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Abstract. Stochastic programs are usually hard to solve when applied to real-world problems;
a common approach is to consider the simpler deterministic program in which random param-
eters are replaced by their expected values, with a loss in terms of quality of the solution. The
Value of the Stochastic Solution – VSS – is normally used to measure the importance of using
a stochastic model. But what if VSS is large, or expected to be large, but we cannot solve the
relevant stochastic program? Shall we just give up? In this paper we investigate very simple
methods for studying structural similarities and differences between the stochastic solution
and its deterministic counterpart. The aim of the methods is to find out, even when VSS is
large, if the deterministic solution carries useful information for the stochastic case. It turns
out that a large VSS does not necessarily imply that the deterministic solution is useless for
the stochastic setting. Measures of the structure and upgradeability of deterministic solution
such as the loss using the skeleton solution and the loss of upgrading the deterministic solution

will be introduced and basic inequalities in relation to the standard VSS are presented and
tested on different case studies.

Key words: stochastic programming, expected value problem, value of stochastic solution,
quality of deterministic solution, skeleton solution, upgradeability of deterministic solution.

1 Introduction

The Value of the Stochastic Solution – VSS – has become a standard term in stochastic
programming [2]. It measures the expected gain from solving a stochastic model rather than
its deterministic counterpart (where all random variables are replaced by their means). It is
mostly used to argue that stochastic programming models are necessary despite the efforts
involved. In fact, if the VSS is low, it will almost by definition point to a weakness in the
modelling itself: the modeller thought the uncertainty was important, when in fact, it was
not. So, in these cases, uncertainty is dropped, normally accompanied by an understanding
that the conclusion was “obvious”.
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In this paper we are interested in cases where VSS is large. So uncertainty is important
for the optimal solution, and the deterministic solution is “bad”. This is the normal case.
However, in our view, stopping here is a bit simplistic. Stochastic programs, in particular
stochastic integer programs, are close to impossible to solve for realistically sized problem.
So even though VSS is high, and hence a stochastic program is appropriate, all we may have
access to is the deterministic solution. So we may ask: isn’t there more to be said about the
deterministic solution than that it is bad? We think there certainly is, and in this paper we
ask: why is it bad, what is it that is bad about it? Has the deterministic solution picket
the wrong variables (machines, processes, vehicle types...) or has it just assigned them bad
values? Could it be that a bad deterministic solution (with a large VSS ) actually carry a lot
of information?

VSS is often used to describe problem classes, even though, in fact, VSS is instance
dependent. Change one single number in the problem formulation, and VSS may change
drastically. (See for instance the sensitivity analysis of VSS in [10] for the stochastic second
order cone model for mobile-ad-hoc network that we will discuss later.) However, if we use
VSS in this very strict sense, it becomes close to useless. So we tend to assume, probably
correctly so, that if VSS is high (or low) for a given instance (or selection of instances) then it
will also be high (or low) for other instances that have similar characteristics, such as larger
instances of the same problem where the parameters balance in a comparable way. This is
how we view VSS in this paper. This is crucial, since VSS can be found only for instancases
where the stochastic program can be solved, while our real interest will often be those cases
where it cannot. So we proceed under the assumption that VSS reveals information also for
larger and similar instances, fully understanding that the methodology we end up outlining,
must be seen as heuristic.

So, in this paper we seek a deeper understanding of the expected value solution in order
to investigate its relationship to its stochastic counterpart. For example, does the stochastic
optimal solution inherit properties from the deterministic one, or are they totally different? A
qualitative understanding of the behavior of the deterministic solution relative to the stochastic
one could be very useful because it could reveal some general properties of the underlying
problem and help us to predict how the stochastic model will perform in two important cases.
Firstly, when the stochastic model is actually solvable, but since it is solved repeatedly (daily)
we would like to actually solve the deterministic one, if we understood its qualities and how to
interpret it, and secondly when it isn’t even solvable. Even in the case of a bad deterministic
solution (large VSS ), we would like to investigate and identify the reasons: is it because of
a wrong choice of positive variables (like which facilities to open, what ditches to dig) or is
it a value problem, the choice of variables is fine, but the values (like capacities) are off?
Can we obtain a good (if not optimal) solution to the stochastic problem by updating the
deterministic one?

We believe that a deeper understanding of the relationship between the optimal solutions
to stochastic and deterministic models can also be useful in order to understand what to do
when a situation is random but the actual numbers/distributions are not known. This applies
to algorithmic developments as well as practical use of models in industry and government.
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We shall be able to say what is potentially wrong with a solution coming from a deterministic
model even if we cannot solve the stochastic one since we don’t have data. And once we know
what is wrong with the deterministic solution we may be able to compensate to arrive at a
better (albeit not optimal) solution.

To motivate our development we introduce beside VSS, other measures of badness/goodness
of deterministic solutions according to the type of model considered (linear, integer linear,
mixed integer linear or non-linear). We limit our analysis to the two-stage stochastic case,
even if the investigation could be extended also to multi-stage models. For this purpose we
introduce the loss using skeleton solution LUSS and the loss of upgrading the deterministic

solution LUDS which gives deeper information than VSS on the structure of the problem.
LUSS and LUDS could be useful to take a fast “good” decision instead of using expensive
direct techniques. Basic inequalities for these quantities in relation to VSS are also presented.

The paper is organized as follow: basic facts and notations are introduced in Section
2. Subsection 2.1 explains the set-up of our experiments, whereas details and mathematical
formulation of the problems we consider for our investigation are explained in Section 3 with
a discussion on the numerical results. Section 4 concludes the paper.

2 Basic facts and notations

Let us recall the standard notation that we are going to use in this paper. The following
mathematical model represents a general formulation of a stochastic program in which a
decision maker has to take a decision x in order to minimize (expected) costs or outcomes:

min
x∈X

Eξz (x, ξ) = min
x∈X

{
f1(x) + Eξ [h2 (x, ξ)]

}
(1)

where x is a first-stage decision variable restricted to the set X ⊂ R
n, Eξ denotes the expec-

tation with respect to a random vector ξ, defined on some probability space (Ω,A , p) with
support Ω ∈ R

K and given probability distribution p on the σ−algebra A . The function h2

is the value function of another optimization problem defined as follow:

h2 (x, ξ) = min
y∈Y (x,ξ)

f2 (y; x, ξ) , (2)

and it is used to reflect the costs associated with adapting to information revealed through
a realization ξ of the random vector ξ. The term Eξ [h2 (x, ξ)] in (1) is referred to as the

recourse function.
The solution x∗ obtained by solving problem (1), is called the here and now solution and

RP = Eξz(x∗, ξ) (3)

is the optimal value of the associated objective function.
A simpler approach is to consider the expected value problem, where the decision maker replaces
all random variables by their expected values and solves a deterministic program:

EV = min
x∈X

z(x, ξ̄) , (4)
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where ξ̄ = E(ξ). Let x̄(ξ̄) be an optimal solution to (4), called the expected value solution

and let EEV be the expected cost when using the solution x̄(ξ̄):

EEV = Eξ

(
z
(
x̄(ξ̄), ξ

))
. (5)

The value of the stochastic solution is then defined as

V SS = EEV − RP , (6)

and it measures the expected increase in value from solving the stochastic version of a model
rather than the simpler deterministic one. Relations and bounds on EV , EEV and RP can
be found for instance in [2] and [3].

2.1 Does the stochastic solution inherit properties from the the

deterministic one?

In general it is well known that the expected value solution can behave very badly in a
stochastic environment. However, it is not always clear where this badness comes from: is it
because the wrong variables are fixed at non-zero levels or because they have been assigned
wrong values? We try to answer this question by means of a set of tests which allows us to
investigate, even in the case of a large V SS, how the expected value solution relates to its
stochastic counterpart. Are there common properties even if the expected value solution is
bad in its own right? If there are, these may be useful for understanding large instances of
the stochastic model even if we cannot solve them, and even if the expected value solution
itself is useless (see for example [14]). We consider the following tests, adopted from [14]:

Test A: The classical evaluation of the expected value solution x̄(ξ̄). We calculate its expected
performance by computing EEV = Eξ

(
z

(
x̄

(
ξ̄
)
, ξ

))
and compare it with RP using

V SS = EEV − RP .

Test B: We fix at zero (or at the lower bound) all first stage variables which are at zero (or at
the lower bound) in the expected value solution and then solve the stochastic program.
Hence, we want to see if the deterministic model produced the right non-zero variables
(activities), but possibly was off on the values. Notice that if the original problem is a:

– linear program, then test B leads to solving a linear program but of smaller size
than the original one;

– mixed binary program, then the test implies fixing all the binary variables (at 0 or
1) and solving an easier linear program;

– mixed integer program, then we still solve a MIP but of smaller dimension.
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Let J be the set of indices for which the components of the expected value solution x̄(ξ̄)
are at zero or at their lower bound. Then let x̂ be the solution of:

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ J . (7)

We then compute the expected skeleton solution value

ESSV = Eξ (z (x̂, ξ)) , (8)

and we compare it with RP by means of loss using skeleton solution

LUSS = ESSV − RP . (9)

A LUSS close to zero means that the variables chosen by the deterministic solution are
good but their values may be off. We have:

RP ≤ ESSV ≤ EEV , (10)

and consequently,
EEV − EV ≥ V SS ≥ LUSS ≥ 0 . (11)

Notice that the case LUSS = 0 (i.e. ESSV = RP ) corresponds to the perfect skeleton

solution in which the condition xj = x̄j(ξ̄), j ∈ J is satisfied by the stochastic solution
x∗ even without being enforced by a constraint (i.e. x̂ = x∗); on the other hand,
0 < LUSS < V SS if there exists j ∈ J such that x∗

j 6= x̄j(ξ̄). We shall observe
LUSS = V SS if the stochastic program, when not allowed to use the variables in J ,
chooses not to change the value of any of the remaining variables (i.e. x̂ = x̄(ξ̄)).

Test C: Consider the expected value solution x̄(ξ̄) as a starting point (an input) to the stochastic
model (1) and compare, in terms of objective functions, to (1) without such input. So
we test if the expected value solution is upgradeable to become good (if not optimal)
in the stochastic setting. This is equivalent to adding in problem (1) the constraint
x ≥ x̄(ξ̄) and hence solve the following problem with solution x̃:

minx∈X Eξz (x, ξ)

s.t. x ≥ x̄(ξ̄) . (12)

We then compute the expected input value

EIV = Eξ (z (x̃, ξ)) (13)

and we compare it with RP , by means of the loss of upgrading the deterministic solution:

LUDS = EIV − RP . (14)
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We have:
RP ≤ EIV ≤ EEV , (15)

and consequently,
EEV − EV ≥ V SS ≥ LUDS ≥ 0 . (16)

Notice that LUDS = 0 (i.e. EIV = RP ) corresponds to perfect upgreadability of
the deterministic solution, a case in which the conditions x ≥ x̄(ξ̄) are satisfied by the
stochastic solution x∗ even without being enforced by constraints (under the assumption
that the stochastic first-stage decision is unique), that is x̃ = x∗; on the other hand,
0 < LUDS < V SS, if there exists a component i ∈ {1, . . . , n} such that x∗

i < x̄i, then
x̃i = x̄i (case of partial upgreadability). The case LUDS = V SS corresponds to the
not upgreadability in which the condition x ≥ x̄(ξ̄) is no longer satisfied by any of the
components of solution x∗ and then x̃ = x̄(ξ̄) (i.e. EIV = EEV ).

Test D: This is a generalization of Test B. According to the interpretation of the variables in-
volved and the actual model, partial information is imported from the expected value
solution. Notice that for a mixed-integer program MIP with integer variables only at
the first stage, the test reduces the problem to be linear. Furthermore if the integer
variables are restricted to be binary, the test coincides with test B. On the other hand,
if all first stage variables are integer, the test reduces to the computation of VSS (Test
A).

To show the usefulness of these simple tests, we now apply these experiments on a set of
stochastic programs of different types. They will be described in Section 3:

- Mixed integer stochastic program for a “single-sink transportation problem”;

- Mixed integer stochastic program for a “furniture company problem”;

- Second order cone stochastic program for a “mobile ad-hoc network problem”;

- Mixed integer stochastic program for a “power generation scheduling problem”.

We shall see that while no test is useful for all problems, and no problem benefits from all
tests, in total, we shall get a good evaluation of the expected value solution.

3 Problems description

3.1 Stochastic optimization models for a single-sink transportation

problem

This problem is inspired by a real case of clinker replenishment, provided by the largest Italian
cement producer located in Sicily [11]. The logistics system is organized as follows: clinker is
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produced by four plants located in Palermo (PA), Agrigento (AG), Cosenza (CS) and Vibo
Valentia (VV) and the warehouse to be replenished is in Catania. The production capacities
of the four plants, as well as the demand for clinker at Catania, are considered stochastic.

All the vehicles are leased from an external transportation company, which we assume
to have an unlimited fleet. The vehicles must be booked in advance, before the demand
and production capacities are revealed. Only full load shipments are allowed. When the
demand and the production capacity become known, there is an option to cancel some of the
reservations against a cancellation fee α. If the quantity delivered from the four suppliers using
the booked vehicles is not enough to satisfy the demand in Catania, the residual quantity is
purchased from an external company at a higher price b. The problem is to determine, for
each supplier, the number of vehicles to book in order to minimize the total costs, given by
the sum of the transportation costs (including the cancellation fee for vehicles booked but
not used) and the costs of the product purchased from the external company. The notation
adopted is the following:
Sets:

I = {i : i = 1, . . . , I} : set of suppliers (AG, CS, PA, VV) ;

K = {k : k = 1, . . . , K} : set of scenarios .

Parameters:

ti : unit transportation costs of supplier i ∈ I ;

ci : unit production costs of supplier i ∈ I ;

b : buying cost from an external source (we suppose b > maxi(ti + ci)) ;

q : vehicle capacity ;

g : unloading capacity at the customer ;

l0 : initial inventory level at the customer ;

lmax : storage capacity at the customer ;

pk : probability of scenario k ∈ K ;

ak
i : production capacity of supplier i ∈ I in scenario k ∈ K ;

dk : customer demand at scenario k ∈ K ;

α : cancellation fee ;

Variables:

xi ∈ N : number of vehicles booked from supplier i ∈ I ;

zk
i ∈ N : number of vehicles actually used from i ∈ I in k ∈ K ;

yk : product to purchase from an external source in scenario k ∈ K ;

In the two-stage (one-period) case, we get the following mixed-integer stochastic programming
model with recourse:

min q
I∑

i=1

tixi +
K∑

k=1

pk
[
b yk − (1 − α)q

I∑

i=1

ti
(
xi − zk

i

)]
(17)
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s.t. q
I∑

i=1

xi ≤ g (18)

l0 +
I∑

i=1

qzk
i + yk − dk ≥ 0 , k ∈ K (19)

l0 +
I∑

i=1

qzk
i + yk − dk ≤ lmax , k ∈ K (20)

zk
i ≤ xi , i ∈ I , k ∈ K (21)

qzk
i ≤ ak

i , i ∈ I , k ∈ K (22)

xi ∈ N , i ∈ I (23)

yk ≥ 0 , k ∈ K (24)

zk
i ∈ N , i ∈ I , k ∈ K (25)

The first sum in the objective function (17) is the booking costs of the vehicles, while the second
sum represents the recourse actions, consisting of buying extra clinker (yk) and canceling
unwanted vehicles. Constraint (18) guarantees that the total quantity delivered from the
suppliers to the customer is not greater than the customer’s unloading capacity g, inducing
thus an upper bound on the total number of vehicles. Constraints (19) and (20) ensure that
the second-stage storage level is between zero and lmax. Constraint (21) guarantees that the
number of vehicles servicing supplier i is at most equal to the number booked in advance
and (22) controls that the quantity of clinker delivered from supplier i does not exceed its
production capacity ak

i . Finally, (23)–(25) define the first- and second-stage decision variables
of the problem.

3.2 Stochastic optimization model for a furniture company

The second example we consider is the production problem described in [6]. The Dakota
Furniture Company manufactures desks, tables and chairs under uncertain demand. Different
approaches can be considered in order to capture the relationship between time at which the
decisions have to be taken and the time at which the demand is revealed. In the following we
will use model (P.2) presented in [6] where the acquisition of raw materials and the production
of furniture have to be determined before the demand is revealed. Each type of furniture
requires lumber and two types of skilled labor: carpentry and finishing. Dakota wants to
determine how much of each item to produce and the resources required to meet the production
in order to maximize the profit. The notation adopted is as follows.
Sets:

P = {p : p = 1, . . . , P} : set of products (desk, tables or chairs);

W = {w : w = 1, . . . ,W} : set of board feet of lumber/hours of carpentry, finishing;

K = {k : k = 1, . . . , K} : set of possible scenarios.
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Parameters:

Dk
p : demand for product p ∈ P in scenario k ∈ K ;

cw : unit cost for work w ∈ W ;

ep : selling price for product p ∈ P;

pk : probability of scenario k ∈ K ;

mw,p : the production requirements for product p ∈ P.

The decision variables are:

yp : number of product p ∈ P to produce;

xw : number of board feet/hours of work w ∈ W to use;

sk
p : number of product p ∈ P to sell in scenario k ∈ K ;

Dakota’s problem can be formulated as the following mixed integer stochastic program:

max −
∑

w∈W

cwxw +
∑

k∈K

pk
∑

p∈P

eps
k
p (26)

s.t. − xw +
∑

p∈P

mw,pyp ≤ 0 , w ∈ W (27)

sk
p − Dk

p ≤ 0 , p ∈ P, k ∈ K (28)

sk
p − yp ≤ 0 , p ∈ P, k ∈ K (29)

xw ≥ 0 , w ∈ W (30)

yp ∈ N , p ∈ P (31)

sk
p ∈ N , p ∈ P, k ∈ K (32)

The objective function (26) represents the maximization of income from selling the items
minus the production costs. Constraint (27) guarantees that the resources acquired satisfy
the production schedule, constraint (28) ensures that the production meets the demand, con-
straint (29) means that the number of products sold does not exceed the production. Finally
constraints (30)-(32) define the first- and second-stage decision variables of the problem. We
refer to [6] for data used in the simulations and numerical results.

3.3 Stochastic location-aided routing in mobile ad hoc networks

We consider a location-aided routing problem in a wireless ad-hoc network [9]. A wireless
ad-hoc network consists of a group of mobile nodes that communicate with each other in the
absence of a fixed infrastructure by virtue of their proximity. Because of the scarcity of wireless
channels and the mobility of the wireless nodes, the design of routing protocols is a crucial
issue in mobile ad-hoc networks and a number of routing protocols have been proposed with
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the goal of searching for a route when hosts move. One of these algorithm is the Stochastic
Location-Aided Routing (SLAR) [8], based on the use of local information (given for example
by the Global Positioning System, GPS). SLAR tries to reduce the search space for a desired
route. When a sender node, say S, needs to find a route to a destination node, say D, S
broadcasts a route request to all its neighbors. On receiving the route request, D responds
by sending a route reply message to S following the reverse path of the route request received
by D. If the route request message does not get to D, the protocol allows S to initiate a new
route discovery with an expanded request zone.

The main concepts behind the algorithm are the expected zone and requested zone. The
former is the region in the shape of a circle (see Figure 1), where S (for simplicity fixed at the
origin 0 ∈ R

n) expects to find D after an elapsed time t1, based on the knowledge that node
D was located at l at time t0 and its lowest velocity is v. The latter is the region defined by S
which includes the expected zone, for spreading the route request to reach D in case it does
not belong to the former zone.

One of the main characteristics of a mobile ad hoc network is the mobility of the nodes.
Instead of a deterministic approaches, the SLAR algorithm models the movement speed and
direction of the typical user D by random variables, giving for instance more probability
to a particular direction. The movements of D are then represented by ellipsoid scenarios
Ek, k ∈ K (see Figure 1), randomly generated by uniform and normal distributions in a
neighborhood of the starting position l of the destination node. This choice corresponds to
a typical real situation in which people are moving along preferred directions (for example
different motorways) identified by the length of the main semiaxis σk

1 and angle ϕk of the
ellipsoid Ek with the possibility to exit from the motorway for short distances (length of the
second semiaxis σk

2).
SLAR uses the following three-stage procedure:

1. calculate the initial expected zone (circle C) where the destination node is expected to
be at time t1; the disk C is required to contain the smallest disk C0 centred in l and
radius v (t1 − t0) corresponding to the minimum speed v at which D is supposed to move
(assuming a radial direction). The route request is then sent from the source node to
cover this circle. Notice that the main decisions at this stage are the center ũ ∈ R

n and
radius r =

√
ũT ũ − γ of the circle:

C = {u ∈ R
n : uT u − 2ũT u + γ ≤ 0} . (33)

2. The route request is sent out to look for D by flooding inside the expected zone C. If D
is in C, no further action is needed (see the ellipsoid E1 in Figure 2); the route request
reaches the destination and the reply message is sent back to the source. Then a route
is established between the source and the destination node.

3. In case the destination node D is not found in stage 2, D should be in an ellipsoid Ek,
k ∈ K , not covered by C (see ellipsoids E2 and E3 in Figure 2). The disk C is then
enlarged in order to cover the ellipsoid Ek and to get a new circle C∗,k (requested zone)

C∗,k = {u ∈ R
n : uT u − 2ũT u + γ − ζk ≤ 0} , (34)
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with the same center ũ ∈ R
n of C and radius

√
ũT ũ − γ + ζk enlarged by the quantity

ζk ∈ R
+ ∪ {0}.

A key step is to determine a cost-effective initial expected zone so as to balance the message
flooding cost with latency to reach the destination node D. The cost of choosing the expected
region C is proportional to the distance d1 =

√
ũT ũ of the centre ũ from the source node

S and to the radius r. In [9] second order cone constraints are considered to describe the
inclusion of the disk C0 into C and of the ellipsoid Ek in the second stage circle C∗,k, k ∈ K .
The stochastic second order cone formulation (SSOCP) allows to solve the problem with a
much larger number of scenarios (20250) than what is possible with a semidefinite formulation
[1]. We refer to [9] for details on the stochastic second order cone model and on scenarios
generation procedure.

1 2 3 4 5

-3

-2

-1

1

2

3

E1

E2

E3

C0

C

S u
~

l

Expected Zone

Requested Zone

d1

Figure 1: Expected zone (dashed circle) with SLAR algorithm in the case of the ellipsoid
scenarios E1, E2 and E3.
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3.4 Stochastic optimization model for power generation scheduling

Our last problem is based on an economic scheduling model formulated in [13] and [5] as a
deterministic mixed integer program. Power generation scheduling involves the selection of
units to be put into operation and the allocation of the power demand among operating units.
We consider here a 2-stage stochastic version of the model presented in [13]; it is written in
terms of nodes of the scenario tree, built on the uncertain energy demand at the second time
period. So production decisions are made after demand has been revealed. The following
formulation is considered.
Sets:

I = {i : i = 1, . . . , I} : types of generating units;

N = {n : n = 1, . . . , N} : ordered set of nodes of the scenario tree structure.

Parameters:

mi : minimum output level for generator of type i ∈ I ;

Mi : maximum output level for generator of type i ∈ I ;

Dn : demand in node n ∈ N ;

pn : probability of node n ∈ N ;

Ci : cost per hour per megawatt (mw) of unit i ∈ I for operating above minimum level;

Ei : cost per hour per megawatt (mw) of unit i ∈ I for operating at minimum level;

Fi : start-up cost of unit i ∈ I ;

ui,max : upper bound on the total number of generators of type i ∈ I ;

u0
i : starting value of open units of type i ∈ I ;

The decision variables are:

un
i : number of generating units of type i ∈ I working in node n ∈ N ;

sn
i : number of generators of type i ∈ I started up in node n ∈ N ;

xn
i : total output rate from generators of type i ∈ I in node n ∈ N .

A formulation of the generator scheduling problem as an integer program including start-up
costs can be as follow:

∑

n∈N

pn

[
∑

i∈I

Ci (x
n
i − miu

n
i ) +

∑

i∈I

En
i un

i +
∑

i∈I

Fis
n
i

]
(35)

s.t.
∑

i∈I

xn
i ≥ Dn, n ∈ N (36)

xn
i ≥ miu

n
i , i ∈ I , n ∈ N (37)
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xn
i ≤ Miu

n
i , i ∈ I , n ∈ N (38)

∑

i∈I

Miu
n
i ≥ 115

110
Dn , n ∈ N (39)

sn
i ≥ un

i − u
pa(n)
i , i ∈ I , n ∈ N \ {1} (40)

u1
i = u0

i , i ∈ I (41)

un
i ≤ ui,max , i ∈ I , n ∈ N (42)

xn
i ≥ 0 , i ∈ I , n ∈ N (43)

sn
i ∈ N , i ∈ I , n ∈ N (44)

un
i ∈ N , i ∈ I , n ∈ N (45)

The objective function (35) consists in the minimization of the total costs of starting, produc-
ing power at minimum output and producing power above the minimum output for each time
period. Constraint (36) guarantees that demand must be met in each period, whereas (37)
and (38) make sure that output lies within the limits of the operating generators. Constraint
(39) means that the extra guaranteed load requirement must be able to be met without start-
ing up any more generators and (40) that the number of generators started in node n must
equal the increase in number with respect to the node pa(n) of the previous period. Finally
constraints (41)-(42) define starting values and upper bound of open units and (43)-(45) the
decision variables of the problem.

3.5 Comparison tests for the “single-sink transportation problem”

Tests A, B and C are performed for the single-sink transportation problem described in Section
3.1. The model aims to find, for each supplier, the number of vehicles to book at the beginning
of January 2007.

Test A We compare the solution to the stochastic model (17)-(25) with the expected value
problem (4). Solutions to the deterministic model are reported in Table 1: the model
will always book the exact numbers of vehicles needed for the next period (so x̄i = z̄k

i ,
i ∈ I , k ∈ K ); it sorts the suppliers according to the transportation costs and books
a full production capacity from the cheapest one (AG), following by the next-cheapest
(PA).

The deterministic model books much fewer vehicles than the stochastic one, resulting in
a solution costing only two-thirds of the stochastic counterpart. However, EEV is much
higher (e 495 788 instead of the predicted cost of e 294 898) resulting in

VSS = 495 788 − 438 304 = 57 384 , (46)

which shows that we can save about 12% of the cost by using the stochastic model,
compared to the deterministic one.
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Table 1: Optimal solutions from tests A, B and C for the “single-sink transportation problem”.
The table shows optimal number of booked vehicles for each supplier and total optimal costs.

AG CS PA VV Objective value (e)
deterministic 206 0 530 0 294 898=EV
stochastic 400 0 563 117 438 301=RP
Test A 206 0 530 0 495 788=EEV
Test B 400 0 637 0 462 214=ESSV
Test C 400 0 563 117 438 301=EIV

Why is the deterministic solution bad? Because of a too optimistic guess on the ran-
domness (leading to too few booked vehicles from the four suppliers) or because of the
wrong suppliers? We perform the following tests:

Test B We follow the skeleton solution from the deterministic model, not allowing to book
vehicles from CS and VV. The Expected skeleton solution value ESSV is then e 462 214,
still higher than RP with a consequent loss using the skeleton solution of

LUSS = 462 214 − 438 304 = 23 910 , (47)

which measures the loss by booking vehicles coming only from suppliers AG and PA as
suggested by the deterministic model. We can conclude that the deterministic solution
is bad because it books the wrong number of vehicles from the wrong suppliers.

Notice that this approach requires us to solve a MIP but with smaller dimension than
the original problem.

Test C The number of vehicles booked from AG and PA in the deterministic solution x̄i(d̄, āi),
i ∈ I is taken as input in the stochastic model and we check if the solution can be
upgraded in a second run. The test amounts to adding to the stochastic model (17)-(25)
the constraint xi ≥ x̄i(d̄, āi), i ∈ I and solve it. Notice that for all the four suppliers
the constraint is automatically satisfied, as the booked number vehicles in the stochastic
solution is higher than in the deterministic one (see Table 1) with LUDS = 0. Hence,
the deterministic solution is perfectly upgradeable.

In conclusion the deterministic solution does not perform well in a stochastic environment
because of the too low number of vehicles booked at the fist stage (736 instead of 1080) just
considering AG and PA as possible suppliers. However the company can consider the deter-
ministic solution as a lower bound for the stochastic case. This might be useful information.

3.6 Comparison tests for “furniture company problem”

Tests from the previous section are now performed for the Dakota furniture problem described
in Section 3.2. The model aims to find how many items to produce and resources to acquire
to meet the demand.
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Table 2: Optimal solutions from tests A, B, C and D for “Dakota furniture company problem”.
The table shows optimal number xw, w ∈ W of resources to acquire to produce item yp, p ∈ P

(desks, tables and chairs) and total profit.
x1 x2 x3 y1 y2 y3 Objective value (e)

deterministic 1 950 850 487.5 150 125 0 4 165=EV
stochastic 1 060 420 265 50 110 0 1 142=RP
Test A 1 950 850 487.5 150 125 0 865=EEV
Test B 1 060 420 265 50 110 0 1 142=ESSV
Test C 1 950 850 487.5 150 125 0 865=EEV=EIV
Test D 1 950 850 487.5 110 150 20 885

Test A The stochastic model (26)-(32) is compared with the expected value problem (see Table
2). Sensitivity analysis on the deterministic results indicates that the solution “produce
as many desks and tables as can be sold (ȳ1 = s̄1 ȳ2 = s̄2), but do not produce any
chairs (ȳ3 = 0)” remains valid for any set of (nonnegative) demands, thus in particular
for the mean value D̄p. Hence,

V SS = 1142 − 865 = 277 (48)

showing that we lose about 25% of the total profit by implementing the deterministic
solution.

Why is the deterministic solution bad? Is it because of the acquisition of too many

resources? Or because of the wrong number of items are producted? Or because the
wrong types of items are produced (desks and tables instead of chairs)? The following
tests help us to find an explanation.

Test B As in the deterministic solution we do not allow the production of chairs (y3 = 0),
a condition already satisfied by the stochastic solution (see Table 2). This leads to
LUSS = 0 which means that the deterministic solution has a perfect structure (case
of perfect skeleton solution) producing the right items (desks and tables), but plans to
acquire too many resources and to produce too many desks for the demand in the market
(x̂w = x∗

w, ŷp = y∗

p, w ∈ W , p ∈ P). From an algorithmic perspective, we still solve a
mixed integer stochastic linear program but with smaller dimension than the original.

Test C We check the upgradeability for resources acquired and items producted by the deter-
ministic solution in the stochastic environment. None of the conditions xw ≥ x̄w(D̄p),
yp ≥ ȳp(D̄p), w ∈ W , p ∈ P are satisfied by the stochastic solution, and consequently
x̃w = x̄w(D̄p), ỹp = ȳp(D̄p), w ∈ W , p ∈ P will be the solution to the constrained
stochastic program of Test C. This is a case of no upgradability as the deterministic so-
lution is useless as a starting point for a stochastic program describing potential updates
of the deterministic solution. We have LUDS = V SS = 277.
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Test D We now fix just the resource quantities from the deterministic solution xw = x̄w(D̄p),
w ∈ W , p ∈ P, allowing the stochastic model to decide on the number of desks, tables
and chairs to produce. So we are solving an integer program. Because of the high
amounts resources acquired (see solutions reported in Table 2), the model produces too
many items for the demand in the market. The profit is still as much as 22.5% worse
than the stochastic one.

We can conclude that the deterministic solution produces the right items (desks and tables)
but is bad because it overestimates both the amounts of resources to acquire and the number
of items to produce for the needs of the market.

3.7 Tests for “Mobile ad-hoc network problem”

We refer to the problem described in Section 3.3 and to [9] for details on data in the simulation
and scenarios generation technique. We performed a sensitivity analysis to see how the VSS

depended on the second stage cost q1 (see [10]), and ended up with α = β = 1 and q1 = 1.5,
paying more for a corrective decision than the original one. With the numbers in the underlying
paper, we found V SS = 0, which we did not find very useful for our analysis.

Test A Standard evaluation of the deterministic solution associated to the mean scenario Emean

(see Figure 2) with center (ū1, ū2) = (2.5056,−0.2461), angle ϕ̄ = 1.2866, and semi-axes
σ̄1 = 1.7448 and σ̄2 = 0.8586, respectively, given as the means of centres, angles and
semi-axes of the ellipses Ek, k = 1, . . . , 5 (see [9]).

Because in a deterministic problem the future is completely known, a recourse action is
not required and the consequent total cost is lower (5.38 instead of 8.52 of the stochastic
case). The resulting expected region (see Figure 2 and Table 3) appears to be too small
to be useful in practice (the radius r is 1.8 instead of 2.07 of the stochastic case) and the
centre is located furthermost from the sender node S (the distance d1 = 2.16 instead of
2.02).

Table 3: Optimal solutions from the deterministic and stochastic models and tests A and D.
The table shows optimal first stage variables, the radius r of the circle C and costs.

d1 d2 ũ1 ũ2 γ τ r 1st st. costs Objective value
deterministic 2.16 3.23 2.15 -0.14 1.42 1.75 1.80 5.38 5.38
stochastic 2.02 4.27 2.01 -0.23 -0.17 2.49 2.07 6.29 8.52
Test A 2.16 3.23 2.15 0.14 1.42 1.75 1.80 5.38 9.31
fixing det. centre 2.15 4.98 2.15 -0.14 -0.34 2.70 2.23 7.13 8.77
fixing det. d1 2.16 4.70 2.15 -0.14 -0.04 2.63 2.17 6.86 8.59
fixing det. radius 2.08 -3.23 2.07 -0.23 1.12 1.99 1.80 5.31 9.03

The value of the stochastic solution is given by

V SS = 9.31 − 8.52 = 0.79 , (49)
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Figure 2: Comparison between the stochastic solution Cstochastic and the mean value solution

(dashed circle Cdeterministic) for the mean scenario Emean (plotted in (a)), and mean of the
ellipses scenarios E1, . . . , E5 (plotted in (b)).

which shows that we save about 9.27% of the cost by using the stochastic model instead
of the deterministic one.

What is wrong in the mean value circle Cdeterministic? The location of the centre (too far
from the sender node S) or the small radius r? We develop the following tests where we
fix separately the first stage decision variables (centre ũ, radius r and distance d1 of the
centre from the source node S). See results in Table 3 and Figure 3.

Test D First we take the centre from the deterministic circle Cdeterministic allowing the stochastic
model to decide on the radius. This choice implies a small loss (2.93%) because of the
possibility to cover the random movement of the destination node D through a circle
with larger radius (dotted-dashed line circle in Figure 3(a)) than in the stochastic case
(solid line).

A weaker option is obtained by forcing the distance of the centre from S at the deter-
ministic value d1 = 2.16 with a loss of just 0.82%.

Reasonably, the worst case is when we fix the radius from the deterministic solution:
the expected zone (dotted-dashed line circle in Figure 3(b)) is simply too small. The
percentage looses with respect the stochastic recourse problem increases to 5.98%.

By the tests we can conclude that the deterministic model delivers a good choice of the
centre but not of the radius, as it is too small to contain the larger ellipsoid scenarios. Hence,
there is something to be learned from the deterministic solution.
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Figure 3: Comparison between the stochastic solution (solid line circle) and the expected
region (dotted-dashed circle) with (a) centre and (b) radius from the deterministic solution
(dashed circle).

3.8 Comparison tests for power generation problem

Table 4 reports energy demand on the nodes n ∈ N of the scenario tree, while characteristics
of the two types of generators are shown in Table 5. We assume that the number of running
units as we enter the modelling period is u0

i , i ∈ I . These units have a capacity of 800 mw, well
above the expected need of D̄ = 300 mw during the next time period. A natural consequence
is that no generators will be started up in period one (s1

i = 0, i ∈ I ) independently of the
start up cost. The aim of the model is to select and allocate the power demand among an
optimal number of operating units of types 1 and 2.

Table 4: Energy demand Dn and probability pn at node n ∈ N of the two-period (one proper
stage) scenario tree. D̄ represents the mean demand considered in the deterministic model.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Dn 300 605 630 580 650 600 520 100 180 130 100 120 102 50 41 100 102 125 69 600 596

pn 1
1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1
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1
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1

20

1

20

1

20

1

20

1

20

1

20
D̄ 300 300

Test A Here we evaluate of the expected value solution under the mean scenario D̄ = 300
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Table 5: Costs and production characteristics for generators of type i ∈ I .
Ci (e) Ei (e) Fi (e) mi (mw) Mi (mw) u0

i ui,max

i = 1 100 2500 14000 20 80 4 4
i = 2 150 5000 16000 30 120 4 4

Table 6: Optimal solutions from tests A, B, C and D for “energy power generation problem”.
The table shows first stage solutions of generating units u1

i , the number of started up generators
s1

i , total output rate x1
i (i ∈ I ) and total cost.

u1
1 u1

2 s1
1 s1

2 x1
1 x1

2 Objective value (e)
deterministic 4 0 0 0 300 0 104 000=EV
stochastic 4 3 0 0 210 90 115 477.5=RP
Test A 4 0 0 0 300 0 127 877.5 =EEV
Test B 4 0 0 0 300 0 127 877.5=ESSV
Test C 4 3 0 0 210 90 115 477.5=RP
Test D 4 0 0 0 300 0 127 877.5 =EEV

mw in the stochastic environment (35)-(45). Solutions are reported in Table 6: the
deterministic model closes down as many units as possible for the demand, ending up
with only four units of type 1. We observe this result in many test – the deterministic
solution closes down as many units as it can. Because the deterministic solution keep
only 4 units running instead of 7 (4+3) (as in the stochastic one), the resulting total cost
in the model itself reduces to 104 000 e against 115 477 e of the stochastic counterpart.
However the 4 units working in the deterministic solution are not enough to satisfy the
high demand scenarios in the second stage, bringing us to a

V SS = 127 877.5 − 115 477.5 = 12 400 (50)

implying a loss of 10% caused by the need to restart some units at the second stage.

So let us see why the deterministic solution is bad. We answer by means of the following
tests:

Test B We follow the skeleton solution from the deterministic model closing units of type 2, not
required to satisfy the deterministic demand of 300 mw. The model reacts by opening
units of type 2 at the second stage at higher cost. The associated expected skeleton
solution value ESSV = EEV and LUSS = V SS means that the deterministic solution
has a bad structure because it closes units required in the stochastic environment.

As before from an algorithmic perspective, we still solve a mixed integer stochastic linear
program but with a smaller dimension than the original one.

Test C We check the upgradeability of the number of operating units (u1
i ≥ ū1

i ) allowing the
stochastic model to decide on the output rates and possibly new units. Notice that for
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both types of units the constraint is automatically satisfied; the number of units opened
in the deterministic case can then be considered as a lower bound for the stochastic one
with LUDS = 0 (a case of perfect upgradeability).

In conclusion the deterministic solution is bad because it tends to follow in every period the
market profile, by closing units that could be needed in the following time period. However the
deterministic solution gives us a lower bound on the number of units to open in the stochastic
context.

4 Conclusions

In this paper we have analyzed the quality of the expected value solution in terms of its
structure and upgradeability to the stochastic solution. A qualitative understanding of the
deterministic solution can be very useful both in case of untractable real-world problems
or for problems actually solvable but that should be run very often. Measures of partial
information from the expected value solution, such as the quality of its structure (loss using

skeleton solution, LUSS) and upgradeability to the stochastic solution (loss of upgrading the

deterministic solution, LUDS) have been defined and related to the standard value of the

stochastic solution V SS. LUSS and LUDS, here computed on different small case studies
can help us to understand the behavior of the deterministic solution and the reasons of its
badness/goodness. In conclusion, by means of the tests proposed, we can identify the main
causes of badness/goodness of the expected value solution as follows:

- the wrong choice of variables, that is, different variables are set to zero (or at the lower
bound) in the deterministic and the stochastic solutions, measured by a positive loss

using the skeleton solution 0 < LUSS ≤ V SS.

- the wrong values, when the choice of variables is the same but the values of the non-zeros
differ; this case is reflected by LUSS = 0 and V SS > 0. Obviously, a wrong choice
of variables leads to wrong values too (LUSS > 0). Situations where the skeleton is
good, but the deterministic solution is bad, are of particular interest as the deterministic
solution is very useful.

- the non-upgradeability of the deterministic solution to the stochastic measured by a
positive loss of upgrading the deterministic solution LUDS > 0. Situations where the
deterministic solution is bad, but it is upgradable, is of great importance in many cases.
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