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Abstract

Static analysis is an important part of today’s quality assurance process. It can be

performed manually, by means of code reviews, or automatically, by automated static

analysis tools (ASATs). However, there is still much unknown about the state of static

analysis. This includes hard data on how prevalent static analysis is among projects.

And while there have been studies on how projects use code reviews, current research

has not investigated how developers configure the ASATs that they use and how these

configurations evolve. In this thesis, we answer these questions by means of a large

scale analysis of open source software. We found that both code reviews and ASATs

are common, but not ubiquitous. Many projects do not perform code reviews for the

changes of core developers and do not enforce a strict use of ASATs. Regarding the

use of ASATs, developers both use and avoid maintainability defects to a greater extent

than functional defects. Most configurations of developers deviate from the default and

hardly contain custom rules. However, there are few default rules that are changed by

a significant percentage of developers. Finally, most configuration files never change.

And if they do, the changes are small, occur over the lifetime of the project, and are

not triggered by ASAT version updates.
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Chapter 1

Introduction

It is important when assuring the quality of a software product to not only reduce the number

of defects to the minimum possible level, but also to catch defects as early in the develop-

ment process as possible. Static analysis, which examines code and other development ar-

tifacts without executing them [34], allows for the earlier detection of defects than dynamic

analysis [47], which runs the program in a real or virtual environment [34]. Moreover, static

analysis techniques can explore all possible program behaviors, while dynamic analyses are

limited by the current environment [33, 47, 50, 58, 73]. Thus, static analysis is an important

part of the quality assurance process.

Static analysis can be done manually or automatically. The former is often called code

review, or inspection. In a code review, one or more developers inspect the code of another

developer to find defects and other potential improvements to the code [4]. Automated

static analysis tools, or ASATs, inspect code automatically and use techniques such as bug

patterns [33], control-flow analysis [18], or data-flow analysis [71] instead of relying on

human judgment, knowledge, and reasoning. ASATs feature sets of rules that check for a

single potential defect and emit a warning when they find a violation of a rule in the code.

Much is currently unknown about the state of static analysis, both in open source and

industry settings. First, researchers are divided about the prevalence of static analysis tech-

niques. Rigby et al. [67] stated that code reviews are ever present in open source settings,

while Beller et al. [8] observed that many projects did not perform code reviews in a consis-

tent and continuous manner. For ASATs, Ayewah et al. [3] stated in 2007 that they started

to achieve significant adoption, but, more recently, Johnson et al. [36] and Kumar and Nori

[48] stated that ASATs have struggled to become prevalent. We further discuss the related

literature in Chapter 2. A quantitative analysis for any of the claims in the literature has

not been performed. This leads to the following research question, which is discussed in

Chapter 3:

RQ1: How common are static analysis techniques in practice?

– RQ1.1: What is the prevalence of code reviews?

– RQ1.2: What is the prevalence of ASATs?

– RQ1.3: Do projects use multiple ASATs to check the quality of their code?
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1. INTRODUCTION

Other than the absence of hard data regarding the prevalence of static analysis tech-

niques, there has not been a study on how developers use ASATs in practice. Research on

ASATs has mostly focused on the defects that they do or do not find [2, 13, 78, 79], and on

the number of false positives that they generate [31, 36, 41, 48]. This contrasts with code

reviews, where Rigby et al. performed several studies on the use of code reviews in open

source settings [62, 63, 64, 65, 66, 67]. Furthermore, Panichella et al. [56] studied, for two

specific ASATs, how developers handle ASAT warnings during code reviews. To obtain a

more general understanding of how ASATs are being used in practice, Chapter 4 discusses

the following research question:

RQ2: How are ASATs used?

– RQ2.1: What type of warnings do developers enable?

– RQ2.2: What type of warnings do developers disable?

– RQ2.3: Do default configurations reflect the wishes of developers?

– RQ2.4: How prevalent are custom rules in the configurations of developers?

Aside from studying how ASATs are currently used, Chapter 5 examines how this use

changes over time. This information could be of interest to the creators of ASATs, who

provide new and improved versions of such tools on a regular basis. Of particular interest is

how often developers change their use of ASATs, what these changes entail, and if develop-

ers keep up with the latest versions of ASATs. Therefore, we strive to answer the following

research question in Chapter 5:

RQ3: How does the use of ASATs evolve?

– RQ3.1: How often does a configuration file change?

– RQ3.2: How much does a configuration file change?

– RQ3.3: When does a configuration file change?

– RQ3.4: Do updates to an ASAT trigger developers to change their configuration

file?

– RQ3.5: What versions of ASATs are currently being used?

We answer all of our research questions by means of a large scale analysis of open

source software. For RQ1, we manually study project repositories and documentation to

determine if they use code reviews or ASATs. We complement these results by sending

a questionnaire to developers of these projects. To study the use of ASATs for RQ2, we

examine the configurations of ASATs in open source projects. For RQ3, we investigate the

changes made to these configurations.
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Chapter 2

Related Work

In this chapter, we review the prior works that form the background of this thesis. First, we

give an overview of the state of code review research and how this connects to our study on

the prevalence of code reviews. Then, we review the research on ASATs and discuss how

this is related to our study of the prevalence and the use of ASATs. Finally, because we use

a defect classification to classify ASAT warnings, we give an overview of the classifications

that ours builds upon.

2.1 Code Reviews

In 1976, Fagan [23] formalized a method of reviewing code by going through program

modules on a line-by-line basis in a group meeting. This form of code review is called a code

inspection. In the meetings, the focus was exclusively on finding defects, not discussing

how to correct them [23]. Many researchers concluded that these code inspections can find

a significant number of defects [68, 76], but many studies also showed that the inspection

meeting had no discernible effect on the defect detection rate of inspections [19, 75]. In

fact, the meetings often had a negative effect on the inspection procedure, as scheduling

conflicts made it hard to set up meetings in a timely manner [37, 75]. Votta [75] indicated

that these delays could run up to two weeks per meeting. If several meetings were necessary,

a single inspection process could take months. These difficulties hindered the adoption of

code inspections in industry settings [37].

The inefficiencies led to a desire for a more lightweight form of code inspection. This

can be accomplished by sharing defects in an asynchronous manner, using the Internet or

an intranet, rather than in a meeting [67]. Historically, this was done on mailing lists, but

this has shifted towards issue trackers and purpose-built tools [29]. This form of review

is often called code review. In contrast to code inspections, correcting defects is a part of

the code review process [62, 67]. Developers can also discuss the change under review and

try to solve problems with the author and the group of reviewers. In terms of the defect

detection rate, Johnson and Tjahjono [38] and Perry et al. [57] observed that sharing defects

in this manner has no negative effect on the number of defects found. More importantly,

code reviews are often completed within two days [62, 67], saving a considerable amount of
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2. RELATED WORK

time compared to formal code inspections. Intuition would suggest that, due to their ability

to find a significant number of defects in a relatively short period of time, code review is

prevalent among open source projects. In this study, we quantitatively investigate this claim.

Even though most developers and managers state that they consider finding functional

defects the primary goal of code reviews [4], both Bacchelli and Bird [4] and Beller et al.

[8] found that code reviews primarily find maintainability defects. Siy and Votta [72] and

Mäntylä and Lassenius [51] observed similar results for code inspections. The reason for

this might be that understanding the code under review is the main challenge in finding

functional defects [4]. It causes inconsistencies in the number and type of defects found.

How well someone understands the code will vary per reviewer, and, accordingly, Porter

et al. [60] and Baysal et al. [7] observed that the largest source of variance in both code in-

spections and reviews is the reviewer. Thus, performing reviews regularly will improve the

number of defects a review finds [52]. Therefore, in this study we additionally investigate

whether or not the projects that perform code reviews do so consistently and continuously.

2.2 Automatic Static Analysis Tools

ASATs can be seen as a natural evolution of code inspections and code reviews. Instead of

using human effort to find defects, ASATs use techniques such as data-flow analysis and

control-flow analysis to find defects in code [18, 33]. However, because these techniques

do not scale at large, abstractions have to be used [18]. These abstractions, plus the fact

that checking common properties of programs is an undecidable problem [21], lead to false

positives, which are warnings about defects that do not actually exist, and false negatives,

which are absences of warnings when defects do exist in the program.

Whereas false negatives impact the effectiveness of ASATs because they miss defects

in the code, false positives will cause developers to waste time because they have to analyze

the warnings emitted by the tool. Deciding whether a single warning is a real defect or a

false positive will cost a developer three to eight minutes [14, 32, 70]. This makes analyzing

warnings a time consuming activity, especially considering there can be as much as 50 false

positives for every accurate warning [41]. In general, there might be around 40 warnings

per thousand lines of code [31]. This torrent of information can prove cumbersome to fully

comprehend, and some developers have indicated that an overload of warnings is an impor-

tant reason to refrain from using ASATs [36]. However, while researchers have studied the

reasons why developers do or do not use ASATs, there is no hard data on the prevalence

of ASATs in practice. In this study, we therefore quantitatively investigate the state of the

adoption of ASATs in open source projects.

Whereas with code reviews the number and type of defects found varies with the re-

viewer, with ASATs this varies with the specific tool that performs the analysis. Many tools

differ in the type of defects that they focus on, but even when tools focus on uncovering the

same defects, the variance in defects found is still very large [21, 69, 77, 79]. These results

indicate that using several ASATs has benefits over using just a single ASAT. However, this

will increase the number of warnings that developers have to process. Thus, deciding to

use multiple ASATs is striking a balance between an improved defect detection rate and the
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additional work in processing the increased number of warnings. In this research, we aim

to determine how many projects use multiple ASATs.

To better deal with a large number of warnings, several studies have investigated ways

to rank warnings [30, 31, 43, 46, 70]. This has the advantage that a developer can decide

how many warnings to analyze based on the derived importance of the warnings. In lieu of

those ranking algorithms, developers can use configuration files to indicate which rules they

consider to be important. This can reduce the number of warnings generated and suppress

rules that are prone to emitting false positives. In this thesis, we analyze the configuration

files of ASATs to discover the preferences of developers.

Another reason to study these preferences is to observe if the use of ASATs by de-

velopers reflects the potential of ASATs. Wedyan et al. [79] observed that 15% of all de-

fects found by ASATs were functional defects, with all others being maintainability related.

Ayewah et al. [3] and Wagner et al. [78] found similar results. Again, the results varied

per ASAT, with some tools being better at finding functional defects than others [74]. In

terms of the effectiveness at finding functional defects, a large number of studies observed

that ASATs rarely find any functional defects [2, 13, 78, 79]. These results indicate that

users of ASATs should expect to find maintainability defects with the tools and that most of

the functional defects that the ASATs check for will be missed. In this thesis, we strive to

determine if this is reflected in how developers configure their ASATs.

2.3 Defect Classifications

In 1993, the IEEE composed a standard for classifying defects [35]. The standard was the

basis for a classification by IBM, the Orthogonal Defect Classification (ODC) scheme [12].

This scheme uses the defect type as one of the aspect from which to classify the defect.

While the ODC scheme has seen use among researchers [54, 81], several studies also con-

clude that the classification was too general and required adaptations to fit a particular

use [8, 51, 77]. The specific ODC adaptation on which we based our classification started

with El Emam and Wieczorek [20], who used the ODC scheme as a basis for a refined clas-

sification, which they showed had high inter-rater reliability. Mäntylä and Lassenius [51]

then adapted this scheme to classify code review comments. Subsequently, Beller et al. [8]

based their classification largely on this work. We further adapt these works because we

classify ASAT warnings, or potential defects, instead of code review changes. Considering

that ASATs primarily catch maintainability defects [2, 78, 79], we created an original classi-

fication for that class of defects, as neither the classification by Mäntylä and Lassenius [51],

nor that of Beller et al. [8] had a sufficiently fine-grained classification for maintainability

defects.
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Chapter 3

Prevalence of Code Reviews and
Automatic Static Analysis Tools

In this chapter, we investigate how common code reviews and ASATs are in open source

projects. First, we outline the general research aim of the study and the high level study

design. Then, we discuss the steps we took to execute this design. Afterwards, we take an

in-depth look at projects on which we perform our study. Subsequently, we report on the

results, and offer our interpretations in the discussion. Finally, we discuss the internal and

external threats to the validity of the results and our interpretation.

3.1 Research Aim

In previous work on both code reviews and ASATs, we observed that there is no conclusive

data regarding how prevalent these static analysis techniques are. For code reviews, Rigby

et al. [67] stated that they are ubiquitous in open source settings. However, when searching

for projects for a study of code review fixes, Beller et al. [8] observed that many projects did

not perform code reviews in a consistent and continuous manner. However, no quantitative

study had been performed to support either claim. As for ASATs, researchers are divided

about their prevalence in software development. Ayewah et al. [3] stated in 2007 that ASATs

started to become widely used in practice, but, more recently, Johnson et al. [36] and Kumar

and Nori [48] stated the opposite. Still, none of these studies provided any data for their

claims.

In light of this lack of data, we performed a quantitative study on the prevalence of both

code reviews and ASATs in open source settings. Aside from investigating how common

these quality assurance techniques are, we also set out to examine how they were used.

To obtain the answers to these questions, we looked at popular open source projects and

researched their use of code reviews and ASATs. More concretely, this study aims to answer

the following research question and its subquestions:

7



3. PREVALENCE OF CODE REVIEWS AND AUTOMATIC STATIC ANALYSIS TOOLS

RQ1: How common are static analysis techniques in practice?

– RQ1.1: What is the prevalence of code reviews?

– RQ1.2: What is the prevalence of ASATs?

– RQ1.3: Do projects use multiple ASATs to check the quality of their code?

3.2 Study Design

This section details the design of the study from the initial exploratory investigation, to the

data collection, and the analysis of that data. The high level design of this study is shown in

Figure 3.1.

In step 1, we select open source projects from code hosting services. In step 2, we filter

these initial projects because not all repositories on code hosting services are software [40].

After filtering, we end up with the projects on which we perform our analysis. This analysis

consists of two parts: collecting data from existing sources such as the code repository and

the project website, and sending questionnaires to the developers of each project. For these

two data sources, we set out to answer the same questions. Finally, in step 4, we juxtapose

the results from both of these sources and investigate the differences between what the

information in the existing sources indicates and the answers of developers regarding their

code review and ASAT use.

Figure 3.1: The study design for the prevalence analysis.

3.3 Study Methodology

In this section, we discuss how we executed the study design. First, we outline how we

selected projects to study. Then, we discuss how we gathered information from project

repositories, how we arrived at the questions for the questionnaire and the choice of partic-

8



3.3. Study Methodology

ipants for our survey, and finally how we juxtaposed the data from the repository analysis

with the results from the questionnaire.

Selection of Study Objects

To filter the large number of projects and repositories that we could potentially study, we se-

lected projects based on their popularity. This was chosen as a criterion for several reasons.

Most importantly, previous research on GitHub, the worlds largest code hosting service [27],

showed that most projects have very few commits and are inactive [40]. While a random

selection might better depict the quality assurance practices of the large tail of inactive and

toy projects, the results of popular projects represent the static analysis practices of those

open source projects that are well-known among developers.

Moreover, two-thirds of the repositories on GitHub are for personal use [40], as opposed

to being used for collaboration purposes. Those repositories cannot have code review activ-

ity, as that would require more than one collaborator. Additionally, 93% of all projects have

three contributors or less [40]. By selecting only the most popular projects, our assumption

was that this would mostly include those projects with larger development teams, due to the

increased interest in and use of these projects.

Study Procedure

We took a two-step approach to determine if a project used either code reviews, ASATs, or

both. First, we collected data from existing sources. This corresponds to step 3 in Figure 3.1.

For almost all projects, these sources consisted of the code repository and potentially the

project website. Then, we sent out a questionnaire to developers of a project and asked them

if they used code reviews or ASATs, as well as what their development practices were in

regard to these quality assurance techniques. This corresponds to step 4 of Figure 3.1.

In this section, we first discuss in more detail how we collected data from existing

sources and what we looked for while doing so. Then, we detail the questions that we

asked the developers and our motivations behind the questions. Finally, we outline how we

compared the data from these two sources.

Repository Analysis

To answer the research questions using data from existing sources, we studied as much

data on a project as possible. The primary source of information was the code repository.

Aside from the information obtained directly from the source code, many projects have

documentation available in the repository itself. GitHub also provides a Wiki system, which

some projects use for documentation purposes. Additionally, whenever possible, we studied

the websites of projects and auxiliary development tools such as the mailing list and the

issue tracker.

The development practices of a project could be described in various locations. Many

GitHub projects have a CONTRIBUTING.md file in the root of their repository. The purpose

of this file is to inform non-core contributors of the development practices of the core team

9



3. PREVALENCE OF CODE REVIEWS AND AUTOMATIC STATIC ANALYSIS TOOLS

of developers. While it is possible that this information is solely meant for non-core contrib-

utors, we made the assumption that this documentation described the general development

workflow in the project.

In some cases, an indication of the use of code reviews might be a link or reference

to a code review tool such as Gerrit.1 If such a tool is used and its database is public, we

checked whether it showed any evidence of recent use. This was necessary because some

projects claim to use code review tools, but have empty or inactive tool databases [8]. Fi-

nally, if there were no indications regarding the development workflow of the project in the

documentation, we checked directly for the presence of code reviews from core developers,

for example, in the form of pull requests on GitHub or patch submissions on the mailing

list.

The references to ASATs in official project documentation proved to be rare. Therefore,

we examined the code in project repositories to find hints that ASATs were used. For some

languages and platforms, such as the Node.js runtime environment,2 the dependencies of a

project on third-party libraries and tools are listed in a file in or near the root of the code

repository. Many ASATs can be included in this manner, which is an indication that they

are used during development. Moreover, we scanned the repository for the presence of

ASAT configuration files. If a project were to use an ASAT, it stands to reason that it would

include a configuration file. This project wide configuration file is beneficial because it

enforces a consistent analysis of the entire code. Use of an ASAT without a project wide

configuration file can reasonably be seen as an indication that this ASAT is not used in

a consistent manner, or relies on the default configuration. Finally, we searched for any

occurrences of ASAT tool names in auxiliary project files. For GitHub projects, these are

often the issue tracker and the pull requests. We made a distinction between core developers

which used, mentioned, or recommended ASATs and non-core contributors which opened

issues or pull requests due to ASAT warnings. These contributors might have used the

ASATs on their own accord to enforce the quality of their changes, and therefore this use

does not provide an indication of the project-wide ASAT use.

Questionnaire

Studying existing data is not enough to properly conclude that either code reviews or ASATs

are used in a consistent and continuous manner. Developers can potentially bypass the of-

ficial guidelines and submit changes either without submitting them for review or without

using ASATs. Moreover, remnants of an ASAT might still be left in the project documen-

tation or the repository, long after the tool has stopped being used. Therefore, to capture

how these static analysis techniques were used, we sent out a questionnaire to either indi-

vidual developers or mailing lists of the projects under study. We excluded those projects

that had been inactive for more than a year at the time of this study. The full contents of the

questionnaire can be found in Appendix A.

To decide who of the development team to send the questionnaire to, we examined the

repository and website of the projects for contact information. When this information was

1https://code.google.com/p/gerrit/
2https://nodejs.org/

10

https://code.google.com/p/gerrit/
https://nodejs.org/


3.4. Study Objects

absent, we used the statistics provided by GitHub to find the developer who contributed

the most code in the last year. For projects outside of GitHub, where we could not obtain

information about the top contributors of a project, we scanned commit messages to decide

whom to contact. We started out by only contacting one person, and only contacted a

second developer if we did not get a response within a week. If the second developer did

not respond, or if there was only one core developer for a project, we marked the project as

No Response.

Regarding code reviews, we asked two simple questions. First of all, we inquired

whether the projects used code reviews in a consistent and continuous manner for all de-

velopers, that is, for both core developers and non-core contributors. Finally, we were

interested in which particular code review tools were used in the project. This last ques-

tion was primarily to validate the choice for using multiple sources other than GitHub, as

we expected the GitHub projects to overwhelmingly use the code review tools provided by

GitHub, instead of using outside tools such as Gerrit. If this was indeed the case, then a

heavy reliance on GitHub projects might have resulted in merely reflecting the use of code

reviews in GitHub projects, rather than for more general open source software.

Concerning ASATs, we asked three simple questions. First, we inquired whether a

project used ASATs to check the quality of their code. If they did, we asked if the results

of the ASATs were a deciding factor in whether a change was deemed acceptable. Finally,

we specifically inquired which ASATs were used in the project. The second question was

the most important one, as it proved difficult to obtain an indication of how ASATs were

used within a project. The presence of configuration files or ASAT dependencies from the

repository analysis could not give any information regarding the specific use of ASATs, and

the guidelines often did not mention ASATs at all. Therefore, even more so than with code

reviews, the questionnaire was of vital importance to judge the use of ASATs in the projects

under study.

Comparison of Results

The last step in our study was to compare the results that we collected from investigating

existing data sources and the answers that we obtained from the questionnaire. We were

interested in whether and where the results differed and why that might be. We wanted to

know if the discrepancy came from the guidelines, in which case the core developers have

a different workflow than the non-core contributors, or from hints in the code repository,

meaning that there are remnants of old tools and development practices in the repository.

3.4 Study Objects

In this section, we discuss the study objects that we analyzed to asses the prevalence of code

reviews and ASATs in open source projects. First, we discuss what type of projects we were

looking for. Then, we go into more detail about the projects we selected.

We were looking for open source software projects. We did not place any restrictions on

the type of software project, the programming language, or any other attribute of the project.
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We found these projects by browsing various code hosting platforms and software directo-

ries. Because not every repository on these platforms is necessarily a software project [40],

the only filtering that we did was to filter out all repositories that did not contain a software

project. The reason for this filtering is simple: only software projects contain code, which

means that only those development teams can perform code reviews and use ASATs.

We selected 140 projects from four different sources: GitHub,3 OpenHub,4 Source-

Forge,5 and Gitorious.6 We also considered other sources, primarily other code hosting

services, but found them unfit for our purposes. Some were excluded because of a lack

of projects, others because there was no way to filter projects on any distinguishing crite-

ria. For example, GitLab7 had a lack of projects, considering that the majority of the most

popular repositories belonged to the GitLab company itself. On the other hand, the now

discontinued Google Code8 had no way to easily find or rank projects.

We divided the number of projects over the selected code hosting services as follows:

100 from GitHub, 10 each from OpenHub and SourceForge, and 20 from Gitorious. This

distribution was chosen because of the relative popularity of GitHub to the other plat-

forms [27]. In the case of OpenHub, we could not select more than 10 projects because

OpenHub did not provide popularity information for more than 10 projects.

For GitHub, OpenHub, and SourceForge, we selected the projects based on the crite-

ria as established in Section 3.2: their relative popularity. For GitHub, this popularity is

reflected in the number of stars that a project has. The star system allows users to indi-

cate their interest in a project. A high number of stars therefore indicates that the GitHub

community considers this project noteworthy, which can be seen as a heuristic for project

popularity. OpenHub has a top 10 of popular projects on their website, which is based

on the number of users that a project has. This metric is similar to GitHub stars because

users have to manually indicate that they use a project, rather than that the popularity is

automatically calculated from actual use metrics. For SourceForge, we selected the 10 most

downloaded projects of all time. Gitorious did not have a way to rank projects on popularity.

Their only ranking system was that of development activity. Because this still alleviated our

greatest concern when selecting projects, which is that most repositories are inactive [40],

we decided to select 20 projects based on this metric.

After filtering non-software repositories and projects that appeared on multiple plat-

forms, we were left with 122 projects. The largest number of projects excluded, 17 in total,

came from GitHub, with just one project being excluded from OpenHub and none from the

other two platforms. The exclusions from GitHub were all non-software projects, while the

OpenHub exclusion was the Linux kernel which we already included from GitHub. The

full list of projects can be found in Appendix A. The full list includes three projects that

responded when we posted our questionnaire on the mailing list of another project, and one

project mailing list on which we received two answers for separate parts of the project with

3https://github.com
4https://openhub.net/
5http://sourceforge.net/
6https://gitorious.org/
7https://about.gitlab.com/
8https://code.google.com/
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different workflows. We excluded 18 projects from the questionnaire that had been inactive

for more than a year. This brought the total number of projects for the questionnaire to 108.

3.5 Results

In this section, we discuss the results of studying the prevalence of static analysis techniques

in open source projects. First, we present the results of the analysis on existing data such

as repositories and project websites. Then, we review the responses from the questionnaire

sent to developers or mailing lists. Finally, we juxtapose these two result sets and identify

the ways in which they differ.

Repository Analysis

Regarding code reviews and RQ1.1, the results of analyzing the data in project reposito-

ries and websites are shown in the third column of Table 3.1. In total, 94 out of all 122

projects use code reviews in their development workflow. The full results are presented in

Appendix A. Reviewing the results for each code hosting service separately, we see that 68

out of 83 GitHub projects either have a clear development workflow that includes a code

review before submitting changes to the repository or core developers who submit a sizable

portion of their code via pull requests. All projects, except for the Linux kernel9, perform

these code reviews via GitHub pull requests, in rare cases supplemented by other code re-

view tools such as Phabricator.10 The other 15 projects have no development guidelines or

make no mention of code reviews in their workflow. Moreover, core developers are mostly

or completely absent as submitters of pull requests. These core developers only interact

with the pull requests opened by non-core contributors. A few projects have barely any

pull request activity at all. On OpenHub, all 9 projects use code reviews. Four of them

perform code reviews in multiple places, such as on a bug tracking tool and a mailing list.

On SourceForge, half of the projects have no information about code reviews in their docu-

mentation or any other indications of code review activity. On the whole, the development

practices of the SourceForge projects are not as well documented as those from GitHub or

OpenHub. This might be because the popularity rating on GitHub and OpenHub reflects the

interest of software developers, while the popularity on SourceForge is a reflection of the

number of downloads by end-users, who are not necessarily software developers. Finally,

12 out of 20 Gitorious projects feature code reviews in their development workflow. One

other project, Chakra Packages from the similarly named operating system11 mentions the

use of a code review tool, ReviewBoard. However, just three reviews were posted in the

entirety of 2014. We therefore concluded that we could not conclusively determine whether

this project used code reviews.

For RQ1.2 and RQ1.3, the results from analyzing the information in project repositories

and websites regarding ASATs are shown in the fourth and fifth column of Table 3.1. The

9https://kernel.org/
10http://phabricator.org/
11http://chakraos.org/
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Source # of

Projects

Using Code

Reviews

Using

ASATs

Using Multiple

ASATs

GitHub 83 82% 64% 30%

OpenHub 9 100% 89% 22%

SourceForge 10 50% 30% 0%

Gitorious 20 60% 35% 5%

Total 122 77% 59% 23%

Table 3.1: Summary of the repository analysis results regarding the prevalence of code

reviews and ASATs.

fourth column shows how much projects use one or more ASATs to check their code. The

fifth column only considers those projects that use multiple ASATs. Overall, 72 out of

all 122 projects either mention the use of ASATs in official project documentation, or the

repository contains traces of ASATs, either as configuration files or as explicitly mentioned

dependencies. From those projects, 28 use multiple ASATs to check their code. The full

results are available in Appendix A. Examining the project sources separately, 53 out of

83 GitHub projects use ASATs and 25 of those use multiple ASATs. Only one OpenHub

project does not use ASATs, and 2 of the other 8 projects use multiple ASATs. ASATs are

not popular among SourceForge projects, with only three of them using ASAT, all working

with a single tool. Finally, 7 out of 20 Gitorious projects use ASATs, but only one of them

uses multiple ASATs.

Questionnaire

The summarized results of the questionnaire are shown in Table 3.2. The third column

shows the percentage of projects that use code reviews to verify changes from core devel-

opers. The fourth column displays the percentage of projects that use one or more ASATs to

check their code, while the fifth column shows the percentage of projects that use multiple

ASATs. Finally, the last column shows displays what percentage of projects uses the results

of these tools as one of the factors to decide whether a change is accepted. This last column

thus displays information that we could not ascertain from the repository analysis.

For RQ1.1, Table 3.3 shows the expanded results concerning the questions about code

reviews. From all the 36 projects that responded, 19 perform code reviews on changes

from core developers. Another four projects state that code review is not required for every

change, but highly encouraged. In four projects, the core development team consists of

just a single person, and no code review is performed on the changes made by that one

developer. For the other 11 projects, code review is only performed on contributions made

by non-core contributors. In total, excluding the projects that only have one core developer,

almost 72% of projects use code reviews to validate changes by core developers, and almost

82% of those projects mandate this for every change.

Many respondents of projects that enforce the use of code reviews for every change note

that there are some exceptions to this rule. Often mentioned is that developers can forgo
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Source # of

Projects

Code Reviews on

Changes from Core

Developers

Using

ASATs

Using

Multiple

ASATs

Enforced

Use of

ASATs

GitHub 19 42% 68% 32% 42%

OpenHub 1 0% 0% 0% 0%

SourceForge 3 0% 100% 66% 0%

Gitorious 10 50% 70% 40% 30%

Other 3 66% 100% 66% 33%

Total 36 53% 77% 36% 36%

Table 3.2: Summary of the questionnaire results regarding the prevalence of code reviews

and ASATs.

a code review for small changes, such as a correction of a typographical error. For most

projects, this exception is possible because core developers still have the ability to directly

push their changes to the repository. However, even when using a tool that prohibits a direct

push to the repository, a core developer can often still force their changes through without

undergoing any review. This is possible if the author of a review also has the ability to

approve their own change. When forcing changes to the repository, it remains to be seen

if another developer will perform a post-commit review. Therefore, it is doubtful that any

project has reviewed every single change made, however small it may be.

Regarding the tools that are used, the GitHub projects use the built-in pull requests

functionality of their code hosting service across the board. Only React12 and Django13

use a supplementary tool other than these pull requests, those being Phabricator and Trac14

respectively. There is more variation in tool use with the projects from OpenHub, Source-

Forge, and Gitorious. This includes code review specific tools, such as Gerrit, and issue

trackers, such as Mantis.15 In total, only seven projects have more than one place to submit

code reviews. One other project, Snowdrift,16 only uses two places for code reviews be-

cause of their migration from Gitorious to GitHub. A little under half of the projects do not

use purpose-built tools at all, instead performing code review on a mailing list or forum.

For RQ1.2 and RQ1.3, Table 3.4 shows the expanded results concerning the questions

about ASAT use. It details whether a project uses ASATs, if the results of these tools are

decisive in whether or not a change gets accepted or not, and finally which tools a project

uses.

In general, we observe that ASATs are being used by 77% of all projects. Slightly

less than half of the projects that use ASATs, 13 out of 28, also place strict requirements

on new code. Generally, this means that code that is submitted for review or is pushed to

the repository cannot cause a regression with regards to the results of the ASATs, as this

12https://facebook.github.io/react/
13https://djangoproject.com/
14http://trac.edgewall.org/
15https://mantisbt.org/
16https://snowdrift.coop/
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Project Name Code Reviews on Changes from

Core Developers

Code Review Tools Used

Ace Yes GitHub

AppArmor Yes Mailing list

Async Yes GitHub

Brackets Yes GitHub

Clang Yes Mailing list, Phabricator

CMake Yes Mailing list

Diaspora Yes GitHub

GitLab Yes GitLab, GitHub

GROMACS Yes Gerrit

io.js Yes GitHub

Leaflet Yes GitHub

Modernizr Yes GitHub

OpenOCD Yes Gerrit

openSUSE Factory Yes Open Build Service

openSUSE YaST Yes GitHub

PDF.js Yes GitHub

Qt Yes Gerrit

React Yes GitHub, Phabricator

Snowdrift Yes GitHub, Gitorious

Django Encouraged GitHub, Trac

GDB Encouraged Mailing list

LibreOffice Encouraged Gerrit

Pure Encouraged GitHub

Bash One core developer Mailing list

Semantic-UI One core developer GitHub

Slick One core developer GitHub

Textmate One core developer GitHub

Abilian No GitHub

CodeIgniter No GitHub

Dungeon Crawl Stone Soup No Mantis, Gitorious

Elasticsearch No GitHub

FileZilla No Forum, Trac

Haiku No Mailing list, Trac

Lime No GitHub

VLC Media Player No Mailing list, Patchwork

Vuze No Forum

Table 3.3: Results for the code review prevalence questionnaire.
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Project Name ASATs Enforced Tools Used

Brackets Yes Yes JSHint, JSLint, JSONLint

CMake Yes Yes Clang

Elasticsearch Yes Yes FindBugs, Checkstyle, PMD

GROMACS Yes Yes Clang, Cppcheck, custom checker

io.js Yes Yes CPPLint, Closure Linter

Leaflet Yes Yes ESLint

Lime Yes Yes Gofmt

Modernizr Yes Yes JSHint, JSCS

openSUSE Factory Yes Yes RPMlint

openSUSE YaST Yes Yes RuboCop

PDF.js Yes Yes JSHint

Pure Yes Yes CSSLint

Snowdrift Yes Yes HLint

Abilian Yes No JSLint, ESLint, CSSLint, Pep8, Pyflakes

AppArmor Yes No Pyflakes

Async Yes No JSCS, ESLint

Django Yes No Flake8

Dungeon Crawl Stone Soup Yes No Clang

FileZilla Yes No Coverity Scan, Cppcheck

GitLab Yes No Hound

Haiku Yes No Coverity Scan, custom checker

LibreOffice Yes No Coverity Scan, Cppcheck, Clang

OpenOCD Yes No Clang

Qt Yes No Coverity Scan, Clang

React Yes No JSHint, Code Climate

Semantic-UI Yes No JSHint

VLC Media Player Yes No Coverity Scan, Clang

Vuze Yes No Coverity Scan

Ace No — —

Bash No — —

Clang No — —

CodeIgniter No — —

Diaspora No — —

GDB No — —

Slick No — —

Textmate No — —

Table 3.4: Results for the ASAT prevalence questionnaire.

17



3. PREVALENCE OF CODE REVIEWS AND AUTOMATIC STATIC ANALYSIS TOOLS

can be viewed as a regression of the overall quality of the system. One project, Abilian,17

mentions that they plan to enforce such requirements as well, but they first want to make the

existing code base completely free of warnings. For the other projects, most respondents

state that ASATs are only sporadically used by developers whenever they believe they need

to validate the quality of their code.

Regarding the ASATs used, we observe from Table 3.5 that the Coverity Scan tool, the

Clang static analyzer, and JSHint are popular among respondents. The other tools are all

used less than three times. However, this prevalence per tool is dependent on the program-

ming languages that were used among respondents. Therefore, one can only compare tools

within the same language.

Tool Analyzable Languages Occurrences

Coverity Scan C/C++/C#/Java 6

Clang C/C++/Objective-C 7

Cppcheck C++ 3

Cpplint C++ 1

Hound Coffeescript / JavaScript / Ruby / SCSS 1

CSSLint CSS 2

Gofmt Go 1

HLint Haskell 1

Checkstyle Java 1

FindBugs Java 1

PMD Java 1

Closure Linter JavaScript 1

ESLint JavaScript 3

JSCS JavaScript 2

JSHint JavaScript 5

JSLint JavaScript 2

Code Climate JavaScript / PHP / Python / Ruby 1

JSONLint JSON 1

Flake8 Python 1

Pep8 Python 1

Pyflakes Python 2

rpmlint RPM package files 1

RuboCop Ruby 1

Table 3.5: Occurrences of each ASAT in the questionnaire, grouped by

the languages that a particular ASAT analyzes.

Concerning RQ1.3, we observe that a slight majority of the projects that use ASATs, 15

out of 28, rely on a single tool. Five projects use more than two ASATs, with no project us-

ing more than three comparable ASATs. Abilian is the only project that does use more than

three ASATs, but they are divided among three languages: JavaScript, CSS, and Python.

17https://abilian.com/

18

https://abilian.com/


3.6. Discussion

Only one other project, Brackets,18 also checks for defects in multiple languages: JavaScript

and JSON. All other projects either only use a single ASAT or multiple ASATs that check

for defects in the same language.

Comparison of Results

To compare the information from both sources, we juxtaposed specific data points from the

repository analysis with the results from the questionnaire. This information differs in some

way for close to 20% of the projects that responded to our questionnaire. For some projects,

the repository analysis indicated that the project used code reviews, while the questionnaire

indicated that no code review was performed on changes from core developers. Other dif-

ferences are related to the use of ASATs. Table 3.6 shows the projects for which the two

sources of information show a discrepancy regarding the use of ASATs. We can see that

in three cases, the analysis of project information shows that ASATs are used, while in

actuality the project does not use any ASATs. A reason for this might be that the infor-

mation gathered from the repository or website might be outdated. For example, the Bash

project19 mentions that they previously used Coverity,20 for which traces can still be found

in existing sources. For two other projects, two tools are found in the project information,

while respondents only note that one of them is used. Moreover, two projects do not use

the ASAT that was present in project information, but instead they use a different ASAT

entirely. Furthermore, there are seven projects that used more ASATs than the repository

analysis indicated and a single project that used ASATs even though the repository analysis

showed otherwise.

3.6 Discussion

In this section, we discuss and interpret the results from the previous section and put them

in a broader perspective. First, we take an in-depth look at the differences between the

results of the repository analysis and the answers of the questionnaire. Then, we answer

the research questions on the basis of our results. We present our main findings in boxes to

highlight them.

Regarding code reviews, excluding the projects that responded to the questionnaire,

87% of repositories, websites, and other sources of information indicate the use of code

reviews, while 63% of respondents mention the use of code reviews among core developers.

Using a two sample t-test, we confirm that this difference is significant at α= 0.05: t(123)=
3.043, p = 0.0029.

The most likely cause for this difference is that when we performed the repository anal-

ysis, we made the assumption that contribution guidelines for non-core contributors accu-

rately reflect the development workflow of core developers. However, the questionnaire

showed that there are many projects that noted that they did not perform code reviews for

18http://brackets.io/
19https://gnu.org/software/bash/bash.html
20https://coverity.com/
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Project Name ASATs in Repository Tools Actually Used

Async JSLint JSCS, ESLint

Bash Coverity Scan —

CMake Coverity Scan Clang

Diaspora JSHint —

GDB Coverity Scan —

GitLab Hound, RuboCop Hound

Semantic-UI JSHint, CSSLint JSHint

Brackets JSHint, JSLint JSHint, JSLint, JSONLint

Dungeon Crawl Stone Soup — Clang

Filezilla Coverity Scan Coverity Scan, Cppcheck

LibreOffice Coverity Scan Coverity Scan, Cppcheck, Clang

Modernizr JSHint JSHint, JSCS

Qt Coverity Scan Coverity Scan, Clang

React JSHint JSHint, Code Climate

VLC Media Player Coverity Scan Coverity Scan, Clang

Table 3.6: Discrepancies between project repository information and answers from

the questionnaire.

changes from core developers. Thus, the contribution guidelines only applied to non-core

contributors. Therefore, we conclude that we can only judge the code review practices of a

project in regard to the core developers with the results from the questionnaire.

Regarding ASATs, the percentage of projects from the questionnaire that use ASATs

is higher than that of the repository analysis. Excluding projects that responded to the

questionnaire, 52% of existing project resources suggest the use of ASATs, compared to

77% of the questionnaire respondents who note that ASATs are used. This difference is

significant at α = 0.05: t(123) = 2.364, p = 0.0196.

Looking more closely at the differences, we see that, concerning the questionnaire,

there are three projects that do not use ASATs even though their repositories seem to indi-

cate otherwise. Moreover, there was just a single project that indicated in response to the

questionnaire that they used ASATs, but were marked by the repository analysis as having

no evidence of ASAT use. Therefore, we conclude that it is unlikely that we have missed

something in the analysis of existing data which could have caused us to erroneously con-

clude that some projects did not use ASATs. Thus, it seems more likely that the subset of

respondents was simply more inclined to use ASATs. We therefore conclude that the results

of the repository analysis seem to be valid as an upper bound of ASAT use in open source

projects.

However, the results from the questionnaire showed that 15 out of 28 projects that use

ASATs only run these tools sporadically and without enforcing their use. This means that

one cannot infer the precise use of ASATs from a repository analysis, but only the intention,

past or present, to use ASATs. More generally, this demonstrates that one should be careful

when using information solely from project repositories, websites, and documentation when
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drawing conclusions about whether a project uses a tool or technique and how they use them.

These results support those from Negara et al. [55], who observed that one needs more than

just the data in repositories to accurately study the evolution of software. Directly contacting

developers is always necessary to validate and support the results from data that is collected

from existing sources.

How a project uses a static analysis technique or tool cannot be inferred from a reposi-

tory analysis alone.

Regarding code reviews, and RQ1.1, the questionnaire showed that 53% of all projects

perform a code review for every change of a core developer. A further 10% of projects are

more lenient, and encourage, but do not mandate, code review for every change. The rest of

the projects only review changes made by non-core contributors. A reason for this might be

that changes made by core developers are more likely to be of a higher quality than those of

non-core contributors [63].

Code review for changes from core developers is common, but not ubiquitous in open

source projects.

For the 10% of projects that only encourage code review for changes of core developers,

it is up to the author himself to decide whether his change is significant enough to warrant

code review. This seems antithetical to the nature of code reviews. After all, the basis of

reviewing changes is that other developers can find errors in code that the author considered

good enough for submission. And research has shown this to happen in a significant number

of cases [67, 68, 76]. Furthermore, for the 53% of projects that perform a code review for

every change, many respondents note that there is an exception for small changes. The

reasoning of many respondents is that these alterations do not have enough impact to warrant

review. Moreover, we might assume that many of the other beneficial factors of code review,

such as knowledge dissipation [4, 9] and team awareness [4], are absent because of the size

of the change. If the rules on what qualifies as an exception are clear and complete, projects

can avoid having the author determine what changes warrant review.

The majority of projects that perform code review for changes from core developers do

not mandate this for every change.

Regarding ASATs and RQ1.2, the repository analysis showed that less than 59% of

projects use ASATs in various levels of strictness. These results seems to contradict the

experiences of Johnson et al. [36] and Kumar and Nori [48], who claim that ASATs have

not achieved significant use among software projects.
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ASATs are common, but not ubiquitous in open source projects.

However, the questionnaire showed that the way in which ASATs are used can vary.

64% of projects use ASATs sporadically and without attaching any consequences to the

warning results. Therefore, we can conclude that most projects do not have ASATs inte-

grated into their development workflow. Research suggested that an important factor of

improving the adoption of ASATs was to make this integration as easy and seamless as

possible [36]. The results show that the potential is there, since most projects use code

review tools that ASATs can integrate into. For instance, Coverity provides both GitHub

and Travis21 integration [15, 16], making it easy to integrate static analysis into a code re-

view workflow. This does mean that the integration and use of ASATs is dependent on the

development practices concerning code reviews.

Many project that use ASATs only run the tools occasionally and without attaching

strict consequences to the tool results.

Concerning RQ1.3, we observed that 44 out of 72 projects use one ASAT to check their

code. This is in spite of the fact that the use of multiple ASATs can provide a large increase

in defect detection capabilities [21, 69, 77, 79]. Maybe those developers are unaware of

these benefits, or they do understand them, but do not act upon them. The reason for this

inaction might be straightforward. An overload of warning messages has been identified

as one of the primary reasons for developers to avoid using ASATs [36]. It is clear that

for every ASAT that developers add to find more defects, they also increase the overload

of warning messages. Thus, there might only be an increase in the use of multiple ASATs

when the total number of warnings stays manageable.

Among projects that use ASATs, the majority uses a single ASAT to check their code.

3.7 Threats to Validity

In this section, we discuss the aspects that could threaten the validity of this study on the

prevalence of code reviews and ASATs in open source software, and we show how we

endeavored to mitigate these threats. First, we discuss the internal threats to validity, and

then we review the external threats.

21https://travis-ci.org/
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Internal Validity

Internal threats are those factors that could have an impact on the analysis of the study

objects and the conclusions drawn from that analysis. There are two internal threats that we

identified and that we sought to mitigate.

• A heavy dependency on information from GitHub, with 100 projects from that source

to 40 from other sources, might produce a bias in our results. However, given the rel-

ative popularity of GitHub to the other code hosting services [27], and the migration

of many to projects to GitHub [27], we argue that the totality of GitHub projects ac-

curately reflects the open source landscape. To confirm this, we compared the results

from GitHub with those from the other sources. We wanted to know if the number

of projects either using code reviews or ASATs differed significantly between these

sources. We performed a t-test with the questionnaire data for code reviews and the

full results for ASATs. The outcome showed that the difference was not significant

at α = 0.05 (code reviews: t(34) = 0.061, p = 0.9519; ASATs: t(124) = 1.511,

p = 0.1334). Therefore, we can conclude that the heavy reliance on GitHub projects

did not affect the results.

• The Hawthorne effect [1] is not applicable to our analysis, as we did not directly ob-

serve developers to see if they used code reviews or ASATs. However, one might

argue that developers that responded to the questionnaire would want to paint a fa-

vorable view of their development practices [25], and would be unlikely to admit that

their quality assurance practices are insufficient or even non-existent. However, we

do not believe this to be a threat, as developers were under no obligation to respond

to our survey and share information about their development practices, and because

we could use the data from the repository analysis to verify those projects for which

developers potentially painted a misleading picture of their development practices.

External Validity

External threats are those that affect the generalizability of our results. We identified several

external threats to this study.

• One could argue that given the enormous number of open source software projects,

with more than 22.9 million repositories on GitHub alone [26], that 122 projects is

too small of a sample size. However, to the best of our knowledge, it is the largest

known manual analysis of projects repositories and websites. For the questionnaire,

we observed a response rate of almost 30%, which is higher than the normal response

rate for email-only questionnaires and surveys [42, 61].

• Given that this study only considers open source projects, its generalizability towards

closed source projects might be limited. Research has shown that in open source

projects, the core team members have to provide a balance between attracting new

developers and having strict, and potentially slow, quality assurance practices [28].

We cannot readily assume that this balancing act also exists in closed source de-

velopment projects, especially those where developers are paid for their services.
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Therefore, the quality assurance practices in open source development might differ

substantially from those in closed source development.

• Regarding the generalizability of the results towards different types of open source

projects, we do not expect this be an issue. The large number of repositories from four

different sources featured a diverse set of projects, both in terms of type and languages

used. This can be seen in Appendix A. Of course, ASAT prevalence is dependent on

the state of tools for that language and their maturity. Therefore, this can vary greatly

among languages. However, we expect these results to be generalizable for other

languages with a mature set of tools.
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Chapter 4

Configuration of Automated Static
Analysis Tools

Having obtained an understanding of how often developers in open source projects use

ASATs, in this chapter we investigate how developers configure ASATs by means of their

configuration files. First, we outline the research aim and the high level design of the study.

Then, we discuss how we enacted this design. Afterwards, we examine both the ASATs

under study and the configuration files of ASATs. Subsequently, we outline the results of

the study and offer our interpretation in the discussion. Finally, we discuss the threats that

could undermine the validity of the study and its results.

4.1 Research Aim

Much research has been done on the performance of ASATs, both in terms of the defects

that they detect or miss [2, 13, 78, 79], and on the number of false positives that they

generate [31, 36, 41, 48]. However, to the best of our knowledge, there has not been a

large scale quantitative study on how developers use ASATs in practice. In light of this

lack of knowledge, we endeavor to investigate the use of ASATs by open source developers

through studying the configuration files that they use. More concretely, we aim to answer

the following research question and its subquestions:

RQ2: How are ASATs used?

– RQ2.1: What type of warnings do developers enable?

– RQ2.2: What type of warnings do developers disable?

– RQ2.3: Do default configurations reflect the wishes of developers?

– RQ2.4: How prevalent are custom rules in the configurations of developers?

In this thesis, we study configuration files of ASATs to obtain an understanding of

how developers use ASATs. We do this because developers can configure the ASAT to

fit their specific needs by using a configuration file. In such a file, developers can enable

the rules that check for defects that they consider important, and disable rules because they

are either not interested in those defects or because those rules generate too many false
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4. CONFIGURATION OF AUTOMATED STATIC ANALYSIS TOOLS

positives. Without a configuration file, developers rely on the default configuration of the

tool, which might not be in line with their specific needs. Thus, we consider the contents

of an ASAT configuration file to be an important indicator of how developers use ASATs

to check for defects in their code. However, it cannot tell us how often developers run the

ASATs and what they do with the results. We obtained that information in Chapter 3, by

directly contacting developers.

Another reason to study configurations files is because, for many ASATs, this configu-

ration is stored in a specific file that the ASAT looks for before starting its analysis. This file

can then be stored in the project repository. This is especially important when collaborating

with other developers, because it enforces a consistent analysis of the whole codebase. This

means that we can readily retrieve the configuration files of ASATs for open source projects,

which makes them a perfect fit for a large scale analysis.

4.2 Study Design

This section details the design of the study from the initial exploratory investigation, to the

data collection, and the analysis of that data. The high level design of the study is shown in

Figure 4.1.

To perform our analysis, we first develop a program that can analyze the configuration

files of ASATs. Moreover, we create a defect classification that can be applied to the rules of

any ASAT. We apply the analysis and the classification to configuration files that we retrieve

from various code hosting services. The results are classified distributions of warnings that

capture how developers configure their ASATs. Finally, we answer our research questions

on the basis of these distributions.

Figure 4.1: The study design for the analysis of ASAT configuration files.
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4.3 Study Methodology

In this section, we outline how we executed the study design. First, we explain what in-

formation in a configuration file we were interested in. Then, we discuss how we built a

classification for ASAT warning rules. Finally, we outline how we used that classification

to answer our research questions.

We were interested in the directives in a configuration file that specify which warning

rules to enable or disable. Many ASATs also have a second type of directive present in

a configuration file. These affect the behavior of an ASAT that is not related to defect

detection. An example of such a directive is one that specifies in what format to write

the results to an output file. These were of no interest to us, primarily because we could

not easily generalize over these types of directives. Therefore, we only considered those

directives that concern warning rules. From this point forward, we will simply refer to

those directives as rules.

Before we could analyze the configuration files, we first needed a way to generalize

over all the tools. While some ASATs might check for the same type of defects, they often

name their rules differently. Grouping all the rules from different ASATs that check for the

same, specific defect into individual rules would result in a categorization that would be too

fine-grained. Moreover, ASATs that check for the same rules often do not detect the same

defects in the same code [21, 69, 77, 79]. Therefore, it might be that the tools ostensibly

check for the same defect, but that in practice they detect a distinct subset of that defect. To

address these issues, we created a higher level classification of defects, akin to the adapted

ODC scheme [12] by Mäntylä and Lassenius [51]. Because that classification presented

an inadequately fine-grained categorization of maintainability defects, we created our own

classification for these defects. We did this by means of a two-person open card sort [5].

The card sort was performed by the author of this thesis and the thesis supervisor.

In an open card sort, there are no predefined categories at the start of the sorting pro-

cess. We preferred this to a closed card sort because, as stated before, we did not want to

reuse a previous classification. We used the warning rules of one ASAT as “cards”, that we

grouped into categories that emerged during the sorting process. Afterwards, both partici-

pants agreed on the final categories based on the individual classifications.

To classify the rules of ASATs using our classification, we used the documentation

of the ASATs to determine what a specific rule checks for. In accordance with previous

work, when we could classify a rule as belonging to either a functional or a maintainability

category, we classified it as a functional defect [8, 51].

For RQ2.1 and RQ2.2, we were interested in the distribution of the rules that are acti-

vated by developers and likewise those that are disabled by developers. This indicates which

types of warnings are considered to be important by developers, and conversely, which types

of warnings they avoid, possibly because they do not consider them to be important, because

they generate too many false positives, or on account of those rules performing poorly at

finding real defects. To remove the influence of the set of possible ASAT rules, we normal-

ized these distributions according to the number of rules in a category. To see why this is

important, consider a hypothetical tool with just two categories of defects: A and B, with

one and two rules in those categories respectively. If the developers enabled the rule of
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category A once and the combined rules of category B twice, then a uniform distribution of

defects would show B as being twice as large as A. However, we can see that every rule in

both categories was enabled once. The results in this normalized form allow us to see more

clearly the relations between a category with a large number of rules and another with just

one or two rules.

For RQ2.3, we made the assumption that the creators of the tool created a default con-

figuration that, in their opinion, would be suitable for the majority of their users. Therefore,

we were interested to see if and how the configurations of developers deviated from these

default configurations, as these are indications of whether the default configuration accu-

rately reflects the wishes of ASAT users.

We identified three possible ways in which a developer can deviate from the default

configuration:

• A developer disables a rule that was enabled in the default configuration.

• A developer enables a rule that was disabled in the default configuration.

• A developer reconfigures a rule that was enabled in the default configuration.

Not all rules can be reconfigured. An example of a configurable rule is a one which

checks the names of variables, functions, and classes to see if they adhere to a certain

protocol. A developer can then customize the naming convention that the tool checks for,

often in the form of a regular expression. Reconfiguring a rule indicates that developers want

to check for this convention, but do not agree with the content of the default convention as

specified by the creators of the tool. We assume a rule is reconfigured when a developer

includes an enabled default rule in his own configuration.

To see if developers deviate from the default, we simply computed what percentage

of configuration files included one or more deviations for a default rule. To examine how

developers deviate from the default configurations, we computed, for each rule, how many

configuration files included a particular type of deviation for that rule.

For RQ2.4, we determined the prevalence of custom created warning rules in compari-

son to the built-in rules of a tool. We consider a rule to be custom made if it was not included

as a built-in rule in a recent version of the ASAT. Per tool, this can indicate whether the tool

developers consider the tool to be incomplete, which might result in developers writing

custom rules to find these defects. Generally, this can be an indication of whether current

ASATs can adequately cover the defects that developers wish to find.

4.4 Study Objects

In this section, we discuss the study objects that we used to asses how ASATs are configured

in open source projects. First, we discuss what types of ASATs we were looking for. Then,

we examine the selected ASATs in detail. Finally, we review the configuration files that we

perform the actual analysis on.
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ASATs Under Study

Because, we intended to perform this analysis on ASAT configuration files, we placed some

restrictions on the ASATs that we could use. First, an ASAT has to be configurable. If

an ASAT is not configurable, then no study regarding its use is necessary. We can simply

conclude that all developers use the ASAT in the same manner. Furthermore, if an ASAT is

configurable, it needs to store its configuration in a separate file. This is necessary because

we could not consistently extract the configuration information if the ASAT needs to be

configured in another way, for instance with command line arguments. Finally, the configu-

ration file needs to be parsable. In practice, this means that the configuration needs to be in

a machine-readable format such as XML, JSON, or even a custom key-value pairing. This

is required because it is impossible to consistently and completely extract information from

configurations in other forms, such as shell scripts.

When searching for ASATs, we used the tools that we encountered during the preva-

lence analysis in Chapter 3 as a starting point. We expanded our search with search engines

and programming support sites such as Stack Overflow.1 We did this by explicitly searching

for alternatives for the already encountered tools, or by searching for a static analyzer for a

specific programming language. For each tool that we found, we investigated if and how its

behavior could be configured.

Table 4.1 lists the nine tools which fit the criteria that we set. From this table, we

can see that most of the tools use standard formats to store their configuration information.

Two tools, JSL and Pylint, use key-value pairs in plain text format for their configuration.

FindBugs is a peculiar case. The tool uses XML files to either exclude or include rules in

a specific class, file, or package. However, whether a specific element is an inclusion or an

exclusion of a rule is specified via command line arguments. Thus, we could not determine

this in a consistent way. Instead, we used the configuration files of the FindBugs Eclipse

plugin. This plugin also stores its configuration in plain text key-value pairs.

Tool Analyzed

Language

Configuration File

Language

Extendable First

Release

# of

Rules

Checkstyle [11] Java XML Yes 2001 179

FindBugs [24] Java Text Yes 2003 160

PMD [59] Java XML Yes 2002 330

ESLint [22] JavaScript JSON Yes 2013 157

JSCS [39] JavaScript JSON Yes 2013 116

JSHint [44] JavaScript JSON No 2011 253

JSL [53] JavaScript Text No 2005 63

Pylint [49] Python Text Yes 2006 390

RuboCop [6] Ruby YAML Yes 2012 221

Table 4.1: Basic information for the ASATs that are analyzed in this chapter.

1https://stackoverflow.com/
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One things that could influence how developers configure their tools is what type of

defects a tool focuses on. For the Java tools, Checkstyle focuses primarily on coding style,

FindBugs on functional defects, and PMD tries to find both types. For the JavaScript tools,

JSCS focuses on coding style rules, while both JSHint and ESLint try to find all types

of defects. It should be noted that JSHint will refocus in an upcoming major release to

functional defects and has marked many rules as deprecated in preparation of the removal

of these coding style rules [45]. This might already have affected the configurations of

developers, if they stopped using the deprecated rules in preparation of the change. JSL,

Pylint, and RuboCop do not state a particular focus on a specific subset of defects. However,

RuboCop seems to favor checking for coding style issues, as made evident by the fact that

most of their rules are classified by the tool itself as belonging to the Style category.

Table 4.2 lists the latest version of the tools at the time of the analysis in mid-March of

2015. New versions of a tool could introduce or remove rules from the tool. Therefore, the

results for one version of a tool might not be representative for another version, depending

on the size and gravity of the changes. Thus, the table lists the versions for which our results

are valid.

Tool Latest Version at Time of Analysis Released On

Checkstyle 6.4.1 2015/03/04

FindBugs 3.0.1 2015/03/08

PMD 5.2.3 2014/12/21

ESLint 0.16.1 2015/03/08

JSCS 1.11.3 2015/02/11

JSHint 2.6.3 2015/02/28

JSL 0.3.0 2006/11/03

Pylint 1.4.1 2015/01/16

RuboCop 0.29.1 2015/02/13

Table 4.2: The latest version of an ASAT at the time of the

analysis in mid-March of 2015.

Configuration Files Under Study

After selecting the ASATs to study, we needed to retrieve as many configuration files as

possible for every tool. We expected to find enough configuration files on GitHub. However,

to further augment the study and to have as much data as possible, we also collected data

from Krugle2 and OpenHub. The use of OpenHub provided a small complication because

the projects that were listed on OpenHub could host their code on GitHub. To eliminate

possible duplicates, we excluded OpenHub results which hosted their code on GitHub.

The number of configuration files that we retrieved are shown in Table 4.3. We can see

that OpenHub provides a sizable number of configuration files for the Java tools and JSHint.

For the other tools, the increases in the number of configuration files are minimal. The

2http://krugle.org/
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number of added files from Krugle is minimal for all tools. Moreover, for some tools, there

were many more configuration files hosted on GitHub. However, we were unable to retrieve

those because of limitations in the GitHub search system. Thus, there is a discrepancy

between the total number of configuration files hosted on GitHub and the number of files

that we retrieved.

Tool GitHub OpenHub Krugle Total

Checkstyle 16271 2492 22 18785

FindBugs 1575 514 1 2090

PMD 5562 1888 8 7458

ESLint 4427 5 3 4435

JSCS 11656 20 1 11677

JSHint 105619 3086 65 108770

JSL 862 0 0 862

Pylint 3941 123 7 4071

RuboCop 10063 0 3 10066

Total 159976 8128 110 168214

Table 4.3: Number of configuration files for each

ASAT, grouped by source.

4.5 Results

In this section, we discuss the results of analyzing how ASATs are configured. First, we

examine the classification used to categorize warning rules. Then, we review which types

of defects are enabled or disabled in the configuration files of developers. Subsequently,

we investigate if and how the configurations of developers deviate from the default con-

figurations. Finally, we examine how prevalent custom rules are in the configurations of

developers.

Classification

Figure 4.2 shows our refined classification for ASAT rules. We observe that any defect is

first placed into one of two categories. It is either a functional defect if it can be the cause

of a program failure, or a maintainability defect if it cannot.

The functional defect classification closely follows that of Mäntylä and Lassenius [51].

There are two categories from that classification that are absent in ours. The Larger Defect

category was removed because ASATs check for single, well-defined defects. The Support

category was merged in the Interface category, as there were almost no rules that fit in that

category. Additionally, we renamed Timing to Concurrency, as we felt that better reflected

the category. Finally, we added the Migration category, for those rules that check for in-

stances where a migration between two programming language versions can cause defects.
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Figure 4.2: Our refined defect classification.
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The maintainability defect classification resulted from the open card sort as described in

Section 4.3. The most important difference with the classification of Mäntylä and Lassenius

[51] concerns their Structure category. That category consisted of defects that concerned

the compiled source code. In their study, 55% of all maintainability defects belonged to this

category [51]. In contrast, categories in our classification are not defined by whether they

concern the compiled source code or not. Rather, they are defined by what a rule checks

for. The only exceptions are the Best Practices and Style Convention categories. These

categories both contain rules that check for code conventions, but the former concerns those

that affect the compiled output of the code, while the latter concerns those that do not. The

Style Convention category therefore closely mirrors the Visual Representation category of

Mäntylä and Lassenius [51]. For our classification, defects in the Code Structure category

are those that are related to the structure of the file system and the coupling of parts of the

system. Many tools also compute Metrics, which can emit a warning when a threshold is

crossed. Object Oriented Design defects, as the name suggests, are those that check for a

violation of object oriented design principles. A Redundancy warning points out duplicate

code, or a piece of code that is otherwise unnecessary. Simplification warnings suggest

where a piece of code might be simplified to improve readability. Finally, our classification

groups those rules that check for Documentation Conventions and Naming Conventions.

Rules Used or Avoided

RQ2.1 concerns the warning rules that developers enable in their configurations. As we

discussed in Section 4.3, we normalized the distribution of the enabled warning rules ac-

cording to the number of rules in a category. Figure 4.3 shows these results for every

tool. The underlying data for this figure, and all others in this section, are presented in Ap-

pendix B. Moreover, Figure B.2 in Appendix B shows the results from which we performed

the normalization.

RQ2.2 involves the rules that developers disable in their configuration files. The nor-

malized distribution of disabled rules are presented in Figure 4.4. Figure B.3 in Appendix B

shows the results from which we performed the normalization.

In Figures 4.3 and 4.4, every color represents an ASAT. Every bar then displays the

percentage of normalized rules that belong to a specific category in our classification. As an

example, from Figure 4.3 we see that almost 10% of the normalized rules that are enabled in

FindBugs configurations belong to the Check category. The figures allow us to easily spot

those categories that are outliers for a specific tool. For instance, the Metric and Migration

categories contain a large percentage of the enabled rules for RuboCop. Moreover, we

observe in both figures that some tools have categories with no enabled or disabled rules.

Figures 4.3 and 4.4 present a distribution for each tool. To abstract over the tools, we

computed, from this data, the median value for each category. We preferred this over the

mean because of the outliers that are present for specific tools. These results are shown

in Figure 4.5 for the rules that developers enable. Figure 4.6 shows these results for the

rules that developers disable. Thus, the summation of the bars in these figures does not

equal 100%. Rather, each bar is an individual median of the data in Figures 4.3 and 4.4

respectively.
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Figure 4.3: The distribution of rules that are enabled by developers per tool, according to our classification. Normalized to the number of

rules in a category.
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Figure 4.5: Median values for the distribution of rules that are enabled by developers, ac-

cording to our classification. Normalized to the number of rules in a category.

Figure 4.6: Median values for the distribution of rules that are disabled by developers,

according to our classification. Normalized to the number of rules in a category.
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Default Configurations

For RQ2.3, we calculated how many configurations deviated from the default. These results

are displayed in Table 4.4. The second column shows how many configuration files changed

one or more default rules, that is, disabled a rule that was enabled in the default configuration

or vice versa. The third column shows how many files did not change a default rule, but

possibly reconfigured a default rule. There are blanks for those tools that do not allow

individual rules to be reconfigured. The fourth column lists the percentage of configuration

files that do not contain a deviation for any default rule.

Tool Changed

Default

Rules

Only

Reconfigured

Default Rules

No Deviations

for Default Rules

Total % Total

ESLint 80.5% 5.7% 13.8% 100% 4274

FindBugs 93.0% — 7.0% 100% 2057

JSHint 89.6% 0.7% 9.7% 100% 104914

JSL 94.6% — 5.4% 100% 848

Pylint 53.3% — 46.7% 100% 3951

RuboCop 79.1% 3.2% 17.7% 100% 9579

Table 4.4: Summary of whether developer configurations deviate from the default configu-

ration.

Furthermore, we assessed in three ways how developers deviate from a default configu-

ration. First, for all rules that are enabled in default configurations, we calculated how many

developers disabled them. These results are shown in Table 4.5. Subsequently, for every

rule that was turned off by default, we calculated in how many developer configurations that

rule was enabled. The results for this analysis are shown in Table 4.6. Finally, for every rule

that was enabled in the default configuration and which could be configured, we calculated

how many configurations possibly reconfigured them. These results are shown in Table 4.7.

Tool >25% >50% >75% # of Default Rules

ESLint 3% 2% 0% 88

FindBugs 0% 0% 0% 121

JSHint 0% 0% 0% 16

JSL 0% 0% 0% 42

PMD 0% 0% 0% 297

Pylint 2% 0% 0% 195

RuboCop 0% 0% 0% 201

Table 4.5: The percentage of default rules that are

disabled by developers in more than 25%, 50%, and 75%

of all configuration files.

37



4. CONFIGURATION OF AUTOMATED STATIC ANALYSIS TOOLS

Tool >25% >50% >75% # of Default Rules

ESLint 14% 1% 0% 61

FindBugs 50% 25% 25% 8

JSHint 15% 10% 0% 52

JSL 0% 0% 0% 4

Pylint 0% 0% 0% 49

RuboCop 0% 0% 0% 8

Table 4.6: The percentage of by default disabled rules that

are enabled by developers in more than 25%, 50%, and

75% of all configuration files.

Tool >25% >50% >75% # of Default Rules

ESLint 6% 2% 0% 88

JSHint 13% 6% 0% 16

RuboCop 1% 0% 0% 201

Table 4.7: The percentage of default rules that are

configured by developers in more than 25%, 50%, and

75% of all configuration files.

The tables do not include Checkstyle because it does not provide a default configura-

tion. Rather, it provides two configurations that reflect the conventions of Google3 and Sun4

(now Oracle, but the convention is still named after Sun). Similarly, JSCS does not provide

a default configuration, but provides eight configurations used by companies such as Google

and Airbnb. Checking whether their conventions are similar to those of open source devel-

opers is outside of the scope of our study. As described in Section 4.3, our aim is to see if

ASAT creators create default configurations that reflect the wishes of their users. Table 4.4

does not include PMD because our analysis only considered explicit exclusions, but not

implicit exclusions that can be used in PMD to exclude entire rule sets. Table 4.6 does not

include PMD because the default configuration enables every rule. Finally, Table 4.7 only

includes those tools from Table 4.5 that allow individual rules to be reconfigured.

Custom Rules

For RQ2.4, we calculated the percentage of custom rules in the configuration of developers.

We defined what a custom rule is in Section 4.3. The results are shown in Table 4.8. We

observe that custom rules never account for more than 5% of all enabled rules in a tool. For

3 out of 8 tools, this percentage is even lower than 1%. JSL is absent from these results, as

users cannot write custom rules for this tool.

3https://google-styleguide.googlecode.com/svn/trunk/javaguide.html
4http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
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Tool Percentage of Custom Rules

Checkstyle 0.2%

ESLint 4.1%

FindBugs 1.3%

JSCS 4.7%

JSHint 0.1%

PMD 2.9%

Pylint 1.1%

RuboCop 0.9%

Table 4.8: Percentage of custom rules in the

configuration files of developers. Grouped by

tool.

4.6 Discussion

In this section, we discuss and interpret the results from the previous section and put them in

a broader perspective. We present our main findings in boxes to highlight them. We connect

our findings on how developers configure ASATs with previous results concerning the type

of defects that ASATs find in practice.

For RQ2.1, Figure 4.3 shows that, on a high level, 65% of all enabled rules belong

to a maintainability defect category. The other 35% of rules belong to a functional defect

category. A reason for this might be that, in general, ASATs perform poorly at finding

functional defects [2, 13, 78, 79]. Ayewah et al. [3] and Wagner et al. [78] hypothesize that

the reason for this is that ASATs do not know what code is supposed to do, which is crucial

if one wants to find functional defects. If developers notice the poor performance of these

functional defect rules and discern that it is more worthwhile to manually try to find such

defects, they might place less importance on them and subsequently leave them out of their

configurations.

Developers enable rules that check for maintainability defects more often than those

that check for functional defects.

On a lower level, there are some outliers for individual tools. For instance, the Metric

category for RuboCop and the Logic category for Pylint. These outliers indicate that, for

a single tool, developers sometimes consider a specific category of defects as being less

or more important than others. However, from Figure 4.5 we do not observe any defect

category that stands out when comparing functional and maintainability defect categories

among each other. There is some variation between the categories, but this is contained

within a few percentage points.
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Rules in some defect categories might be noticeably less or more enabled than others

for individual tools, but not in general.

Concerning RQ2.2, from Figure 4.4 we observe that 75% of all the disabled rules are

maintainability defects. This ratio is more in favor of maintainability defects than it is for

the enabled rules. We used a two sample t-test to determine if this difference was signifi-

cant. This proved not to be the case at α = 0.05 (t(15) = 0.488, p = 0.6607). Thus, we can

conclude that the ratio of maintainability defects to functional defects is not significantly

larger for the rules that developers disable than it is for those rules that developers enable.

Therefore, we see that even though the ability of ASATs to find functional defects is lim-

ited [2, 13, 78, 79], the rules that check for functional defects are not widely disabled. A

potential reason for this might be that these rules do not emit a lot of false positives. As

these are an important reason for why developers do not use ASATs [36], one can assume

that a large number of false positives from a single rule would be cause for a developer to

disable that rule. A rule that does not ever emit a warning might not be worth disabling, as

it causes a developer no displeasure and might still find a real defect at a later time.

Developers disable rules that check for maintainability defects more often than those

that check for functional defects.

On a lower level, the most apparent outliers are the FindBugs Code Structure category

and the RuboCop Migration category. However, from Figure 4.6 we again observe that

there are no large differences between categories when we abstract the results over all tools.

As is the case for the enabled rules, the differences are contained within a few percentage

points.

Rules in some defect categories might be noticeably less or more disabled than others

for individual tools, but not in general.

From the results in Section 4.5 regarding RQ2.3, Table 4.4 shows that, for all tools,

less than half of all configurations do not change or reconfigure any rule from the default

configuration. For 5 out of 6 tools, this percentage is even lower than 20% and for 3 out of

6 tools it is less than 10%.

Most configurations change or reconfigure rules from the default configuration.

The results from Tables 4.5 to 4.7 indicate that there are few rules that a noticeable

percentage of all developers change or reconfigure. For the enabled rules, 5 out of 7 tools

have zero default rules that are disabled by developers in more than 25% of all configuration

files. Moreover, less than 5% of the rules for the other two tools are disabled more than
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25% of the time. For the rules that are disabled by default, 3 out of 6 tools do not have

any rules that are turned back on by more than 25% of all developers. The other three

tools have a higher number of such rules. Most striking are the results for FindBugs. Even

though there are just eight rules that are disabled by default, the results show that the default

configuration should probably enable rather than disable some of those rules. Regarding

the reconfigurable rules, the percentage of those rules that are potentially reconfigured by

developers are low among all three tools. However, both ESLint and JSHint still have rules

that pass the 50% mark. The creators of these tools should therefore consider changing the

default settings of these rules.

Developers only widely disagree with a few rules in default configurations.

Finally, regarding RQ2.4, the results show that custom rules do not comprise a sizable

segment of all rules that are used by developers, amounting to less than 5% for all tools in

this study. This can indicate that developers do not consider the ASATs in this study to be

incomplete, in the sense that they create a considerable number of custom rules to check

for those defects that are not included in the built-in rule set of an ASAT. Nevertheless, this

could also be an unwillingness to create custom rules, with developers manually checking

for those rules they consider to be missing in the ASATs that they use.

Custom rules comprise less than 5% of all rules that are used by developers.

4.7 Threats to Validity

In this section, we review the threats that could impact the validity of this study on how

developers configure ASATs. For every threat, we further discuss how we endeavored to

mitigate that threat. First, we discuss the internal threats, then the threats to the construct

validity, and finally we review the external threats to validity.

Internal Validity

Internal threats are those factors that affect the validity of our analysis on the study objects

and the conclusions that we draw from our measurements. There are two internal threats

that we identified and that we sought to mitigate.

• A heavy dependency on GitHub to provide the configuration files for our analysis, as

is evident from Table 4.3, might produce a bias in our results. However, we tried to

mitigate this as best we could. We looked for all code hosting services and search

engines that allowed us to find code based on either a filename or a specific XML tag.

We only found three sources: GitHub, OpenHub, and Krugle. We attempted to col-

lect every configuration file from these sources. OpenHub and Krugle simply could

not provide us with more configuration files. In fact, as discussed in Section 4.4,
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there were more files on GitHub than we were able to retrieve. This left only two op-

tions: perform the analysis with as much data as possible, or take a random sample of

GitHub files equal to the number of files from the other sources. However, Table 4.3

shows that the second option would further limit the number of ASATs that we could

study. For instance, the other two sources only provided 8 unique configuration files

for ESLint.

• There might be errors in our measurements due to the use of our analysis tool. How-

ever, we tried to mitigate this through the use of automated tests. As such, we could

verify that the tool worked as expected on small sample sizes. Moreover, we pro-

grammed our tool defensively, that is, the tool skips those configuration files that do

not conform to a strict specification of how a configuration file should be formatted.

However, there is always the chance that our tests and verifications missed something

and that this error influenced our results.

Construct Validity

Threats to the construct validity of the study are those that have an impact on if our con-

structs accurately measure what they are supposed to measure. We identified one threat to

the construct validity of this study.

For our analysis, we performed a classification of ASAT warning rules according to a

partially custom classification. This is subjective because an individual performs this clas-

sification. We sought to mitigate this subjectivity in two ways. First, for the functional

defects, we used the classification of Mäntylä and Lassenius [51], who in turn based their

classification on that of El Emam and Wieczorek [20]. Both of these classifications proved

to be reliable and distinguishable [20, 51]. The adaptations we made were out of necessity.

As described in Section 4.5, we excluded two categories because there were little to no de-

fects in those categories. Abstracting over a very small set of rules would be pointless as one

poorly performing rule would reflect heavily on the entire category, even though it might

not be representative. Finally, we only classified a rule as belonging to the new Migration

category if the documentation of that rule explicitly stated that it checked for distinct be-

havior between language versions, removing subjectivity from that categorization as much

as possible. For the maintainability defects, we used a open card sort with two participants

on all the warnings rules of one tool to create reliable and distinguishable categories. This

technique is widely used in information architecture for this purpose [5].

External Validity

External threats are those that affect the generalizability of our results and conclusions. We

identified two external threats to this study.

• This study only considers the configurations of ASATs from open source projects. As

such, its generalizability towards closed source projects might be limited. Research

has shown that core developers of open source projects have to keep the interests of

their non-core contributors in mind when they decide how strict their quality assur-

ance practices should be [28]. Therefore, we cannot readily assume that these results
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for open source projects are accurate indicators of the use of ASATs in closed source

projects.

• We performed this study for nine specific ASATs in four different programming lan-

guages. As can be seen from Section 4.4, the nine selected ASATs represent a diverse

set of tools. Their first releases are spread out, they have a varying number of rules,

and different focuses regarding which defects they want to find. Therefore, we expect

those results that abstracted over all the tools and presented a general view of the

studied ASATs to further generalize over ASATs outside of this study as well.
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Chapter 5

Evolution of Automated Static
Analysis Tool Configurations

Having attained an understanding of how developers configure the ASATs that they use, in

this chapter we examine how these configurations change over time. First, we discuss the

research aim of the study and the high level study design. Afterwards, we outline the steps

we took to perform this design. Subsequently, we examine the study objects that we use in

this chapter. Then, we report on the results of the study and offer our interpretation in the

discussion. Finally, we discuss the internal and external threats to the validity of the study

and its results.

5.1 Research Aim

The research aim of this chapter directly follows from the research questions of Chapter 4.

There, we studied how developers configure ASATs, motivated by a lack of knowledge on

how developers use ASATs. That analysis only focused on the present status of ASAT con-

figurations. In this chapter, we examine if and how these configurations change over time.

To further study the evolution of ASAT use, we examine if changes to ASAT configurations

are related to updates to an ASAT. Finally, we study what versions of ASATs developers

use. More concretely, we strive to answer these research questions:

RQ3: How does the use of ASATs evolve?

– RQ3.1: How often does a configuration file change?

– RQ3.2: How much does a configuration file change?

– RQ3.3: When does a configuration file change?

– RQ3.4: Do updates to an ASAT trigger developers to change their configuration

file?

– RQ3.5: What versions of ASATs are currently being used?
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5.2 Study Design

In this section, we detail the design of the study from the initial exploratory investigation,

to the data collection, and the analysis of that data.

The high level study design for RQ3.1 to RQ3.4 is shown in Figure 5.1. To perform

our analysis, we develop a program that retrieves all the information of the changes to a

particular configuration file and accumulates this information over all the files. In step 3,

we have obtained several distributions showing if and how configuration files change over

time. We use this information to answer RQ3.1 to RQ3.3. Additionally, we collect the

release dates for every version of an ASAT. We then connect a change of a configuration

file with a particular ASAT version. We use this information to answer RQ3.4.

The study design for RQ3.5 is shown in Figure 5.2. In step 1, we develop a program

that parses the dependencies of a project, as listed in a dependency file, and retrieves the

version information of the ASATs under study. We then use these results to answer the

research question.

Figure 5.1: The study design of RQ3.1 to RQ3.4.

Figure 5.2: The study design of RQ3.5.
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5.3 Study Methodology

In this section, we discuss how we executed the study design. First, we detail how we

obtained the information about the changes to configuration files. Then, we discuss how

we used this data to study how configuration files change over time. Finally, we discuss

how we obtained the dependency information for projects and how we used this to examine

which versions of ASATs projects use.

To investigate the evolution of ASAT configuration files, we were interested in the in-

formation of the commits that changed a configuration file. We used the GitHub API to

retrieve this information. This allowed us to request the history of a file in a repository. A

consequence of this reliance on the GitHub API is that we could not reuse the configuration

files from OpenHub and Krugle, as there was no way for us to obtain information about the

history of a file from these sources.

We computed several metrics from this data. The first metric, for RQ3.1, is simply

how often a file was changed. This can show us if developers have a need to adapt their

configuration, either because the ASAT was updated or because of changing needs among

developers. Furthermore, for RQ3.2, we calculated the total number of line changes in a

file. We defined this as the difference between the number of lines added and deleted in a

single change. If this number is zero, it probably means that there are only lines modified,

which count as both an addition and a deletion in the information of a change. We could not

compute other measures, such as the Levenshtein distance, because we did not examine the

contents of a change. The last metric we computed, for RQ3.3, was the difference between

the creation date of the file and the date of a particular change. This can be an indication

of whether ASAT configurations are continuously changed or if they are created, possibly

corrected once or twice, and then never changed again.

For RQ3.4, we calculated, for each version of each tool, how many configuration files

were changed when a certain version was the latest one available. This can show us if de-

velopers tend to change their configuration when a tool is updated, or whether these updates

seem to be unrelated to ASAT updates. To eliminate the variances in update frequency, we

divided this number by the number of days that version was the latest version. However, an

increased or decreased general use of ASATs over time could cloud the results, as this would

almost certainly influence the total number of changes to configuration files. To negate this

effect, we divided the results once more, this time by the number of created configuration

files. To summarize, we computed the number of changes per day, per created configuration

file, in the timespan that a version was the latest available version.

For RQ3.5, we examined the versions of ASATs that are currently in use. Often, an

ASAT does not include version information in a configuration file. Therefore, to retrieve

the version numbers of the ASATs used, we needed a list of dependencies. We collected this

information from package management systems that handle dependencies for projects. Via

these systems, users can include the ASATs that they want to use and specify the version

number that they require. We then extract this information to answer the research question.
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5.4 Study Objects

In this section, we discuss the study objects that we used to asses the evolution of ASAT use

in open source projects.

For RQ3.1 to RQ3.4, we needed configuration files to study. Because we already col-

lected as many configuration files as we could for the study of the current use of ASATs in

Chapter 4, we simply reused those configuration files. As we described in Section 5.3, we

relied on the GitHub API and could therefore only use the configuration files from GitHub.

Table 5.1 recaps the number of configuration files we used for the analysis, grouped by tool.

Tool GitHub

Checkstyle 16271

FindBugs 1575

PMD 5562

ESLint 4427

JSCS 11656

JSHint 105619

JSL 862

Pylint 3941

RuboCop 10063

Total 159976

Table 5.1: Recap of the number of

configuration files for each ASAT

However, not all of these ASATs could be used as study objects for RQ3.4. The reason

for this is that not all tools are directly included as a dependency. Rather, developers can

often include an ASAT via another artifact which contains it. For example, we observed that

many developers use PMD via the SonarQube1 plugin. These different artifacts can have

entirely different versioning schemes and often do not directly reveal which ASAT version

they use underneath. Thus, we limited our analysis to those tools that, for the most part, are

directly included as a dependency. The tools that fit these requirements were ESLint and

Pylint.

For RQ3.5, we needed dependency files from package management systems to study.

For the same reason as described for RQ3.4, we exclude those ASATs that are generally

included via different artifacts than by way of the main release. However, we were also un-

able to use Pylint as study object, as the oft-used pip package manager2 for Python does not

produce dependency files. This left only ESLint, for which we analyzed 10419 dependency

files from the Node.js runtime environment, which includes a package manager.

1http://www.sonarqube.org/
2https://pip.pypa.io/en/stable/
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5.5 Results

In this section, we discuss the results of analyzing how the use of ASAT evolves. We study

how configuration files evolve after their initial creation, if they evolve at all. To do this,

we first investigate how often ASAT configuration files are changed. Then, we examine

the size of the change and when the change occurred. Subsequently, we investigate if an

ASAT update triggers developers to change their configurations. Finally, we outline which

versions of ASATs are currently in use.

Number of Changes

The results for RQ3.1, regarding how often a configuration file changes, are shown in Fig-

ure 5.3. The underlying results for this figure, and all others in this section, are presented in

Appendix C. We see that a little over 80% of all configuration files are never changed after

their initial creation. The range shown in the chart represents 99.5% of the total data. The

median of the data is 0 and the mean is 0.5. Both the first and third quartile are 0. Less than

10% of all files are changed just once and less than 5% twice. The maximum number of

times a configuration file was changed is 248, for a Checkstyle configuration.

Figure 5.3: Distribution of the number of times a configuration file is changed.
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Size of a Change

For the 19% of configuration files that were changed after their initial creation, we analyzed

each change of every file to determine the size of the change. As discussed in Section 5.3,

we define this as the number of additions in a file - number of deletions in a file. The results,

for RQ3.2, are shown in Figure 5.4. We observe that the total number of changes is zero

for more than 25% of all files. This means that either all lines that were changed were only

modified (which counts as an addition and a deletion), or that there were as many lines

added as there were deleted. Furthermore, we observe that there is a greater chance that a

change has more additions than deletions. The range shown in the chart captures more than

90% of the data. The rest of the data is spread out from -1126 to 2055 total changes. The

median of the total data is 1, the mean is 1.64, the first quartile is 0, and the third quartile is

2.

Figure 5.4: Distribution of the size of a change, defined as LinesADDED −LinesDELET ED.
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Change Interval

For RQ3.3, we computed, for each change of every file, the time between the creation of a

file and when the change was made. The results are shown in Figure 5.5. We see that 18%

of the changes are made on the same day that the file is created and 33.5% of changes are

made within the first week. The tail of the data is quite extensive, as the range shown in

the chart covers just over 65% of the data. However, no date more than 15 days after the

creation of the file individually represents more than 1% of all changes. The median of the

total data is 32, the mean is 150.67, the first quartile is 3, and the third quartile is 163. The

maximum is 4251 days, more than 11.5 years, for a Checkstyle configuration.

Figure 5.5: Distribution of the time between the creation of a file and the time when the file

was changed.
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Change Correlation with Version Updates

The results for RQ3.4, whether a change in an ASAT configuration might be related to an

update of the ASAT, are shown in Figures 5.6 and 5.7 for ESLint and Pylint respectively. For

every version, the bar represents the number of changes per day, per created configuration

file, in the timespan that a version was the latest available version. Generally, we observe

that the values vary between zero and four changes.

Figure 5.6: The number of changes per day, per creation, for each version of ESLint.

Figure 5.7: The number of changes per day, per creation, for each version of Pylint.
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Versions Used

The results for RQ3.5, which versions of ESLint are currently in use among open source

developers, are shown in Table 5.2. We observe that about 2.5% of all users choose to

always have the latest version of ESLint. Nearly 50% of users indicate that they want to

use the most recent minor update to the 0 release. Currently, this has the same effect as

requesting the latest version of the tool. However, when the next major version of ESLint

is released, only the users who indicated that they want the latest version will automatically

get upgraded to that new release. Otherwise, we see that only the 0.6 and 0.4 releases are

used by more than 5% of all users.

Version Date Times Used

Latest 2015/04/24 255

0 2015/04/24 5098

0.20 2015/04/24 75

0.19 2015/04/11 250

0.18 2014/03/28 262

0.17 2015/03/18 175

0.16 2015/03/11 76

0.15 2015/02/26 145

0.14 2015/02/08 87

0.13 2015/01/24 185

0.12 2015/01/17 172

0.11 2014/12/30 92

0.10 2014/12/13 150

0.9 2014/11/01 231

0.8 2014/09/20 171

0.7 2014/07/10 120

0.6 2014/05/23 1270

0.5 2014/04/17 141

0.4 2014/03/29 917

0.3 2014/01/21 58

0.2 2014/01/01 129

0.1 2013/12/06 354

0.0 2013/10/06 6

Total — 10419

Table 5.2: Version use for ESLint.
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5.6 Discussion

In this section, we discuss and interpret the results from the previous section. We review

how the evolution of configuration files can impact the upgrades and fixes that ASAT devel-

opers provide with new versions of their software. We present our main findings in boxes

to highlight them.

Regarding RQ3.1, the results show that the use of ASATs mostly does not evolve. Over

80% of all the configuration files that we analyzed are created and then used as is for the

remainder of the projects lifetime to date. Moreover, only 5% of all configuration files are

changed more than twice and less than 2% are altered more than five times.

Most configuration files are never changed.

Looking at only the files that are changed, the results for RQ3.2 show that, for most

files, the total number of changed lines lies within a reduction of five lines to an increase

of five lines. Furthermore, more than 28% of all files have an equal number of added and

deleted lines, indicating that there were likely only modified lines.

Most changes to configuration files are small in size.

The results for RQ3.3 show that a configuration files is most likely to be changed on

the same day it was created. Looking further one week, we see that slightly over a third

of all changes were made in this timespan. Going even further, almost half of all changes

are made within a month after a file’s creation. Thus, we observe that developers that make

changes to their configuration files do not only do so in the period where they are still getting

used to the ASAT. Assuming that this period lasts a week, or surely no longer than a month,

at least 50% of all changes are made after the ASAT was used for a lengthy amount of time.

A third of the changes to configuration files happen in the first week after the creation

of a file.

From the results for RQ3.4, we observe that the number of changes per version mostly

stays stable, varying no more than four changes per day. Interestingly, there is no spike

in changes when the major 1.0 version of Pylint was released. We do see spikes among

recent versions for ESLint. The release notes for these releases mention several breaking

changes which might be the cause for these spikes. However, many previous versions also

introduced breaking changes, so it is unlikely that the changes in recent versions were the

reason for the spikes. A possible reason, as can be seen from the data in Appendix C, is

the low number of created configuration files for those versions. It is possible that the low

number of created files during that timespan is not reflective of the actual frequency of file

creations, but rather a symptom of how frequently GitHub indexes files.
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Changes to configuration files are most likely not related to ASAT version updates.

The results for RQ3.5 show that about half of all developers who use ESLint choose

a specific version of the tool, while the other half receives minor updates only. Only 2%

of all developers choose to automatically receive major updates, which could force them to

change their configuration files. Of course, automatically upgrading to a new major version

might not be desirable, as major versions can introduce breaking changes. The other 98%

can either stay on one version, or receive minor upgrades without being forced to change

their configuration.

Half of the users of ESLint want minor version updates, while the other half requires a

specific version.

These results show that the creators of ASATs should keep in mind that most of their

users will either not upgrade to a new version of the ASAT, or they upgrade without chang-

ing their configuration. Assuming that a new version adds, removes, or changes some rules,

it would stand to reason that developers who upgrade would inspect these changes and

change their configuration accordingly. Yet, this will probably not happen. Thus, an ASAT

update which changes the semantics of what a rule checks for will have unintended side

effects. Developers that never change their configuration when updating will, unknowingly,

check for different defects when they update. Furthermore, those rules that are added will

remain unused by the majority of the existing user base.

ASAT developers should make sure that rule changes never alter the semantics of what

that rule checks for.

5.7 Threats to Validity

In this section, we review the threats that could impact the validity of this study on the

evolution of ASAT use. Furthermore, we discuss how we endeavored to mitigate the threats.

First, we review the internal threats, and then we outline the external threats to validity.

Internal Validity

Internal threats are those factors that affect the validity of our analysis on the study objects

and the conclusions that we draw from our measurements. There are two internal threats

that we identified and that we sought to mitigate.

• Considering that most repositories on GitHub are inactive [27], it stands to reason

that most of the collected configuration files belong to inactive projects. This might

produce a bias in our results. Gousios et al. [27] observed that 32% of all GitHub
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projects have only been active one day. If those projects took the time to initialize

their ASAT configurations, which seems unlikely, then, obviously, these configura-

tions would never change. However, we argue that the results as presented in this

study accurately reflect the totality of open source ASAT configurations on GitHub,

whether those projects are active or inactive, new or mature, or with many or few col-

laborators. Moreover, we report the results as they are. We do not try to infer reasons

for why developers do or do not change their configuration files.

• Our analysis tool might have introduced errors in our measurements. However, we

tried to mitigate this by manually verifying that the tool produced the expected results

when used on a small amount of data. As such, we expect the tool to work properly

on large amounts of data as well. However, there is always a chance that we missed

something while verifying the workings of the tool and that this error impacted our

results.

External Validity

External threats are those that affect the generalizability of our results and conclusions. We

identified three external threats to this study.

• Because of our reliance on the GitHub API, the results in this chapter only represent

the evolution of ASAT use for GitHub projects. However, given the relative popular-

ity of GitHub to other code hosting services [27], the migration of many to projects

to GitHub [27], and because of the large number of projects that we collected config-

uration files for, we expect the results to further generalize to projects on other code

hosting services.

• This study only considers the evolution of ASAT use in open source projects. As

such, its generalizability towards closed source projects might be limited. Research

has shown that core developers of open source projects have to keep the interests of

their non-core contributors in mind when they decide what their quality assurance

practices should be [28]. This might also be reflected in the evolution of those quality

assurance practices. Therefore, we cannot readily assume that these results for open

source projects are accurate indicators of how the use of ASATs in closed source

projects evolves.

• The results for RQ3.1 to RQ3.3 were obtained from the configuration files of nine

ASATs from four different programming langauges, as outlined in Section 5.4. Be-

cause they represent a diverse set of tools, we expect the results to further generalize

to other ASATs. However, we performed the study of RQ3.4 for two tools and that

of RQ3.5 for one tool. From this small sample size, we cannot readily conclude that

these results will apply to other tools as well.
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Chapter 6

Conclusion

In this thesis, we have conducted a large scale evaluation of the state of static analysis in

open source projects. We focused on those areas where the current knowledge about the

state of static analysis is missing or incomplete. We set out to answer three sets of research

questions, the first of which was discussed in Chapter 3:

RQ1: How common are static analysis techniques in practice?

We answered this question by means of a repository analysis complemented with a

questionnaire. We found that code review is common among open source projects, but not

universally used among core developers. Many projects still only review code of non-core

contributors, or review changes by core developers only occasionally. Similarly, we ob-

served that while ASATs are not ubiquitous among open source projects, they are used in

various levels of strictness by the majority of the projects. This contradicted with some

claims in the literature that ASATs have not achieved significant adoption among develop-

ers. Finally, we observed that, by and large, developers do not use multiple ASATs.

In Chapter 4, we performed an in-depth quantitative study on the use of ASATs. More

concretely, we strove to answer the following research question:

RQ2: How are ASATs used?

To answer this question, we analyzed ASAT configuration files of developers by means

of a defect classification. We observed that developers both use and avoid maintainability

defects to a greater extent than functional defects. However, there was no great difference

between the defect categories on a lower level. Significant outliers were only found on

the level of individual tools, showing that some tools might perform better or worse in

specific areas, confirming the results found in other studies. Furthermore, we found that

most configuration files deviate from the default configuration. However, there are hardly

any individual rules in the default configurations that developers widely disagree with. Our

results indicate that ASAT developers would only need to critically evaluate a small number

of rules in their default configurations to better fit the wishes of their users. Finally, we

found that developers seem to be satisfied with the completeness of the ASATs, as custom

rules only comprised a small portion of all rules in the configurations of developers.
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6. CONCLUSION

After studying the use of ASATs, we examined how this use evolved in Chapter 5. The

research question was the following:

RQ3: How does the use of ASATs evolve?

We found that most configuration files, representing the use of ASATs by developers,

never change. And if they do change, the total number of changed lines is small. The

changes are spread out over the lifetime of the project, with a tendency for changes to hap-

pen within the first week after the creation of a configuration file. Moreover, we observed

that it is unlikely that the changes to configuration files are related to the version updates of

ASATs. Finally, regarding the ASAT versions that are used, an analysis for ESLint showed

that the user base is split almost evenly between those that prefer the latest major version

and those that want to stay at a specific minor version.

In conclusion, we have seen that popular open source projects commonly use code

reviews and ASATs to verify the quality of their code. However, code review policies

for core developers are more lenient than those for non-core contributors. A typical project

will use one ASAT, that is configured once. The configuration of the ASAT deviates from

the default configuration, does not contain custom rules, and both enables and disables

maintainability defects to a greater extent than functional defects. Developers will only run

the ASAT occasionally and without attaching any strict consequences to its results.

Future Work

In this study, we examined the prevalence of code reviews and ASATs in open source

projects. While current research has presented reasons why developers may or may not

use these quality assurance practices, as discussed in Chapter 2, the results still bring up

several unanswered questions.

First, we saw that some projects choose to use code reviews for changes of core develop-

ers, but do not make them mandatory. Future research could investigate why these projects

employ this lenient form of code review, rather than, as many other projects do, provide de-

velopers with exceptions for small changes and typos. Arguably most importantly, if code

review is only encouraged but not enforced, how does an author decide which changes to

submit for review and which changes to immediately commit to the repository?

For ASATs, we observed that many projects did use ASATs, but not in a strict and

continuous manner. Previous research indicated that an overload of warnings and poor inte-

gration into the development processes were the primary reasons for not using ASATs [36].

However, an overload of warnings seems to be related only to the decision of whether to

use ASATs or not. It cannot be a reason for using ASATs sporadically, because the warning

overload will be much smaller when the tool is used more frequently. Therefore, future

work could take a more in-depth look at what stops many projects from integrating ASATs

into their development workflow in a manner that forces a continuous use of ASATs. Ad-

ditionally, future work could perform a more in-depth investigation of how frequently de-

velopers run ASATs and where they run them (via an IDE, a continuous integration tool, or

somewhere else).
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Regarding the use of ASATs, our results showed which types of defects developers dis-

able, but our quantitative analysis could not allow us to know why those rules are disabled.

When enabling rules, one could reasonably assume that developers consider them to be im-

portant. But regarding the disabling of a rule, we currently do not know what developers

consider to be decisive. If a rule clashes with the conventions in the projects, it makes sense

for the developers to disable that rule. But otherwise, it is unclear whether a developer is

more likely to disable a rule because of an overload of false positives, an inability to find

real defects, or maybe because it is unclear what a rule checks for and why it is important.

Thus, future work could examine the reasons why developers disable rules.

Furthermore, we observed that most developers make changes to a default configuration,

but that few rules are changed by a significant percentage of all developers. However, this

does not always mean that they are satisfied with this configuration. A recent discussion

in a pull request on the ESLint GitHub repository,1 indicated that many users would prefer

a default configuration that did not enable any rules. Consequently, ESLint will switch

to this behavior in the 1.0 release [80]. New users will be provided a way to generate a

configuration based on rules recommended by the ESLint team. We do not know why users

prefer this type of default configuration. Future work could investigate what the optimal

type of default configuration is and why that is the case.

Our study indicated that developers generally do not create custom rules for ASATs.

Future work could investigate why they do not do so. Are developers satisfied with the

completeness of ASATs? Or do they check for defects manually or with another ASAT

rather than create a custom rule? For developers that do create their own rules, future

work could investigate if these rules check for highly specific defects, or if these developers

implement rules that could be also be applied to other projects.

Regarding the evolution of ASAT configuration files, we observed that most configura-

tions did not change. Research could examine why this is the case. Is it because developers

are satisfied with the performance of the ASAT or because they do not believe that a change

of configuration will have a noticeable positive impact? And when a developer does make

a change, is that motivated by a poorly performing rule or maybe because of changing

conventions in the project?

Similarly, future work could investigate what would prompt developers to upgrade their

ASAT. Does this differ for major and minor versions? Potentially, it is closely related to

being forced to make changes to a configuration file, as might be the case for a major

release. And if developers upgrade to a version that added warning rules, do they actually

make use of these new rules or do they ignore them?

1https://github.com/eslint/eslint/issues/2100
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6. CONCLUSION

Key Contributions

We made the following contributions in this thesis:

– Performed a study on the prevalence of static analysis techniques: By means of a

repository analysis and a questionnaire, we provided hard data on how prevalent code

reviews and ASATs are in open source projects. We showed that both techniques are

common, but not ubiquitous.

– Built a classification schema for ASAT warnings: We created a defect classifica-

tion, with a fine-grained classification for maintainability warnings, to better capture

what ASAT rules check for. This classification can be used to understand both the

use of ASATs, which we did in this thesis, and their performance.

– Examined the use of ASATs among open source developers: By studying the con-

figuration files of ASATs, we determined that developers both use and avoid main-

tainability defects to a greater degree than functional defects. Moreover, there can be

large differences between how developers use ASATs on the level of individual tools.

– Studied the accuracy of default ASAT configurations: Through comparing the

configurations of developers with the default configurations of ASATs, we estab-

lished that most configurations deviate in some way from the default configuration.

However, on the level of individual rules, developers only widely disagree with a few

rules.

– Examined the evolution of ASAT use: By analyzing the changes to configuration

files of ASATs, we ascertained that most configuration files do not change. And if

they do, they change gradually and over the lifetime of a project. Moreover, changes

in configurations do not seem to be related to ASAT version updates.
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Appendix A

Prevalence Survey Results

This appendix presents the full data underlying the results of Chapter 3. First, we detail the

exact wording of the questions that comprised the questionnaire. Then, Tables A.1 to A.6

show the results of the prevalence analysis for code reviews. The results for ASATs are

presented in Tables A.7 to A.12.

Questionnaire

1. Do all developers (contributors and core developers) have to submit a code review

for every change? Im asking because many projects only review changes made by

contributors.

2. Which code review tools are used?

3. Are static analyzers used? If they are used:

a) Is passing the checks of the static analyzers necessary for a change to be ac-

cepted?

b) Which static analyzers are used?
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Tool [R] Code

Review

[Q] Code Reviews on Changes from

Core Developers

[R] Code Review

Tools Used

[Q] Code Review

Tools Used

Source

7-Zip Inconclusive — — — SourceForge

Abilian — No — GitHub —

Ace Yes Yes GitHub GitHub GitHub

AFNetworking Yes — GitHub — GitHub

Angular.js Yes — GitHub — GitHub

Animate.css Yes — GitHub — GitHub

Ansible Yes — GitHub — GitHub

Apache Yes — Bugzilla — OpenHub

AppArmor — Yes — Mailing list —

Ares Galaxy Inconclusive — — — SourceForge

Async Inconclusive Yes — GitHub GitHub

Atom Yes — GitHub — GitHub

Back in a Minute Inconclusive — — — Gitorious

Backbone Yes — GitHub — GitHub

Bash Yes One core contributor Mailing list Mailing list OpenHub

Bootstrap Yes — GitHub — GitHub

Bower Yes — GitHub — GitHub

Brackets Yes Yes GitHub GitHub GitHub

Brewtarget Inconclusive — — — Gitorious

Chakra Packages Inconclusive — — — Gitorious

Chart.js Inconclusive — — — GitHub

Chosen Yes — GitHub — GitHub

Clang Yes Yes Mailing list Mailing list,

Phabricator

Gitorious

CMake Yes Yes Mailing list Mailing list Gitorious

Table A.1: Full results for the prevalence analysis for code reviews.
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Tool [R] Code Review [Q] Code Reviews on Changes

from Core Developers

[R] Code Review

Tools Used

[Q] Code Review

Tools Used

Source

CodeIgniter Yes No GitHub GitHub GitHub

Coffeescript Yes — GitHub — GitHub

D3 Yes — GitHub — GitHub

Devise Inconclusive — — — GitHub

Diaspora Yes Yes GitHub GitHub GitHub

Discourse Yes — GitHub — GitHub

Django Yes Encouraged GitHub, Trac GitHub, Trac GitHub

Docker Yes — GitHub — GitHub

Dungeon Crawl Stone Soup Yes No Mantis Mantis, Gitorious Gitorious

Effeckt.css Yes — GitHub — GitHub

Elasticsearch Yes No GitHub GitHub GitHub

element Inconclusive — — — Gitorious

Ember.js Yes — GitHub — GitHub

eMule Yes — Forum — SourceForge

ERP5 No — — — Gitorious

Express Inconclusive — — — GitHub

FileZilla Yes No Trac — SourceForge

Firebug Yes — GitHub — OpenHub

Firefox Yes — ReviewBoard,

Splinter

— OpenHub

Flask Yes — GitHub — GitHub

Flat—UI Inconclusive — — — GitHub

FlightGear Yes — Gitorious — Gitorious

Font Awesome Yes — GitHub — GitHub

Table A.2: Full results for the prevalence analysis for code reviews (continued).7
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Tool [R] Code

Review

[Q] Code Reviews on Changes from

Core Developers

[R] Code Review

Tools Used

[Q] Code Review

Tools Used

Source

Foundation Yes — GitHub — GitHub

GDB Yes Encouraged Mailing list Mailing list Gitorious

Ghost Yes — GitHub — GitHub

Gitflow Yes — GitHub — GitHub

GitLab Yes Yes GitHub, GitLab GitHub, GitLab GitHub

GNU social Inconclusive — — — Gitorious

GROMACS — Yes — Gerrit —

Grunt Yes — GitHub — GitHub

Gulp Yes — GitHub — GitHub

Haiku Yes No Trac Mailing list, Trac Gitorious

Hammer.js Yes — GitHub — GitHub

HHVM Yes — Phabricator, GitHub — GitHub

Homebrew Yes — GitHub — GitHub

HTML5 Boilerplate Yes — GitHub — GitHub

Httpie Inconclusive — — — GitHub

Impress.js Yes — GitHub — GitHub

io.js Yes Yes GitHub GitHub GitHub

Ionic Yes — GitHub — GitHub

Jekyll Yes — GitHub — GitHub

jQuery Yes — GitHub — GitHub

jQuery File Upload Yes — GitHub — GitHub

jQuery-Mobile Yes — GitHub — GitHub

Kitware Inconclusive — — — Gitorious

Table A.3: Full results for the prevalence analysis for code reviews (continued).
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Tool [R] Code Review [Q] Code Reviews on Changes

from Core Developers

[R] Code Review

Tools Used

[Q] Code Review

Tools Used

Source

Laravel Yes — GitHub — GitHub

Leaflet Yes Yes GitHub GitHub GitHub

Less.js Inconclusive — — — GitHub

LibreOffice Yes Encouraged Gerrit Gerrit Gitorious

Lime Inconclusive No — GitHub GitHub

Linux Yes — Mailing list — GitHub

Meteor Yes — GitHub — GitHub

MinGW Yes — SourceForge — SourceForge

Modernizr Inconclusive Yes — GitHub GitHub

Moment Yes — GitHub — GitHub

MySQL Yes — Mailing list, Bug

tracker

— OpenHub

Neovim Yes — GitHub — GitHub

Node.js Yes — GitHub — GitHub

Normalize.css Yes — GitHub — GitHub

NotePad++ Plugin Manager Yes — Unknown — SourceForge

NW.js Inconclusive — — — GitHub

Oh My Zsh Inconclusive — — — GitHub

OpenOCD Yes Yes Gerrit Gerrit Gitorious

OpenOffice Yes — Bugzilla — OpenHub

openSUSE Factory Yes Yes Open Build

Service

Open Build

Service

Gitorious

openSUSE YaST — Yes — GitHub —

Table A.4: Full results for the prevalence analysis for code reviews (continued).
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Tool [R] Code

Review

[Q] Code Reviews on Changes from

Core Developers

[R] Code Review Tools

Used

[Q] Code Review

Tools Used

Source

PDF.js Yes Yes GitHub GitHub GitHub

PhantomJS Yes — GitHub — GitHub

PHP Yes — GitHub, Mailing list,

Bug tracker

— OpenHub

pJax Inconclusive — GitHub — GitHub

Pop Yes — GitHub — GitHub

PortableApps Inconclusive — — — SourceForge

Profanity Inconclusive — — — Gitorious

Pure Yes Encouraged GitHub GitHub GitHub

Qt Yes Yes Gerrit Gerrit Gitorious

Rails Yes — GitHub — GitHub

Ratchet Yes — GitHub — GitHub

React Yes Yes GitHub GitHub, Phabricator GitHub

Redis Yes — GitHub — GitHub

Requests Yes — GitHub — GitHub

Reveal.js Yes — GitHub — GitHub

Rust Yes — GitHub — GitHub

Sails Yes — GitHub — GitHub

Select2 Yes — GitHub — GitHub

Semantic-UI Inconclusive One core contributor — GitHub GitHub

Skrollr Inconclusive — — — GitHub

SlapOS Yes — Mailing list, Forum — Gitorious

Slick Inconclusive One core contributor — GitHub GitHub

Table A.5: Full results for the prevalence analysis for code reviews (continued).
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Tool [R] Code

Review

[Q] Code Reviews on Changes from

Core Developers

[R] Code Review

Tools Used

[Q] Code Review

Tools Used

Source

Snowdrift Yes Yes Gitorious Gitorious, GitHub Gitorious

Socket.io Yes — GitHub — GitHub

Subversion Yes — Mailing list — OpenHub

Sweetalert Yes — GitHub — GitHub

Symfony Yes — GitHub — GitHub

Textmate Yes One core contributor GitHub GitHub GitHub

Three.js Yes — GitHub — GitHub

TrueType core fonts Inconclusive — — — SourceForge

Typeahead.js Yes — GitHub — GitHub

Ubuntu Yes — Launchpad — OpenHub

Underscore Yes — GitHub — GitHub

VLC Media Player Yes No Mailing list Mailing list,

Patchwork

SourceForge

Vuze Inconclusive No — Forum SourceForge

Table A.6: Full results for the prevalence analysis for code reviews (continued).
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Tool [R] ASATs [Q]

ASATs

[R] Tools Used [Q] Tools Used [Q]

Enforced

Source

7-Zip No Evidence — — — — SourceForge

Abilian — Yes — JSLint, ESLint, CSSLint,

Pep8, Pyflakes

No —

Ace No Evidence No — — — GitHub

AFNetworking No Evidence — — — — GitHub

Angular.js Yes — JSHint, JSCS — — GitHub

Animate.css No Evidence — — — — GitHub

Ansible No Evidence — — — — GitHub

Apache Yes — Coverity Scan — — OpenHub

AppArmor — Yes — Pyflakes No —

Ares Galaxy No Evidence — — — — SourceForge

Async Yes Yes JSLint JSCS, ESLint No GitHub

Atom Yes — Coffeelint — — GitHub

Back in a Minute No Evidence — — — — Gitorious

Backbone Yes — JavaScriptLint — — GitHub

Bash Yes No Coverity Scan — — OpenHub

Bootstrap Yes — JSHint, JSCS, CSSLint,

HTML Validation

— — GitHub

Bower Yes — JSHint — — GitHub

Brackets Yes Yes JSHint, JSLint JSHint, JSLint, JSONLint Yes GitHub

Brewtarget No Evidence — — — — Gitorious

Chakra Packages No Evidence — — — — Gitorious

Chart.js Yes — JSHint, HTML Validator — — GitHub

Table A.7: Full results for the prevalence analysis for ASATs.
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Tool [R] ASATs [Q]

ASATs

[R] Tools Used [Q] Tools Used [Q]

Enforced

Source

Chosen No Evidence — — — — GitHub

Clang No Evidence No — — — Gitorious

CMake Yes Yes Coverity Scan Clang Yes Gitorious

CodeIgniter No Evidence No — — — GitHub

Coffeescript No Evidence — — — — GitHub

D3 No Evidence — — — — GitHub

Devise No Evidence — — — — GitHub

Diaspora Yes No JSHint — — GitHub

Discourse Yes — JSHint — — GitHub

Django Yes Yes Flake8 Flake8 No GitHub

Docker No Evidence — — — — GitHub

Dungeon Crawl Stone Soup No Evidence Yes — Clang No Gitorious

Effeckt.css No Evidence — — — — GitHub

Elasticsearch Yes Yes FindBugs, PMD,

Checkstyle

FindBugs,

Checkstyle, PMD

Yes GitHub

element No Evidence — — — — Gitorious

Ember.js Yes — JSHint, JSCS — — GitHub

eMule No Evidence — — — — SourceForge

ERP5 No Evidence — — — — Gitorious

Express No Evidence — — — — GitHub

FileZilla Yes Yes Coverity Scan Coverity Scan,

Cppcheck

No SourceForge

Firebug Yes — JSHint — — OpenHub

Firefox Yes — Coverity, Klockwork — — OpenHub

Table A.8: Full results for the prevalence analysis for ASATs (continued).7
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Tool [R] ASATs [Q]

ASATs

[R] Tools Used [Q] Tools Used [Q]

Enforced

Source

Flask No Evidence — — — — GitHub

Flat—UI Yes — JSHint, JSCS, CSSLint — — GitHub

FlightGear No Evidence — — — — Gitorious

Font Awesome No Evidence — — — — GitHub

Foundation Planned — — — — GitHub

GDB Yes No Coverity Scan — — Gitorious

Ghost Yes — JSHint, JSCS — — GitHub

Gitflow No Evidence — — — — GitHub

GitLab Yes Yes Hound, Rubocop Hound No GitHub

GNU social No Evidence — — — — Gitorious

GROMACS — Yes — Clang, Cppcheck, Custom

scripts

Yes —

Grunt Yes — JSHint — — GitHub

Gulp Yes — JSHint — — GitHub

Haiku Yes Yes Coverity Scan, Custom

style checker

Coverity Scan, Custom

style checker

No Gitorious

Hammer.js Yes — JSHint, JSCS — — GitHub

HHVM Yes — Coverity Scan, FBLint — — GitHub

Homebrew No Evidence — — — — GitHub

HTML5 Boilerplate Yes — JSHint, JSCS — — GitHub

Httpie No Evidence — — — — GitHub

Impress.js Yes — JSHint — — GitHub

io.js Yes Yes JSLint, CPPLint, Closure

Linter

CPPLint, Closure Linter Yes GitHub

Table A.9: Full results for the prevalence analysis for ASATs (continued).
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Tool [R] ASATs [Q]

ASATs

[R] Tools Used [Q] Tools Used [Q]

Enforced

Source

Ionic Yes — JSHint, JSCS — — GitHub

Jekyll No Evidence — — — — GitHub

jQuery Yes — JSHint, JSCS, JSONLint — — GitHub

jQuery File Upload Yes — JSHint — — GitHub

jQuery-Mobile Yes — JSHint — — GitHub

Kitware No Evidence — — — — Gitorious

Laravel No Evidence — — — — GitHub

Leaflet Yes Yes ESLint ESLint Yes GitHub

Less.js Yes — JSHint, JSCS — — GitHub

LibreOffice Yes Yes Coverity Scan Coverity Scan,

Cppcheck, Clang

No Gitorious

Lime Yes Yes Gofmt Gofmt Yes GitHub

Linux Yes — Smatch, Coccinelle,

Coverity Scan

— — GitHub

Meteor Yes — ESLint — — GitHub

MinGW No Evidence — — — — SourceForge

Modernizr Yes Yes JSHint JSHint, JSCS Yes GitHub

Moment Yes — JSHint, JSCS — — GitHub

MySQL No Evidence — — — — OpenHub

Neovim Yes — Coverity Scan, Clang,

Custom linter

— — GitHub

Node.js Yes — JSLint, CPPLint, Closure

Linter

— — GitHub

Table A.10: Full results for the prevalence analysis for ASATs (continued).

7
9



A
.

P
R

E
V

A
L

E
N

C
E

S
U

R
V

E
Y

R
E

S
U

L
T

S
Tool [R] ASATs [Q]

ASATs

[R] Tools Used [Q] Tools Used [Q]

Enforced

Source

Normalize.css No Evidence — — — — GitHub

NotePad++ Plugin Manager No Evidence — — — — SourceForge

NW.js No Evidence — — — — GitHub

Oh My Zsh No Evidence — — — — GitHub

OpenOCD Yes Yes Clang Clang No Gitorious

OpenOffice Yes — Coverity Scan — — OpenHub

openSUSE Factory Yes Yes RPMLint RPMlint Yes Gitorious

openSUSE YaST — Yes — RuboCop Yes —

PDF.js Yes Yes JSHint JSHint Yes GitHub

PhantomJS No Evidence — — — — GitHub

PHP Yes — Coverity Scan — — OpenHub

pJax No Evidence — — — — GitHub

Pop Yes — Linter (unspecified) — — GitHub

PortableApps No Evidence — — — — SourceForge

Profanity No Evidence — — — — Gitorious

Pure Yes Yes CSSLint CSSLint Yes GitHub

Qt Yes Yes Coverity Scan Coverity Scan,

Clang

No Gitorious

Rails Yes — W3C Validators — — GitHub

Ratchet Yes — JSHint, JSCS, CSSLint,

HTML Validation

— — GitHub

React Yes Yes JSHint JSHint, Code

Climate

No GitHub

Redis No Evidence — — — — GitHub

Table A.11: Full results for the prevalence analysis for ASATs (continued).
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Tool [R] ASATs [Q] ASATs [R] Tools Used [Q] Tools Used [Q] Enforced Source

Requests Yes — Pylint, Pyflakes — — GitHub

Reveal.js Yes — JSHint — — GitHub

Rust Yes — Built—in Rust — — GitHub

Sails Yes — JSHint — — GitHub

Select2 Yes — JSHint — — GitHub

Semantic-UI Yes Yes JSHint, CSSLint JSHint No GitHub

Skrollr Yes — JSHint — — GitHub

SlapOS No Evidence — — — — Gitorious

Slick No Evidence No — — — GitHub

Snowdrift Yes Yes Hlint HLint Yes Gitorious

Socket.io No Evidence — — — — GitHub

Subversion Yes — Coverity Scan — — OpenHub

Sweetalert Yes — JSHint — — GitHub

Symfony Yes — PHPCS, check cs script — — GitHub

Textmate No Evidence No — — — GitHub

Three.js No Evidence — — — — GitHub

TrueType core fonts No Evidence — — — — SourceForge

Typeahead.js Yes — JSHint — — GitHub

Ubuntu Yes — Coverity — — OpenHub

Underscore Yes — ESLint — — GitHub

VLC Media Player Yes Yes Coverity Scan Coverity Scan, Clang No SourceForge

Vuze Yes Yes Coverity Scan Coverity Scan No SourceForge

Table A.12: Full results for the prevalence analysis for ASATs (continued).
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Appendix B

Full Results for the ASAT
Configurations Analysis

This appendix presents the full data underlying the results of Chapter 4. Tables B.1 and B.2

show those results belonging to the Figures 4.3 to 4.6. Additionally, Tables B.3 to B.15

provide the underlying results for Tables 4.5 to 4.7. Finally, Figure B.1 and Table B.16

show the distribution of built-in warning rules per tool. Figures B.2 and B.3 then show the

non-normalized data of Figures 4.3 and 4.4.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Category\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Median

Check 0 0 9.5 0 0 0 3.3 0 2 3.3

Concurrency 4.8 1.6 9.1 0 0 0 4.6 0 0 4.7

Error Handling 2.4 3.4 10.2 0 0 0 6.5 5.8 3.9 4.9

Interface 7.1 5.2 7.5 0 1.8 0 6.2 20.6 0.5 6.2

Logic 8.1 7 8.5 0 12 14.3 6.5 0 1.9 8.1

Migration 2.5 0 9 0 0 0 5.3 0 25.6 7.2

Resource 0 9.7 7.8 18.4 21 13.7 5.5 0 0.2 9.7

Best Practices 3.3 6.9 8.1 12.1 7.3 17.7 4.2 13.7 2 7.3

Code Structure 4.8 0 1 0 0 0 5.2 0 0 4.8

Documentation

Conventions

4.5 3.2 0 3.2 0 21.3 1 22.5 1.4 3.2

Metric 5.4 7.2 0 11.2 3.9 0 17.7 16.8 54 11.2

Naming

Conventions

12.7 18 0 18.5 20.8 0 6.9 11.7 2.5 12.7

Object Oriented

Design

7.3 0 10.2 0 0 0 3.4 0 0 7.3

Redundancies 8.4 8.1 8.8 23.3 20.8 13.7 8.5 5.2 0.9 8.5

Simplifications 17.1 19.2 10.2 0 0 6.8 6.9 0 2.1 8.6

Style Conventions 11.6 10.3 0 13.4 12.4 12.4 8.3 3.7 3.1 11

Table B.1: The distribution of rules that are enabled by developers per tool, according to

our classification. The last column displays the median value for every category.

Normalized to the number of possible rules in a category. All numbers are percentages and

all columns, except the last, sum up to 100 (approximately, due to rounding).

Category\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Median

Check 0 0 0.3 0 0 0 8 0 5.5 5.5

Concurrency 8.1 9.5 2.6 0 0 0 5.7 0 0 6.9

Error Handling 9.1 1.6 0.4 0 0 0 2.5 5.6 7.7 4.1

Interface 7.2 1.5 4.1 0 9.5 0 6.6 5.2 1.8 5.2

Logic 6.7 2.5 8.3 0 12.2 28.5 2.1 2.8 6.6 6.7

Migration 9 0 1.1 0 0 0 1.6 0.8 21.7 1.6

Resource 0 2.4 3.6 3.7 1.4 2 10.5 3.5 2.8 3.2

Best Practices 8.7 10 6.3 22.2 14.5 7.3 8 13 4.8 8.7

Code Structure 8.1 0 60.7 0 0 0 12.5 9.4 0 10.9

Documentation

Conventions

8.2 16.5 0 3.7 0 0.3 2.1 24.7 13.4 8.2

Metric 7.9 9.8 0 7.4 11.4 0 5.9 12.5 16.6 9.8

Naming

Conventions

4.8 33.2 0 29.6 22.1 0 16.2 7.6 4.7 16.2

Object Oriented

Design

7.1 0 0 0 0 0 6.2 0 0 6.7

Redundancies 6.6 2.4 12.4 11.1 11.5 17.3 6.4 6.5 2.3 6.6

Simplifications 3.1 3.9 0.2 0 0 19.6 2.1 3.5 8.2 3.5

Style Conventions 5.3 6.6 0 22.2 17.5 24.9 3.9 4.8 4.1 6

Table B.2: The distribution of rules that are disabled by developers per tool, according to

our classification. The last column displays the median value for every category.

Normalized to the number of possible rules in a category. All numbers are percentages and

all columns, except the last, sum up to 100 (approximately, due to rounding).
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Default Rule Disabled Configured

no-underscore-dangle 59.5 0

strict 50.7 14.4

curly 25.2 34.7

no-constant-condition 23.2 0

space-infix-ops 22.8 8.6

new-parens 20.1 0

no-new-func 19.6 0

no-new-object 19.4 0

no-use-before-define 12.6 0

camelcase 11 10.8

quotes 8.4 72.2

new-cap 8.1 54.7

consistent-return 7.8 0

eol-last 6.2 0

no-console 5.8 0

no-new 4.8 0

no-shadow 4.6 0

no-alert 4.3 0

no-unused-expressions 3.4 0

eqeqeq 3.2 37.7

dot-notation 3 10.6

no-unused-vars 2.9 41.8

no-multi-spaces 2.8 3.6

no-process-exit 2.8 0

no-trailing-spaces 2.3 0

key-spacing 1.9 4.5

no-loop-func 1.2 0

semi 1.2 15.6

yoda 1.2 7.5

global-strict 1.2 4.3

no-extend-native 1.1 0

no-cond-assign 0.9 7.9

no-spaced-func 0.9 0

no-empty 0.9 0

no-mixed-spaces-and-tabs 0.8 10.8

no-undef 0.8 0

no-return-assign 0.8 0

no-new-wrappers 0.7 0

no-sparse-arrays 0.7 0

no-multi-str 0.7 0

no-catch-shadow 0.7 0

no-wrap-func 0.6 0

comma-spacing 0.5 3.6

no-extra-semi 0.5 0

Default Rule Disabled Configured

no-array-constructor 0.5 0

no-debugger 0.5 0

no-redeclare 0.5 0

valid-typeof 0.5 0

space-return-throw-case 0.5 0

no-caller 0.4 0

no-labels 0.4 0

no-control-regex 0.4 0

no-extra-strict 0.4 0

no-fallthrough 0.4 0

space-unary-ops 0.4 4.5

no-native-reassign 0.3 0

no-eval 0.3 0

no-script-url 0.3 0

no-extra-bind 0.3 0

no-irregular-whitespace 0.3 0

no-inner-declarations 0.2 0

no-undef-init 0.2 0

no-delete-var 0.2 0

no-octal-escape 0.2 0

no-proto 0.2 0

no-extra-boolean-cast 0.2 0

no-regex-spaces 0.2 0

no-func-assign 0.2 0

no-implied-eval 0.1 0

no-with 0.1 0

no-octal 0.1 0

no-obj-calls 0.1 0

no-sequences 0.1 0

no-dupe-keys 0.1 0

no-empty-class 0.1 0

no-unreachable 0.1 0

no-iterator 0.1 0

no-ex-assign 0.1 0

no-empty-label 0.1 0

no-lone-blocks 0.1 0

no-shadow-restricted-names 0.1 0

no-invalid-regexp 0.1 0

use-isnan 0.1 0

no-negated-in-lhs 0.1 0

no-label-var 0 0

comma-dangle 0 0

no-dupe-args 0 0

semi-spacing 0 0

Table B.3: How often a default rule of ESLint is either disabled or configured

by developers. 100% represents 4407 configurations.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Default Disabled Rule Enabled

brace-style 55.7

wrap-iife 32.9

space-after-keywords 32.2

radix 31.4

no-floating-decimal 31.3

consistent-this 31.1

no-nested-ternary 29.8

func-style 29.2

no-else-return 28.1

no-lonely-if 27.6

space-in-brackets 26.8

no-div-regex 25

no-extra-parens 24.5

max-depth 22.9

max-params 22.6

guard-for-in 12.5

no-self-compare 10.8

no-space-before-semi 9.4

no-comma-dangle 9.3

no-eq-null 7.4

block-scoped-var 7

valid-jsdoc 7

no-warning-comments 6.1

default-case 6

max-len 5.6

handle-callback-err 5.4

max-nested-callbacks 5.4

no-path-concat 5

comma-style 4.6

no-mixed-requires 4.4

no-bitwise 4.4

space-before-blocks 4.3

space-in-parens 4.1

no-undefined 3.8

spaced-line-comment 3.7

complexity 3.7

no-new-require 3.2

no-reserved-keys 3.1

no-multiple-empty-lines 3

quote-props 2.8

wrap-regex 2.4

no-void 2.4

no-sync 2.4

one-var 2.2

no-plusplus 2.2

func-names 2.2

max-statements 2

indent 1.9

space-after-function-name 1.8

vars-on-top 1.8

padded-blocks 1.5

operator-assignment 1.4

no-process-env 1.2

sort-vars 1.1

no-ternary 1

no-restricted-modules 0.8

no-inline-comments 0.7

space-before-function-parentheses 0.6

no-throw-literal 0.4

no-var 0.3

generator-star 0.2

Table B.4: How often a default disabled rule of ESLint is enabled by

developers. 100% represents 4407 configurations.
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Default Rule Disabled

MutableStaticFields 11.8

FindUnsatisfiedObligation 10.6

FindReturnRef 9

SerializableIdiom 8.8

ComparatorIdiom 8.5

InfiniteLoop 7.7

FindSqlInjection 7.2

FindNakedNotify 3.8

SwitchFallthrough 3.7

WaitInLoop 3.6

CrossSiteScripting 3.6

CloneIdiom 3.5

FindBadCast2 3.1

FindUnconditionalWait 2.9

MethodReturnCheck 2.7

CheckTypeQualifiers 2.5

BadResultSetAccess 2.4

NumberConstructor 2.4

UnreadFields 2.3

StaticCalendarDetector 2.1

Naming 1.9

DontUseEnum 1.5

RuntimeExceptionCapture 1.4

DoInsideDoPrivileged 1.4

InvalidJUnitTest 1.4

AppendingToAnObjectOutputStream 1.2

HugeSharedStringConstants 1.2

BadlyOverriddenAdapter 1.2

MultithreadedInstanceAccess 1.1

FormatStringChecker 1

RedundantInterfaces 1

UncallableMethodOfAnonymousClass 1

CheckImmutableAnnotation 1

FindUncalledPrivateMethods 1

StringConcatenation 0.9

BooleanReturnNull 0.8

FindPuzzlers 0.8

DontIgnoreResultOfPutIfAbsent 0.8

ReadReturnShouldBeChecked 0.8

WrongMapIterator 0.7

LostLoggerDueToWeakReference 0.7

FindInconsistentSync2 0.5

FindDoubleCheck 0.4

FindJSR166LockMonitorenter 0.4

SynchronizeOnClassLiteralNotGetClass 0.4

SynchronizingOnContentsOfFieldToProtect-

Field

0.4

FindMismatchedWaitOrNotify 0.4

FindUnreleasedLock 0.3

FindDeadLocalStores 0.3

IncompatMask 0.3

PreferZeroLengthArrays 0.3

LazyInit 0.3

InfiniteRecursiveLoop 0.3

RepeatedConditionals 0.2

InitializationChain 0.2

InheritanceUnsafeGetResource 0.2

VarArgsProblems 0.2

SuperfluousInstanceOf 0.2

OverridingEqualsNotSymmetrical 0.2

InconsistentAnnotations 0.2

XMLFactoryBypass 0.2

Default Rule Disabled

FindNullDerefsInvolvingNonShortCircuitEvalu-

ation

0.2

DefaultEncodingDetector 0.2

DumbMethods 0.2

NoteUnconditionalParamDerefs 0.2

FindSpinLoop 0.2

VolatileUsage 0.2

StartInConstructor 0.2

FindUnsyncGet 0.2

FindEmptySynchronizedBlock 0.2

MutableLock 0.2

SynchronizeAndNullCheckField 0.2

SynchronizationOnSharedBuiltinConstant 0.2

FindSleepWithLockHeld 0.2

FinalizerNullsFields 0.1

FindLocalSelfAssignment2 0.1

FindFinalizeInvocations 0.1

FindFieldSelfAssignment 0.1

IteratorIdioms 0.1

DontCatchIllegalMonitorStateException 0.1

ConfusionBetweenInheritedAndOuterMethod 0.1

FindNonShortCircuit 0.1

DroppedException 0.1

LoadOfKnownNullValue 0

FindOpenStream 0

EqualsOperandShouldHaveClassCompatible-

WithThis

0

IntCast2LongAsInstant 0

BadUseOfReturnValue 0

SuspiciousThreadInterrupted 0

FindTwoLockWait 0

OptionalReturnNull 0

InitializeNonnullFieldsInConstructor 0

FindFloatEquality 0

FindUnrelatedTypesInGenericContainer 0

FindSelfComparison2 0

FindRefComparison 0

FindHEmismatch 0

FindUseOfNonSerializableValue 0

InefficientIndexOf 0

URLProblems 0

AtomicityProblem 0

FindNullDeref 0

IDivResultCastToDouble 0

ExplicitSerialization 0

FindMaskedFields 0

FindBadForLoop 0

ConfusedInheritance 0

DumbMethodInvocations 0

UnnecessaryMath 0

FindSelfComparison 0

FindUselessControlFlow 0

FindUninitializedGet 0

InstantiateStaticClass 0

FindRoughConstants 0

QuestionableBooleanAssignment 0

DuplicateBranches 0

ReadOfInstanceFieldInMethodInvokedByCon-

structorInSuperclass

0

InefficientToArray 0

FindRunInvocations 0

BadSyntaxForRegularExpression 0

CheckRelaxingNullnessAnnotation 0

Table B.5: How often a default rule of FindBugs is disabled by developers. 100%

represents 2077 configurations.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Default Disabled Rule Enabled

EmptyZipFileEntry 92.6

CallToUnsupportedMethod 38

UselessSubclassMethod 27.7

PublicSemaphores 26.8

InefficientMemberAccess 10.4

FindCircularDependencies 9.7

BadAppletConstructor 6.5

CheckExpectedWarnings 3

Table B.6: How often a default disabled rule of FindBugs is enabled by

developers. 100% represents 2077 configurations.

Default Rule Disabled Configured

strict 13.6 0

curly 9.9 0

bitwise 7.2 0

forin 7.2 0

devel 6.9 0

browser 6.7 0

unused 6.6 58

noempty 4.8 0

eqeqeq 4.5 0

noarg 1.7 0

undef 1.4 0

indent 1 44.1

freeze 0.6 0

maxerr 0.3 11.9

mocha 0.2 0

nonbsp 0 0

Table B.7: How often a default rule of JSHint is either disabled or

configured by developers. 100% represents 108604 configurations.

88



Default Disabled Rule Enabled

immed 60.8

newcap 56.9

node 55.8

latedef 52.7

quotmark 50.2

camelcase 34.3

esnext 33.5

eqnull 31.6

boss 23.6

expr 22.3

sub 21

jquery 17.1

nonew 15.4

maxlen 10

evil 9

laxbreak 8.1

validthis 7.6

es5 7.3

maxdepth 7.2

globalstrict 6.8

laxcomma 6.8

loopfunc 6.4

asi 6.3

debug 6

maxparams 5.4

wsh 4.5

maxstatements 4.4

maxcomplexity 4.2

multistr 2.4

plusplus 2.4

funcscope 2.4

shadow 2.2

supernew 2.2

proto 1.9

scripturl 1.4

nonstandard 1.2

lastsemic 1

worker 0.8

noyield 0.8

jasmine 0.7

rhino 0.7

iterator 0.7

qunit 0.6

browserify 0.5

yui 0.2

moz 0.2

dojo 0.1

notypeof 0.1

couch 0.1

mootools 0.1

prototypejs 0.1

shelljs 0

Table B.8: How often a default disabled rule of JSHint is enabled by

developers. 100% represents 108604 configurations.

89



B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Default Rule Disabled

inc dec within stmt 13.7

anon no return value 11.4

legacy control comments 7.9

comparison type conv 7.7

missing default case 7.7

useless void 7.1

equal as assign 6.6

comma separated stmts 6.5

no return value 5.5

empty statement 4.1

missing break for last case 4.1

ambiguous nested stmt 3.9

useless comparison 3.9

leading decimal point 3.9

trailing decimal point 3.8

ambiguous newline 1.6

redeclared var 1.2

var hides arg 0.7

octal number 0.6

misplaced regex 0.4

parseint missing radix 0.3

missing break 0.2

missing semicolon 0.1

use of label 0.1

default not at end 0.1

useless assign 0.1

nested comment 0

unreachable code 0

ambiguous else stmt 0

assign to function call 0

context 0

dup option explicit 0

duplicate case in switch 0

duplicate formal 0

jsl cc not understood 0

legacy cc not understood 0

meaningless block 0

multiple plus minus 0

partial option explicit 0

trailing comma in array 0

with statement 0

lambda assign requires semicolon 0

Table B.9: How often a default rule of JSL is disabled by developers.

100% represents 5139 configurations.
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Default Disabled Rule Enabled

always use option explicit 6.3

missing option explicit 4

block without braces 1.5

jscript function extensions 0

Table B.10: How often a default disabled rule of JSL is enabled by

developers. 100% represents 5139 configurations.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Default Rule Disabled

ShortVariable 7.4

LongVariable 6.2

LocalVariableCouldBeFinal 3

MethodArgumentCouldBeFinal 2.7

AvoidDuplicateLiterals 2.7

DataflowAnomalyAnalysis 2.2

AbstractNaming 2.1

TooManyMethods 1.9

JUnitTestsShouldIncludeAssert 1.8

AvoidInstantiatingObjectsInLoops 1.7

OnlyOneReturn 1.7

AtLeastOneConstructor 1.6

UnusedFormalParameter 1.5

ImmutableField 1.5

ConfusingTernary 1.5

BeanMembersShouldSerialize 1.3

TooManyStaticImports 1.3

ShortMethodName 1.2

AvoidFinalLocalVariable 1.2

EmptyCatchBlock 1.2

AvoidSynchronizedAtMethodLevel 1.1

EmptyMethodInAbstractClassShouldBeAbstract 1

JUnitTestContainsTooManyAsserts 1

UnusedModifier 1

CyclomaticComplexity 1

NullAssignment 1

JUnitAssertionsShouldIncludeMessage 0.9

CallSuperInConstructor 0.9

UseLocaleWithCaseConversions 0.9

DefaultPackage 0.9

AvoidThrowingRawExceptionTypes 0.8

LawOfDemeter 0.8

ExcessiveImports 0.8

TestClassWithoutTestCases 0.8

AssignmentInOperand 0.7

BooleanGetMethodName 0.7

BooleanInversion 0.7

ConstructorCallsOverridableMethod 0.7

AvoidUsingHardCodedIP 0.7

CloseResource 0.7

AbstractClassWithoutAbstractMethod 0.6

UseStringBufferForStringAppends 0.6

AvoidReassigningParameters 0.6

CollapsibleIfStatements 0.6

UncommentedEmptyMethod 0.6

AvoidThreadGroup 0.6

AvoidLiteralsInIfCondition 0.5

LoosePackageCoupling 0.5

UnnecessaryLocalBeforeReturn 0.5

UseAssertTrueInsteadOfAssertEquals 0.5

InsufficientStringBufferDeclaration 0.5

CheckResultSet 0.5

UseConcurrentHashMap 0.5

AvoidDeeplyNestedIfStmts 0.4

TooFewBranchesForASwitchStatement 0.4

AvoidFieldNameMatchingTypeName 0.4

IfStmtsMustUseBraces 0.4

SimpleDateFormatNeedsLocale 0.4

ShortClassName 0.4

UncommentedEmptyConstructor 0.4

UnusedImports 0.4

UselessParentheses 0.4

SimplifyStartsWith 0.4

JUnitSpelling 0.4

UseObjectForClearerAPI 0.4

Default Rule Disabled

NPathComplexity 0.3

VariableNamingConventions 0.3

PreserveStackTrace 0.3

AvoidFieldNameMatchingMethodName 0.3

UnusedPrivateMethod 0.3

InefficientEmptyStringCheck 0.3

CommentSize 0.3

CouplingBetweenObjects 0.3

AvoidUsingVolatile 0.3

FinalFieldCouldBeStatic 0.3

TooManyFields 0.3

SwitchDensity 0.3

SignatureDeclareThrowsException 0.3

IfElseStmtsMustUseBraces 0.3

ReturnEmptyArrayRatherThanNull 0.3

ConsecutiveLiteralAppends 0.3

UseAssertEqualsInsteadOfAssertTrue 0.2

UseAssertSameInsteadOfAssertTrue 0.2

CommentRequired 0.2

ProperCloneImplementation 0.2

DuplicateImports 0.2

AvoidUsingShortType 0.2

MissingBreakInSwitch 0.2

JUnit4TestShouldUseTestAnnotation 0.2

UnusedImports 0.2

ExcessiveMethodLength 0.2

UnnecessaryConstructor 0.2

SignatureDeclareThrowsException 0.2

CompareObjectsWithEquals 0.2

ExcessivePublicCount 0.2

GodClass 0.2

UselessOverridingMethod 0.2

ClassWithOnlyPrivateConstructorsShouldBeFinal 0.2

StringInstantiation 0.2

LooseCoupling 0.2

AvoidCatchingThrowable 0.2

CloneThrowsCloneNotSupportedException 0.2

SwitchStmtsShouldHaveDefault 0.2

NonThreadSafeSingleton 0.2

AvoidPrefixingMethodParameters 0.2

UnnecessaryParentheses 0.2

OverrideBothEqualsAndHashcode 0.1

MissingStaticMethodInNonInstantiatableClass 0.1

ReplaceVectorWithList 0.1

MoreThanOneLogger 0.1

AddEmptyString 0.1

EmptyCatchBlock 0.1

RedundantFieldInitializer 0.1

UnusedLocalVariable 0.1

AvoidCatchingGenericException 0.1

AccessorClassGeneration 0.1

ExcessiveParameterList 0.1

ReplaceHashtableWithMap 0.1

AssignmentToNonFinalStatic 0.1

WhileLoopsMustUseBraces 0.1

EqualsNull 0.1

ExcessiveClassLength 0.1

UnusedPrivateField 0.1

FieldDeclarationsShouldBeAtStartOfClass 0.1

GuardLogStatementJavaUtil 0.1

AvoidRethrowingException 0.1

AvoidConstantsInterface 0.1

BooleanInstantiation 0.1

AvoidUsingOctalValues 0.1

AvoidUsingNativeCode 0.1

Table B.11: How often a rule of PMD is disabled by developers. 100% represents

7452 configurations. Because of size constraints, the table only displays the 130

rules that were disabled the most.
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Default Rule Disabled

W0142 36.9

C0111 34.8

W0511 25.7

C0103 23.5

R0903 21.9

R0904 18.7

R0201 18.3

W0622 17.2

R0913 16

R0801 15.8

R0914 15.5

W0141 15.5

R0902 15.3

R0912 15.3

W0232 14.9

E1101 14.7

C0301 14.7

W0212 14.6

R0915 14.4

C0302 13.7

W0603 13.6

E1103 12.8

W0201 12

W0703 11

W0614 10.9

W0613 10.4

W0402 9.8

W0401 9.8

W0404 9.6

R0911 8.9

W0702 8.6

W0403 8.1

W0105 7.7

W0221 7.1

W0621 7

W0122 7

E1002 6.9

R0922 6.9

R0901 6.8

R0921 6.6

W0612 6.4

C0321 6.2

W0223 6.2

W0231 6.1

W0102 6

W0611 6

E0102 5.7

W0631 5.7

W0602 5.6

E0602 5.6

W0311 5.6

W0104 5.5

C0322 5.4

C0324 5.4

C0323 5.3

W0108 5.3

C0112 5.2

W0301 5.1

E0101 5.1

W0601 5.1

W0701 5

W1201 4.9

E0611 2.8

missing-docstring 2.5

too-few-public-methods 1.9

Default Rule Disabled

star-args 1.7

R0401 1.5

too-many-public-methods 1.5

E1120 1.4

invalid-name 1.4

C0325 1.1

C0330 1

no-member 1

no-init 0.9

C0326 0.9

no-self-use 0.8

W0312 0.8

fixme 0.8

E0202 0.7

R0924 0.7

C0303 0.7

no-name-in-module 0.6

R0923 0.6

W0110 0.6

bad-continuation 0.6

too-many-ancestors 0.6

too-many-arguments 0.5

E1102 0.5

line-too-long 0.5

too-many-instance-attributes 0.5

W1623 0.5

unused-argument 0.5

E1121 0.4

E1604 0.4

W1601 0.4

W1621 0.4

W1631 0.4

C0304 0.4

super-on-old-class 0.4

W1001 0.4

attribute-defined-outside-init 0.4

E1123 0.4

too-many-locals 0.4

protected-access 0.4

abstract-method 0.3

too-many-lines 0.3

bad-whitespace 0.3

global-statement 0.3

too-many-branches 0.3

old-style-class 0.3

duplicate-code 0.3

broad-except 0.3

superfluous-parens 0.3

W0710 0.2

E0211 0.2

useless-else-on-loop 0.2

E0603 0.2

trailing-whitespace 0.2

W0120 0.2

E0213 0.2

W1202 0.2

E1003 0.2

too-many-statements 0.2

C0203 0.2

unpacking-non-sequence 0.1

W0233 0.1

too-many-function-args 0.1

too-many-return-statements 0.1

E0203 0.1

unused-import 0.1

Table B.12: How often a rule of Pylint is disabled by developers. 100%

represents 4065 configurations. Because of size constraints, the table

only displays the 130 rules that were disabled the most.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Default Disabled Rule Enabled

I0021 0

E1601 0

E1602 0

E1603 0

E1604 0

E1605 0

E1606 0

E1607 0

E1608 0

I0020 0

W0704 0

W1601 0

W1602 0

W1603 0

W1604 0

W1605 0

W1606 0

W1607 0

W1608 0

W1609 0

W1610 0

W1611 0

W1612 0

W1613 0

W1614 0

W1615 0

W1616 0

W1617 0

W1618 0

W1619 0

W1620 0

W1621 0

W1622 0

W1623 0

W1624 0

W1625 0

W1626 0

W1627 0

W1628 0

W1629 0

W1630 0

W1632 0

W1633 0

W1634 0

W1635 0

W1636 0

W1637 0

W1638 0

W1639 0

Table B.13: How often a default disabled rule of Pylint is enabled by

developers. 100% represents 4065 configurations.
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Default Rule Disabled Configured

Documentation 34.5 0

HashSyntax 22.4 21.2

LineLength 22.1 49.2

StringLiterals 21.5 6.2

IfUnlessModifier 17.8 0.9

AlignParameters 16.8 2.4

ClassLength 16.2 7.2

SignalException 11.9 3

WhileUntilModifier 10.5 0.6

MethodLength 10.3 36

SpaceAroundEqualsInParameterDefault 9.4 1.1

DeprecatedHashMethods 8.3 0

Lambda 7.1 0

CyclomaticComplexity 6.8 8.9

FileName 6.7 2.4

SingleSpaceBeforeFirstArg 6.5 0

TrailingComma 5.9 2.3

ClassAndModuleChildren 5.8 1.7

RegexpLiteral 5.7 3.3

AsciiComments 5.6 0

DoubleNegation 5.5 0

TrivialAccessors 4.9 2.2

AssignmentInCondition 4.9 0.9

NumericLiterals 4.9 2.9

HandleExceptions 4.4 0

CaseEquality 4.2 0

GuardClause 4.1 0.6

AccessorMethodName 4 0

Blocks 4 0

DotPosition 3.9 3.8

FormatString 3.7 0.7

WordArray 3.6 4.2

ClassVars 3.4 0

SingleLineBlockParams 3.4 0.6

SpecialGlobalVars 3.4 0

ParameterLists 3.3 6.8

AndOr 3.1 0.7

EachWithObject 3.1 0

RaiseArgs 3 1.8

PerlBackrefs 3 0

Next 3 0.2

UselessAssignment 2.9 0

PerceivedComplexity 2.8 2.9

Void 2.7 0

UnusedBlockArgument 2.6 0

CommentAnnotation 2.6 0.7

PercentLiteralDelimiters 2.6 3.2

AmbiguousRegexpLiteral 2.6 0

ColonMethodCall 2.5 0

RedundantSelf 2.5 0

AbcSize 2.4 3.8

AmbiguousOperator 2.4 0

BlockNesting 2.4 6.4

GlobalVars 2.4 0.8

ParenthesesAsGroupedExpression 2.4 0

NegatedIf 2.4 0

Not 2.4 0

RescueModifier 2.4 0

ConstantName 2.2 0

BracesAroundHashParameters 2.2 1.1

ModuleFunction 2.2 0

LineEndConcatenation 2.2 0

Proc 2.2 0

SingleLineMethods 2.2 0.9

NilComparison 2.1 0

TrailingBlankLines 2.1 0.8

EmptyLiteral 2.1 0

EmptyLines 2.1 0

Default Rule Disabled Configured

SelfAssignment 2 0

Alias 2 0

OneLineConditional 2 0

OpMethod 2 0

LeadingCommentSpace 2 0

Loop 2 0

RedundantBegin 1.9 0

UnusedMethodArgument 1.9 0

VariableInterpolation 1.9 0

DeprecatedClassMethods 1.9 0

SpaceInsideHashLiteral-

Braces

1.9 3.9

UnderscorePrefixedVariable-

Name

1.8 0

RedundantReturn 1.8 0.9

IndentationWidth 1.8 0.6

Attr 1.8 0

Eval 1.8 0

EvenOdd 1.8 0

NegatedWhile 1.8 0

PredicateName 1.7 2

LiteralInCondition 1.7 0

SpaceInsideBrackets 1.7 0

RequireParentheses 1.7 0

AccessModifierIndentation 1.7 3.1

ElseLayout 1.7 0

SpaceAroundOperators 1.6 0.4

ArrayJoin 1.6 0

Delegate 1.6 0

TrailingWhitespace 1.6 0

WhenThen 1.6 0

CharacterLiteral 1.5 0

LambdaCall 1.5 0.6

ConditionPosition 1.5 0

AsciiIdentifiers 1.5 0

CaseIndentation 1.5 3.4

IfWithSemicolon 1.5 0

LiteralInInterpolation 1.5 0

AlignHash 1.5 1.5

SpaceInsideParens 1.4 0

InvalidCharacterLiteral 1.4 0

FlipFlop 1.4 0

MultilineBlockChain 1.4 0

Semicolon 1.3 1.3

MethodName 1.3 0.7

RescueException 1.3 0

SpaceAfterComma 1.3 0

IndentHash 1.2 0.9

IndentationConsistency 1.2 0.4

SpaceBeforeBlockBraces 1.2 0.8

BlockAlignment 1.2 0

UnlessElse 1.2 0

EmptyLinesAroundAccess-

Modifier

1.2 0

SpaceInsideBlockBraces 1.1 0.9

EmptyLinesAroundBlock-

Body

1.1 0.2

VariableName 1.1 0.6

Tab 1.1 0

MethodCallParentheses 1 0

ShadowingOuterLocalVari-

able

1 0

CommentIndentation 1 0

EndAlignment 1 3.1

ParenthesesAroundCondition 1 0.9

MethodDefParentheses 1 0.9

AlignArray 0.9 0

Table B.14: How often a default rule of RuboCop is either disabled or configured by

developers. 100% represents 10036 configurations. Because of size constraints, the

table only displays the 130 rules that were disabled the most.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Default Disabled Rule Enabled

CollectionMethods 6.4

Encoding 3.3

SymbolArray 0.7

MethodCalledOnDoEndBlock 0.2

ExtraSpacing 0.1

InlineComment 0

AutoResourceCleanup 0

MissingElse 0

Table B.15: How often a default disabled rule of RuboCop is enabled

by developers. 100% represents 10036 configurations.
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Figure B.1: The distribution of rules per tool, according to our classification.
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B. FULL RESULTS FOR THE ASAT CONFIGURATIONS ANALYSIS

Category\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop

Check 0 0 2.7 0 0 0 0.6 0 0.5

Concurrency 1.2 0.6 25 0 0 0 3.2 0 0

Error Handling 3.1 1.9 2.7 0 0.5 0 6 5.1 2.7

Interface 4.3 8.3 23.2 0 12.7 0 6.6 19.4 1.8

Logic 4.3 12.1 20.5 0 28.8 31.1 5.1 8.9 1.4

Migration 0.6 0 0.9 0 1.9 0 6 16.5 1.4

Resource 0 3.8 3.6 0.9 6.1 4.4 2.2 1.3 0.5

Best Practices 21 31.2 13.4 11.2 27.8 17.8 22.8 7.6 40.3

Code Structure 3.1 0 0.9 0 0 0 1.3 2.5 0

Documentation Conventions 11.7 1.9 0 4.3 0 2.2 0.9 2.2 3.2

Metric 11.1 3.8 0 0.9 4.7 0 6.6 12.7 3.6

Naming Conventions 9.3 2.5 0 5.2 3.3 0 10.1 11.4 5

Object Oriented Design 6.2 0 0.9 0 0 0 4.1 0 0

Redundancies 10.5 10.8 5.4 3.4 3.8 28.9 20.3 6.7 9.5

Simplifications 1.2 0.6 0.9 0 0 2.2 2.5 1 0.5

Style Conventions 12.3 22.3 0 74.1 10.4 13.3 1.6 4.8 29.9

Table B.16: The distribution of rules per tool, according to our classification. All

numbers are percentages and all columns sum up to 100 (approximately, due to

rounding).
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Figure B.2: The distribution of rules that are enabled by developers per tool, according to our classification.
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Figure B.3: The distribution of rules that are disabled by developers per tool, according to our classification.
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Category\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop

Check 0 0 3 0 0 0 0.3 0 0.2

Concurrency 0.9 0.1 27 0 0 0 2.2 0 0

Error Handling 1.1 0.9 3.2 0 0 0 5.8 1.5 2.5

Interface 4.4 5.3 20.8 0 1.6 0 6 2.7 0.1

Logic 5.1 10.9 20.9 0 21.1 30.7 4.9 0 0.6

Migration 0.2 0 1 0 0 0 4.7 0 8.1

Resource 0 5 3.3 1.3 6.8 4.2 1.8 0 0

Best Practices 9.9 27.8 12.9 11.1 25.8 21.8 14.1 5.3 15.5

Code Structure 2.1 0 0.1 0 0 0 1 0 0

Documentation Conventions 7.6 0.8 0 1.1 0 3.3 0.1 5.8 1

Metric 8.6 3.7 0 0.8 2.8 0 17.3 34.7 45.5

Naming Conventions 17.1 6.2 0 5.2 8.4 0 10.3 42.5 2.9

Object Oriented Design 6.6 0 1.1 0 0 0 2.1 0 0

Redundancies 12.7 11.9 5.6 6.6 11.7 27.5 24.9 2.7 2

Simplifications 3 1.7 1.1 0 0 1 2.6 0 0.2

Style Conventions 20.7 25.6 0 73.9 21.9 11.5 1.9 4.8 21.4

Table B.17: The distribution of rules that are enabled by developers per tool,

according to our classification. All numbers are percentages and all columns sum up

to 100 (approximately, due to rounding).

Category\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop

Check 0 0 0.2 0 0 0 0.5 0 0.5

Concurrency 1.4 0.9 14.3 0 0 0 2.7 0 0

Error Handling 3.9 0.5 0.3 0 0 0 2.5 3.8 4.2

Interface 4.3 1.7 20.7 0 6.6 0 7 15.9 0.3

Logic 4 4.4 21.2 0 19.4 47.9 1 2.8 1.8

Migration 0.8 0 0.2 0 0 0 0.7 2.5 5.9

Resource 0 1.4 1.7 0.3 0.4 0.5 3.4 0.8 0.3

Best Practices 25.3 45.2 16.1 18.6 36.3 7.1 30.3 19.5 32.8

Code Structure 3.5 0 14 0 0 0 1.6 5.6 0

Documentation Conventions 13.4 4.8 0 0.6 0 0 0.3 9.3 8.5

Metric 12.1 5.7 0 0.6 5.5 0 7.7 23.5 12

Naming Conventions 6.2 12.8 0 7.7 6.1 0 23.1 3.4 4.7

Object Oriented Design 6 0 0 0 0 0 4.1 0 0

Redundancies 9.6 4 11.4 2.7 4 27.1 13.1 8.8 4.4

Simplifications 0.5 0.4 0 0 0 2.3 1 0.8 0.7

Style Conventions 9.1 18.3 0 69.6 21.8 15 1 3.3 23.9

Table B.18: The distribution of rules that are disabled by developers per tool,

according to our classification. All numbers are percentages and all columns sum up

to 100 (approximately, due to rounding).
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Appendix C

Full Results for the Evolution
Analysis

This appendix presents the full data underlying the results of Chapter 5. Tables C.1 to C.5

show those results belonging to the Figures 5.3 to 5.7. Additionally, Tables C.6 and C.7

show the distributions of additions per change and deletions per change respectively. These

form the basis for Table C.2 and Figure 5.4. Because of space restrictions, Tables C.1 to C.3,

C.6, and C.7 do not present all the data that we collected, but rather the most relevant parts.
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C. FULL RESULTS FOR THE EVOLUTION ANALYSIS

Days\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Total %

0 12304 3442 1123 9501 85085 725 4692 2527 7173 126572 81.2

1 1285 470 118 976 9801 50 381 513 1076 14670 9.4

2 800 150 235 390 4094 43 193 235 553 6693 4.3

3 366 98 13 140 1493 10 60 116 309 2605 1.7

4 257 60 25 67 933 6 68 74 175 1665 1.1

5 147 19 8 43 526 6 21 81 99 950 0.6

6 109 26 3 27 360 0 15 36 77 653 0.4

7 94 14 4 11 177 0 5 18 58 381 0.2

8 61 8 0 11 186 2 7 16 43 334 0.2

9 37 5 0 14 179 5 2 23 24 289 0.2

10 41 3 0 7 95 0 1 7 22 176 0.1

11 34 2 0 1 48 0 2 11 30 128 0.1

12 27 0 0 5 31 0 1 7 22 93 0.1

13 13 0 0 1 29 1 0 60 11 115 0.1

14 25 0 0 7 18 0 0 32 7 89 0.1

15 8 2 0 1 15 0 1 9 13 49 0

16 9 0 0 6 5 0 1 7 6 34 0

17 10 1 0 3 36 0 0 9 6 65 0

18 12 0 0 8 13 0 1 12 12 58 0

19 9 1 0 2 9 1 1 6 7 36 0

20 8 1 0 0 5 0 0 12 1 27 0

21 8 2 0 0 13 0 3 5 7 38 0

22 3 0 0 0 9 0 1 5 5 23 0

23 6 0 0 4 6 0 0 8 2 26 0

24 0 0 0 0 1 0 1 1 4 7 0

25 4 0 0 0 0 0 0 2 3 9 0

26 8 0 0 0 0 0 0 5 4 17 0

27 4 0 0 0 1 1 0 0 3 9 0

28 4 1 0 0 2 0 0 2 1 10 0

29 0 0 0 1 0 0 0 1 0 2 0

30 0 0 0 0 2 0 0 3 2 7 0

31 0 0 0 0 2 0 0 0 0 2 0

32 4 0 0 0 2 0 0 1 0 7 0

33 0 0 0 0 2 0 0 0 0 2 0

34 6 0 0 0 1 0 0 0 2 9 0

35 0 0 0 0 0 0 0 0 4 4 0

36 3 0 0 0 0 0 0 0 0 3 0

37 1 0 0 0 0 0 0 0 2 3 0

38 0 0 0 0 0 0 0 1 1 2 0

39 1 0 0 0 0 0 0 0 1 2 0

40 2 0 0 0 0 0 0 0 0 2 0

41 2 0 0 0 0 0 0 0 0 2 0

42 0 0 0 0 0 0 0 0 0 0 0

43 1 0 0 0 0 0 0 0 0 1 0

44 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 1 0 0 0 0 1 0

46 0 0 0 0 0 0 0 0 0 0 0

47 1 0 0 0 0 0 0 0 1 2 0

48 0 0 0 0 0 0 0 0 2 2 0

49 0 1 0 0 0 0 0 0 0 1 0

50 4 0 0 0 0 0 0 2 0 6 0

51 0 0 0 0 0 0 0 0 1 1 0

52 0 0 0 0 0 0 0 0 0 0 0

53 1 0 0 0 0 0 0 0 3 4 0

54 0 0 0 0 0 0 0 0 0 0 0

55 0 0 0 0 0 0 0 0 0 0 0

56 0 0 0 0 0 0 0 0 0 0 0

57 0 0 0 0 0 0 0 0 0 0 0

58 0 0 0 0 0 0 0 1 0 1 0

59 0 0 0 0 0 0 0 0 2 2 0

60 0 0 0 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 0 0 0 0

62 0 0 0 0 0 0 0 0 1 1 0

63 0 0 0 0 0 0 0 0 0 0 0

64 0 0 0 0 0 0 0 0 0 0 0

65 0 0 0 0 0 0 0 0 0 0 0

Total 15722 4307 1529 11227 103180 850 5457 3849 9786 155907 100

Table C.1: The number of times a configuration file was changed. Limited to 65 changes

because of size constraints. The full results go until 248 days. The totals in the last row are

accumulated over all the results, not just the first 65.
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Changes\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Total %

-32 4 0 3 10 20 0 4 1 5 47 0.1

-31 8 0 0 2 16 0 2 1 3 32 0

-30 9 1 0 5 12 1 0 0 2 30 0

-29 2 0 0 2 56 0 1 1 3 65 0.1

-28 20 1 7 3 35 0 0 0 6 72 0.1

-27 3 1 0 8 30 0 2 1 8 53 0.1

-26 3 0 0 4 38 0 1 0 5 51 0.1

-25 9 2 0 3 31 0 2 3 7 57 0.1

-24 5 2 0 2 65 0 0 2 14 90 0.1

-23 2 1 0 5 137 0 0 0 9 154 0.2

-22 8 2 0 5 64 0 1 0 5 85 0.1

-21 5 1 0 2 70 0 2 0 11 91 0.1

-20 6 0 0 0 52 0 1 0 8 67 0.1

-19 6 2 0 1 42 0 1 0 7 59 0.1

-18 15 5 0 4 40 0 3 0 10 77 0.1

-17 7 2 0 8 73 0 0 1 10 101 0.1

-16 10 0 0 6 28 0 4 0 23 71 0.1

-15 10 4 0 16 134 0 0 3 20 187 0.3

-14 17 3 0 7 84 0 1 4 9 125 0.2

-13 20 1 0 7 70 0 2 2 9 111 0.1

-12 9 2 0 9 61 0 1 1 28 111 0.1

-11 10 1 0 7 64 0 2 2 47 133 0.2

-10 30 3 0 17 57 2 1 0 54 164 0.2

-9 39 3 0 12 72 0 2 3 49 180 0.2

-8 35 5 0 69 126 0 2 1 37 275 0.4

-7 92 5 0 8 159 0 19 6 34 323 0.4

-6 56 9 0 30 238 0 7 19 426 785 1.1

-5 107 8 0 30 210 1 6 44 693 1099 1.5

-4 135 21 0 45 278 0 11 11 392 893 1.2

-3 204 18 0 38 361 0 9 57 326 1013 1.4

-2 243 39 1 108 701 1 30 43 194 1360 1.8

-1 752 114 12 469 3700 12 66 658 234 6017 8.1

0 3363 492 486 833 10581 82 540 2609 1999 20985 28.2

1 1022 741 42 829 10671 140 192 892 799 15328 20.6

2 974 143 19 177 2761 34 94 321 756 5279 7.1

3 597 100 25 155 1262 3 76 308 1224 3750 5

4 425 66 5 58 883 6 43 276 658 2420 3.3

5 285 35 6 65 498 3 30 82 289 1293 1.7

6 263 37 4 44 375 1 25 146 246 1141 1.5

7 149 15 8 38 401 3 18 60 108 800 1.1

8 146 4 18 36 265 3 23 26 100 621 0.8

9 75 8 3 14 225 2 21 71 97 516 0.7

10 104 9 8 14 165 2 8 81 56 447 0.6

11 70 12 3 32 134 0 20 10 40 321 0.4

12 81 5 1 10 146 0 3 5 69 320 0.4

13 54 8 6 12 110 1 12 9 27 239 0.3

14 35 10 0 7 95 1 7 11 27 193 0.3

15 51 9 1 16 132 0 6 5 39 259 0.3

16 76 7 5 50 75 0 8 7 28 256 0.3

17 59 14 0 5 89 1 7 3 16 194 0.3

18 37 4 0 4 72 0 17 2 20 156 0.2

19 23 18 2 3 57 1 4 3 13 124 0.2

20 53 6 1 3 76 0 10 2 26 177 0.2

21 12 3 0 5 55 0 6 1 13 95 0.1

22 10 6 0 2 87 0 2 20 17 144 0.2

23 11 0 8 4 64 0 0 1 13 101 0.1

24 20 8 1 2 68 0 2 3 16 120 0.2

25 13 2 0 3 79 0 6 2 13 118 0.2

26 8 3 0 3 40 0 0 8 14 76 0.1

27 8 3 0 4 42 0 7 0 4 68 0.1

28 16 1 0 0 44 0 1 0 12 74 0.1

29 14 4 0 1 20 0 4 1 6 50 0.1

30 5 4 4 0 17 0 4 1 9 44 0.1

31 12 1 1 2 29 0 1 1 5 52 0.1

32 19 0 0 1 44 0 10 4 10 88 0.1

Total 11712 2191 764 3724 38317 310 1479 6019 9796 74312 100

Table C.2: The size of the change, defined as additions minus deletions. Limited to the

range of 32 deletions to 32 additions because of size constraints. The full results go from

1126 deletions to 2055 additions. The totals in the last row are accumulated over all the

results, not just over what is shown in the table.
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C. FULL RESULTS FOR THE EVOLUTION ANALYSIS

Days\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Total %

0 1715 382 11 718 7761 25 316 596 2603 14127 18

1 395 115 32 322 1775 6 81 217 390 3333 4.3

2 269 75 5 110 1138 7 47 167 212 2030 2.6

3 224 53 12 81 970 4 18 169 260 1791 2.3

4 174 40 5 62 755 1 23 99 160 1319 1.7

5 180 54 2 37 771 3 18 103 232 1400 1.8

6 172 50 1 40 645 4 12 44 138 1106 1.4

7 179 47 7 41 628 4 22 90 82 1100 1.4

8 130 28 2 105 613 1 7 38 124 1048 1.3

9 113 21 3 46 478 4 10 26 76 777 1

10 116 22 3 53 349 1 23 56 93 716 0.9

11 104 29 24 36 320 2 19 23 98 655 0.8

12 98 16 2 33 363 1 9 90 128 740 0.9

13 142 24 3 26 396 3 15 133 57 799 1

14 101 34 1 19 305 2 34 7 93 596 0.8

15 130 20 6 32 295 2 13 16 66 580 0.7

16 84 21 4 19 252 7 4 17 42 450 0.6

17 67 22 0 15 452 0 6 20 50 632 0.8

18 64 21 0 45 264 0 8 15 30 447 0.6

19 51 18 0 76 234 0 4 18 55 456 0.6

20 149 26 1 22 271 0 4 29 73 575 0.7

21 90 15 8 18 261 0 5 118 54 569 0.7

22 59 8 1 20 236 0 5 27 33 389 0.5

23 56 20 2 15 231 10 6 7 44 391 0.5

24 66 11 1 11 201 0 6 18 49 363 0.5

25 52 17 3 14 168 2 2 15 29 302 0.4

26 53 18 0 17 179 2 3 14 39 325 0.4

27 63 10 2 13 199 1 10 17 39 354 0.5

28 38 26 1 20 246 1 6 16 50 404 0.5

29 40 15 0 47 192 0 1 82 70 447 0.6

30 83 4 0 12 158 1 6 7 57 328 0.4

31 39 8 0 17 158 0 0 50 57 329 0.4

32 28 13 1 19 167 1 4 15 32 280 0.4

33 62 11 12 15 215 4 9 9 50 387 0.5

34 51 9 2 36 172 0 6 12 55 343 0.4

35 36 7 1 28 183 8 2 9 48 322 0.4

36 57 11 1 8 114 11 5 14 24 245 0.3

37 28 8 1 11 176 0 10 18 30 282 0.4

38 52 9 1 13 148 0 5 16 25 269 0.3

39 59 3 0 9 131 1 2 12 29 246 0.3

40 42 15 1 17 127 4 3 17 23 249 0.3

41 49 10 0 11 175 0 6 14 36 301 0.4

42 36 19 1 20 124 0 8 32 22 262 0.3

43 31 4 0 25 103 1 3 49 29 245 0.3

44 43 5 0 9 110 0 4 16 18 205 0.3

45 23 7 0 13 108 0 5 9 22 187 0.2

46 36 1 1 37 118 2 2 16 20 233 0.3

47 45 46 0 11 68 0 0 50 40 260 0.3

48 73 20 0 14 133 0 10 11 40 301 0.4

49 42 6 0 3 102 0 6 6 21 186 0.2

50 32 8 0 14 92 0 5 20 19 190 0.2

51 11 18 0 5 75 0 4 4 28 145 0.2

52 19 8 0 23 128 3 1 2 17 201 0.3

53 16 4 3 41 124 2 2 5 8 205 0.3

54 13 6 0 9 106 0 5 62 33 234 0.3

55 40 7 5 6 91 0 1 16 80 246 0.3

56 22 12 0 16 104 3 1 12 15 185 0.2

57 14 25 0 9 126 0 2 7 25 208 0.3

58 34 16 0 17 85 2 0 7 22 183 0.2

59 15 3 0 12 98 0 1 6 8 143 0.2

60 10 7 0 5 62 0 2 8 16 110 0.1

61 23 4 0 4 93 0 5 9 12 150 0.2

62 18 7 1 20 114 0 0 7 24 191 0.2

63 20 8 0 18 100 2 10 8 19 185 0.2

64 13 3 2 6 85 0 1 5 25 140 0.2

65 32 3 2 6 51 0 6 10 15 125 0.2

Total 12853 2241 763 3908 40165 339 1744 6241 10016 78270 100

Table C.3: The time between the creation of a file and the time when the file was changed.

Limited to 65 days because of size constraints. The full results go until 4251 days. The

totals in the last row are accumulated over all the results, not just the first 65.
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Version Days Since

Previous

Version

Changes To

Next Version

Changes

Per Day

Creations To

Next Version

Creations

Per Day

Changes Per

Day, Per

Creation

0.18.0 14 44 4 0 0 4

0.17.1 10 77 8 0 0 8

0.17.0 4 47 12 2 1 12

0.16.2 3 35 12 0 0 12

0.16.1 3 26 9 1 1 9

0.16.0 1 16 16 0 0 16

0.15.1 9 143 16 115 13 2

0.15.0 5 78 16 155 31 1

0.14.1 13 173 14 334 26 1

0.13.0 15 167 12 348 24 1

0.12.0 7 47 7 138 20 1

0.11.0 18 146 9 310 18 1

0.10.2 17 92 6 184 11 1

0.10.1 7 43 7 111 16 1

0.10.0 8 52 7 119 15 1

0.9.2 27 129 5 386 15 1

0.9.1 7 43 7 120 18 1

0.8.2 35 156 5 424 13 1

0.8.1 10 42 5 101 11 1

0.8.0 5 13 3 39 8 1

0.7.4 57 207 4 370 7 1

0.7.3 1 3 3 12 12 1

0.7.2 1 1 1 14 14 1

0.6.2 46 159 4 535 12 1

0.6.1 6 22 4 96 16 1

0.5.1 30 38 2 246 9 1

0.5.0 7 15 3 28 4 1

0.4.5 12 6 1 16 2 1

0.4.4 4 2 1 1 1 1

0.4.3 6 9 2 2 1 2

0.4.2 15 13 1 24 2 1

0.4.1 5 6 2 4 1 2

0.4.0 15 17 2 12 1 2

0.3.0 22 26 2 13 1 2

0.2.0 20 3 1 9 1 1

0.1.4 26 10 1 16 1 1

0.1.3 10 10 1 4 1 1

0.1.2 2 0 0 0 0 0

0.1.1 14 3 1 5 1 1

0.1.0 6 5 1 4 1 1

0.0.9 29 12 1 6 1 1

0.0.7 75 67 1 2 1 1

0.0.6 6 20 4 0 0 4

0.0.5 11 18 2 1 1 2

0.0.4 2 0 0 0 0 0

0.0.3 3 0 0 0 0 0

0.0.2 1 0 0 0 0 0

Table C.4: The number of changes per day per creation, for each version of ESLint. All

fractions rounded to the next integer.
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C. FULL RESULTS FOR THE EVOLUTION ANALYSIS

Version Days Since

Previous

Version

Changes To

Next

Version

Changes

Per Day

Creations

To Next

Version

Cre-

ations

Per Day

Changes Per

Day, Per

Creation

1.4.3 19 46 3 7 1 3

1.4.2 3 3 1 0 0 1

1.4.1 54 275 6 281 6 1

1.4.0 54 411 8 244 5 2

1.3.1 91 746 9 388 5 2

1.3.0 29 87 3 99 4 1

1.2.0 95 349 4 327 4 1

1.1.0 120 457 4 352 3 2

1.0.0 139 443 4 316 3 2

0.28.0 103 619 7 231 3 3

0.27.0 58 94 2 106 2 1

0.26.0 144 286 2 243 2 1

0.25.2 80 171 3 78 1 3

0.25.1 222 308 2 409 2 1

0.25.0 62 215 4 79 2 2

0.24.0 79 68 1 80 2 1

0.23.0 190 295 2 123 1 2

0.22.0 57 84 2 21 1 2

0.21.4 19 61 4 18 1 4

0.21.3 29 64 3 16 1 3

0.21.2 33 90 3 16 1 3

0.21.1 83 507 7 87 2 4

0.21.0 24 6 1 27 2 1

0.20.0 49 46 1 19 1 1

0.19.0 95 135 2 52 1 2

0.18.1 113 50 1 25 1 1

0.18.0 155 85 1 44 1 1

0.17.0 6 0 0 0 0 0

0.16.0 50 11 1 11 1 1

0.15.2 107 11 1 17 1 1

0.15.1 28 32 2 4 1 2

0.15.0 5 2 1 0 0 1

0.14.0 240 56 1 21 1 1

0.13.2 221 43 1 17 1 1

0.13.1 97 9 1 20 1 1

0.13.0 2 0 0 0 0 0

0.12.2 97 16 1 3 1 1

0.12.1 59 0 0 14 1 0

Table C.5: The number of changes per day per creation, for each version of Pylint. All

fractions rounded to the next integer.
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Additions\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Total %

0 1932 218 54 764 4803 15 199 735 2095 10815 14.6

1 2751 779 33 1092 11791 169 428 2226 2078 21347 28.7

2 938 393 82 547 7812 58 132 1065 1076 12103 16.3

3 1029 206 197 274 2526 14 90 487 1455 6278 8.4

4 624 100 11 164 1419 10 74 339 798 3539 4.8

5 490 60 44 99 1542 19 77 277 398 3006 4

6 402 47 13 55 695 1 47 152 400 1812 2.4

7 251 31 149 45 552 5 24 113 198 1368 1.8

8 217 20 13 33 539 4 27 31 175 1059 1.4

9 136 22 8 56 342 2 26 138 130 860 1.2

10 107 10 6 29 317 0 23 86 97 675 0.9

11 105 10 24 21 246 2 20 16 87 531 0.7

12 107 12 2 17 237 0 6 14 79 474 0.6

13 70 13 0 10 221 1 19 18 57 409 0.6

14 64 14 4 11 326 1 16 10 45 491 0.7

15 113 10 8 16 189 0 14 11 45 406 0.5

16 96 8 4 32 192 1 20 5 36 394 0.5

17 73 12 5 11 268 0 18 4 27 418 0.6

18 65 8 0 9 188 1 23 8 35 337 0.5

19 32 3 0 33 168 0 6 3 49 294 0.4

20 64 7 0 5 146 0 33 3 29 287 0.4

21 34 2 0 7 152 0 9 4 25 233 0.3

22 30 7 1 8 241 0 5 39 22 353 0.5

23 25 4 0 4 155 0 4 2 14 208 0.3

24 21 8 1 8 134 0 5 2 15 194 0.3

25 23 24 4 6 102 0 2 3 19 183 0.2

26 13 4 0 5 144 0 6 5 14 191 0.3

27 13 7 1 10 93 0 5 8 11 148 0.2

28 19 2 1 9 127 1 4 3 18 184 0.2

29 21 4 0 4 65 0 5 2 13 114 0.2

30 10 3 0 1 65 0 5 1 16 101 0.1

31 17 1 0 3 54 0 2 2 7 86 0.1

32 22 2 4 7 83 0 10 5 10 143 0.2

33 6 45 0 2 69 0 5 2 9 138 0.2

34 25 5 0 62 49 0 6 1 3 151 0.2

35 7 7 0 3 66 0 1 1 8 93 0.1

36 13 6 1 22 42 0 3 0 3 90 0.1

37 13 1 4 1 45 0 2 0 7 73 0.1

38 9 0 1 11 32 0 1 3 10 67 0.1

39 12 4 0 2 759 0 2 0 8 787 1.1

40 8 1 0 2 33 0 4 0 3 51 0.1

41 3 5 0 4 41 0 1 0 2 56 0.1

42 9 2 0 24 36 0 2 2 6 81 0.1

43 72 0 0 2 45 0 3 7 1 130 0.2

44 13 0 0 1 32 0 10 1 2 59 0.1

45 6 2 0 9 24 0 2 0 4 47 0.1

46 5 1 0 0 10 0 1 0 7 24 0

47 7 1 0 2 8 0 1 0 5 24 0

48 5 0 1 0 44 0 0 4 2 56 0.1

49 2 2 2 7 20 0 0 0 2 35 0

50 11 0 0 3 24 0 1 0 2 41 0.1

51 11 0 0 2 4 0 0 0 2 19 0

52 6 1 0 1 15 0 1 0 7 31 0

53 7 4 0 3 30 0 0 0 2 46 0.1

54 5 1 0 1 17 0 1 14 0 39 0.1

55 3 1 0 3 18 0 0 0 1 26 0

56 2 0 0 0 8 0 0 0 5 15 0

57 3 0 0 2 13 0 0 0 2 20 0

58 12 1 0 3 15 0 0 0 8 39 0.1

59 5 2 0 5 20 0 1 1 1 35 0

60 3 2 2 3 9 0 0 0 0 19 0

61 3 1 0 3 19 1 0 0 1 28 0

62 4 1 0 1 17 0 1 1 3 28 0

63 7 2 0 1 13 0 1 3 0 27 0

64 4 1 0 3 3 0 0 0 5 16 0

65 3 0 0 7 21 0 0 0 4 35 0

Total 11712 2191 764 3724 38317 310 1479 6019 9796 74312 100

Table C.6: The amount of additions per change. Limited to 65 additions due to size con-

straints. The full results go up to 2058 additions. The totals in the last row are accumulated

over all the results, not just over what is shown in the table.
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C. FULL RESULTS FOR THE EVOLUTION ANALYSIS

Deletions\Tool Checkstyle ESLint FindBugs JSCS JSHint JSL PMD Pylint RuboCop Total %

0 2832 644 70 1066 8251 172 514 781 3412 17742 23.9

1 3748 811 66 1213 16623 67 381 3668 1935 28512 38.4

2 966 241 118 333 3527 23 154 685 734 6781 9.1

3 633 86 219 178 1173 19 80 191 801 3380 4.5

4 426 50 18 158 742 8 45 104 506 2057 2.8

5 271 25 21 51 1065 7 30 223 714 2407 3.2

6 207 50 13 46 402 2 24 42 532 1318 1.8

7 149 16 147 34 338 0 20 17 162 883 1.2

8 106 20 2 29 352 0 11 17 117 654 0.9

9 106 10 0 17 231 1 15 13 75 468 0.6

10 97 11 0 12 270 0 6 7 94 497 0.7

11 68 17 0 21 181 2 10 12 84 395 0.5

12 64 13 3 13 251 0 7 7 56 414 0.6

13 64 7 0 22 206 0 6 4 30 339 0.5

14 36 7 1 18 326 0 9 7 30 434 0.6

15 44 11 0 18 179 0 3 31 21 307 0.4

16 43 7 0 18 174 0 20 32 44 338 0.5

17 33 3 1 11 238 0 12 3 15 316 0.4

18 33 11 1 5 126 0 2 2 19 199 0.3

19 13 2 0 22 207 0 1 1 20 266 0.4

20 26 3 0 12 195 0 6 3 13 258 0.3

21 24 2 0 4 139 0 2 3 15 189 0.3

22 13 5 0 9 252 0 3 0 13 295 0.4

23 20 1 0 4 245 0 5 0 14 289 0.4

24 11 4 0 6 117 0 2 4 11 155 0.2

25 20 3 0 9 79 0 4 4 10 129 0.2

26 7 4 2 6 94 0 3 0 10 126 0.2

27 15 5 0 14 53 0 21 5 7 120 0.2

28 14 3 0 11 96 0 1 0 10 135 0.2

29 3 0 0 4 48 0 3 1 3 62 0.1

30 8 4 0 12 96 0 1 1 4 126 0.2

31 12 2 0 28 39 0 4 1 2 88 0.1

32 12 0 0 5 46 0 4 0 12 79 0.1

33 17 41 0 9 63 0 5 1 9 145 0.2

34 13 1 0 67 31 0 0 1 6 119 0.2

35 2 8 0 14 48 0 1 0 6 79 0.1

36 20 5 0 34 31 0 1 1 1 93 0.1

37 14 3 0 3 33 2 0 1 8 64 0.1

38 6 1 0 6 29 0 1 2 10 55 0.1

39 7 2 0 2 373 0 1 0 7 392 0.5

40 7 0 0 1 556 0 1 3 1 569 0.8

41 7 3 0 1 28 0 1 1 4 45 0.1

42 0 1 0 1 21 0 2 1 5 31 0

43 66 0 7 3 18 0 0 0 6 100 0.1

44 7 0 3 2 11 0 3 1 4 31 0

45 6 1 0 3 14 0 1 0 6 31 0

46 4 2 0 2 14 0 0 0 1 23 0

47 2 0 0 1 21 0 0 2 1 27 0

48 2 0 0 0 11 0 0 0 2 15 0

49 2 0 0 5 8 0 0 0 2 17 0

50 4 1 0 1 11 0 0 1 4 22 0

51 7 1 0 1 6 0 0 0 5 20 0

52 0 3 0 1 8 0 0 1 4 17 0

53 1 4 0 0 9 0 1 0 3 18 0

54 3 1 0 2 9 0 0 0 3 18 0

55 4 0 0 2 35 0 0 1 4 46 0.1

56 3 0 0 0 3 0 1 0 4 11 0

57 4 0 0 0 7 0 1 1 1 14 0

58 9 1 0 4 16 0 0 0 5 35 0

59 3 3 0 2 20 0 0 0 4 32 0

60 5 0 0 2 13 0 0 0 2 22 0

61 0 0 0 1 6 0 0 0 5 12 0

62 2 1 0 4 14 0 0 2 3 26 0

63 1 0 0 4 34 0 1 1 4 45 0.1

64 0 2 0 3 16 0 2 2 4 29 0

65 1 0 0 2 21 0 1 0 1 26 0

Total 11712 2191 764 3724 38317 310 1479 6019 9796 74312 100

Table C.7: The amount of deletions per change. Limited to 65 deletions due to size con-

straints. The full results go up to 1250 deletions. The totals in the last row are accumulated

over all the results, not just over what is shown in the table.

110


	Contents
	List of Figures
	Introduction
	Related Work
	Code Reviews
	Automatic Static Analysis Tools
	Defect Classifications

	Prevalence of Code Reviews and Automatic Static Analysis Tools
	Research Aim
	Study Design
	Study Methodology
	Study Objects
	Results
	Discussion
	Threats to Validity

	Configuration of Automated Static Analysis Tools
	Research Aim
	Study Design
	Study Methodology
	Study Objects
	Results
	Discussion
	Threats to Validity

	Evolution of Automated Static Analysis Tool Configurations
	Research Aim
	Study Design
	Study Methodology
	Study Objects
	Results
	Discussion
	Threats to Validity

	Conclusion
	Bibliography
	Prevalence Survey Results
	Full Results for the ASAT Configurations Analysis
	Full Results for the Evolution Analysis

