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Abstract

The memory models used in the Real-Time Specification

for Java (RTSJ) can incur high amounts of overhead; It is

possible to reduce this overhead by taking advantages of

hardware features. This paper provides an indepth analyt-

ical investigation of the overhead of write barriers in RTSJ

VMs, and describes and analyzes some solutions to reduce

the overhead of write barriers.

Keywords: Java, Real-Time, Embedded, Garbage Col-

lection, Memory Regions, Write Barriers, Performance.

1. Introduction

RTSJ distinguishes between three kinds of tasks: low-

priority, that are tolerant with the Garbage Collector (GC);

high-priority, that cannot tolerate unbounded preemption

latencies; and critical, that cannot tolerate preemption la-

tencies. Low-priority tasks are instances of the Thread

class, high-priority tasks are instances of the Realtime-

Thread class, and critical tasks are instances of the No-

HeapRealtimeThread class. The MemoryArea abstract

class supports the Memory Region (MR) paradigm [2]

through the three following kinds of regions (see Figure 1):

(i) immortal memory, supported by the ImmortalMemory

and the ImmortalPhysicalMemory classes, that contains

objects whose life ends only when the JVM terminates; (ii)

(nested) scoped memory, supported by the ScopedMemory

abstract class, that enables grouping objects having well-

defined lifetimes and that may either offer temporal guar-

antees (i.e., supported by the LTMemory class) or not (i.e.,

supported by the VTMemory class) on the time taken to cre-

ate objects; and (iii) the conventional heap, supported by

the HeapMemory class. Objects allocated within immor-

tal MRs live until the end of the application and are never

subject to garbage collection. Objects with limited lifetime

can be allocated either into a scoped region or the heap.

Garbage collection within the heap relies on the (real-time)

�This work has been partially funded by Texas Instruments.

GC of the JVM. Scoped regions may or may not be subject

to internal real-time garbage collection depending on their

temporal properties1. However, since RTSJ does not im-

pose GC within scoped regions, we consider in this paper

that scoped regions are never garbage collected. A scoped

region gets collected as a whole once it is no longer used.

ImmortalMemoryHeapMemory ScopedMemory ImmortalPhysicalMemory

VTMemory LTMemory ScopedPhysicalMemory

MemoryArea

Figure 1. The MemoryArea hierarchy in RTSJ.

RTSJ further defines the GarbageCollector abstract

class, which can be customized through an incremental col-

lector allowing the application to execute while the GC has

been launched. In the following we assume the use of the

GC algorithm given in [8] (i.e., the four-color algorithm

that builds on [1]): an object within the heap is colored

white when not reached by the GC, black when reached,

and grey when it has been reached, but its descendants may

not be; and an object outside the heap is colored red. Grey

objects make a wavefront, separating the white (unreached)

from the black (reached) objects, and the application must

preserve the invariant that no black objects have a pointer

to a white object, which is achieved using write barriers

in [18]. The collection is completed when there are no more

grey objects. All the reached objects within the heap are

black (those that are reachable from the heap roots and from

outside the heap), there is no grey object, and all the white

objects can be recycled2. Red objects having pointers to ob-

ject within the heap (i.e., black, grey, or white objects) are

considered as external roots for the GC.

1We can build a VTMemory object with a specific GC. Note that in

this case, critical tasks must be able to use it.
2The recycling of objects is actually done after finalization.
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A thorough analysis of the parameters influencing the

performance of the memory management in RTSJ is pre-

sented regarding both the management of MRs (Section 2)

and real-time GC within the heap (Section 3). We use 5

SPECjvm98 [14] (see Table 1) and an artificial collector

benchmark to analyze the behavior of Java applications re-

garding memory usage. This allows us to have an estima-

tion of memory usage within a memory region. In Section

4, we evaluate the overhead introduced by three different

write barrier solutions supporting both MRs and incremen-

tal GC. In Section 5, we implement a prototype within the

KVM [16] by modifying the original collector to make it

incremental, and introducing MRs. Finally, a summary of

our contribution concludes this paper (Section 6).

Program Description

JESS Expert Shell System based on NASA’s CLIPS system.

DB Emulates data operations on resident memory.

JAVAC Java compiler from the JDK 1.0.2.

MTRT Multithreaded raytracer.

JACK Parser generator (early JavaCC version).

Table 1. Used SPECjvm98 programs.

2. Analyzing the Performance of Regions

In general, the management of memory regions intro-

duces overhead, which we characterize in this Section. The

region implementation given in [3] presents an overhead

that is constant per instruction executed. RTSJ imposes

strict rules on objects access and assignments within re-

gions, the JVM must detect both illegal accesses and as-

signments and throw an exception when they occur, which

introduces high overhead.

2.1. Memory Management Overhead

In RTSJ, each MR supports objects that are related

regarding associated lifetime and real-time requirements.

Whereas the heap and immortal regions end with the ap-

plication, a scoped region gets collected by a reference-

counting GC once it is no longer used. Then, the overall

cost introduced by scoped region management is given by

the cost associated with: (i) Region creation, which is not

considered by RTSJ3. (ii) Reference counter updates, where

we notice that problems associated with reference count-

ing collectors are solved4. (iii) Object allocation, where the

time to allocate an object is proportional to the object size,

and in the worst case may include time to acquire additional

3RTSJ does not consider the execution time of object constructors.
4The space to store reference counters is minimal, and there cannot be

cycles among regions.

memory for the region5. (iv) Region deletion, where before

cleaning a scoped region, the root-list of the GC is updated

to remove all the objects in the region that are external roots

for the GC, and the objects within the terminated region are

added to the finalize-list of the GC. (v) Checks on objects

access/assignment, the efficient of which is discussed in the

remainder of this paper.

To support critical applications in RTSJ, the GC of the

heap must be disabled and all MRs (i.e., scoped and im-

mortal physical) must be created at initialization time [13].

In this way, the application runs with static memory, which

facilitates an accurate pre-runtime analysis.

2.2. Illegal Accesses and Assignments

A reference from a critical task to an object allocated in

the heap causes the MemoryAccessError exception. Ille-

gal accesses must be checked when executing instructions

that load references within objects or arrays, e.g., by intro-

ducing the following read barriers for each load reference:

if ((� = critical) and (region(Y) = heap)) goto illegalAssignment:;

The lifetime of objects allocated in scoped regions is gov-

erned by the control flow: (i) objects within either the heap

or an immortal region cannot make assignments to objects

within a scoped region, and (ii) objects within a scoped re-

gion cannot make assignments to objects within an non-

outer scoped region. Illegal assignments causes an Il-

legalAssignmentError exception, and must be checked

when executing instructions that store references within ob-

jects or arrays, e.g., by introducing the following write bar-

riers for each load reference:
if (region(Y) = scoped)

if (region(X) = scoped) nestedRegions(X,Y)

else goto illegalAssignment:;

The nestedRegions(X,Y) function is based on a region

stack associated with the active task (see Figure 2) and

throws the MemoryAccessError() exception when the re-

gion to which the object X belongs is not found in the re-

gion stack, and the IllegalAssignmentError() excep-

tion when the region to which the object X belongs is not

inner to the region to which the object Y belongs.

(b) (c)(a)

BottomBottom Bottom

SP of t2 task 

SP of t3 task 

ltm2SP of t1 task 

smr0 smr0 smr0

ltm1 ltm1smr1

Figure 2. Region stack: (a) t1, (b) t2, and (c)t3.

5Whereas an allocation in a VTMemory region may take variable

time, the time taken in a LTMemory region is linear to the object size.
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We consider that the time cost to detect both illegal ac-

cesses and assignments is a fraction of the total program

execution time. All the objects created in Java are allocated

in the heap (i.e., dynamic memory, that in RTSJ may be ei-

ther within the heap or another MR); only primitive types

are allocated in the runtime stack [4]. In most applications

of the SPECjvm98 benchmark, less than half (i.e., 45%)

of the references are to objects within the heap rather than

primitive types (e.g., bytes or integers), the other half is to

either the Java or the native stack (see Table 2 [9]). We also

notice that about 35% of the total executed bytecodes re-

quires an object reference, where typically 70% is for load

operations and 30% for store operations. Then, 15% (i.e.,

0:45�0:35) of the bytecodes reference an object within the

heap, where 10% (i.e., 0:15 � 0:70) of the bytecodes re-

quires read barrier avoiding illegal accesses of critical tasks

to objects within the heap, and 5% (i.e., 0:15� 0:30) write

barriers avoiding illegal inter-region assignments.

Executed Object % Object % Heap

Bytecodes Accesses Accesses References

JESS 1;820� 106 707� 106 38:84 39:40
DB 3;700� 106 1;464� 106 39:56 45:61
JAVAC 1;953� 106 724� 106 37:07 28:70
MTRT 2;122� 106 575� 106 27:09 50:97
JACK 2;996� 106 1;022� 106 34:11 50:74

Table 2. Memory reference behavior.

We use write barriers to detect illegal accesses6 , as well to

maintain the root-set of the GC7 and to preserve the in-

variant that no black object references a white one, called

tri-color invariant [1]. As a conclusion, we have 5% (i.e.,

0:15� 0:30) as a maximum bound for write barrier execu-

tions.

RTSJ does not consider the write barrier overhead for

MRs, then we add the getWriteBarrierOverhead()

method to the MemoryArea abstract class, which gives the

cost to detect illegal assignments between different types

of MRs. In the same way, we add the getWriteBarrier-

Overhead(int n) method to the ScopedMemory abstract

class, which identifies the write barrier cost to have n nested

levels for scoped regions.

3. Analyzing the Collection Performance

We can determine the performance of an incremental

GC through the following parameters: (i) the ratio of the

6We apply the same optimization as for the incremental GC which is to

use write barriers instead of read barriers.
7The GC root-set usually includes the local variables in run-time stacks

and static variables defined in loaded classes; we must further add objects

allocated outside the heap having references to objects within the heap.

amount of allocated objects with the total size of the heap

(memory utilization) which relates to the reclamation rate,

(ii) the space and time needed by the collection (overhead),

(iii) the duration of collection pauses (latency), and (iv) the

effort to coordinate the application and the collector (write

barrier overhead). Ideally, the memory utilization should

be high so that the GC does not run frequently, the overhead

should be low to improve the performance of applications,

and the latency must be low and bounded for real-time ap-

plications. We analyze the aforementioned parameters in

the following.

To simplify our presentation, we do not treat fragmen-

tation assuming that all the objects have the same size. In

that context, a GC pass is hereafter used to mean the overall

execution of the GC once it is launched, from the tracing of

the object graph to the reclamation of dead objects. A GC

increment is further used to mean actual GC execution. It

is also important to note that in our algorithm, memory that

becomes garbage is freed at the end of the GC pass (i.e.,

new objects are allocated black).

3.1. Reclamation Rate

The collector must terminate before the free memory

gets exhausted. A usual strategy to avoid the application

to run out of memory is to accelerate the GC according to

the application’s allocation rate, which can be computed as

the amount of dynamic memory used

number of executed instructions
(see Table 3 [9]).

Executed Allocated Allocation

Instructions Memory (KB) Rate ( KB
103 inst

)

JESS 5;328� 106 314;533 60
DB 9;168� 106 99;927 11
JAVAC 7;717� 106 221;206 29
MTRT 3;917� 106 164;444 43
JACK 6;553� 106 207;550 32

Table 3. Allocation behavior.

To ensure the above condition, it is necessary to quantify

the worst case allocation rate and to put this measure as a

bound. Let L be the maximum amount of live objects, and

M be the memory size, we have M�L free memory. Since

new objects created during a GC pass will not be collected

until the next pass, we must account for this memory oc-

cupation (U ). We consider that the amount of new objects

allocated while tracing, is not greater than the amount of

memory used, i.e., U � L. This implies a minimum safe

tracing rate of 2�L
M�L [18], which approaches zero as mem-

ory becomes large8.

8Since fragmentation reduces the actual memory available, faster trac-

ing is required.

3

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02) 

0-7695-1558-4/02 $17.00 © 2002 IEEE 



Adapting the reclamation rate. At the end of each pass,

the GC can determine how much alive memory has been

traced and revise its worst-case, estimating what could be

alive at the next pass. When the GC determines that it can

reduce the reclamation rate, it may stop its activity and re-

sume later9. This improves the performance of the mutator,

but not too much since write barriers are still executed when

the GC is disabled. Then, it is interesting that our GC sup-

ports an efficient way to disable barriers on the fly which

has been achieved in [8] by using the picoJava-II hardware

support.

3.2. Collection Overhead

The number of times that the GC must be run (N ) and

the number of instructions executed by a GC pass (IGC),

depend on the heap size [9]. The overhead introduced by

the GC is inversely proportional to the heap size, and can

be given by the following expression: N�IGC
I

, where I de-

notes the total number of instructions executed by the CPU

(see Figure 3).

16M  32M  48M  64M 16M  32M  48M  64M16M  32M  48M  64M

JESS DB JAVAC MTRT JACK

16M  32M  48M  64M16M  32M  48M  64M

10

5

 25

 20

15

30

7.9
6.6

5.6

10.1

5.8

2.9
2.7

1.1

28.4

25.7

15.7

7.3

11.6
10.4

11.1

4.9 5.2
4.3 4.3 4.2

Figure 3. GC overhead.

For an incremental collector, the total effort required to per-

form a complete GC pass can be configured as a function of

the system workload [11]. If S gives the seconds needed by

the CPU to complete a collection pass, and G the fraction

of CPU dedicated to garbage collection during this time; the

time to execute completely the incremental GC is given by
S
G . Thus, when the GC is executing, the quantity of oc-

cupied memory in the heap is V � S
G , where V represents

the total bytes allocated per second. Considering new ob-

jects created during the GC pass (U ), the total memory (M )

must be greater than the maximum amount of live objects,

i.e., M > V�S
G + U . Then, the minimum fraction of the

CPU time spent by the GC is V�S
M�U , which approaches 0

when the amount of memory becomes large or the applica-

tion allocation rate becomes small.

9For instance, if the amount of data is less than 1=3 of the maximum

heap, the GC is disabled (i.e., L < 1
3
�M which means 2�L

M�L
< 1).

Minimizing the Overhead. An option to minimize the

GC overhead is to reduce the number of objects that must

be managed by the GC to improve the performance of the

GC. Then, improvements on the Java compiler may reduce

the GC rate by putting more heap objects in the stack. Some

studies show that the percentage of objects that could be al-

located in the stack instead of the heap are generally in the

5% � 15% range, and in some cases as high as 56% [10].

Notice further that objects allocated within immortal and

scoped regions of RTSJ are not garbage collected10, allo-

cating objects in these MRs thus reduces the GC overhead.

3.3. Preemption Latency and Response Time

We analyze here the schedulability of the GC assuming

Rate Monotonic Scheduling (RMS). ConsiderN tasks with

a priority higher than the one of the GC (�GC+1; ::; �GC+N).

Each task �i has a period Ti and a worst-case execution time

Ci. We denote as RGC the worst case response time of

the GC, which must be greater than the sum of the worst

case execution time of all the tasks with higher priority [5]:

RGC =
PGC+N

i=GC+1
(
�
RGC
Ti

�
� Ci) . To calculate RGC in this

recursive formula, we give CGC as the first value for RGC.

Then, S > (RGC + LGC) � NGC , where S gives the sec-

onds needed by the CPU to complete a collection pass, LGC
the maximum execution time of a collector increment, and

NGC the number of increments for each collection pass.

The maximum preemption latency that the collector can in-

troduce in the system is RGC �
S

NGC
.

Minimizing Allocation Latency. The fact that the over-

head of memory allocation depends on both the size of the

object and the heap evolution, makes it intolerable for crit-

ical tasks. In order to eliminate this imprecise cost, critical

tasks do not execute actions related to the GC, and are never

affected by the preemption latency of the GC11. Regarding

the size of the object, every allocation must have an exe-

cution time cost, that is bounded by a linear function on the

size of the object; we do not include in this cost static initial-

izations associated with the object nor the execution of its

constructor. For this purpose, RTSJ defines the LTMemory

class (a ScopedMemory subclass) that represents a memory

area guaranteed by the system to have constant time alloca-

tion. This class allows tasks to allocate objects, ignoring

reclamation and avoiding delays because of the GC. Thus,

it is safe to associate a LTMemory object with critical tasks.

10This is always the case for objects within an instance of LTMemory

but this is not mandatory for objects within an instance of VTMemory.
11RTSJ critical tasks are not allowed to allocate or even reference objects

from the Java heap.
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3.4. Write Barrier Overhead

In RTSJ, the getWriteBarrierOverhead() method

of the IncrementalGarbageCollector class gives the

write barrier cost per assignment, i.e., writeBarrierCost
assignmentCost

where the writeBarrierCost is the execution time of the

introduced write barriers, and the assignmentCost is the

execution time of an object assignment. Thus, we compute

writeBarrierCost for an incremental GC, as the cost to

detect when to take actions preserving the tri-color invari-

ant, i.e., the execution time taken to detect when to execute

the greyObject(Y) function:

if ((color(X) = black) and (color(Y) = white)) greyObject(Y);

Note that the execution time taken by the greyOb-

ject(Y) function is considered as part of the GC over-

head rather than as part of the write barrier overhead. The

GarbageCollector abstract class of RTSJ does not sup-

port the getWriteBarrierOverhead() method12. Since

the heap coexists with other MRs, we consider that this

method must also be implemented for all collectors to give

the overhead caused by detecting illegal assignments of crit-

ical task to objects within the heap. For mark-and-sweep

collectors, this method further gives the overhead caused

by the write barriers introduced to detect when to update

the collector’s root-set:

if ((color(X) = red) and (color(Y) 6= red)) updateRootSet(X, Y);

Minimizing the Write Barrier Overhead. The most

common approach to implement write barriers is by inline

code, consisting in generating the instructions executing

write barrier events for every store operation. This solu-

tion requires compiler cooperation (e.g., JIT), and presents

a serious drawback because it nearly doubles the applica-

tion’s size. Regarding systems with limited memory such

as PDAs, this code expansion overhead is considered pro-

hibitive. Alternatively, we can instrument the bytecode in-

terpreter, avoiding space problems, but this still requires a

complementary solution to handle native code. A solution

minimizing the write barrier overhead consists in improv-

ing the write barrier performance by using hardware support

such as the picoJava-II microprocessor [15], which allows

performing write barrier checks in parallel with the store op-

eration. This alternative solution has been the subject of [8].

4. Evaluating the Write Barrier Cost

In this Section, we first propose three different write bar-

rier implementations to support the RTSJ memory model.

Next, we estimate the write barrier overhead introduced by

12In RTSJ, the getWriteBarrierOverhead() method is sup-

ported by the IncrementalGarbageCollector class.

both the collector and memory regions in the proposed so-

lutions.

4.1. Write Barrier Implementations

Solution 1. Modifying the Java Interpreter. This solu-

tion consists in modifying the JVM by introducing the code

given in Figure 4 in the interpretation of each bytecode

whose function consists in assigning an object Y to another

object X13.

if (region(Y) = scoped)

if (region(X) = scoped) nestedRegions(X,Y)

else goto illegalAssignment:;

if ((� = critical) and (region(Y) = heap)) goto illegalAssignment:;

if ((color(X) = red) and (color(Y) 6= red)) updateRootSet(X, Y)

else if ((color(X) = black) and (color(Y) = white)) greyObject(Y);

Figure 4. Write barrier code.

Solution 2. Using Existing Hardware. We improve the

performance of Solution 1 by using the write barrier support

of the picoJava-II microprocessor, as proposed in [8]. In

this solution, write barriers must be configured at context-

switch time depending on the scheduled task. Non-critical

tasks throw the gc notify exception when a white object is

assigned to a black one, or when an object is assigned to an-

other one allocated in a different MR. Whereas critical tasks

throw the gc notify exception when the assigned object is

within the heap, or a different MR that the other one. both

objects are allocated in different MRs. The code executed

by the gc notify exception handler is the same as the

one introduced in the interpreter in the former solution (see

Figure 5).

gc notify:

if (region(Y) = scoped)

if (region(X) = scoped) nestedRegions(X,Y)

else goto illegalAssignment:;

if ((� = critical) and (region(Y) = heap)) goto illegalAssignment:;

if ((color(X) = red) and (color(Y) 6= red)) updateRootSet(X, Y)

else if ((color(X) = black) and (color(Y) = white)) greyObject(Y);

priv ret from trap;

Figure 5. Handling the gc notify exception.

Solution 3. Modifying the Existing Hardware. This so-

lution modifies the hardware support of picoJava-II to have

three different traps (see Figure 6). In this solution, non-

critical tasks cause the execution of: (i) the gc notify 1 0

13The bytecodes causing write barriers are: putfield, put-

static, aputfield quick, aputstatic quick, aas-

tore, and aastore quick.

5
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exception when a non-red object is assigned to a red one, (ii)

the gc notify 1 exception when any object is assigned to

another one allocated in a different MR, and (iii) the gc -

notify 0 exception when a white object is assigned to a

black one. Critical tasks cause also the gc notify 0 ex-

ception when a non-red object is assigned.

gc notify 1 0:

if ( � 6= critical) updateRootSet(X,Y) else goto illegalAssignment:;

priv ret from trap

gc notify 1:

if (region(Y) = scoped) nestedRegions(X,Y);

priv ret from trap

gc notify 0:

if ( � 6= critical) greyObject(Y) else goto illegalAssignment:;

priv ret from trap

Figure 6. Write barrier exception handlers.

4.2. Evaluating the Write Barrier Overhead

Axioms and Theorem. We are interested in fixing a max-

imum bound for the number of events that: (i) makes an

inter-region assignment, (ii) explores the region stack, (iii)

creates an external reference for the collector, and (iv) at-

tempts to break the tri-color invariant. We assume here that

each object has an equal probability to being referenced.

Notations:

Let r, b, g, andw, be respectively the number of red, black, grey, and

white objects, and h, i, and s be respectively the number of objects

within the heap, an immortal region, or a scoped region, found in the

system at a given instant. Let further, x and z denote respectively

the number of inter-region and intra-region assignments, found in m
assignments made by the task � .

Axiom 1. h
x
+ i

x
+ s

x
= 1

In x inter-region assignments of the task � , there are h assignments

from thee heap, i assignments from an immortal region, and s as-

signments from a scoped region.

Axiom 2. b
h
+ g

h
+ w

h
= 1

In h objects within the heap there are b objects black, g objects grey,

and w objects white.

Theorem:

The probability that a task � breaks the tri-color invariant when mak-

ing m assignments is bounded by 0:25� h.

Proof.

We have h = b+ g + w. We can further express the probability to

break the tri-color invariant as b�w

h2
=

b�(h�(b+g))
h2

, this proba-

bility is maximum when there are no grey objects in the system (i.e.,

h = b + w). Then: b � (h � (b + g)) <= b � h � b2 . Where

the b� h � b2 expression takes its maximum value for b = h
2 (i.e.,

0 = h� 2� b) and w = h
2

(i.e., h = h
2
+ w).

Quantifying the Overhead. To obtain the write barrier

overhead solutions given in x 4.1, two measures are com-

bined: (i) the number of events (E), and (ii) the measured

cost of the event (C). We also take into account the percent-

age of bytecodes requiring write barriers, which has been

evaluated as 5% in x 2.2. Then, we compute the total write

barrier overhead introduced by both MRs and the GC:

MROv = 0:05 � (EMR � CMR + Escoped � Cscoped)

GCOv = 0:05 � (EGC � CGC + EincGC � CincGC)

Where CMR, Cscoped, CGC, and CincGG parameters corre-

spond to:

CMR = MemoryArea:getWriteBarrierOverhead()

Cscoped = ScopedMemory:getWriteBarrierOverhead(n)

CGC = GarbageCollector:getWriteBarrierOverhead()

CincGC = IncrementalGC:getWriteBarrierOverhead()

Event parameters. We then estimate the maximum prob-

ability to execute the write barrier code when a non-critical

task makes an assignment, as given in Table 4. Note that

for critical tasks, the overhead due to the GC is 0 (i.e., EGC

and EincGC equal to zero, otherwise the IllegalAssign-

mentError() exception raises).

Events Solution 1 Solution 2 Solution 3

EMR 1 x
m

+ 0:25 h
m

x
m
�

h
m

Escoped
s
m

( x
m

+ 0:25 h
m
)( s
m
) s

m

EGC 1 x
m

+ 0:25 h
m

h
m

EincGC 1� x
m

( x
m

+ 0:25 h
m
)(1� x

m
) 0:25 h

m

Table 4. Max bound on write barrier events.

Cost parameters. The write barrier cost is proportional

to of the number of evaluated conditions. Then, we bound

the cost parameters as maxConditions � conditionCost
assignmentCost

.

Where the maxConditions parameter is the maximum

number of evaluated conditions to check whether the

following actions should be executed: (i) call neste-

dRegions(X, Y), (ii) execute nestedRegions(X, Y),

(iii) call updateRootSet(X, Y), and (iv) call greyOb-

ject(Y). And the conditionCost parameter is the execu-

tion time to evaluate a condition. Table 5 gives the max-

imum and average value for the number of evaluated con-

ditions, where n is the maximum number of nested scoped

levels.
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Cost Solution 1 and 2 Solution 3

Parameter Maximum Average Maximum Average

CMR 2 1 1 0:5
Cscoped n n

2
n n

2
CGC 3 1:5 1 0:5
CincGC 2 1 1 0:5

Table 5. Evaluated conditions for write barrier.

Bounding the Overhead. Let MROvi and GCOvi

(1 <= i <= 3) be the MROv and GCOv parameters of

each given solution, then:

MROv1 < 0:05(2 + n s
m
)� conditionCost

assignmentCost

MROv2 < ( x
m
+ 0:25 h

m
)�MROv1

MROv3 < 0:05( i
m
+ (n + 1) s

m
)� conditionCost

assignmentCost

GCOv1 < 0:05(3 + 2(1� x
m ))� conditionCost

assignmentCost.

GCOv2 < ( xm + 0:25 h
m )� GCOv1

GCOv3 < 0:6 h
m � conditionCost

assignmentCost

Note that for hardware-based solutions (i.e., solutions 2 and

3) we must take into account the time that the picoJava-

II microprocessor spends to catch a trap. Recall also that

the write barrier overhead introduced by scoped regions is

the execution time of the nestedRegions(X,Y) function.

Then, to bound it, we must bound the number of nested

region levels.

Comparison. In solution 1, the write barrier code is exe-

cuted for both inter-region and intra-region references. So-

lution 2 reduces the cost of write barriers for intra-region

references to the cost to maintain the tri-color invariant (i.e.,

by a factor of x
m
+0:25 h

m
). This is because the gc notify

exception traps only when a task makes an inter-region ref-

erence or attempts to violate the tri-color invariant. Solu-

tion 3 minimizes the cost for inter-region references, to the

cost to detect both illegal assignments when the referenced

object is outside the heap and root-set updates when the ref-

erenced object is within the heap.

5. Experiment

We have modified the KVM garbage collector14 mak-

ing it a stack-based tri-color algorithm. We have im-

plemented the IncrementalGC class within the KVM

by modifying some files15. This class supports the

14Version 1.0.1
15We have modified the garbage.c file to implement the collector

algorithm and the interpreter.c file to implement the write barriers,

as well as the native.h and the nativeCore.c files, which support

the interface for the native methods.

method related with parameters characterizing the col-

lector behavior: getMinimumReclamationRate(), se-

tReclamationRate(), getOverhead(), getWrite-

BarrierOverhead(), and getPreemptionLatency().

We have only implemented three types of memory regions:

the heap that is collected by an incremental GC, immortal

that are never collected and can not be nested, and scoped

that have limited live-time and can be nested. These regions

are supported by the HeapMemory, the ImmortalMemory,

and the ScopedMemory classes. Unlike RTSJ, in our pro-

totype the ScopedMemory class is a non-abstract class,

and the MemoryArea abstract class has not been imple-

mented16. The getWriteBarrierOverhead() method

has been implemented for the three classes.

Instead of using the SPECjvm98 benchmark, which is

not compatible with the KVM, we use an artificial collec-

tor benchmark. This is an adaptation made by Hans Boehm

from the John Ellis and Pete Kovac benchmark17. Two data

structures of the same size are kept around during the entire

process: (i) a tree containing many pointers and (ii) a large

array containing double precision floating point numbers,

which we have modified to contain integers to make it com-

patible with the KVM. This benchmark executes 262� 106

bytecodes and allocates 408MBytes. Then, the allocation

rate is about 1:6 KBytes=1000 executed bytecodes. The

number of garbage collection pass, the microseconds spent

in garbage collection, and the percentage overhead intro-

duced by our collector are given in Table 6:

Memory GC Collecting Execution %
Heap pass Time Time Overhead

8MB 51 13:54� 106 72:87� 106 18:85%
16MB 27 13:17� 106 72:72� 106 18:11%
24MB 17 12:80� 106 71:99� 106 17:80%
32MB 13 11:82� 106 70:50� 106 16:50%

Table 6. Garbage collection overhead.

The maximum latency to preempt the incremental collector

has been measured as 1�second. The number of executed

bytecodes performing write barrier test is 15 � 106 (i.e.,

aastore: 1 � 106, putfield: 6 � 106, putfield -

fast: 7 � 106, putstatic: 19, and putstatic fast:

0) for a total of 262� 106 executed bytecodes. This means

that 5% of executed bytecodes perform a write barrier test,

as already obtained in x 2.2 with SPECjvm98 [14]. And

the overhead introduced by the software write barrier test in

each assignment, is:

� 45% to maintain the root-set.

� 31% to preserve the tri-color invariant.

16This due to the limitations of heritage in the KVM.
17http : ==www:hpl:hp:com=personal=Hans Boehm=gc=gc bench:html
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� 31% to detect illegal references.

� 16% to check a nested scoped level18.

6. Conclusion

A real-time GC avoids the user to recycle memory,

but introduces high overhead and unpredictable behavior.

Memory regions, which can be supported in a stack dis-

cipline offer a high level of predictability. The memory

regions model of RTSJ combines the advantages of both

techniques. But, this model introduces high write barrier

overhead, and it is not clear that this approach is better

than classical static memory, classical real-time collection,

or classical memory regions. The contribution of our work

comes from the adaptation and integration of relevant so-

lutions to make memory reclamation real-time, in the con-

text of RTSJ, and is based on the analysis of the parameters

that are the most influential in memory management perfor-

mance.

In this paper, we have analyzed and estimated the per-

formance of the RTSJ memory model. To this end, we have

studied the memory behavior of the SPECjvm98 applica-

tions. These non-real-time applications allocate all object

references (i.e., non-primitive types) within the JVM heap

(i.e., do not use any other memory region), and do not im-

pose to the collector real-time restrictions. However, we ob-

tain, as a as conclusion, that 5% of the executed bytecodes

makes an assignment of an object within dynamic mem-

ory. We extrapolate this result to RTSJ, concluding that 5%
of the bytecodes executes write barriers to detect (i) illegal

accesses and assignment introduced by MRs, (ii) external

roots for the GC, and (ii) violations of the tri-color invariant

introduced by an incremental GC.

Our solution, for improving performance of memory

management partly addresses the use of hardware aid by ex-

ploiting existing hardware support for Java (i.e., picoJava-

II). A detailed analysis of three different implementations of

write barrier shows that the hardware aid improves highly

the application performance. Finally, we have integrated

our real-time GC and support for memory regions within

the KVM, which we have evaluated using and an artificial

benchmark designed to analyze the memory behavior. For

this prototype we obtain the same proportion of bytecodes

requiring write barriers (i.e., 5%).
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