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Abstract

Motivated by safety-critical applications, test-
time attacks on classifiers via adversarial exam-
ples has recently received a great deal of attention.
However, there is a general lack of understanding
on why adversarial examples arise; whether they
originate due to inherent properties of data or due
to lack of training samples remains ill-understood.
In this work, we introduce a theoretical framework
analogous to bias-variance theory for understand-
ing these effects. We use our framework to ana-
lyze the robustness of a canonical non-parametric
classifier – the k-nearest neighbors. Our analy-
sis shows that its robustness properties depend
critically on the value of k – the classifier may
be inherently non-robust for small k, but its ro-
bustness approaches that of the Bayes Optimal
classifier for fast-growing k. We propose a novel
modified 1-nearest neighbor classifier, and guar-
antee its robustness in the large sample limit. Our
experiments 1 suggest that this classifier may have
good robustness properties even for reasonable
data set sizes.

1. Introduction

Machine learning is increasingly applied in security-critical
domains such as automotive systems, healthcare, finance
and robotics. To ensure safe deployment in these applica-
tions, there is an increasing need to design machine-learning
algorithms that are robust in the presence of adversarial at-
tacks.

A realistic attack paradigm that has received a lot of recent
attention (Goodfellow et al., 2014; Papernot et al., 2016a;
Szegedy et al., 2013; Papernot et al., 2017b) is test-time
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attacks via adversarial examples. Here, an adversary has
the ability to provide modified test inputs to an already-
trained classifier, but cannot modify the training process in
any way. Their goal is to perturb legitimate test inputs by a
“small amount” in order to force the classifier to report an
incorrect label. An example is an adversary that replaces a
stop sign by a slightly defaced version in order to force an
autonomous vehicle to recognize it as an yield sign. This
attack is undetectable to the human eye if the perturbation
is small enough.

Prior work has considered adversarial examples in the con-
text of linear classifiers (Lowd and Meek, 2005), kernel
SVMs (Biggio et al., 2013) and neural networks (Szegedy
et al., 2013; Goodfellow et al., 2014; Papernot et al., 2017b;
2016a; Moosavi-Dezfooli et al., 2016). However, most of
this work has either been empirical, or has focussed on de-
veloping theoretically motivated attacks and defenses. Con-
sequently, there is a general lack of understanding on why
adversarial examples arise; whether they originate due to
inherent properties of data or due to lack of training samples
remains ill-understood.

This work develops a theoretical framework for robust learn-
ing in order to understand the effects of distributional proper-
ties and finite samples on robustness. Building on traditional
bias-variance theory (Friedman et al., 2000), we posit that a
classification algorithm may be robust to adversarial exam-
ples due to three reasons. First, it may be distributionally

robust, in the sense that the output classifier is robust as the
number of training samples grow to infinity. Second, even
the output of a distributionally robust classification algo-
rithm may be vulnerable due to too few training samples
– this is characterized by finite sample robustness. Finally,
different training algorithms might result in classifiers with
different degrees of robustness, which we call algorithmic

robustness. These quantities are analogous to bias, variance
and algorithmic effects respectively.

Next, we analyze a simple non-parametric classification
algorithm: k-nearest neighbors in our framework. Our anal-
ysis demonstrates that large sample robustness properties of
this algorithm depend very much on k.

Specifically, we identify two distinct regimes for k with
vastly different robustness properties. When k is constant,
we show that k-nearest neighbors has zero robustness in the
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large sample limit in regions where p(y = 1|x) lies in (0, 1).
This is in contrast with accuracy, which may be quite high
in these regions. For k = Ω(

√
dn log n), where d is the

data dimension and n is the sample size, we show that the
robustness region of k-nearest neighbors approaches that of
the Bayes Optimal classifier in the large sample limit. This
is again in contrast with accuracy, where convergence to
the Bayes Optimal accuracy is known for a much slower
growing k (Devroye et al., 1994; Chaudhuri and Dasgupta,
2014).

Since k = Ω(
√
dn log n) is too high to use in practice with

nearest neighbors, we next propose a novel robust version of
the 1-nearest neighbor classifier that operates on a modified
training set. We provably show that in the large sample limit,
this algorithm has superior robustness to standard 1-nearest
neighbors for data distributions with certain properties.

Finally, we validate our theoretical results by empirically
evaluating our algorithm on three datasets against several
popular attacks. Our experiments demonstrate that our algo-
rithm performs better than or about as well as both standard
1-nearest neighbors and nearest neighbors with adversarial
training – a popular and effective defense mechanism. This
suggests that although our performance guarantees hold
in the large sample limit, our algorithm may have good
robustness properties even for realistic training data sizes.

1.1. Related Work

Adversarial examples have recently received a great deal
of attention (Goodfellow et al., 2014; Biggio et al., 2013;
Papernot et al., 2016a; Szegedy et al., 2013; Papernot et al.,
2017b). Most of the work, however, has been empirical,
and has focussed on developing increasingly sophisticated
attacks and defenses.

1.1.1. RELATED WORK ON ADVERSARIAL EXAMPLES

Prior theoretical work on adversarial examples falls into two
categories – analysis and theory-inspired defenses. Work on
analysis includes (Fawzi et al., 2016), which analyzes the
robustness of linear and quadratic classifiers under random
and semi-random perturbations. (Hein and Andriushchenko,
2017) provides robustness guarantees on linear and kernel
classifiers trained on a given data set. (Gilmer et al., 2018)
shows that linear classifiers for high dimensional datasets
may have inherent robustness-accuracy trade-offs.

Work on theory-inspired defenses include (Mądry et al.,
2017; Kolter and Wong, 2017; Aman Sinha, 2018), who
provide defense mechanisms for adversarial examples in
neural networks that are relaxations of certain principled
optimization objectives. (Katz et al., 2017) shows how
to use program verification to certify robustness of neural
networks around given inputs for small neural networks.

Our work differs from these in two important ways. First,
unlike most prior work which looks at a given training
dataset, we consider effects of the data distribution and
number of samples, and analyze robustness properties in the
large sample limit. Second, unlike prior work which largely
focuses on parametric methods such as neural networks, our
focus is on a canonical non-parametric method – the nearest
neighbors classifier.

1.1.2. RELATED WORK ON NEAREST NEIGHBORS

There has been a body of work on the convergence and
consistency of nearest-neighbor classifiers and their many
variants (Cover and Hart, 1967; Stone, 1977; Kulkarni and
Posner, 1995; Devroye and Wagner, 1977; Chaudhuri and
Dasgupta, 2014; Kontorovich and Weiss, 2015); all these
works however consider accuracy and not robustness.

In the asymptotic regime, (Cover and Hart, 1967) shows
that the accuracy of 1-nearest neighbors converges in the
large sample limit to 1 − 2R∗(1 − R∗) where R∗ is the
expected error rate of the Bayes Optimal classifier. This
implies that even 1-nearest neighbor may achieve relatively
high accuracy even when p(y = 1|x) is not 0 or 1. In
contrast, we show that 1-nearest neighbor is inherently non-

robust when p(y = 1|x) ∈ (0, 1) under some continuity
conditions.

For larger k, the accuracy of k-nearest neighbors is known to
converge to that of the Bayes Optimal classifier if kn → ∞
and kn/n → 0 as the sample size n → ∞. We show that
the robustness also converges to that of the Bayes Optimal
classifier when kn grows at a much higher rate – fast enough
to ensure uniform convergence. Whether this high rate is
necessary remains an intriguing open question.

Finite sample rates on the accuracy of nearest neighbors are
known to depend heavily on properties of the data distribu-
tion, and there is no distribution free rate as in parametric
methods (Devroye and Wagner, 1977). (Chaudhuri and Das-
gupta, 2014) provides a clean characterization of the finite
sample rates of nearest neighbors as a function of natural
interiors of the classes. Here we build on their results by
defining a stricter, more robust version of interiors and pro-
viding bounds as functions of these new robust quantities.

1.1.3. OTHER RELATED WORK

(Amsaleg et al., 2016) provides a method for generating ad-
versarial examples for nearest neighbors, and shows that the
effectiveness of attacks grow with intrinsic dimensionality.
Finally, (Papernot et al., 2016b; 2017b) provides black-box

attacks on substitute classifiers; their experiments show that
attacks from other types of substitute classifiers are not suc-
cessful on nearest neighbors; our experiments corroborate
these results.
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2. The Setting and Definitions

2.1. The Basic Setup

We consider test-time attacks in a white box setting, where
the adversary has full knowledge of the training process –
namely, the type of classifier used, the training data and any
parameters – but cannot modify training in any way.

Given an input x, the adversary’s goal is to perturb it so as
to force the trained classifier f to report a different label
than f(x). The amount of perturbation is measured by an
application-specific metric d, and is constrained to be within
a radius r. Our analysis can be extended to any metric, but
for this paper we assume that d is the Euclidean distance for
mathematical simplicity; we also focus on binary classifica-
tion, and leave extensions to multiclass for future work.

Finally, we assume that unlabeled instances are drawn from
an instance space X , and their labels are drawn from the
label space {0, 1}. There is an underlying data distribution
D that generates labeled examples; the marginal over X of
D is µ and the conditional distribution of labels given x is
denoted by η.

2.2. Robustness and astuteness

We begin by defining robustness, which for a classifier f at
input x is measured by the robustness radius.

Definition 2.1 (Robustness Radius). The robustness radius

of a classifier f at an instance x ∈ X , denoted by ρ(f, x),
is the shortest distance between x and an input x� to which

f assigns a label different from f(x):

ρ(f, x) = inf
r
{∃x� ∈ X ∩B(x, r) s.t f(x) �= f(x�)}

Observe that the robustness radius measures a classifier’s
local robustness. A classifier f with robustness radius r at
x guarantees that no adversarial example of x with norm
of perturbation less than r can be created using any attack
method. A plausible way to extend this into a global notion
is to require a lower bound on the robustness radius every-
where; however, only the constant classifier will satisfy this
condition. Instead, we consider robustness around meaning-

ful instances, that we model as examples drawn from the
underlying data distribution.

Definition 2.2 (Robustness with respect to a Distribution).
The robustness of a classifier f at radius r with respect

to a distribution µ over the instance space X , denoted by

R(f, r, µ), is the fraction of instances drawn from µ for

which the robustness radius is greater than or equal to r.

R(f, r, µ) = Pr
x∼µ

(ρ(f, x) ≥ r)

Finally, observe that we are interested in classifiers that
are both robust and accurate. This leads to the notion of

astuteness, which measures the fraction of instances on
which a classifier is both accurate and robust.

Definition 2.3 (astuteness). The astuteness of a classifier

f with respect to a data distribution D and a radius r is

the fraction of examples on which it is accurate and has

robustness radius at least r; formally,

AstD(f, r) = Pr
(x,y)∼D

(ρ(f, x) ≥ r, f(x) = y),

Observe that astuteness is analogous to classification accu-
racy, and we argue that it is a more appropriate metric if we
are concerned with both robustness and accuracy. Unlike ac-
curacy, astuteness cannot be directly empirically measured
unless we have a way to certify a lower bound on the ro-
bustness radius. In this work, we will prove bounds on the
astuteness of classifiers, and in our experiments, we will
approximate it by measuring resistance to standard attacks.

2.3. Sources of Robustness

There are three plausible reasons why classifiers lack robust-
ness – distributional, finite sample and algorithmic. These
sources are analogous to bias, variance, and algorithmic
effects respectively in standard bias-variance theory.

Distributional robustness measures the effect of the data
distribution on robustness when an infinitely large number
of samples are used to train the classifier. Formally, if Sn

is a training sample of size n drawn from D and A(Sn, ·)
is a classifier obtained by applying the training procedure
A on Sn, then the distributional robustness at radius r is
limn→∞ ESn∼D[R(A(Sn, ·), r, µ)].

In contrast, for finite sample robustness, we characterize
the behaviour of R(A(Sn, ·), r, µ) for finite n – usually by
putting high probability bounds over the training set. Thus,
finite sample robustness depends on the training set size
n, and quantifies how it changes with sample size. Finally,
robustness also depends on the training algorithm itself;
for example, some variants of nearest neighbors may have
higher robustness than nearest neighbors itself.

2.4. Nearest Neighbor and Bayes Optimal Classifiers

Given a training set Sn = {(X1, Y1), . . . , (Xn, Yn)} and a
test example x, we use the notation X(i)(x) to denote the
i-th nearest neighbor of x in Sn, and Y (i)(x) to denote the
label of X(i)(x).

Given a test example x, the k-nearest neighbor classifier
Ak(Sn, x) outputs:

= 1, if Y (1)(x) + . . .+ Y (k)(x) ≥ k/2

= 0, otherwise.

The Bayes optimal classifier g over a data distribution D
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has the following classification rule:

g(x) =

�

1 if η(x) = Pr(y = 1|x) ≥ 1/2;
0 otherwise.

(1)

3. Robustness of Nearest Neighbors

How robust is the k-nearest neighbor classifier? We show
that it depends on the value of k. Specifically, we identify
two distinct regimes – constant k and k = Ω(

√
dn log n)

where d is the data dimension – and show that nearest neigh-
bors has different robustness properties in the two.

3.1. Low k Regime

In this region, k is a constant that does not depend on the
training set size n. Provided certain regularity conditions
hold, we show that k-nearest neighbors is inherently non-
robust in this regime unless η(x) ∈ {0, 1} – in the sense that
the distributional robustness becomes 0 in the large sample
limit.

Theorem 3.1. Let x ∈ X ∩ supp(µ) such that (a) µ is

absolutely continuous with respect to the Lebesgue measure

(b) η(x) ∈ (0, 1) (c) η is continuous with respect to the

Euclidean metric in a neighborhood of x. Then, for fixed k,

ρ(Ak(Sn, ·), x) converges in probability to 0.

Remarks. Observe that Theorem 3.1 implies that the dis-
tributional robustness (and hence astuteness) in a region
where η(x) ∈ (0, 1) is 0. This is in contrast with accuracy;
for 1-NN, the accuracy converges to 1 − 2R∗(1 − R∗) as
n → ∞, where R∗ is the error rate of the Bayes Optimal
classifier, and thus may be quite high.

The proof of Theorem 3.1 in the Appendix shows that the ab-
solute continuity of µ with respect to the Lebesgue measure
is not strictly necessary; absolute continuity with respect to
an embedded manifold will give the same result, but will
result in a more complex proof.

In the Appendix A (Theorem A.2), we show that k-nearest
neighbor is astute in the interior of the region where η ∈
{0, 1}, and provide finite sample rates for this case.

3.2. High k Regime

Prior work has shown that in the large sample limit, the
accuracy of the nearest neighbor classifiers converge to the
Bayes Optimal, provided k is set properly. We next show
that if k is Ω(

√
dn log n), the regions of robustness and the

astuteness of the k nearest neighbor classifiers also approach
the corresponding quantities for the Bayes Optimal classifier
as n → ∞. Thus, if the Bayes Optimal classifier is robust,
then so is k-nearest neighbors in the large sample limit.

The main intuition is that k = Ω(
√
dn log n) is large enough

for uniform convergence – where, with high probability, all

Euclidean balls with k examples have the property that the
empirical averages of their labels are close to their expecta-
tions. This guarantees that for any x, the k-nearest neighbor
reports the same label as the Bayes Optimal classifier for all

x� close to x. Thus, if the Bayes Optimal classifier is robust,
so is nearest neighbors.

3.2.1. DEFINITIONS

We begin with some definitions that we can use to character-
ize the robustness of the Bayes Optimal classifier. Follow-
ing (Chaudhuri and Dasgupta, 2014), we use the notation
Bo(x, r) to denote an open ball and B(x, r) to denote a
closed ball of radius r around x. We define the probability
radius of a ball around x as:

rp(x) = inf{r | µ(B(x, r)) ≥ p}

We next define the r-robust (p,∆)-strict interiors as follows:

X+
r,∆,p = {x ∈ supp(µ) | ∀x� ∈ Bo(x, r),

∀x�� ∈ B(x�, rp(x
�)), η(x��) > 1/2 +∆}

X−

r,∆,p = {x ∈ supp(µ) | ∀x� ∈ Bo(x, r),

∀x�� ∈ B(x�, rp(x
�)), η(x��) < 1/2−∆}

What is the significance of these interiors? Let x� be an
instance such that all x�� ∈ B(x�, rp(x

�)) have η(x��) >
1/2 +∆. If p ≈ k

n , then the k points x�� closest to x� have
η(x��) > 1/2 + ∆. Provided the average of the labels of
these points is close to expectation, which happens when k
is large relative to 1/∆, k-nearest neighbor outputs label 1
on x�. When x is in the r-robust (p,∆)-strict interior region
X+

r,∆,p, this is true for all x� within distance r of x, which
means that k-nearest neighbors will be robust at x. Thus,
the r-robust (p,∆)-strict interior is the region where we
natually expect k-nearest neighbor to have robustness radius
r, when k is large relative to 1

∆
and p ≈ k

n .

Readers familiar with (Chaudhuri and Dasgupta, 2014)
will observe that the set of all x� for which ∀x�� ∈
B(x�, rp(x

�)), η(x��) > 1/2 +∆ forms a stricter version of
the (p,∆)-interiors of the 1 region that was defined in this
work; these x� also represent the region where k-nearest
neighbors are accurate when k ≈ max(np, 1/∆2). The r-
robust (p,∆)-strict interior is thus a somewhat stricter and
more robust version of this definition.

3.2.2. MAIN RESULTS

We begin by characterizing where the Bayes Optimal classi-
fier is robust.

Theorem 3.2. The Bayes Optimal classifier has robustness

radius r at x ∈ X+
r,0,0 ∪ X−

r,0,0. Moreover, its astuteness is

E[η(x)1(x ∈ X+
r,0,0)] + E[(1− η(x))1(x ∈ X−

r,0,0)].
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The proof is in the Appendix, along with analogous results
for astuteness. The following theorem, along with a similar
result for astuteness, proved in the Appendix, characterizes
robustness in the large k regime.

Theorem 3.3. For any n, pick a δ and a ∆n →
0. There exist constant C1 and C2 such that if

kn ≥ C1

√
dn log n+n log(1/δn)

∆n

, and pn ≥ kn

n (1 +

C2

�

d log n+log(1/δ)
kn

), then, with probability ≥ 1− 3δ, kn-

NN has robustness radius r in x ∈ X+
r,∆n,pn

∪ X−

r,∆n,pn

.

Remarks. Some remarks are in order. First, observe that
as n → ∞, ∆n and pn tend to 0; thus, provided certain
continuity conditions hold, X+

r,∆n,pn

∪X−

r,∆n,pn

approaches

X+
r,0,0 ∪ X−

r,0,0, the robustness region of the Bayes Optimal
classifier.

Second, observe that as r-robust strict interiors extend the
definition of interiors in (Chaudhuri and Dasgupta, 2014),
Theorem 3.3 is a robustness analogue of Theorem 5 in this
work. Unlike the latter, Theorem 3.3 has a more stringent
requirement on k. Whether this is necessary is left as an
open question for future work.

4. A Robust 1-NN Algorithm

Section 3 shows that nearest neighbors is robust for k as
large as Ω(

√
dn log n). However, this k is too high to use

in practice – high values of k require even higher sample
sizes (Chaudhuri and Dasgupta, 2014), and lead to higher
running times. Thus a natural question is whether we can
find a more robust version of the algorithm for smaller k. In
this section, we provide a more robust version of 1-nearest
neighbors, and analytically demonstrate its robustness.

Our algorithm is motivated by the observation that 1-nearest
neighbor is robust when oppositely labeled points are far
apart, and when test points lie close to training data. Most
training datasets however contain nearby points that are
oppositely labeled; thus, we propose to remove a subset of
training points to enforce this property.

Which points should we remove? A plausible approach is to
keep the largest subset where oppositely labeled points are
far apart; however, this subset has poor stability properties
even for large n. Therefore, we propose to keep all points x
such that: (a) we are highly confident about the label of x
and its nearby points and (b) all points close to x have the
same label. Given that all such x are kept, we remove as
few points as possible, and execute nearest neighbors on the
remaining dataset.

The following definition characterizes data where oppositely
labeled points are far apart.

Definition 4.1 (r-separated set). A set A =
{(x1, y1), . . . , (xm, ym)} of labeled examples is said

to be r-separated if for all pairs (xi, yi), (xj , yj) ∈ A,

�xi − xj� ≤ r implies yi = yj .

The full algorithm is described in Algorithm 1 and Algo-
rithm 2. Given confidence parameters ∆ and δ, Algorithm 2
returns a 0/1 label when this label agrees with the average of
kn points closest to x; otherwise, it returns ⊥. kn is chosen
such that with probability ≥ 1− δ, the empirical majority of
kn labels agrees with the majority in expectation, provided
the latter is at least ∆ away from 1

2 .

Algorithm 2 is used to determine whether an xi should be
kept. Let f(xi) be the output of Algorithm 2 on xi. If yi =
f(xi) and if for all xj ∈ B(xi, r), f(xi) = f(xj) = yi,
then we mark xi as red. Finally, we compute the largest
r-separated subset of the training data that includes all the
red points; this reduces to a constrained matching problem
as in (Kontorovich and Weiss, 2015). The resulting set,
returned by Algorithm 1, is our new training set. We observe
that this set is r-separated from Lemma B.2 in the Appendix,
and thus oppositely labeled points are far apart. Moreover,
we keep all (xi, yi) when we are confident about the label
of xi and its nearby points. Observe that our final procedure
is a 1-NN algorithm, even though kn neighbors are used to
determine if a point should be retained in the training set.

4.1. Performance Guarantees

The following theorem establishes performance guarantees
for Algorithm 1.

Theorem 4.2. Pick a ∆n and δ, and set kn =
3 log(2n/δ)/∆2

n. Pick a margin parameter τ . Then, there

exist constants C and C0 such that the following hold. If we

set pn = kn

n (1 + C
�

d log n+log(1/δ)
kn

), and define the set:

XR =

�

x
�

�

�
x ∈ X+

r+τ,∆n,pn

∪ X−

r+τ,∆n,pn

,

µ(B(x, τ)) ≥ 2C0

n
(d log n+ log(1/δ))

�

Then, with probability ≥ 1 − 2δ over the training set, Al-

gorithm 1 run with parameters r, ∆n and δ has robustness

radius at least r − 2τ on XR.

Remarks. The proof is in the Appendix, along with an
analogous result for astuteness. Observe that XR is roughly
the high density subset of the r + τ -robust strict interior
X+

r+τ,∆n,pn

∪ X−

r+τ,∆n,pn

. Since η(x) is constrained to be
greater than 1

2 + ∆n or less than 1
2 − ∆n in this region,

as opposed to 0 or 1, this is an improvement over standard
nearest neighbors when the data distribution has a large high
density region that intersects with the interiors.
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A second observation is that as τ is an arbitrary constant, we
can set to it be quite small and still satisfy the condition on
µ(B(x, τ)) for a large fraction of x’s when n is very large.
This means that in the large sample limit, r − 2τ may be
close to r and XR may be close to the high density subset
of X+

r,∆n,pn

∪ X−

r,∆n,pn

for a lot of smooth distributions.

Algorithm 1 Robust_1NN(Sn, r, ∆, δ, x)

for (xi, yi) ∈ Sn do

f(xi) = Confident-Label(Sn,∆, δ, xi)
end for

SRED = ∅
for (xi, yi) ∈ Sn do

if f(xi) = yi and f(xi) = f(xj) for all xj such that
�xi − xj� ≤ r and (xj , yj) ∈ Sn then

SRED = SRED

�

{(xi, yi)}
end if

end for

Let S� be the largest r-separated subset of Sn that con-
tains all points in SRED.
return new training set S�

Algorithm 2 Confident-Label(Sn, ∆, δ, x)

kn = 3 log(2n/δ)/∆2

ȳ = (1/kn)
�kn

i=1 Y
(i)(x)

if ȳ ∈ [ 12 −∆, 1
2 +∆] then

return ⊥
else

return 1
2sgn(ȳ − 1

2 ) +
1
2

end if

5. Experiments

The results in Section 4 assume large sample limits. Thus,
a natural question is how well Algorithm 1 performs with
more reasonable amounts of training data. We now empiri-
cally investigate this question.

Since there are no general methods that certify robustness
at an input, we assess robustness by measuring how our al-
gorithm performs against a suite of standard attack methods.
Specifically, we consider the following questions:

1. How does our algorithm perform against popular white
box and black box attacks compared with standard base-
lines?

2. How is performance affected when we change the
training set size relative to the data dimension?

These questions are considered in the context of three
datasets with varying training set sizes relative to the di-
mension, as well as two standard white box attacks and
black box attacks with two kinds of substitute classifiers.

5.1. Methodology

Data. We use three datasets – Halfmoon, MNIST 1v7 and
Abalone – with differing data sizes relative to dimension.
Halfmoon is a popular 2-dimensional synthetic data set for
non-linear classification. We use a training set of size 2000
and a test set of size 1000 generated with standard deviation
σ = 0.2. The MNIST 1v7 data set is a subset of the 784-
dimensional MNIST data. For training, we use 1000 images
each of Digit 1 and 7, and for test, 500 images of each
digit. Finally, for the Abalone dataset (Lichman, 2013), our
classification task is to distinguish whether an abalone is
older than 12.5 years based on 7 physical measurements. For
training, we use 500 and for test, 100 samples. In addition,
a validation set with the same size as the test set is generated
for each experiment for parameter tuning.

Baselines. We compare Algorithm 1, denoted by Ro-
bustNN, against three baselines. The first is the standard
1-nearest neighbor algorithm, denoted by StandardNN. We
use two forms of adversarially-trained nearest neighbors
- ATNN and ATNN-all. Let S be the training set used
by standard nearest neighbors. In ATNN, we augment S
by creating, for each (x, y) ∈ S, an adversarial example
xadv using the attack method in the experiment, and adding
(xadv, y). The ATNN classifier is 1-nearest neighbor on this
augmented data. In ATNN-all, for each (x, y) ∈ S, we cre-
ate adversarial examples using all the attack methods in the
experiment, and add them all to S. ATNN-all is the nearest
neighbor classifier on this augmented data. For example,
for white box Direct Attacks in Section 5.2, ATNN includes
adversarial examples generated by the Direct Attack, and
ATNN-all includes adversarial examples generated by both
Direct and Kernel Substitute Attacks.

Observe that all algorithms except StandardNN have pa-
rameters to tune. RobustNN has three input parameters –
∆, δ and a defense radius r which is an approximation to
the robustness radius. For simplicity, we set ∆ = 0.45,
δ = 0.1 and tune r on the validation set; this can be viewed
as tuning the parameter τ in Theorem 4.2. For ATNN and
ATNN-all, the methods that generate the augmenting adver-
sarial examples need a perturbation magnitude r; we call
this the defense radius. To be fair to all algorithms, we
tune the defense radius for each. We consider the adversary
with the highest attack perturbation magnitude in the experi-
ment, and select the defense radius that yields the highest
validation accuracy against this adversary.

5.2. White-box Attacks and Results

To evaluate the robustness of Algorithm 1, we use two stan-
dard classes of attacks – white box and black box. For
white-box attacks, the adversary knows all details about
the classifier under attack, including its training data, the
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Figure 1. White Box Attacks: Plot of classification accuracy on adversarial examples v.s. attack radius. Top row: Direct Attack. Bottom

row: Kernel Substitute Attack. Left to right: 1) Halfmoon, 2) MNIST 1v 7 and 3) Abalone.

Figure 2. Black Box Attacks: Plot of classification accuracy on adversarial examples v.s. attack radius. Top to Bottom: 1) kernel
substitute, 2) neural net substitute. Left to right: 1) Halfmoon, 2) MNIST 1 v.s. 7 and 3) Abalone.

training algorithm and any hyperparameters.

5.2.1. ATTACK METHODS

We consider two white-box attacks – direct attack (Amsaleg
et al., 2016) and Kernel Substitute Attack (Papernot et al.,
2016b).

Direct Attack. This attack takes as input a test example
x, an attack radius r, and a training dataset S (which may
be an augmented or reduced dataset). It finds an x� ∈ S
that is closest to x but has a different label, and returns the
adversarial example xadv = x+ r x−x�

||x−x�||2
.

Kernel Substitute Attack. This method attacks a substitute
kernel classifier trained on the same training set. For a test
input �x, a set of training points Z with one-hot labels Y , a

kernel classifier f predicts the class probability as:

f : �x →

�

e−||�x−�z||2
2
/c
�

�z∈X
�

�z∈X e−||�x−�z||2
2
/c

· Y

The adversary trains a kernel classifier on the training set
of the corresponding nearest neighbors, and then gener-
ates adversarial examples against this kernel classifier. The
advantage is that the prediction of the kernel classifier is
differentiable, which allows the use of standard gradient-
based attack methods. For our experiments, we use the
popular fast-gradient-sign method (FSGM). The parameter
c is tuned to yield the most effective attack, and is set to 0.1
for Halfmoon and MNIST, and 0.01 for Abalone.
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5.2.2. RESULTS

Figure 1 shows the results. We see that RobustNN outper-
forms all baselines for Halfmoon and Abalone for all attack
radii. For MNIST, for low attack radii, RobustNN’s clas-
sification accuracy is slightly lower than the others, while
it outperforms the others for large attack radii. Addition-
ally, as is to be expected, the Direct Attack results in lower
general accuracy than the Kernel Substitute Attack.

These results suggest that our algorithm mostly outperforms
the baselines StandardNN, ATNN and ATNN-all. As pre-
dicted by theory, the performance gain is higher when the
training set size is large relative to the dimension – which is
the setting where nearest neighbors work well in general. It
has superior performance for Halfmoon and Abalone, where
the training set size is large to medium relative to dimension.
In contrast, in the sparse dataset MNIST, our algorithm has
slightly lower classification accuracy for small attack radii,
and higher otherwise.

5.3. Black-box Attacks and Results

(Papernot et al., 2017b) has observed that some defense
methods that work by masking gradients remain highly
amenable to black box attacks. In this attack, the adversary
is unaware of the target classifier’s nature, parameters or
training data, but has access to a seed dataset drawn from
the same distribution which they use to train and attack
a substitute classifier. To establish robustness properties
of Algorithm 1, we therefore validate it against black box
attacks based on two types of substitute classifiers.

5.3.1. ATTACK METHODS

We use two types of substitute classifiers – kernel classifiers
and neural networks. The adversary trains the substitute
classifier using the method of (Papernot et al., 2017b) and
uses the adversarial examples against the substitute to attack
the target classifier.

Kernel Classifier. The kernel classifier substitute is the
same as the one in Section 5.2, but trained using the seed
data and the method of (Papernot et al., 2017b).

Neural Networks. The neural network for MNIST is the
ConvNet in (Papernot et al., 2017a)’s tutorial. For Halfmoon
and Abalone, the network is a multi-layer perceptron with 2
hidden layers.

Procedure. To train the substitute classifier, the adversary
uses the method of (Papernot et al., 2016b) to augment the
seed data for two rounds; labels are obtained by querying the
target classifier. Adversarial examples against the substitutes
are created by FGSM, following (Papernot et al., 2016b). As
a sanity check, we verify the performance of the substitute
classifiers on the original training and test sets. Details are in

Table 1 in the Appendix. Sanity checks on the performance
of the substitute classifiers are presented in Table 1 in the
Appendix.

5.3.2. RESULTS

Figure 2 shows the results. For all algorithms, black box
attacks are less effective than white box, which corrobo-
rates the results of (Papernot et al., 2016b), who observed
that black-box attacks are less successful against nearest
neighbors. We also find that the kernel substitute attack is
more effective than the neural network substitute, which
is expected as kernel classifiers have similar structure to
nearest neighbors. Finally, for Halfmoon and Abalone, our
algorithm outperforms the baselines for both attacks; how-
ever, for MNIST neural network substitute, our algorithm
does not perform as well for small attack radii. This again
confirms the theoretical predictions that our algorithm’s per-
formance is better when the training set is large relative to
the data dimension – the setting in which nearest neighbors
work well in general.

5.4. Discussion

The results show that our algorithm performs either better
than or about the same as standard baselines against popular
white box and black box attacks. As expected from our
theoretical results, it performs better for denser datasets
which have high or medium amounts of training data relative
to the dimension, and either slightly worse or better for
sparser datasets, depending on the attack radius. Since non-
parametric methods such as nearest neighbors are mostly
used for dense data, this suggests that our algorithm has
good robustness properties even with reasonable amounts
of training data.

6. Conclusion

We introduce a novel theoretical framework for learning
robust to adversarial examples, and introduce notions of
distributional and finite-sample robustness. We use these
notions to analyze a non-parametric classifier, k-nearest
neighbors, and introduce a novel modified 1-nearest neigh-
bor algorithm that has good robustness properties in the
large sample limit. Experiments show that these properties
are still retained for reasonable data sizes.

Many open questions remain. The first is to close the gap
in analysis of k-nearest neighbors for k in between our
two regimes. The second is to develop nearest neighbor
algorithms with better robustness guarantees. Finally, we
believe that our work is a first step towards a comprehensive
analysis of how the size of training data affects robustness;
we believe that an important line of future work is to carry
out similar analyses for other supervised learning methods.
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Radovanović, M., and Vinh, N. X. (2016). The vulner-
ability of learning to adversarial perturbation increases
with intrinsic dimensionality.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
Laskov, P., Giacinto, G., and Roli, F. (2013). Evasion
attacks against machine learning at test time. In Joint Eu-

ropean Conference on Machine Learning and Knowledge

Discovery in Databases, pages 387–402. Springer.

Chaudhuri, K. and Dasgupta, S. (2010). Rates of conver-
gence for the cluster tree. In J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Sys-

tems 23, pages 343–351. Curran Associates, Inc.

Chaudhuri, K. and Dasgupta, S. (2014). Rates of conver-
gence for nearest neighbor classification. In Advances

in Neural Information Processing Systems, pages 3437–
3445.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern
classification. IEEE Transactions on Information Theory,
13, 21–27.

Devroye, L., Gyorfi, L., Krzyzak, A., and Lugosi, G. (1994).
On the strong universal consistency of nearest neighbor
regression function estimates. The Annals of Statistics,
pages 1371–1385.

Devroye, L. P. and Wagner, T. J. (1977). The strong uniform
consistency of nearest neighbor density estimates. The

Annals of Statistics, pages 536–540.

Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P. (2016).
Robustness of classifiers: from adversarial to random
noise. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems 29, pages 1632–1640.
Curran Associates, Inc.

Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Ad-
ditive logistic regression: a statistical view of boosting

(with discussion and a rejoinder by the authors). The

annals of statistics, 28(2), 337–407.

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu,
M., Wattenberg, M., and Goodfellow, I. (2018). Adver-
sarial spheres. arXiv preprint arXiv:1801.02774.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Ex-
plaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572.

Hein, M. and Andriushchenko, M. (2017). Formal guaran-
tees on the robustness of a classifier against adversarial
manipulation. In Advances in Neural Information Pro-

cessing Systems, pages 2263–2273.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. (2017). Towards proving the adversar-
ial robustness of deep neural networks. arXiv preprint

arXiv:1709.02802.

Kolter, J. Z. and Wong, E. (2017). Provable defenses against
adversarial examples via the convex outer adversarial
polytope. arXiv preprint arXiv:1711.00851.

Kontorovich, A. and Weiss, R. (2015). A bayes consistent
1-nn classifier. In Artificial Intelligence and Statistics

Conference.

Kulkarni, S. and Posner, S. (1995). Rates of convergence
of nearest neighbor estimation under arbitrary sampling.
IEEE Transactions on Information Theory, 41(4), 1028–
1039.

Lichman, M. (2013). UCI machine learning repository.

Lowd, D. and Meek, C. (2005). Adversarial learning. In
Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining, pages
641–647. ACM.
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