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Abstract—In this paper, we study the resilience of supply
networks against disruptions and provide insights to supply chain
managers on how to construct a resilient supply network from
the perspective of complex network topologies. Our goal is to
study how different network topologies, which are created from
different growth models, affect the network’s resilience against
both random and targeted disruptions. Of particular interest
are situations where the type of disruption is unknown. Using a
military logistic network as a case study, we propose new network
resilience metrics that reflect the heterogeneous roles (e.g. supply,
relay, and demand) of nodes in supply networks. We also present
a hybrid and tunable network growth model called Degree and
Locality-based Attachment (DLA), in which new nodes make
connections based on both degree and locality. Using computer
simulations, we compare the resilience of several supply network
topologies that are generated with different growth models.
The results show that the new resilience metrics can capture
important resilience requirements for supply networks very well.
We also found that the supply network topology generated by
the DLA model provides balanced resilience against both random
and targeted disruptions.

Index Terms—Complex network, growth model, random dis-
ruption, targeted disruption, resilience, supply network topology.

I. INTRODUCTION

O
UR daily life relies on the operations of supply chains,

which distribute goods and services, such as groceries,

water and electricity, from suppliers to consumers. With

globalization and the development of technology, structures

of supply chains are constantly evolving and becoming more

complex, as new entities join the system and new connections

form between them. As a result, today’s supply chain sys-

tems are shifting away from the “chain” structure. Instead,

they often feature a network of interacting entities, such

as manufacturers, distributors, and retailers in a distribution

network. In a military logistics network the corresponding

entities might be supply units and battalions. Since entities

may take different forms in various application domains, we

refer to them simply as nodes in a network. Many researchers

have suggested that supply chains should be considered as
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supply networks [1], and that the analysis and design of supply

chains should incorporate the concepts of complex systems,

especially dynamic complex networks [2].

Meanwhile, supply networks, especially large or global

ones, often face disruptions, such as natural disasters, eco-

nomic recessions, unexpected accidents, or terrorist attacks.

A disruption may initially attack or disable only one or few

nodes in the system, but its impact may propagate further,

sometimes even with amplification [3], among inter-connected

nodes. Such disruptions will thus affect the normal operations

of many other nodes. Occasionally, failures in a small portion

of the system may cause the catastrophic failure of the whole

system [4]. Such events may seriously disrupt or delay the

flow of people, goods, information and funds, and thus lead

to higher costs or reduced sales [5]. A supply network’s

resilience against disruptions lies in its ability to maintain

operations and connectedness under the loss of some structures

or functions [6]. Therefore, building resilient supply networks

has high priority, and it has attracted the attention of managers,

shareholders, and researchers [7].

Traditional research on supply chain disruptions often

adopts the risk management perspective and focuses on strate-

gies and technologies to identify, assess, and mitigate risks and

problems caused by disruptions [5], [7], [8]. Previous research

[9] has revealed that the topology of a supply network has great

impact on its resilience. In other words, the way individual

nodes are organized and connected, and the resulting network

structure, e.g., random, hierarchical, etc., will affect the supply

network’s performance when disruptions occur. However, we

found little research following this direction. In this paper,

we adopt the complex-network view of supply chains and

study the resilience of supply networks from a topological

perspective. Assuming the homogeneous roles of nodes, the

existing literature of network attachment strategies is often

limited in application as the resilience of a supply network

is measured inappropriately. By contrast, because we take

into consideration the heterogeneous roles of nodes when

evaluating supply network resilience, our heuristic strategy

is more general and effective than those described in extant

literature.

The remainder of the paper is organized as follows. We first

briefly review related research. Using a military logistic net-

work as a case study, we propose a new taxonomy of resilience

metrics for supply networks. Following that, a new network

growth model is introduced. Through computer simulations,

the resilience of the supply network topology generated with
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the new growth model is evaluated and compared with the

topologies of other networks. Finally, the paper will give a

conclusion and discuss future research directions.

II. RELATED WORK

The literature contains ways to evaluate and optimize the

resilience of networks [10], [11]. However, these network

optimization problems are generally NP-hard [12], [13]. As a

result, when the network is complex and evolving, finding the

optimal network configuration is computationally expensive.

While techniques, such as simulated annealing [14], genetic

algorithms [15], and heuristic procedure [16], have been used

in the design of supply chain and distribution networks,

this stream of work focuses mainly on location of facilities,

capacity planning and minimizing transportation costs, instead

of the resilience of supply networks when some nodes fail to

operate. Most of the related work on resiliency also does not

consider the twin goals of maintaining resilience under random

failures and targeted attacks.

Moreover, the optimization-based approaches are generally

centralized in nature, because a supply network manager is

required to have complete knowledge and control of the whole

network to optimize it. However, it is often difficult to meet

this requirement in the real world. Researchers have found

that the structure of a supply network often emerges from

the distributed decisions of individual nodes, regardless of the

centralized nature of the design [17], because some heuristic

strategies are often used when a node decides which nodes

to connect to. Further, a manager only knows and controls

the network of its corporation or organization, but the supply

network at a macro level consists of networks from different

corporations or organizations. Corporations’ or organizations’

optimization of their own networks may not necessarily lead to

a globally resilient network. Therefore, managers’ awareness

of how network design strategies at the micro level affect the

resilience of the whole supply network at the macro level is

also important.

At the outset, we also distinguish our work from that

in the area of social network theory. Social network theory

views the attributes of individuals as less important than their

relationships and ties with other actors within the network. It

has been useful for explaining many real-world phenomena,

but it leaves less room for individual agency, so much of it

rests within the structure of the network(s) that they are part

of. Some sample references in this area are [18], [19], [20].

Complex networks are defined as networks whose “structure

is irregular, complex and dynamically evolving in time” [21].

They are ubiquitous in nature and society. Examples include

social networks, the Internet, biological cellular networks,

etc. Research has revealed topologies of many real-world

networks [22], [23]. For example, some supply networks have

scale-free topologies [24], which feature few high-degree hub

nodes and power-law degree distributions. The research on

complex network growth models reveals distributed strategies

and heuristics that underlie many real-world networks.

Network growth models study the evolution of complex

networks by specifying how new nodes connect with exist-

ing ones through a process of “attachment”. As new nodes

Fig. 1. A hierarchical military supply chain

enter a network, the network topology emerges from the

distributed attachment decisions of individual nodes. Different

growth models follow different attachment rules and lead

to different network topologies. For instance, the random-

attachment model randomly connects two pair of nodes with a

pre-defined probability and generates an ER random network

[25]. The growth models are often simple, yet they can

produce complex network topologies [26]. For example, in

the preferential-attachment model [23], the probability that a

new node attaches to an existing node is proportional to the

existing node’s degree. This leads to the well-known scale-free

topology that can explain many real-world networks, such as

the Internet. It is also one of the key underlying principles that

guides the evolution of supply networks [27].

Specifically, when the resilience of complex networks

against errors and attacks was analyzed, it was found that

scale-free networks offer high tolerance against random fail-

ures. However, networks with scale-free topologies are vul-

nerable to disruptions that target the most connected nodes

[28]. Thadakamalla et al. introduced the topological perspec-

tive into the study of supply network resilience [9]. It was

argued that traditional hierarchical supply chains, in which

an edge can only exist between two units of different types,

are vulnerable to disruptions. A military logistic network,

consisting of battalions, forward support battalions (FSB) and

main support battalions (MSB) was used as an example. In the

hierarchical supply network in Fig.1, the failure of a single

FSB disconnects about 30% of the battalions from supplies.

Therefore, the authors proposed a new network growth model

(henceforth referred to as the Hierarchy+ model) that extends

the hierarchical model by allowing edges between nodes of the

same type. However, it still arbitrarily creates more edges for

support units than for battalions. The supply network generated

by this model is called the Hierarchy+ network. Computer

simulations showed that Hierarchy+ supply networks have sat-

isfactory resilience against disruptions. Our study will extend

this research further.

III. PROPOSED APPROACH

In this section, we first present a taxonomy of resilience

metrics for supply networks. The new metrics reflect the

heterogeneous roles (such as supply, relay and demand) of

different types of nodes in supply networks. We then introduce

a new hybrid and tunable supply-network growth model to

generate a new supply network topology, and evaluate multiple

supply network topologies’ resilience against disruptions using

the new metrics.
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TABLE I
SOME GENERIC METRICS FOR NETWORK RESILIENCE

Name Brief description

Size of the LCC The number of nodes in the LCC of a network.

Average path length
in the LCC

The average of the shortest path length between
any two nodes in the LCC of a network.

Maximum path length
in the LCC

The maximum path length between any two
nodes in the LCC of a network.

A. New Resilience Metrics

In complex network research, the evaluation of resilience

focuses on the largest connected component (LCC), in which

there is a path between any pair of nodes. Existing resilience

metrics are generic topological metrics, including size of the

LCC, average path length in the LCC, and the maximum path

length in the LCC. Table I explains these metrics.

Applying these generic metrics to the evaluation of supply

network resilience is largely based on the assumption that roles

and functions of nodes in a supply network are homogeneous.

However, in real-world supply networks, different types of

nodes play different roles. Often times, the normal function-

ing of downstream nodes may depend on the operations of

upstream nodes. In addition, one of the fundamental purposes

of a supply chain is to connect suppliers with consumers. This

type of “Origin-Destination” connection is the prerequisite for

the flow of goods or services [29]. As a result, preserving this

type of connection in disruptions is critical for maintaining the

operations of the whole supply network.

In the military logistic network in [9], support units, such

as FSB and MSB, play a different role from regular bat-

talions. MSBs are supply providers and regular battalions

are consumers. FSBs act as distribution centers and forward

supplies to consumers. Battalions often cannot perform their

duties without supplies. Therefore, an LCC, in which there

is no support unit, or where battalions are far from support

units, should not be considered resilient because there is

no or limited supply flow in such a sub-network. Similarly,

the distance between battalions and their support units is

generally more important for a resilient supply chain than

the distance among battalions. Therefore, the heterogeneous

roles (as supply and demand nodes) of different types of nodes

in a supply network must be considered when evaluating the

resilience of a supply chain.

The proposed taxonomy consists of system- and topology-

level metrics. We will use the military logistic network as an

example to illustrate our metrics.

First, we introduce availability as a critical resilience metric

for supply networks, because it shows whether nodes in the

supply network can get the supplies that they need to maintain

normal operations. At the topological level, availability is

interpreted as supply availability rate, which is the percentage

of demand nodes that have access to supply nodes. In the

context of the military supply network, the supply availability

rate is the percentage of battalions that have access to MSBs.

Consider the military logistic network as an undirected

graph G with node set V and edge set E, where ei,j ∈ E
denotes an edge between nodes vi, vj ∈ V . As shown in (1), V

is also the union of two non-overlapping subsets of battalions

(node set VB) and support units (node set VS).

V = VB ∪ VS , where VB ∩ VS = φ (1)

Then the set of battalions that have access to support units

in the network is defined by (2), where pi,j denotes a path

between nodes vi and vj . Thus VBS is the set of battalions

that have access to support untis through the supply network.

Consequently, the supply availability A for a military logistic

network is defined as the ratio between the cardinalities of sets

VBS and VB , as shown in (3) below.

VBS = {vi ∈ VB | ∃vj ∈ VS : ∃pi,j} (2)

A = |VBS | / |VB | (3)

Second, the connectivity of the system is also important.

Topological connectivity is often measured by the size of the

LCC. In a supply network whose LCC contains all nodes,

a node can access any other node through the network. On

the contrary, if a supply network’s LCC contains, say, only

40% of all nodes, the network may be partitioned into several

isolated sub-networks, which means flows of goods or services

are limited to within a smaller sub-network. Here, we extend

the metric of LCC and use size of the largest functional sub-

network (LFSN) instead. For the military logistic network,

a functional sub-network Vm ∈ Vsub (Vsub is the set of all

functional sub-networks) satisfies the requirements in (4). Thus

the LFSN is the Vm with the largest size (5).

∀vi, vj ∈ Vm : ∃pi,j and ∃vk ∈ Vm : vk ∈ Vs (4)

VL = {Vm ∈ Vsub|∀Vn ∈ Vsub(n 6= m) : |Vm| ≥ |Vn|} (5)

The difference between the old and the new connectivity

metrics is that there must be at least one supply node in the

LFSN. A sub-network of a military logistic network cannot

function and maintain the flow of supplies without a support

unit in it. When nodes fail during disruptions, a supply network

that features a larger functional sub-network can maintain a

higher level of connectivity and is considered more resilient.

We also describe two metrics for accessibility of supplies.

Higher accessibility means that supplies are closer to con-

sumers, and they can receive them at lower cost or in lesser

time. As mentioned earlier, from the perspective of supply

network resilience, the distance between a pair of demand

nodes is not as important as that between a supply and a

demand node. Consequently, we propose supply path length

as the length of the path between a demand and a supply

node (denoted by dist(x, y)). Thus, the average supply-path

length in the LFSN is the average of the minimum supply-

path lengths between all pairs of supply and demand nodes in

the LFSN (see Equation 6). Moreover, the maximum supply-

path length in the LFSN is the longest supply-path length

between any supply and demand pair in the sub-network (see

Equation 7). Naturally, shorter average and maximum supply-

path lengths mean better average- and worst-case accessibility.

Cavg =

∑
vi∈V ′

S

∑
vj∈V ′

B
dist(vi, vj)

|V ′
S | ∗ |V ′

B |
,

where V ′
S = VL ∩ VS , V ′

B = VL ∩ VB (6)
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TABLE II
TAXONOMY OF THE NEW RESILIENCE METRICS FOR SUPPLY

NETWORKS

Name Topology-level

metric

Description

Availability Supply availabil-
ity rate

The percentage of demand nodes that
have access to supplies (Equation 3).

Connectivity Size of the largest
functional sub-
network (LFSN)

The number of nodes in the LFSN,
in which there is a path between any
pair of nodes and there exists at least
one supply node (Equation 5).

Accessibility
Average supply-
path length in the
LFSN

The average of the shortest supply-
path length between all pairs of sup-
ply and demand nodes in the LFSN
(Equation 6).

Maximum supply-
path length in the
LFSN

The maximum path length between
any pair of supply and demand nodes
in the LFSN (Equation 7).

Cmax = max(dist(vi, vj)), where vi ∈ V ′
S , vj ∈ V ′

B (7)

However, there is a caveat when using the two accessibility

metrics. In general, the comparison between the average and

maximum supply-path lengths of different supply networks (or

sub-networks) are fair and meaningful only when the networks

are of similar sizes. We have to take the sizes of the LFSNs

into consideration because a larger supply network with more

nodes will often have longer average paths than a network

with similar topology but fewer nodes. The existence of a few

supply nodes that are far away from some demand nodes may

increase the average and maximum supply-path length in a

large sub-network. We will illustrate this with our experiments

in Section IV.

It is also possible to combine these metrics into a single

objective function in order to compare the overall performance

of different supply networks more directly. However, we

decided to use multiple metrics instead of a single objective

function to gain a better understanding of a supply network’s

performance from different perspectives. When the context in

which a specific supply network operates is known, one is in

a better position to determine a single objective function.

Table II summarizes our new metrics. We believe they can

more accurately measure supply network resilience, and are

more systematic and realistic as compared to the metrics in

previous work such as [9].

B. New Hybrid Growth Model (DLA)

As noted earlier, the topology of a complex network depends

on its growth model. In the context of supply networks, growth

models represent distributed connection strategies that a node

uses to decide which other nodes to connect to. For example,

in the preferential-attachment model [23], new nodes prefer

to connect to existing high-degree nodes. Thus, they can

access other nodes efficiently and at lower cost. The random-

attachment model is a strategy that randomly selects nodes

to attach a new node to. The Hierarchy+ [9] model allows

connections between nodes at the same level in the hierarchy.

While Hierarchy+ uses ad-hoc attachment rules for different

types of nodes, we propose a more general model called

Degree and Locality-based Attachment (DLA) growth model.

Fig. 2. An example of the DLA growth model. ID for the new node is
underscored.

In this model, a node considers not only the connectedness,

but also the distance of a candidate node when establishing

connections. This model does not require special attachment

rules for different types of nodes and may be applied to other

types of complex networks in general. The DLA growth model

starts with a small number of disconnected nodes, say N0. We

assume that when a new node enters the system it initiates

edges to connect to k existing nodes (k < N0). The attachment

rules for a new node are as follows:

The first edge connects to a node i of degree ki with

probability Pi where:

Pi = ki
u/Σiki

u, where u >= 0 (8)

The remaining edge(s) will connect to a node j, which has a

shortest distance of dj to the new node, with probability Pj

where:

Pj = dj
−r/Σjdj

−r, where r >= 0 (9)

Equation (8) describes the degree-based attachment preference

of the first edge of a new node, and u is the customizable

degree preference parameter. Given the same u, the new node

will prefer connecting to existing higher degree nodes. When

u = 0, the rule is similar to that of random networks, as

every other node in the network has the same probability

of being connected with the new node. When u = 1, the

connection occurs by the preferential-attachment model of a

scale-free network. A larger u gives even higher Pi to high-

degree nodes. Therefore, as u becomes larger, it is more likely

that the new node will connect to an existing node with higher

connectedness. It is worth noting that, at the very beginning

of the growth process, all the existing nodes are disconnected

from each other, i.e., ∀ki : ki = 0. In this case, when the

first new node enters the system, it will randomly choose an

existing node to connect to.

On the other hand, Equation (9) gives preference to locality

for the attachment of a new node’s remaining edges if it is

allowed to initiate more than one connection. As the node is

already connected to the network through the first edge, we

can then calculate the shortest distances from this node to all

the other nodes. In (9), the non-negative integer distance dj

and the customizable locality preference parameter r constitute

the attachment rule for the remaining edges of a new node.

Given the same r, candidate nodes with smaller dj will have a

higher probability of being connected with new nodes. In other

words, the new node prefers nodes in its neighborhood over

distant nodes. When r = 0, every other node in the network

has the same probability of being connected by the new node

as in a random network. A larger r will reinforce the relative

advantage of nearby nodes, while a smaller r will increase

the new node’s chance of connecting to more distant nodes.

Additionally, in the special case of a sparse network, where
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no existing node is connected to the new node via any path,

a node is chosen randomly. Lastly, and for obvious reasons,

multiple links to the same node are disallowed. Also, because

a new node does not need the exclusive access to other nodes

when establishing connections, deadlocks will not happen in

our model.

Fig. 2 illustrates a simple example for the DLA growth

model with u = 1 and r = 1. In this example, each new node

will establish two edges. Initially, the network starts with three

disconnected nodes 1, 2, and 3. Node 4 is the first new node

that enters the system and it randomly chooses two nodes to

connect to, say, nodes 1 and 2. When node 5 comes in, its first

edge will prefer existing high degree nodes, and thus node 4

has the highest probability to be chosen. The second edge of

node 5 will prefer nodes that are close to it. Nodes 1 and 2

then have equal probability of being chosen. In this example,

node 5 chooses node 4 for the first edge and node 1 for the

second. Similarly, node 6 connects to nodes 4 and 2 in Step 4.

As more nodes are added, a DLA network will emerge from

this attachment process. As noted above, the “hybrid” DLA is

more general than Hierarchy+. In fact, the Hierarchy+ model

is a special case of the DLA growth model and can be realized

with a suitable choice of parameters. In the next section, we

will evaluate the resilience of DLA networks, and compare it

with other topologies using the new resilience metrics.

IV. EXPERIMENTAL RESULTS

As it is very difficult to construct a real-world supply

network and generate disruptions within it to evaluate its

resilience, we rely on computer simulations. In this section,

we describe our method for evaluating and comparing the

resilience of different supply network topologies using sim-

ulation. The results from the simulation of a military logistic

network are illustrated and discussed.

A. Simulation Setup

We performed a discrete event simulation study based on the

method described in [30]. The main steps are: design a valid

conceptual model, develop a program so simulate the model,

design and run experiments, and perform output data analysis.

We simulated the military logistic network example in [9],

so as to directly compare Hierarchy+, which is designed for

military logistic networks, with other topologies. The network

is based on a real-world military logistic system. It consists of

1000 nodes and 1815 edges (the average degree is about 3.6).

Battalions, FSB and MSB units enter the system following

the ratio of 25:4:1, which was estimated from a real-world

military logistic system. In other words, for every 25 newly-

deployed battalions, we added 4 FSBs and then 1 MSB into

the supply network. In reality, other deployment schemes,

such as deploying all support units before any battalions are

deployed, are also possible and may lead to different supply

network topologies. However, we choose this scheme to ensure

a consistent comparison with the previous work. We will

then compare the resilience of supply networks with Random,

Scale-free, Hierarchy+ and DLA topologies. Each topology

is generated with the corresponding growth model and the

Fig. 3. Cumulative degree distributions for supply networks with 1000 nodes.

military logistic network configuration. For the DLA growth

model, we use u = 1/2 and r = 2.

Fig. 3 illustrates the log-log degree distributions of four

simulated 1000-nodes networks. A scale-free network is char-

acterized by the famous power-law distribution. Fig. 4(a), 4(b),

and 4(c) show the snap shots of simulated small-scale supply

networks with random, scale-free and DLA topologies (the

legend is shown alongside). The DLA supply network features

some hub nodes and also some highly connected clusters, but

connections to the hubs are not as concentrated as in the scale-

free network.

The next step is to simulate disruptions. The research on

complex network resilience often studies two types of disrup-

tions based on node removals: random and targeted disrup-

tions. Random disruptions correspond to natural disasters (e.g.,

earthquakes and hurricanes), accidents (e.g., fires and power

outrage), and unexpected economic events (e.g., recessions and

bankruptcy) in which every node has similar probabilities of

being disrupted. We simulate such disruptions by randomly

choosing nodes and removing them from the network, so that

each node has the same probability of being removed. On

the other hand, in targeted disruptions, “important” nodes are

more likely to fail than unimportant ones. Such failure might

result from, for example, terrorist and military attacks, which

are aimed at critical nodes in the system, such as network

hubs, to inflict maximum damage.

Among the many metrics to measure a node’s importance in

a network, we choose the widely-used degree centrality in line

with previous research [9], [28]. In other words, we assume

that the higher the node degree is, the more important it is.

The reason for picking degree as the indicator of importance

is that it is easier for attackers to find than other metrics.

High-degree nodes are often more visible because they are in

contact with many other nodes [31]. Other centrality measures,

such as closeness, betweenness, and eigenvector centrality

[32], require knowledge of the network topology, which is

usually difficult for attackers to obtain. To simulate targeted

disruptions, we remove nodes in the order of decreasing node

degree, and update the degrees of all nodes after each removal.

In addition, edges that are connected to the removed nodes are

also removed in both simulation scenarios. While simulating

disruptions with node removals has limitations (e.g., it assumes

that disruptions will stop a node’s operation, while in the real

world an entity may only lose some of its capacities after

disruptions), a great number of previous studies on complex

network have shown that this simple and intuitive approach can
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(a) A 70-node Random supply net-
work.

(b) A 70-node Scale-free supply
network.

(c) A 70-node DLA supply network
with u = 1/2, r = 2.

Fig. 4. Simulated supply networks with various topologies.

TABLE III
95% CONFIDENCE INTERVALS FOR SUPPLY AVAILAIBILITY RATES(%)

IN RANDOM DISRUPTIONS

Nodes removed Random Scale-free Hierarchy+ DLA

5% 91.7-92.3 94.0-94.3 92.5-93.3 94.1-94.5

10% 86.1-86.8 88.0-88.6 84.7-85.9 88.5-89.2

15% 80.8-81.5 82.2-82.6 76.5-77.9 82.7-83.3

20% 74.7-75.6 75.7-76.3 69.4-71.0 76.7-77.5

25% 69.1-70.0 69.4-70.2 62.3-64.0 70.3-71.1

30% 63.1-64.0 63.2-64.2 54.0-57.1 64.0-65.1

35% 57.2-57.9 56.1-57.8 47.9-50.2 57.1-58.4

40% 51.0-51.8 49.7-51.2 41.5-43.6 50.4-51.8

help to reveal important properties on a network’s resilience

against disruptions [9], [28].

In our simulation, we remove 50 nodes (5% of the total

nodes) between successive observations to correspond to pre-

vious research [9] and to balance the simulation running time

and the granularity of the results. During node removal, we

track the resilience metrics for each network topology. In the

end, we compare the networks’ resilience using the metrics. To

ensure a fair comparison, each network has the same number

of nodes and edges. On average, each new node initiates 1.8

new edges to correspond with the military logistic network in

[9]. Thus the total number of edges will be around 1800 and

the average degree is 3.6 edges per node.

B. Simulation Results for Random Disruptions

Fig. 5 shows the responses of the four network topologies to

random disruptions. The horizontal axes denote the percentage

of nodes that were removed, while the vertical axes are values

of the topology-level supply network resilience metrics from

Table II. The graphs are not extended beyond the 80% mark on

the horizontal axis because they converge after this point. Fig.

5(a) and 5(b) show that for all the four network topologies,

supply availability rate and the size of the LFSN decrease

almost linearly as nodes are removed from the network. In

terms of availability and connectivity, the performance of

random, scale-free and DLA networks is very close, while the

resilience of Hierarchy+ is slightly worse than of the other

three, as indicated by its steeper slope. The 95% confidence

intervals for the four networks’ availability in Table III confirm

our observation that Hierarchy+ falls a little behind in terms

of maintaining supply availability. In addition, since the four

networks are similar in the size of their LFSN, it allows us to

make a fair comparison of accessibility next.

Nevertheless, the accessibility metrics in Fig. 5(c) and 5(d)

point toward different conclusions. In general, when nodes

are removed, the accessibility of supplies worsen because

the average and maximum supply-path lengths in the LFSN

increase as more nodes are removed. This is intuitive, since

disruptions make it increasingly difficult for demand nodes to

receive supplies. At the 60% node removal point, almost all

supply-path lengths reach their peak values and then start to

fall. The decreases are most likely caused by the fragmentation

of the network and the isolation of “hard-to-reach” demand

nodes.

Before disruptions happen, the network is well-connected. A

demand node may have multiple supply paths available, lead-

ing to different supply nodes. When some nodes fail, supply

can still reach many demand nodes through alternative, albeit

longer, supply paths. The existence of those “hard-to-reach”

demand nodes that are still connected in the LFSN leads to the

increase in supply path length. However, the longer a demand

node’s supply path is, the more this demand node depends on

other nodes to receive supplies. As each node has the same

probability to fail in random disruptions, the more dependent a

demand node is, the more likely it is to get disconnected from

supplies when additional nodes are removed. Thus a “hard-

to-reach” demand node has higher probably to be isolated

from the LFSN as more nodes are removed. After more than

60% of node removal, many “hard-to-reach” demand nodes

are no longer in the LFSN. Instead, the remaining demand

nodes in the LFSN are close to supply nodes. Meanwhile, the

supply network becomes very fragmented. The LFSN only has

fewer than 200 nodes (20% of the original size). We believe

the smaller LFSN and the disappearance of “hard-to-reach”

demand nodes in the LFSN contribute to the decrease in supply

path length when more than 60% nodes are removed.

In any case, the supply-path lengths of Hierarchy+ are the

shortest, indicating that the Hierarchy+ network is able to

preserve good supply accessibility. Even when 40-50% of

nodes are removed, there is no dramatic increase in its supply-

path length. On the other end of the spectrum, accessibility in

the random network has the most serious degradation. The

DLA is better than the Random network, but not as good as

the Scale-free network, on accessibility.

Considering all resilience metrics, we believe the Hierar-

chy+ supply network is generally the most resilient against

random disruptions. The resilience of other three network

topologies against random disruptions can be ranked in a

descending order as Scale-free, DLA and Random networks.
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(a) Supply availability rate (b) Size of the LFSN.

(c) Average supply-path length in the
LFSN.

(d) Maximum supply-path length in the
LFSN.

Fig. 5. The four networks’ responses to random disruptions. Each data point is the average of 20 runs.

(a) Supply availability rate (b) Size of the LFSN.

(c) Average supply-path length in the
LFSN.

(d) Maximum supply-path length in the
LFSN.

Fig. 6. The four networks’ responses to targeted disruptions. Each data point is the average of 20 runs.

C. Simulation Results for Targeted Disruptions

Arguably, resilience against targeted disruptions is more

important than against random disruptions, because military

logistic networks often face more targeted attacks than random

attacks from opponents. Also, targeted attacks are generally

more damaging than random attacks. Fig. 6 shows the re-

sponses of the four network topologies to targeted disruptions.

Similar to Fig. 5, the horizontal axes denote the percentage of

removed nodes, and the vertical axes display the resilience

metrics. The graphs are not shown beyond the 45% mark

on the horizontal axis because they converge after this point.

As expected, resilience of all the supply networks suffers

TABLE IV
95% CONFIDENCE INTERVALS FOR SUPPLY AVAILAIBILITY RATE(%)

IN TARGTED DISRUPTIONS

Nodes removed Random Scale-free Hierarchy+ DLA

5% 90.4-91.1 79.7-81.1 67.0-68.6 91.4-92.1

10% 83.0-83.8 57.6-59.9 45.1-47.1 80.7-81.5

15% 74.1-75.2 34.3-37.6 29.2-31.2 66.7-68.0

20% 63.0-64.4 17.9-21.1 18.2-20.1 46.9-49.0

25% 47.8-51.5 9.8-12.0 10.9-12.3 28.1-29.8

30% 30.0-33.5 5.2-6.3 6.7-7.5 18.0-19.9

different levels of deteriorations when compared with the case

of random disruptions.
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We first examine availability. Unlike the uniformly near-

linear decreases found for random disruptions, the four supply

networks show significant differences on this metric in targeted

disruptions. In Fig. 6(a), all four networks have very low

supply availability when 45% of the nodes are removed, while

in random disruptions, availability of all networks is around

40% at this point. Among the four networks, only the random

network and the DLA network can still maintain near linear

decreases. DLA’s availability is close to that of the random

network at the early stage of the disruption (from 0 to 15%),

but drops faster than for the random network after 20% of

nodes are removed. Meanwhile, the Scale-free and Hierarchy+

networks see significant decay in availability from the very

beginning of targeted disruptions. For example, 10% node

removal in the Hierarchy+ network leads to a near 60%

drop in availability. When 20% of the nodes are removed,

only 20% of the battalions can still get supplies in the scale-

free and the Hierarchy+ supply networks. By comparison, the

Random and the DLA networks can still maintain their supply

availability at 64% and 48% respectively. 95% confidence

intervals in Table IV further illustrate that the four networks’

availabilities are very different in targeted disruptions than in

random disruptions.

We also consider connectivity. As demonstrated in Fig.

6(b), the deterioration in resilience is even worse in terms

of connectivity. Even the random network, the best performer

on this metric, cannot maintain a linear decrease. The size of

its LFSN is only 8% of its original size when 30% of the

nodes are removed. We also observe very poor performance

from the Hierarchy+ network, whose LFSN drops to 22% of

its original size with only 10% nodes removed.

Clearly, the Random and DLA supply networks show a

considerable advantage over the Scale-free and Hierarchy+

supply networks in availability and connectivity when facing

targeted disruptions. What about accessibility? Similar to Fig.

5(c) and 5(d), the plots of average and maximum supply-path

lengths in Fig. 6(c) and 6(d) are also bell-shaped. Actually,

Fig. 6(c) and 6(d) have very similar graphs, except that they

use different vertical axes scales. Intuitively, we would like

to compare values of each network’s supply-path lengths in

the LFSN, but such a comparison is not representative if the

LFSNs have various sizes. While this condition was satisfied

in the results from random disruptions, however, as shown in

Fig. 6(b), the sizes of the LFSNs in the four networks differ

significantly for the same disruption rate (especially when the

disruption rate lies between 0% and 25%). For example, when

15% of the nodes are attacked, the supply-path lengths in the

LFSN of the Hierarchy+ network are about 26% shorter than

those of the DLA network. However, at the same point, the

size of Hierarchy+’s LFSN turns out to be only 7% of the size

of DLA network’s LFSN. Therefore, one cannot conclude that

Hierarchy+ has better accessibility since this likely advantage

may be due to the much smaller size of its LFSN.

To better highlight the issue of accessibility comparison in

the 0% to 25% disruption range, we draw the distributions of

the shortest supply-path lengths in the four networks’ LFSN

at the 15% disruption point in Fig. 7. The horizontal axis

denotes the shortest supply-path lengths from a battalion to

Fig. 7. The distribution of shortest supply-path length in the four networks’
largest functional sub-network (15% targeted disruption).

its nearest supply unit, and the vertical axis represents the

numbers of battalions that can access its nearest supply unit

with a given shortest supply-path length in the LFSN. In

Hierarchy+’s LFSN with 45 nodes, a nearest supply unit is

always within a distance of 1 to 3 to a battalion. Meanwhile, in

DLA’s much larger sub-networks, more battalions can access

the nearest supply unit within a distance of 1 or 2 than in

Hierarchy+. However, a number of battalions are far away

from a supply unit, with distance up to 7, thus contributing

to DLA’s higher average and maximum supply-path length.

Yet, compared with Hierarchy+, DLA has far more battalions

that can easily obtain supplies within the same distance as

Hierarchy+ can.

Fig. 6(c) and 6(d) still contribute to our analysis, because

they illustrate the rate at which the supply-path lengths in-

crease in the LFSN, i.e., how fast the accessibility deteriorates

when disruptions occur. Although supply-path lengths of scale-

free and Hierarchy+ start with relatively lower values, they

increase faster than of DLA and Random networks. The

supply-path lengths of Scale-free and Hierarchy+ networks

also reach their peaks very early. By the 10% point, the

supply-path lengths have almost tripled. On the other hand,

the peaks of DLA and Random come at 20% and 25% points

respectively. In other words, the supply accessibility of the

Scale-free and Hierarchy+ networks deteriorates faster than

of the DLA and the Random networks. We found that supply-

path lengths reach peak values when another round of node

removal makes the size of LFSNs drop below 100, which

is about 10% of their original sizes. For example, in the

Hierarchy+ network, the supply-path lengths reach peak values

when 10% of nodes are removed and the LFSN has a size of

222. If an additional 50 nodes are removed, the LFSN retains

only 45 nodes, while the supply-path lengths see significant

drops. We argue that by the time the size of the LFSN

falls below 10% of its original size, the network has already

been decomposed into many isolated sub-networks, and the

normal operations of the whole supply network have also been

seriously disrupted. Consequently, supply-path lengths after

their peak values are not as meaningful to consider as those

before the peaks. Therefore, we believe the random network

has the best accessibility followed by the DLA network. The

Scale-free and Hierarchy+ networks show similar accessibility.

Overall, the Random network is the most resilient against

targeted disruptions, with DLA a close second. Hierarchy+ is

the least resilient against targeted disruptions among the four,

while the Scale-free network is only slightly better.
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V. DISCUSSION

Scale-free supply networks are very vulnerable to targeted

disruptions. This is largely because their operations rely

heavily on hub nodes, which have very high degrees and

are removed at early stages of targeted disruptions. Recall

that scale-free networks’ preferential-attachment growth model

corresponds to the strategy that nodes focus mainly on effi-

ciency and cost. The results suggest if nodes make connection

decisions solely based on efficiency and cost, the resulting

network may be vulnerable to targeted disruptions.

Besides confirming previous research results, our study

based on new resilience metrics also provides some new

and surprising insights. For example, earlier work showed

that Hierarchy+ supply networks were reasonably resilient

against both random and targeted disruptions [9]. By our new

resilience metrics, they still retain very good resilience against

random disruptions. However, their resilience against targeted

disruptions, which are more likely than random attacks in a

military environment, is very disappointing. They have the

worst availability and connectivity among the four supply

networks. Removal of only a small percentage of nodes

will disastrously fragment the network and disrupt its flows

and operations. Hence, they are unsuitable against targeted

disruptions which may well arise in military logistic systems.

The reason for the Hierarchy+’s vulnerability against tar-

geted disruptions lies in its growth model, which intentionally

assigns more connections to support units. Therefore, support

units will naturally become topological hubs in the supply

network. When target disruptions strike, support units will

have higher probabilities of being attacked. The failures of

support units, which act as both functional hubs and topologi-

cal hubs, will inevitably hurt the availability and connectivity.

The implication is that always assigning more connections to

supply nodes may not be the best strategy to improve a supply

network’s resilience against targeted disruptions.

The merit of DLA supply networks is that they show good,

although not necessarily the best, resilience against both types

of disruptions. The resilience of the DLA network often lies

in between that of the Random and the Scale-free networks.

Specifically, in random disruptions, DLA is more resilient than

the Random supply network, while in targeted disruptions it

is more resilient than the Scale-free network. Thus, it offers

a balanced option when one cannot predict the probability of

either type of disruption.

While previous research often improves resilience by intro-

ducing redundant capacities in manufacturing, transportation,

and storage, etc, the approach taken by DLA is slightly

different because it does not require a node or edge to reserve

redundant capacities. Instead, it changes the way that a supply

network is constructed and consequently the network topology.

Admittedly, DLA is not a clearly dominant method. Similar to

redundancy-based approaches, it also requires more investment

to operate and maintain a supply network. This is because,

when no disruption occurs, DLA’s accessibility is not as good

as that of Scale-free and Hierarchy+, which implies that it

may cost more to deliver supplies to demand nodes in a DLA

network.

TABLE V
NUMERICAL ANALYSIS FOR SUPPLY AVAILABILITY RATE (10%

TARGETED NODE REMOVAL)

r = 0 r = 0.5 r = 1 r = 2 r = 3 r = 4

u = 0 86.12% 85.87% 85.68% 85.13% 84.50% 82.88%

u = 0.5 83.55% 83.21% 82.96% 82.24% 81.24% 79.32%

u = 1 78.65% 78.05% 77.37% 76.29% 74.72% 72.36%

u = 1.5 64.43% 63.36% 61.97% 59.63% 57.25% 52.93%

u = 2 31.69% 31.65% 31.80% 31.50% 30.80% 30.58%

u = 3 28.11% 29.11% 28.74% 28.61% 28.62% 28.59%

u = 4 28.57% 28.50% 28.48% 28.84% 28.74% 28.93%

DLA’s attachment rules also reflect the distributed nature

of supply network evolution. A new node entering a supply

network has only local information. Therefore, connecting

with nearby nodes in its neighborhood is much easier and

less expensive. In fact, the performance of DLA suggests

that when nodes consider both efficiency and distance while

making connection decisions, the resulting supply network

will have balanced resilience against both types of disruptions.

Thus DLA represents a cost-effective strategy to build efficient

yet resilient supply networks.

Moreover, by tuning the degree preference parameter u and

the locality preference parameter r, we are able to generate

different supply network topologies. Generally, a larger u leads

to stronger preference for high degree nodes. Consequently, the

resulting supply network will deviate farther from randomness

and rely more heavily on few “super hub” nodes that have

very high-degrees. Larger r means more local connections.

The resulting supply network will feature more clusters and

fewer connections that bridge nodes that previously have long

distance between them. We conducted a simple numerical

analysis to understand how the tuning of parameters u and

r affects the resulting DLA supply network’s resilience.

As an example, we analyzed the effect of changing u and

r on supply availability rates when 10% of the nodes are

removed in each disruption scenario. Node removal higher

than this is not likely to occur in practice. For random

disruptions, the supply availability rate falls between 86% and

89% and is only slightly affected by changes in u and r. On

the other hand, for targeted disruptions availability is much

more sensitive to u and r values. Supply availability rates of

DLA supply networks with 10% targeted node removal are

summarized in Table V. Each value in the table is the average

of results from 100 runs.

From Table V we see that as u increases, the availability

decays. Meanwhile, given the same degree preference u,

higher preference for locality-based attachment, i.e. increasing

r, will generally lead to slightly lower availability. Some may

notice that when u is high, r has little impact on availability.

This may be explained by the very strong preference for high-

degree nodes. As a result, there emerge one or few “super hub”

nodes that are connected to almost all the other nodes. When

a new node enters the network, it will most likely establish the

first connection with a “super hub” node. Then most of the

other nodes have the same distance of 2 to this new node,

so the preference for local nodes becomes less important.

The results also agree with our previous finding that random

supply networks (i.e. DLA with u = 0 and r = 0) have better
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availability than scale-free and DLA networks with u = 1/2
and r = 2 in targeted disruptions.

It should also be noted from our analysis that the impact of

locality on resilience is weaker than that of degree. This can be

attributed to the fact that on average each new node initiates

only 1.8 new edges in our experiments in order to ensure

a fair comparison with the previous work [9]. In the DLA

model, the first edge attachment is based on degree, while

subsequent edge attachments are based on locality. This means

that attachments based on locality are about 20% fewer than

those based on degree. We believe that given more attachments

based on locality, the impact of locality on availability might

even be more pronounced.

The numerical analysis shows that one can tune the DLA

model to generate supply network topologies with different

levels of resilience against different types of disruptions. This

customizability has important implications for the design and

management of supply chains. As there is no single supply

network topology that dominates all others in both random and

targeted disruptions, one needs to seek a balance or trade-off

between the resilience against random disruptions and targeted

disruptions. The DLA network growth model provides the

opportunity for nodes to make connection decisions based on

what type of supply network they are in and the balance of

possible disruptions the supply network will face. For instance,

a DLA model with lower u is more appropriate for military

logistic networks, which often handle targeted attacks from

the enemy. A DLA model with higher u may be better for an

automaker or a retailer as targeted disruptions are less likely

for this type of supply chain.

VI. CONCLUSIONS AND FUTURE WORK

Our objective for this paper was to study how topological

considerations affect supply network resilience when both

random and targeted disruptions can occur. We first propose a

new taxonomy of supply-network resilience metrics to reflect

the fact that, unlike in many other networks, nodes play hetero-

geneous roles in a supply network. The taxonomy consists of

system-level metrics, including availability, connectivity and

accessibility, as well as corresponding topology-level metrics.

The second contribution of this paper is a new general and

hybrid supply-network growth model called DLA, whose

attachments are based on both degree and locality. Compared

with other growth models, DLA represents a different strategy

for distributed connections: nodes consider both efficiency and

distance when deciding which nodes to connect to.

Using simulation, we compared the resilience of supply

networks generated with various network growth models. The

results reveal that DLA networks have desirable resilience

properties in both random and targeted disruptions. Even

though DLA is not the dominant model in terms of resilience

against all types of disruptions, it offers an excellent compro-

mise strategy to establish connections in supply networks when

it is not possible to predict whether a random or a targeted

attack will occur, which is often the case in the real world.

We also showed that by adjusting the parameters of the DLA

model, one is able to tune DLA networks’ relative performance

against the two types of disruptions. Recall that the multiple re-

silience metrics can be combined to generate a single objective

function for a specific supply chain. Consequently, for supply

network managers or individual decision-makers, the DLA

model represents a simple yet effective heuristic strategy to

build a Pareto-optimal supply network with balanced resilience

in the supply network’s operational context.

Although we used a military logistic network as a case

study, our research is also relevant for non-military supply

networks. A typical distribution network consists of plants,

warehouses and retail outlets, which mirrors the three level

structure of the military logistic network. By choosing ap-

propriate parameters it is possible to apply our results in

those scenarios, and this is a subject for future work. Other

scenarios where our approach and insights about resilience can

be applied include the Internet (with servers and clients as

supply and demand nodes), and infrastructure networks such

as power grids.

Meanwhile, we realize that it is not always possible to build

a supply network from scratch using the new growth model or

change existing supply networks that have evolved over a long

period of time to conform to a new topology. Nevertheless, by

shedding new light on the resilience of supply networks with

different topologies, our growth model and resilience analysis

could help to understand how an existing supply network

evolved over time and how different micro-level paradigms to

design a supply network will affect its resilience at a macro

level. With these topological considerations in mind, managers

are also better informed in the future expansion of existing

supply networks.

There are several areas that we would like to address in

future. As in other complex network research, we have focused

mainly on network topologies, and neglected some operational

details such as the flow of goods and capacity limits on various

links and nodes. We aim to address this shortcoming in future

work. Our expectation is that the resilience ranking of different

network topologies will not change significantly even after

taking those into account. Another limitation is that we only

consider node failures, whereas a real-world supply network

may also face disruptions to connections or edges, e.g., traffic

accidents may block a road that connects a manufacturer

and a retailer. Then the manufacturer may need to find an

alternative path to deliver the goods. Thus, it would be useful

to simulate the removal of edges from the supply network.

We also plan to incorporate the dynamic behaviors of entities

after disruption into the evaluation of resilience. Other possible

research directions include analyzing the performance of DLA

networks with higher average degrees and exploring variants

of DLA.
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