up more towards the target vector b will contribute

more to b. Therefore, the value of inner product of (uT
i ·b)

can be used to measure the performance dependency of the

target vector b on each output mode vector ui. This is called

the collinearity of two vector ui and b. Using this indicator,

we can identify which output mode vector ui is dominant in

achieving the target vector b and which output mode vector

ui contributes little.

C. Application to the hybrid powertrain system

The structural analysis of the cost functional of the hybrid

powertrain system will be carried out by SVD method. The

analysis is not based on the system model but is based on

data obtained from simulating the system model governed

by the optimal control algorithm described in Section III.

The data is the discrete optimal values of the cost fucntional

along the drive cycle.

1) Cost functional analysis: the cost functional (14) is

rewritten as follows.

J =
N

∑
k=1

[

m f e(k)+msh(k)+mpr(k)
]

(28)

wherein:

m f e(k), ṁ f (k)∆t

msh(k), w1|ug(k)|∆t

mpr(k), w2

(

∆Pe(k)+∆Pm(k)
)−1

∆t

The discrete optimal cost values of (28) are stacked along

the discrete time dimension of the drive cycle to create a
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Fig. 5: The input weight factor qi in (a); the collinearity coli
in (b).

linear algebraic equation as

Ax = b (29)

with

A =











m f e(1) msh(1) mpr(1)
m f e(2) msh(2) mpr(2)

...
...

...

m f e(N) msh(N) mpr(N)











, b =











J(1)
J(2)

...

J(N)











x =
[

1 1 1
]T

(30)

In (29), the vector x acts as the control input vector

imposed on the weighted objectives, so it is chosen as

[1 1 1]T to respect the original optimal values of the

objectives. The target vector b contains the optimal values

of the performance index at every time step. Note that the

weight factors of the objectives varied in the certain ranges

as in (21)-(22) are merged into the matrix A.

SVD method presented in Section IV is applied to the

linear algebraic system (29)-(30) to study the correlations and

interdependencies among the objectives for all combinations

of the weight factors w1 and w2.

2) Simulation results and discussions: the computational

results of SVD analyses for the input weight factors qi’s and

the normalized collinearities coli’s for all combinations of

w1 and w2 are shown in Fig.5.

In Fig.5a, q1 varies from 0.86 to 0.97, q2 varies from 0.5 to

0.94 and q3 varies from 0.67 to 0.9. By looking at the values

of collinearities in Fig.5b, we can recognize that the values

of coli’s are totally different each other. col1 approximately

varies from 0.86 to 0.97; col2 approximately varies from 0.23

to 0.51 whereas col3 roughly ranges between 0.05 and 0.14

respectively.

We can observe that: the maximum contributions of output

mode vectors u2 and u3 to the target vector b considered on

the whole ranges of w1 and w2 are 26% (= 0.512 ∗ 100%)
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and 2% (= 0.142 ∗100%) respectively. Meanwhile, the con-

tributions of input mode vectors v2 and v3 to the control input

vector x are almost equivalent to that of v1 (observed from

q1, q2 and q3). This gives very important information on the

fact that the output mode vector u3 pays only a very small

contribution to the target vector b. Therefore, truncating the

input mode vector v3 will save a large amount of control

effort without serious performance degradation.
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Fig. 6: Three directions x1, x2 and x3 of the reconstructed x.

From the observations and analyses above, we can come

up with a design decision to truncate the input mode vector

v3 out of the control input vector x. Using (26), we can get

x as follows.

x = q1 · v1 +q2 · v2 ,
[

x1 x2 x3

]T
(31)

Using the obtained simulation results, we can reconstruct

the control input vector x as depicted in the Fig.6. We can

see that x1 and x2 are almost equal to 1. Meanwhile, x3 is

very small to be approximated as zero. Or the control input

vector x can be re-designed as follows.

x ≈
[

1 1 0
]T

(32)

for the whole ranges of of w1 and w2.

This means that we can eliminate the third objective or the

power reserve term from the cost functional (28). In other

words, the cost functional for the optimal control problem in

Section III is simplified to a new one Jnew as

Jnew =
N−1

∑
k=0

[

ṁ f (k)+w1|ug(k)|
]

∆t (33)

It would be easy to tune only one weight factor w1

such that the Pareto optimal value is achieved to satisfy the

required vehicle’s performance index.

V. CONCLUSIONS

A method of analyzing and evaluating the performance

index of the optimal control problem for a prototype HEV

was proposed. The cost functional was simplified towards

an appropriate one without seriously affecting the con-

cerned performance index of the hybrid powertrain system.

Complexity of the optimal control problem was reduced.

The simulation results show that the SVD method is an

efficient tool for objectively analyzing the correlations and

dependencies among the objectives in a cost functional.

The proposed method in this paper is not limited to a

specific hybrid powertrain configuration. In principle, it can

be extended to other types of vehicle configurations.
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