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Abstract—The energy consumption of data centers has been
increasing rapidly over the past decade. In some cases, data
centers may be physically limited by the amount of power
available for consumption. Both the rising cost and physical
limitations of available power are increasing the need for
energy efficient computing. Data centers must be able to
lower their energy consumption while maintaining a high
level of performance. Minimizing energy consumption while
maximizing performance can be modeled as a bi-objective
optimization problem. In this paper, we develop a method to
create different resource allocations that illustrate the trade-
offs between minimizing energy consumed and minimizing the
makespan of a system. By adapting a popular multi-objective
genetic algorithm we are able to construct Pareto fronts (via
simulation) consisting of Pareto-efficient resource allocations.
We analyze different solutions from within the fronts to further
understand the relationships between energy consumption and
makespan. This information can allow system managers to
make intelligent scheduling decisions based on the energy and
performance needs of their system.

Keywords- bi-objective optimization; energy-aware; makespan;
heterogeneous computing; resource allocation.

I. INTRODUCTION

Over the past decade, the need for energy efficient

computing has become increasingly important. As the per-

formance of high performance computing (HPC) systems,

such as servers and datacenters, have increased, so has the

amount of energy needed to run these systems. According

to the Environmental Protection Agency (EPA) [1], it was

estimated that between the years 2000 and 2006 the amount

of power consumed by HPC systems more than doubled. An

estimated 61 billion kWh was consumed by servers and data

centers in 2006, approximately equal to 1.5% of the total

U.S. electricity consumption for that year. This is equivalent

to the electricity consumption of 5.8 million average U.S.

households, and amounts to $4.5 billion in electricity costs

[1].

In addition to the rising costs of using so much energy,

some data centers are now unable to increase their comput-

ing performance due to physical limitations on the availabil-

ity of energy. A survey conducted in 2008 showed that 31%

of the data centers surveyed identified energy availability as

a key factor limiting new server deployment [2]. Another

example to emphasize this point: Morgan Stanley, a global

financial services firm based in New York, is physically

unable to draw the energy needed to run a new data center

in Manhattan [3].

To battle the rising costs of energy consumption, it is es-

sential for HPC systems to be energy-efficient. This focus on

energy-efficiency must have as little impact to performance

as possible. Unfortunately, the goals of saving energy and

achieving high performance often conflict with each other.

To understand and illustrate the trade-offs between energy

consumption and computing performance, we model this

dilemma as a bi-objective optimization problem. When a

problem has multiple objectives, it is often the case that there

is not just one single optimal solution, but rather a set of

optimal solutions. With our research, we provide a method

for developing a set of “Pareto”optimal solutions that not

only illustrate the trade-offs between energy consumption

and performance for a specific computing system, but also

allows the system manager to select a solution that fits the

system needs and goals.

In this research, we study how different ways of allocat-

ing resources to tasks impact the performance and energy

consumption of a computing system. We are modeling a

data center consisting of a set of heterogeneous machines

that must execute a batch of independent tasks. By hetero-

geneous, we mean that tasks may have different execution

and power consumption characteristics when executed on

different machines. All the tasks in a given batch are known

a priori and are all available for scheduling at the beginning

of the simulation, making this a static resource allocation

problem. We define a resource allocation to be a complete

scheduling of tasks to machines. We perform this research

in a static and offline environment, so that, we can evaluate

the resource allocations and analyze the trade-offs between

the two objectives. The knowledge gained from studies such

as these for a particular system can be used to set the

parameters needed for designing dynamic, online, allocation

81Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



heuristics.

To measure the performance of the system, we examine

the makespan of a batch of tasks for a given resource

allocation. Makespan is the total amount of time it takes

for all the tasks in the batch to finish executing across all

the machines. Energy is measured in the number of joules

consumed by that same batch of tasks for a given resource

allocation. An optimal resource allocation would be one

that minimizes both makespan and energy consumed. By

adapting the Nondominated Sorting Genetic Algorithm II

(NSGA-II) [4] to handle scheduling problems, we are able

to create resource allocations that have different makespan

and energy consumption values. This set of solutions will

then be one basis to analyze the energy and performance

trade-offs of the system.

To summarize, in this paper, we make the following

contributions:

1) Address the concern of energy efficient computing

by modeling the resource allocation problem as a

bi-objective optimization problem between minimiz-

ing energy consumption and maximizing performance

(minimizing makespan).

2) Adapt a well-known multi-objective genetic algorithm

to the domain of data center task scheduling.

3) Show that by using different resource allocations,

one can greatly affect the energy consumption and

performance of a heterogeneous computing system.

4) Construct a set of “Pareto”[5] optimal solutions that

can be used to illustrate the trade-offs between sys-

tem performance and energy consumption, as well as

allowing data center managers to select appropriate

resource allocations to meet the needs of the specific

system.

The remainder of the paper is set up as follows. We dis-

cuss the related work in Section II. Section III will describe

how we define our bi-objective optimization problem using

the NSGA-II. In Section IV, we explain our system model.

Our simulation setup is detailed within Section V. Section VI

contains our simulation results. Finally, Section VII contains

our conclusions and future work for this research.

II. RELATED WORK

In Dongarra et al. [6] and Jeannot et al. [7], a heteroge-

neous task scheduling problem is modeled as a bi-objective

optimization problem between makespan and reliability. This

differs from our research because they are not minimizing

energy consumption.

The study in Abbasi et al. [8] models a resource-

constrained project scheduling problem as a bi-objective

problem between makespan and robustness. Abbasi et al.

solve this problem using a weighted sum simulated anneal-

ing heuristic to generate a single solution. They then adjust

the weights to produce different solutions. This is different

from our work in that we evaluate our two objective func-

tions independently and generate a Pareto front composed

of many different solutions in one run of our algorithm.

A Pareto-ant colony optimization approach is presented in

Pasia et al. [9] to solve the bi-objective flowshop scheduling

problem. Pasia et al. are minimizing makespan and total

tardiness. This differs from our work because they are not

considering minimizing energy nor are they using a genetic

algorithm to create the solutions.

He et al. [10] develop a bi-objective model for job-

shop scheduling to minimize both makespan and energy

consumption. There are a couple of differences from our

work. The first one is that He et al. model a homogeneous

set of machines instead of a heterogeneous set of machines.

Second, the algorithm used in He et al. produces a single

solution while our algorithm produces a set of solutions.

The goal of minimizing makespan with solutions that

are robust against errors in computation time estimates is

investigated in Sugavanam et al. [11]. This differs from our

work in that we do not consider uncertainties in computation

time. Also, Sugavanam et al. are not concerned with energy

consumption.

Resource to task matching in an energy constrained het-

erogeneous computing environment is studied in Kim et al.

[12]. The problem is to create robust resource allocations

that map tasks onto devices limited by battery capacity

(energy constrained) in an ad hoc wireless grid. This dif-

fers from our paper because our machines are not energy

constrained nor are they in an ad hoc wireless environment.

Also the heuristics used in this study only create a single

resource allocation, whereas ours creates a set of solutions.

The work in Apodaca et al. [13] studies static resource al-

location for energy minimization while meeting a makespan

robustness constraint. In contrast to our paper, Apodaca et al.

only find a single solution, and we do not place constraints

on either objective function.

An energy constrained dynamic resource allocation prob-

lem is studied in Young et al. [14]. In this work, the

resource allocation must try to finish as many tasks as it can

while staying within the energy budget of the system. Our

work differs because we are modeling a static environment

and have no constraints on how much energy our resource

allocations can use.

In Pineau et al. [15], the authors are trying to minimize

energy consumption while maximizing throughput. Pineau

et al. are modeling a heterogeneous system that executes a

single bag-of-tasks application where each task is the same

size. To solve the problem, Pineau et al. place a constraint on

the throughput objective, and then try to minimize energy

while meeting the throughput constraint. While similar to

our approach, it differs because we are optimizing for

makespan, we model tasks that can differ greatly in size,

and we do not constrain either of our objectives.

Mapping tasks to computing resources is also an issue in
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hardware/software co-design, Teich et al. [16]. This problem

domain differs from ours however, because it typically

considers the hardware design of a single chip. Our work

assumes a given collection of heterogeneous machines.

III. BI-OBJECTIVE OPTIMIZATION USING GENETIC

ALGORITHMS

A. Overview

It is common for many real-world problems to contain

multiple goals or objectives. Often, these objectives work

against each other, as optimizing for one objective can

negatively impact another objective. This is the case in our

research, because it is important for HPC systems to be

concerned with both lowering energy consumption as well as

increasing overall system performance. In general, resource

allocations using more energy will allow one to achieve

greater performance, while resource allocations trying to

conserve energy will cause the system to have slower

performance. In Section III-B, we describe how to determine

which solutions should be considered when trying to solve

a bi-objective optimization problem. We then briefly discuss

the genetic algorithm we have adapted to solve our specific

problem in Section III-C.

B. Determining Solutions to a Bi-Objective Optimization

Problem

When multiple objectives are present within a problem,

it is often the case that there does not exist a single global

optimal solution, but rather a set of optimal solutions. There

is no guarantee one can find the exact solutions within this

optimal set, so instead we try to find a set of solutions that

are as close to the optimal set as possible. We will call this

set of solutions the set of Pareto optimal solutions [5]. This

set of Pareto optimal solutions can be used to construct a

Pareto front that illustrates the trade-offs between the two

objectives.

To understand what it means for a solution to be part of

the Pareto optimal set, we illustrate the notion of solution

dominance. Dominance is defined as one solution being

better than another solution in at least one objective, and

better than or equal to in the other objective. To help

explain what it means for one solution to dominate another,

please refer to Figure 1. Figure 1 shows three potential

solutions. The objectives are to minimize energy (along

the x-axis), and to minimize makespan (along the y-axis).

Let us first examine the relationship between solutions A

and B. From the figure we can see that solution B is

dominated by A because A uses less energy and has a

smaller makespan. Likewise, any solution residing within the

upper right (green) shaded region would also be dominated

by A. Next, consider solutions A and C. We cannot claim

either solution dominates the other because A uses less

energy than C, but C has a smaller makespan than A. Thus,

for this example, both A and C are solutions in the Pareto

energy consumed 

makespan 
A 

B 

C 

solutions 

that 

dominate A 

solutions that 

are dominated 

by A 

Figure 1. Illustration of solution dominance for three solutions: A, B,
and C. Solution A dominates solution B because A has lower energy
consumption as well as a lower makespan. Neither solution A nor C
dominate each other because A uses less energy, while C has a lower
makespan.

optimal set and form the Pareto front. Finally, solution A

would be dominated by any solution residing within the

lower left (red) shaded area.

C. Nondominated Sorting Genetic Algorithm II Adapted For

Resource Allocation

To solve our bi-objective optimization problem, we chose

to implement a popular genetic algorithm from the literature,

the Nondominated Sorting Genetic Algorithm II (NSGA II)

[4]. We will briefly describe the algorithm and how we have

adapted it for our use.

The NSGA II is a multi-objective genetic algorithm that

uses the idea of solution dominance to create offspring

populations, where for our problem domain a population is a

set of possible resource allocations. For a given population,

the algorithm performs the nondominated sorting algorithm

that ranks the solutions within the population based on how

many solutions dominate a given solution. Any solution that

is not dominated by any other solution is given a rank of

one and is part of the current Pareto optimal set. The basic

algorithm is outlined in Algorithm 1.

To create the child population in step three, we start with

a parent population of size N . From this parent population

N crossover operations are performed to create a child

population of also of size N . The mutation operation is then

performed with a given probability on each chromosome

in the child population. If a chromosome is selected for

mutation, only the mutated version is kept in the population.

It is important to note the NSGA II is an elitist algorithm

as it combined the offspring and parent populations in

step six. Elitism means that the algorithm keeps the best

chromosomes from the previous generation in consideration

for the current generation.
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Algorithm 1 NSGA II algorithm

1: create initial population of N chromosomes

2: while termination criterion is not met do

3: create offspring population of size N

4: perform crossover operation

5: perform mutation operation

6: combine offspring and parent populations

into a single meta-population of size 2N
7: sort solutions in meta-population using

nondominated sorting algorithm

8: take all of the rank 1, rank 2, etc. solutions until

we have at least N solutions to be used in the parent

population for the next generation

9: if more than N solutions then

10: take a subset of solutions from the

highest rank number used based on

crowding distance [4]

11: end if

12: end while

13: the final population is the Pareto front used to show the

trade-offs between the two objectives

To further explain how the next parent population is

created in steps eight and nine, assume we have a parent pop-

ulation with 100 chromosomes and a child population with

100 chromosomes for a total of 200 chromosomes. We want

to create a new parent population for the next generation that

only has 100 chromosomes. Let us assume, that after step

seven (where we have ranked the current populations), there

are 60 chromosomes of rank one, 30 chromosomes of rank

two, 20 chromosomes of rank three, and 90 chromosomes

that have a rank higher than three. First, we will place all

the rank one chromosomes into the new population, this will

leave room for 40 more chromosomes. Next, we place all

the rank two chromosomes into the population, leaving room

for ten more chromosomes. Since there are 20 rank three

chromosomes, but only room left in the new population for

ten chromosomes we must select a subset of the rank three

chromosomes to place in the population. These ten solutions

will be based on the crowding distance [4] and we will have

our full 100 chromosome population.

To use the NSGA II, we needed to encode the algo-

rithm so that it could be used to solve resource allocation

problems. This meant we needed to create our own genes,

chromosomes, crossover operator, and mutation operator.

Genes are the basic data structure of the genetic algorithm,

and for our problem each gene represents a task. Within

each gene there is a single integer number representing

the machine on which the task will execute. Chromosomes

represent complete solutions, i.e., resource allocations. Each

chromosome is comprised of T genes, where T is the

number of tasks the system must execute. The ith gene in a

chromosome represents the same task in every chromosome.

Each chromosome is individually evaluated with respect

to makespan and energy consumption, allowing dominance

relationships to be found amongst all the chromosomes

within a population.

To allow chromosomes and populations to evolve from

generation to generation, we implemented the following

crossover and mutation operations. For crossover, two chro-

mosomes are selected randomly from the population. Next,

the indices of two genes within the chromosomes are se-

lected randomly. We then swap the genes between these two

indices from one chromosome to the other. This operation

switches the machines on which the tasks will execute. This

potentially allows chromosomes making good scheduling

decisions to pass on the useful traits to other chromosomes.

For mutation we randomly select a chromosome from the

population and randomly select a gene within that chromo-

some. We then randomly select a machine for that task to

execute on.

IV. SYSTEM MODEL

A. Machines

Our computing system is modeled as a suite of M

heterogeneous machines where each node belongs to a

specific machine type µ. Machines are assumed to be

dedicated, meaning only one task can be executing on the

machine at a time, such as the ISTeC Cray located at

Colorado State University [17]. Once a task starts executing

it runs until it is finished. Machines of the same machine

type are identical to one another. Machine types exhibit

heterogeneous performance (i.e., machine type A may be

faster than machine type B for some tasks, but slower for

others) [18]. Machine types are also heterogeneous with

respect to energy consumption (i.e., machine type A may

use less energy than machine type B for some tasks, but

more energy for others). We implement a heterogeneous

behavior for both performance and energy consumption to

model a computing system that contains a variety of different

resources. Real world systems may be highly heterogeneous

due to having machines of different ages, varying micro-

architectures, subsets of machines that have accelerators, and

the inclusion of special purpose machines. Differences in

machine components such as memory modules, hard disks,

and power supplies also cause systems to be heterogeneous.

B. Workload

We assume we have a static collection of T tasks. Each

task t is a member of a given task type. Each task type has

unique performance and energy consumption characteristics

for executing on each of the machine types. To model the

performance of the task types, we assume that the estimated

time to compute (ETC) a task of type τ on a machine

of type µ, ETC(τ ,µ), is given. Entries in the ETC matrix

represent the estimated amount of time a task type takes
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to execute on a given machine type. Research in resource

allocation often assumes the availability of ETC information

(e.g., [19, 20, 21, 22]). We have provided the analysis

framework for system administrators to use ETC information

from data collected on their specific systems. This allows for

systems of varying size and heterogeneity to be analyzed.

For our simulation studies, we have constructed synthetic

ETC values modeling real-world systems, but these values

can also be taken from various sources of historical data

(e.g., [21, 20]).

Similar to the ETC values used for determining compute

times, we also assume we have estimated power consump-

tion (EPC) values that tell us the average power a task type

consumes while executing on a specific machine type. The

EPC values represent the power consumption of a machine

as a whole, not just the CPU. Again, we have constructed

synthetic EPC values for our simulations, but historical

power consumption data could also be used to populate the

matrix.

Finally, to obtain the estimated energy consumed (EEC)

of a task of type τ on a machine µ we take the product of

the execution time and the estimated power consumption, as

shown below.

EEC[τ, µ] = ETC[τ, µ]× EPC[τ, µ] (1)

C. Objective Functions

1) Makespan: One objective we are trying to optimize is

makespan, which is the total amount of time it takes for all

the tasks in the batch to finish executing across all machines.

When optimizing for makespan the goal is to minimize the

makespan. For a given resource allocation, calculating the

makespan of the system requires that we first determine the

finishing time of each machine.

To calculate the finishing time of a machine we let the

set Tm represent all the tasks in T that were allocated to

machine m, where tm ∈ Tm. Let the function Υ(tm) return

the task type that task tm belongs to, and let the function

Ω(m) return the machine type to which machine m belongs.

We then calculate the expected finishing time of machine m

denoted as Fm, with the following equation

Fm =
∑

∀tm∈Tm

ETC(Υ(tm),Ω(m)). (2)

The makespan for a given resource allocation, denoted ρ,

can be found from the machine with the maximum finishing

time, and is given as

ρ = max
∀m∈M

Fm. (3)

2) Energy Consumption: The other objective we will

optimize for is energy consumption. For a given resource

allocation, the total energy consumed is the sum of the

energy consumed by each task to finish executing. Recall

that the amount of energy consumed by a task is dependent

upon the machine on which that task is executing. Therefore,

the total energy consumed for a resource allocation, denoted

E, can be found as

E =
∑

∀tm∈Tm,∀m∈M

EEC[Υ(tm),Ω(m)]. (4)

V. SIMULATION SETUP

A. Simulation Environment Parameters

To construct a Pareto front and illustrate the trade-offs

between makespan and energy consumption, we conducted

numerous simulation trials. For each trial, the number of

tasks to execute was set to 1000, with 50 different task types.

The number of machines used throughout the simulations

was set to 50, with 10 different machine types. The number

of tasks per task type and number of compute nodes per

compute node type were randomly assigned, and could

change from trial to trial.

The ETC values were obtained using the Coefficient of

Variation (COV) method from [18], which allows us to

model a heterogeneous set of machine types and task types.

For our simulations, the mean execution time for the tasks

was 10 seconds, and the variance amongst the tasks was

0.1, while the variance amongst the machines was 0.25.

These parameters allowed us to model a heterogeneous set

of compute nodes.

The EPC values were constructed in a similar manner as

the ETC values. Specifically, the mean power consumption

for the tasks was 200 watts, and the variation amongst tasks

was 0.1, while the variance amongst the machines was 0.2.

For each trial, the genetic algorithm consisted of 100 chro-

mosomes. In the initial population, we used 98 randomly

generated chromosomes, and two chromosomes generated

using two heuristics based on approaches taken from litera-

ture, as discussed below.

B. Seeding Heuristics

The goal of the seeding heuristics are to provide the ge-

netic algorithm with initial solutions that try to optimize the

objectives. These seeds can help guide the genetic algorithm

towards better solutions faster than an all-random initial

population. We chose to implement two greedy heuristics,

min energy and min-min completion time, based on concepts

found in [23, 24, 25]. The execution times of the greedy

heuristics are negligible compared to the NSGA II. Utilizing

these seeds in the initial population does not negatively affect

the computation time of the NSGA II.

1) Min Energy: Min energy is a single stage greedy

heuristic that maps tasks to machines to minimize energy

consumption. The heuristic selects a task from the batch

and places that task on to the machine that has the smallest

energy consumption. For this heuristic, the order in which

tasks are mapped to machines does not matter. This heuristic

creates a solution that will have the minimum possible
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Figure 2. Pareto fronts showing the trade-offs between energy consumption and makespan. Shows the evolution of the solutions through number of
iterations completed

energy consumption. For a solution to be more efficient,

it must have a smaller makespan.
2) Min-Min Completion Time: Min-min completion time

is a two-stage greedy heuristic that maps tasks to machines

to minimize the makespan of the system. During each

iteration of the heuristic, one task gets mapped to the

machine that provides the minimum completion time. One

iteration consists of two stages. In the first stage, every

unmapped task finds the machine that minimizes completion

time. In the second stage, the heuristic selects the task and

machine pair from the first stage that has the smallest overall

completion time and assigns that task to that machine. This

continues until there are no more tasks to map. There

is no guarantee that the solution created by this heuristic

represents the absolute lowest makespan of the system, so

better solutions can potentially improve in both makespan

and energy consumption.

VI. RESULTS

Throughout this section, we will only be discussing the

results from one simulation trial. We have confirmed that

the findings and trends for this trial hold for the other trials

we ran. In Figure 2, we show the evolution of the solutions

through the number of NSGA-II iterations completed. It is

important to note for genetic algorithms, as we increase the

number of iterations, the genetic algorithm will in general

find new and better solutions; some solutions may remain a

member of the Pareto front as we increase the iterations.

Each point in Figure 2 represents a complete resource

allocation. The set of points corresponding to a given number

of iterations form the Pareto front. These points are obtained

from the genetic algorithm running through that number of

iterations. We see that as the genetic algorithm runs for

more iterations, the Pareto fronts are converging towards

the lower-left corner. This makes sense because we are

minimizing makespan as well as energy consumption. We

can also see that for this size problem there is very little

improvement to the Pareto front after 30,000 iterations. The

size of the problem as well as using the two seeds help the

solutions converge in a relatively short number of iterations.

Also, observe that both of the seeds provide good starting

solutions for the genetic algorithm to evolve from relative

to the rest of the initial population.

Although it is useful to see how the solutions evolve over

time, the most important information to take away from

Figure 2 are the trade-offs between makespan and energy

consumed. Figure 3 shows a blown-up plot of the final Pareto

front from Figure 2. There are a number of points we can

learn from the final Pareto front shown in Figure 3. One

such point is circled in red. We can see that around this

point there is a definite and visible “knee” in the front. To

the left of the knee, small increases in energy consumption

result in large decreases in makespan. To the right of the

knee we see the opposite, small decreases in makespan result

in large increases in energy. Given the information provided

in this Pareto front, it is then up to the system manager to

select which region of the curve to operate in based on the

individual system needs.

To further understand how solutions in the Pareto front

differ from one another, we analyzed the individual finishing

times and energy consumptions for the 50 machines at five

points along the final Pareto front. The five points were the

two endpoints of the front, the middle point, and the two

points between the middle point and each endpoint, as shown

in Figure 4 and Figure 5. The results for machine finishing
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Figure 4. Finishing time of the 50 machines in descending order of finishing time for five solutions from the Pareto front. The y-axis contains different
ranges of machine finishing times from plot to plot (to show each plot in greater detail). Subfigure “a” is the same as Figure 3 and has different axis labels
from the other subplots. Each subplot b-f has a different ordering of the machines along the x-axis.
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Figure 5. Energy consumption of the 50 machines in descending order of energy consumed for five solutions from the Pareto front. The y-axis contains
different ranges of machine energy consumption from plot to plot (to show each plot in greater detail). Subfigure “a” is the same as Figure 3 and has
different axis labels from the other subplots.Each subplot b-f has a different ordering of the machines along the x-axis.
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Figure 3. The final Pareto front after 100,000 iterations showing the trade-
offs between energy consumed and makespan.

times are shown in Figure 4, while the results for machine

energy consumption are shown in Figure 5.

First, we consider Figure 4, which focuses on the finishing

times of each machine. Each of the five subplots (b-f) in

the figure represents a solution from the Pareto front. On

the x-axis of the plots we have the machines sorted by

finishing time in descending order, this ordering is different

from subplot to subplot. On the y-axis we have the actual

finishing time of each machine. Note that each figure (b-

f) has different values along the y-axis. In Figure 4.f, we

have the solution that provides the lowest makespan. As we

can see, the finishing times for all the machines are evenly

balanced; this allows the makespan to be small since no one

machine is doing a lot more work than the others. As we

move left along the Pareto front selected points in Figure 4.a

(minimizing energy) we see that the solutions become more

and more unbalanced with respect to machine finishing times

going from Figure 4.f to Figure 4.e to Figure 4.d, etc. This is

because each task type has an affinity for a specific machine

type that minimizes that task type’s energy consumption.

If we now consider the plots of machine energy con-

sumption in Figure 5 which focus on energy consumption,

we see similar trends as before, but in reverse order. This

time the machines are ordered in descending order based on

energy consumption. Figures 5.b and 5.c are more balanced

in terms of energy consumption amongst the machines. This

is because this area of the Pareto front focuses on trying to

minimize energy and thus makespan is compromised; as we

saw in the corresponding makespan plots from Figure 4. By

similar reasoning, this is why Figure 5.f is unbalanced. In

this region of the Pareto front, makespan is being optimized

so tasks are going to have to run on machines that use more

energy to lower system makespan.

With the information provided by the Pareto fronts as

well as the plots showing the completion time and energy

consumption of individual machines, a system manager will

be able to analyze the trade-offs between energy consump-

tion and makespan. The system manager can then make a

scheduling decision based on the needs of the computing

system.

VII. CONCLUSION AND FUTURE WORK

As high performance computing systems continue to

become more powerful, the energy required to power these

systems also increases. In this paper we have developed a

bi-objective optimization model that can be used to illustrate

the trade-offs between the makespan and energy consump-

tion of a system. Having adapted the nondominated sorting

genetic algorithm for use within our domain, we successfully

ran simulations that provided us well defined Pareto fronts.

We then analyzed five different solutions from the final

Pareto front and discussed the differences in their makespan

and energy consumption. Given this information a system

administrator would be able to pick a specific resource

allocation from the Pareto front that meets the energy and

performance needs of the system.

There are many possible directions for future work. We

would like to enhance our energy consumption model by

considering machines that utilize dynamic voltage and fre-

quency scaling techniques to save more energy. We do not

currently consider communications within our environment,

but the analysis framework we present here could be ex-

tended to do this. We would like to try and increase the

execution rate and performance of the genetic algorithm

by trying numerous parallel techniques. To more accurately

model real-world systems, we would like to use probability

density functions to model both task execution times and

task energy consumption characteristics.
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