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Abstract

Machine translation is a popular test bed for re-

search in neural sequence-to-sequence models

but despite much recent research, there is still a

lack of understanding of these models. Practition-

ers report performance degradation with large

beams, the under-estimation of rare words and

a lack of diversity in the final translations. Our

study relates some of these issues to the inherent

uncertainty of the task, due to the existence of

multiple valid translations for a single source sen-

tence, and to the extrinsic uncertainty caused by

noisy training data. We propose tools and metrics

to assess how uncertainty in the data is captured

by the model distribution and how it affects search

strategies that generate translations. Our results

show that search works remarkably well but that

models tend to spread too much probability mass

over the hypothesis space. Next, we propose tools

to assess model calibration and show how to eas-

ily fix some shortcomings of current models. As

part of this study, we release multiple human ref-

erence translations for two popular benchmarks.

1. Introduction

Machine translation (MT) is an interesting task not only

for its practical applications but also for the formidable

learning challenges it poses, from how to transduce variable

length sequences, to searching for likely sequences in an

intractably large hypothesis space, to dealing with the multi-

modal nature of the prediction task, since typically there are

several correct ways to translate a given sentence.

The research community has made great advances on this

task, recently focusing the effort on the exploration of sev-

eral variants of neural models (Bahdanau et al., 2014; Luong

et al., 2015; Gehring et al., 2017; Vaswani et al., 2017) that

have greatly improved the state of the art performance on
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public benchmarks. However, several open questions re-

main (Koehn & Knowles, 2017). In this work, we analyze

top-performing trained models in order to answer some of

these open questions. We target better understanding to help

prioritize future exploration towards important aspects of

the problem and therefore speed up progress.

For instance, according to conventional wisdom neural

machine translation (NMT) systems under-estimate rare

words (Koehn & Knowles, 2017), why is that? Is the model

poorly calibrated? Is this due to exposure bias (Ranzato

et al., 2016), i.e., the mismatch between the distribution of

words observed at training and test time? Or is this due

to the combination of uncertainty in the prediction of the

next word and inference being an argmax selection pro-

cess, which always picks the most likely/frequent word?

Similarly, it has been observed (Koehn & Knowles, 2017)

that performance degrades with large beams. Is this due

to poor fitting of the model which assigns large probability

mass to bad sequences? Or is this due to the heuristic nature

of this search procedure which fails to work for large beam

values? In this paper we will provide answers and solutions

to these and other related questions.

The underlying theme of all these questions is uncertainty,

i.e. the one-to-many nature of the learning task. In other

words, for a given source sentence there are several target

sequences that have non negligible probability mass. Since

the model only observes one or very few realizations from

the data distribution, it is natural to ask the extent to which

an NMT model trained with token-level cross-entropy is

able to capture such a rich distribution, and whether the

model is calibrated. Also, it is equally important to under-

stand the effect that uncertainty has on search and whether

there are better and more efficient search strategies.

Unfortunately, NMT models have hundreds of millions of

parameters, the search space is exponentially large and we

typically observe only one reference for a given source sen-

tence. Therefore, measuring fitness of a NMT model to

the data distribution is a challenging scientific endeavor,

which we tackle by borrowing and combining tools from

the machine learning and statistics literature (Kuleshov &

Liang, 2015; Guo et al., 2017). With these tools, we show

that search works surprisingly well, yielding highly likely

sequences even with relatively narrow beams. Even if we
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consider samples from the model that have similar likeli-

hood, beam hypotheses yield higher BLEU on average. Our

analysis also demonstrates that although NMT is well cal-

ibrated at the token and set level, it generally spreads too

much probability mass over the space of sequences. This

often results in individual hypotheses being under-estimated,

and overall, poor quality of samples drawn from the model.

Interestingly, systematic mistakes in the data collection pro-

cess also contribute to uncertainty, and a particular such kind

of noise, the target sentence being replaced by a copy of the

corresponding source sentence, is responsible for much of

the degradation observed when using wide beams.

This analysis – the first one of its kind – introduces tools and

metrics to assess fitting of the model to the data distribution,

and shows areas of improvement for NMT. It also suggests

easy fixes for some of the issues reported by practitioners.

We also release the data we collected for our evaluation,

which consists of ten human translations for 500 sentences

taken from the WMT’14 En-Fr and En-De test sets.1

2. Related Work

In their seminal work, Zoph et al. (2015) frame translation as

a compression game and measure the amount of information

added by translators. While this work precisely quantifies

the amount of uncertainty, it does not investigate its effect

on modeling and search. In another context, uncertainty

has been considered for the design of better evaluation met-

rics (Dreyer & Marcu, 2012; Galley et al., 2015), in order

not to penalize a model for producing a valid translation

which is different from the provided reference.

Most work in NMT has focused on improving accuracy

without much consideration for the intrinsic uncertainty of

the translation task itself (Bahdanau et al., 2014; Luong

et al., 2015; Gehring et al., 2017; Vaswani et al., 2017) (§3).

Notable exceptions are latent variable models (Blunsom

et al., 2008; Zhang et al., 2016) which explicitly attempt

to model multiple modes in the data distribution, or de-

coding strategies which attempt to predict diverse outputs

while leaving the model unchanged (Gimpel et al., 2013;

Vijayakumar et al., 2016; Li & Jurafsky, 2016; Cho, 2016).

However, none of these works check for improvements in

the match between the model and the data distribution.

Recent work on analyzing machine translation has focused

on topics such as comparing neural translation to phrase-

based models (Bentivogli et al., 2016; Toral & Sanchez-

Cartagena, 2017). Koehn & Knowles (2017) presented

several challenges for NMT, including the deterioration of

accuracy for large beam widths and the under-estimation of

1Additional reference translations are available from:
https://github.com/facebookresearch/

analyzing-uncertainty-nmt.

rare words, which we address in this paper. Isabelle et al.

(2017) propose a new evaluation benchmark to test whether

models can capture important linguistic properties. Finally,

Niehues et al. (2017) focus on search and argue in favor of

better translation modeling instead of improving search.

3. Data Uncertainty

Uncertainty is a core challenge in translation, as there are

several ways to correctly translate a sentence; but what are

typical sources of uncertainty found in modern benchmark

datasets? Are they all due to different ways to paraphrase

a sentence? In the following sections, we answer these

questions, distinguishing uncertainty inherent to the task

itself (§3.1), and uncertainty due to spurious artifacts caused

by the data collection process (§3.2).

3.1. Intrinsic Uncertainty

One source of uncertainty is the existence of several seman-

tically equivalent translations of the same source sentence.

This has been extensively studied in the literature (Dreyer &

Marcu, 2012; Padó et al., 2009). Translations can be more

or less literal, and even if literal there are many ways to

express the same meaning. Sentences can be in the active

or passive form and for some languages determiners and

prepositions such as ‘the’, ‘of’, or ‘their’ can be optional.

Besides uncertainty due to the existence of distinct, yet se-

mantically equivalent translations, there are also sources of

uncertainty due to under-specification when translating into

a target language more inflected than the source language.

Without additional context, it is often impossible to predict

the missing gender, tense, or number, and therefore, there

are multiple plausible translations of the same source sen-

tence. Simplification or addition of cultural context are also

common sources of uncertainty (Venuti, 2008).

3.2. Extrinsic Uncertainty

Statistical machine translation systems, and in particular

NMT models, require lots of training data to perform well.

To save time and effort, it is common to augment high

quality human translated corpora with lower quality web

crawled data (Smith et al., 2013). This process is error

prone and responsible for introducing additional uncertainty

in the data distribution. Target sentences may only be partial

translations of the source, or the target may contain informa-

tion not present in the source. A lesser-known example are

target sentences which are entirely in the source language,

or which are primarily copies of the corresponding source.

For instance, we found that between 1.1% to 2.0% of train-

ing examples in the WMT’14 En-De and WMT’14 En-Fr

datasets (§4.2) are “copies” of the source sentences, where

a target sentence is labeled as “copy” if the intersection over

https://github.com/facebookresearch/analyzing-uncertainty-nmt
https://github.com/facebookresearch/analyzing-uncertainty-nmt
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the union of unigrams (excluding punctuation and numbers)

is at least 50%. Source copying is particularly interesting

since we show that, even in small quantities, it can signifi-

cantly affect the model output (§5.3). Note that test sets are

manually curated and never contain copies.

4. Experimental Setup

4.1. Sequence to Sequence Model

Our experiments rely on the pre-trained models of the

fairseq-py toolkit (Gehring et al., 2017), which achieve com-

petitive performance on the datasets we consider. Formally,

let x be an input sentence with m words {x1, . . . , xm},

and t be the ground truth target sentence with n words

{t1, . . . , tn}. The model is composed of an encoder and

a decoder. The encoder takes x through several convo-

lutional layers to produce a sequence of hidden states,

z = {z1, . . . , zm}, one per input word. At time step k,

the decoder takes a window of words produced so far (or

the ground truth words at training time), {tk−1, . . . , tk−i},

the set of encoder hidden states z and produces a distribu-

tion over the current word: p(tk|tk−1, . . . , tk−i, z). More

precisely, at each time step, an attention module (Bahdanau

et al., 2014) summarizes the sequence z with a single vector

through a weighted sum of {z1, . . . , zm}. The weights de-

pend on the source sequence x and the decoder hidden state,

hk, which is the output of several convolutional layers taking

as input {tk−1, . . . , tk−i}. From the source attention vector,

the hidden state of the decoder is computed and the model

emits a distribution over the current word as in: p(tk|hk) =
softmax(Whk + b). Gehring et al. (2017) provides further

details. To train the translation model, we minimize the

cross-entropy loss: L = −
∑n

i=1
log p(ti|ti−1, . . . , t1,x),

using Nesterov’s momentum (Sutskever et al., 2013).2

At test time, we aim to output the most likely translation

given the source sentence, according to the model estimate.

We approximate such an output via beam search. Unless oth-

erwise stated, we use beam width k = 5, where hypotheses

are selected based on their length-normalized log-likelihood.

Some experiments consider sampling from the model con-

ditional distribution p(ti|ti−1,hi−1,x), one token at a time,

until the special end of sentence symbol is sampled.

4.2. Datasets and Evaluation

We consider the following datasets:

WMT’14 English-German (En-De): We use the same

setup as Luong et al. (2015) which comprises 4.5M sen-

tence pairs for training and we test on newstest2014. We

build a validation set by removing 44k random sentence-

2We also obtain similar results with models trained with
sequence-level losses (Edunov et al., 2018).

En-Fr En-De

Automatic evaluation
train PPL 2.54 5.14
valid PPL 2.56 6.36
test BLEU 41.0 24.8

Human evaluation (pairwise)
Ref > Sys 42.0% 80.0%
Ref = Sys 11.6% 5.6%
Ref < Sys 46.4% 14.4%

Table 1. Automatic and human evaluation on a 500 sentence subset

of the WMT’14 En-Fr and En-De test sets. Models generalize well

in terms of perplexity and BLEU. Our human evaluation compares

(reference, system) pairs for beam 5.

pairs from the training data. As vocabulary we use 40k

sub-word types based on a joint source and target byte pair

encoding (BPE; Sennrich et al., 2016).

WMT’17 English-German (En-De): The above pre-

processed version of WMT’14 En-De did not provide a split

into sub-corpora which we required for some experiments.

We therefore also experiment on the 2017 data where we

test on newstest2017. The full version of the dataset (orig-

inal) comprises 5.9M sentence pairs after length filtering

to 175 tokens. We then consider the news-commentary

portion with 270K sentences (clean), and a filtered ver-

sion comprising 4M examples after removing low scoring

sentence-pairs according to a model trained on the cleaner

news-commentary portion.

WMT’14 English-French (En-Fr): We remove sentences

longer than 175 words and pairs with a source/target length

ratio exceeding 1.5 resulting in 35.5M sentence pairs for

training. The source and target vocabulary is based on 40k

BPE types. Results are reported on both newstest2014 and

a validation set held-out from the training data comprising

26k sentence pairs.

We evaluate with tokenized BLEU (Papineni et al., 2002)

on the corpus-level and the sentence-level, after removing

BPE splitting. Sentence-level BLEU is computed similarly

to corpus BLEU, but with smoothed n-gram counts (+1) for

n > 1 (Lin & Och, 2004).

5. Uncertainty and Search

In this section we start by showing that the models under

consideration are well trained (§5.1). Next, we quantify the

amount of uncertainty in the model’s output and compare

two search strategies: beam search and sampling (§5.2).

Finally we investigate the influence of a particular kind of

extrinsic uncertainty in the data on beam search, and provide

an explanation for the performance degradation observed

with wide beams (§5.3).
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Figure 1. Left: Cumulative sequence probability of hypotheses obtained by beam search and sampling on the WMT’14 En-Fr valid

set; Center: same, but showing the average per-token probability as we increase the number of considered hypotheses, for each source

sentence we select the hypothesis with the maximum probability (orange) or sentence-level BLEU (green); Right: same, but showing

averaged sentence-level BLEU as we increase the number of hypotheses.

5.1. Preliminary: Models Are Well Trained

We start our analysis by confirming that the models under

consideration are well trained. Table 1 shows that the mod-

els, and particularly the En-Fr model, achieve low perplexity

and high BLEU scores.

To further assess the quality of these models, we conducted

a human evaluation with three professional translators. An-

notators were shown the source sentence, reference trans-

lation, and a translation produced by our model through

beam search—a breadth-first search that retains only the

k most likely candidates at each step. Here, we consider

a relatively narrow beam of size k = 5. The reference

and model translations were shown in random order and

annotators were blind to their identity. We find that model

translations roughly match human translations for the En-Fr

dataset, while for the En-De dataset humans prefer the ref-

erence over the model output 80% of the time. Overall, the

models are well trained—particularly the En-Fr model—

and beam search can find outputs that are highly rated by

human translators.

5.2. Model Output Distribution Is Highly Uncertain

How much uncertainty is there in the model’s output dis-

tribution? What search strategies are most effective (i.e.,

produce the highest scoring outputs) and efficient (i.e., re-

quire generating the fewest candidates)? To answer these

questions we sample 10k translations and compare them to

those produced by beam search with k = 5 and k = 200.

Figure 1 (Left) shows that the model’s output distribution

is highly uncertain: even after drawing 10k samples we

cover only 24.9% of the sequence-level probability mass.

And while beam search is much more efficient at searching

this space, covering 14.6% of the output probability mass

with k = 5 and 22.4% of the probability mass with k = 200,

these finding suggest that most of the probability mass is

spread elsewhere in the space (see also §6.2).

Figure 1 also compares the average sentence-level BLEU

and model scores of hypotheses produced by sampling and

beam search. Sampling results for varying sample size

n = 1, . . . , 10k are on two curves: orange reports probabil-

ity (Center) and sentence BLEU (Right) for the sentence

with the highest probability within n samples, while green

does the same for the sentence with the highest sentence

BLEU in the same set (Sokolov et al., 2008). We find that

sampling produces hypotheses with similar probabilities

as beam search (Center), however, for the same likelihood

beam hypotheses have higher BLEU scores (Right). We

also note that BLEU and model probability are imper-

fectly correlated: while we find more likely translations

as we sample more candidates, BLEU over those samples

eventually decreases (Right, orange curve).3 Vice versa,

hypotheses selected by BLEU have lower likelihood score

beyond 80 samples (Center, green curve). We revisit this

surprising finding in §5.3.

Finally, we observe that the model on average assigns much

lower scores to the reference translation compared to beam

hypotheses (Figure 1, Center). To better understand this,

in Figure 2 we compare the token-level model probabili-

ties of the reference translation, to those of outputs from

beam search and sampling. We observe once again that

beam search is a very effective search strategy, finding

hypotheses with very high average token probabilities and

rarely leaving high likelihood regions; indeed only 20% of

beam tokens have probabilities below 0.7. In contrast, the

probabilities for sampling and the human references are

much lower. The high confidence of beam is somewhat sur-

prising if we take into account the exposure bias (Ranzato

et al., 2016) of these models, which have only seen gold

3Hypothesis length only decreases slightly with more samples,
i.e., the BLEU brevity penalty moves from 0.975 after drawing
300 samples to 0.966 after 10k samples.
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Figure 2. Probability quantiles for tokens in the reference, beam

search hypotheses (k = 5), and sampled hypotheses for the

WMT’14 En-Fr validation set.

translations at training time. We refer the reader to §6.2 for

discussion about how well the model actually fits the data

distribution.

5.3. Uncertainty Causes Large Beam Degradation

In the previous section we observed that repeated sampling

from the model can have a negative impact on BLEU, even

as we find increasingly likely hypotheses. Similarly, we ob-

serve lower BLEU scores for beam 200 compared to beam 5,

consistent with past observations about performance degra-

dation with large beams (Koehn & Knowles, 2017).

Why does the BLEU accuracy of translations found by

larger beams deteriorate rather than improve despite these

sequences having higher likelihood? To answer this ques-

tion we return to the issue of extrinsic uncertainty in the

training data (§3.2) and its impact on the model and search.

One particularly interesting case of noise is when target

sentences in the training set are simply a copy of the source.

In the WMT’14 En-De and En-Fr dataset between 1.1% and

2.0% of the training sentence pairs are “copies” (§3.2). How

does the model represent these training examples and does

beam search find them? It turns out that copies are over-

represented in the output of beam search. On WMT’14

En-Fr, beam search outputs copies at the following rates:

2.6% (beam=1), 2.9% (beam=5), 3.2% (beam=10) and 3.5%

(beam=20).

To better understand this issue, we trained models on the

news-commentary portion of WMT’17 English-German

which does not contain copies. We added synthetic copy

noise by randomly replacing the true target by a copy of the

source with probability pnoise. Figure 3 shows that larger

beams are much more affected by copy noise. Even just 1%

of copy noise can lead to a drop of 3.3 BLEU for a beam

of k = 20 compared to a model with no added noise. For a

10% noise level, all but greedy search have their accuracy

more than halved.

Next, we examine model probabilities at the token-level.
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Figure 3. Translation quality of models trained on WMT’17

English-German news-commentary data with added synthetic copy

noise in the training data (x-axis) tested with various beam sizes

on the validation set.
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Figure 4. Average probability at each position of the output se-

quence on the WMT’14 En-Fr validation set, comparing the refer-

ence translation, beam search hypothesis (k = 5), and copying the

source sentence.

Specifically, we plot the average per position log-probability

assigned by the En-Fr model to each token of: (i) the ref-

erence translation, (ii) the beam search output with k = 5,

and (iii) a synthetic output which is a copy of the source

sentence. Figure 4 shows that the probability of copying the

first source token is very unlikely according to the model

(and actually matches the ground truth rate of copy noise).

However, after three tokens the model switches to almost

deterministic transitions. Because beam search proceeds

in strict left-to-right manner, the copy mode is only reach-

able if the beam is wide enough to consider the first source

word which has low probability. However, once in the

beam, the copy mode quickly takes over. This explains

why large beam settings in Figure 3 are more susceptible

to copy noise compared to smaller settings. Thus, while

larger beam widths are effective in finding higher likelihood

outputs, such sequences may correspond to copies of the

source sentence, which explains the drop in BLEU score

for larger beams. Deteriorating accuracy of larger beams

has been previously observed (Koehn & Knowles, 2017),
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Figure 5. BLEU on newstest2017 as a function of beam width

for models trained on all of the WMT’17 En-De training data

(original), a filtered version of the training data (filtered) and a

small but clean subset of the training data (clean). We also show

results when excluding copies as a post-processing step (no copy).

however, it has not until now been linked to the presence of

copies in the training data or model outputs.

Note that this finding does not necessarily imply a failure of

beam nor a failure of the model to match the data distribu-

tion. Larger beams do find more likely hypotheses. It could

very well be that the true data distribution is such that no

good translation individually get a probability higher than

the rate of copy. In that case, even a model perfectly match-

ing the data distribution will return a copy of the source. We

refer the reader to §6.2 for further analysis on this subject.

The only conclusion thus far is that extrinsic uncertainty

is (at least partially) responsible for the degradation of

performance of large beams.

Finally, we present two simple methods to mitigate this is-

sue. First, we pre-process the training data by removing low

scoring sentence-pairs according to a model trained on the

news-commentary portion of the WMT’17 English-German

data (filtered; §4.2). Second, we apply an inference con-

straint that prunes completed beam search hypotheses which

overlap by 50% or more with the source (no copy). Figure 5

shows that BLEU improves as beam gets wider on the clean

portion of the dataset. Also, the performance degradation is

greatly mitigated by both filtering the data and by constrain-

ing inference, with the best result obtained by combining

both techniques, yielding an overall improvement of 0.5

BLEU over the original model. Appendix ?? describes how

we first discovered the copy noise issue.

6. Model Fitting and Uncertainty

The previous section analyzed the most likely hypotheses

according to the model distribution. This section takes a

more holistic view and compares the estimated distribution

to the true data distribution. Since exact comparison is in-

tractable and we can only have access to few samples from
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Figure 6. Unigram word frequency over the human references, the

output of beam search (k = 5) and sampling on a random subset

of 300K sentences from the WMT’14 En-Fr training set.

the data distribution, we propose several necessary condi-

tions for the two distributions to match. First, we inspect the

match for unigram statistics. Second, we move to analyze

calibration at the set level and design control experiments to

assess probability estimates of sentences. Finally, we com-

pare in various ways samples from the model with human

references. We find uncontroversial evidence that the model

spreads too much probability mass in the hypothesis space

compared to the data distribution, often under-estimating

the actual probability of individual hypothesis. Appendix ??

outlines another condition.

6.1. Matching Conditions at the Token Level

If the model and the data distribution match, then unigram

statistics of samples drawn from the two distributions should

also match (not necessarily vice versa). This is a particularly

interesting condition to check since NMT models are well

known to under-estimate rare words (Koehn & Knowles,

2017); is the actual model poorly estimating word frequen-

cies or is this just an artifact of beam search? Figure 6 shows

that samples from the model have roughly a similar word

frequency distribution as references in the training data, ex-

cept for extremely rare words (see Appendix ?? for more

analysis of this issue). On the other hand, beam search over-

represents frequent words and under-represents more rare

words, which is expected since high probability sequences

should contain more frequent words.

Digging deeper, we perform a synthetic experiment where

we select 10 target word types w ∈ W and replace each w in

the training set with either w1 or w2 at a given replacement

rate p(w1|w).
4 We train a new model on this modified

data and verify whether the model can estimate the original

replacement rate that determines the frequency of w1 and w2.

Figure 7 compares the replacement rate in the data (prior)

4Each replaced type has a token count between 3k-7k, corre-
sponding to bin 20 in Fig. 6. |W | = 50k.
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model with beam search or sampling compared to the data distri-

bution; prior is the data distribution. Values below prior underesti-

mate the data distribution and vice versa.

to the rate measured over the output of either beam search

or sampling. Sampling closely matches the data distribution

for all replacement rates but beam greatly overestimates

the majority class: it either falls below the prior for rates

of 0.5 or less, or exceeds the prior for rates larger than

0.5. These observations confirm that the model closely

matches unigram statistics except for very rare words,

while beam prefers common alternatives to rarer ones.

6.2. Matching Conditions at the Sequence Level

In this section, we further analyze how well the model cap-

tures uncertainty in the data distribution via a sequence of

necessary conditions operating at the sequence level.

Set-Level Calibration. Calibration (Guo et al., 2017;

Kuleshov & Liang, 2015) verifies whether the model proba-

bility estimates pm match the true data probabilities pd. If

pd and pm match, then for any set S, we observe:

E
x∼pd

[I{x ∈ S}] = pm(S).

The left hand side gives the expected rate at which samples

from the data distribution appear in S; the right hand side

sums the model probability estimates over S.

In Figure 8, we plot the left hand side against the right hand

side where S is a set of 200 beam search hypotheses on

the WMT’14 En-Fr validation set, covering an average of

22.4% of the model’s probability mass. Points are binned so

that each point represents 10% of sentences in the validation

or test set (Nguyen & O’Connor, 2015). For instance, the

rightmost point in the figure corresponds to sentences for

which beam collects nearly the entire probability mass, typi-

cally very short sentences. This experiment shows that the

model matches the data distribution remarkably well at

the set level on both the validation and test set.

Control Experiment. To assess the fit to the data distribu-
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Figure 8. Matching distributions at the set level using 200 beam

search hypotheses on the WMT’14 En-Fr valid and test set. Points

are binned so that each represents 10% of sentences. The lowest

probability bin (not shown) has value 0 (reference never in S).
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Figure 9. Rate of copy of the source sentence (exact and partial) as

a function of the amount of copy noise present in the model’s train

data (§5.3). Results on WMT’17 En-De validation set.

tion further, we re-consider the models trained with varying

levels of copy noise (pnoise, cf. §5.3) and check if we re-

produce the correct amount of copying (evaluated at the

sequence level) when sampling from the model. Figure 9

shows a large discrepancy: at low pnoise the model under-

estimates the probability of copying (i.e., too few of the

produced samples are exact copies of the source), while at

high noise levels it overestimates it. Moreover, since our

model is smooth, it can assign non-negligible probability

mass to partial copies5 which are not present in the train-

ing data. When we consider both partial and exact copies,

the model correctly reproduces the amount of copy noise

present in the training data. Therefore, although the model

appears to under-estimate some hypotheses at low copy

rates, it actually smears probability mass in the hypothe-

sis space. Overall, this is the first concrete evidence of the

model distribution not perfectly fitting the data distribution.

5Partial copies are identified via the IoU at 50% criterion (§3.2).



Analyzing Uncertainty in Neural Machine Translation

Expected Inter-Sentence BLEU is defined as

E
x∼p,x′

∼p
[BLEU(x, x′)]

which corresponds to the expected BLEU between two trans-

lations sampled from a distribution p where x is the hypothe-

sis and x′ is the reference. If the model matches the data dis-

tribution, then the expected BLEU computed with sentences

sampled from the model distribution pm should match the

expected BLEU computed using two independent reference

translations (see §6.3 for more details on data collection).

We find that the expected BLEU is 44.5 and 32.1 for human

translations on the WMT’14 En-Fr and WMT’14 En-De

datasets, respectively.6 However, the expected BLEU of the

model is only 28.6 and 24.2, respectively. This large dis-

crepancy provides further evidence that the model spreads

too much probability mass across sequences, compared

to what we observe in the actual data distribution.

6.3. Comparing Multiple Model Outputs to Multiple

References

Next we assess if model outputs are similar to those pro-

duced by multiple human translators. We collect 10 addi-

tional reference translations from 10 distinct humans trans-

lators for each of 500 sentences randomly selected from

the WMT’14 En-Fr and En-De test sets. We also collect

a large set of translations from the model via beam search

(k = 200) or sampling. We then compute two versions

of oracle BLEU at the sentence-level: (i) oracle reference

reports BLEU for the most likely hypothesis with respect to

its best matching reference (according to BLEU); and (ii)

average oracle computes BLEU for every hypothesis with

respect to its best matching reference and averages this num-

ber over all hypotheses. Oracle reference measures if one of

the human translations is similar to the top model prediction,

while average oracle indicates whether most sentences in

the set have a good match among the human references. The

average oracle will be low if there are hypotheses that are

dissimilar from all human references, suggesting a possible

mismatch between the model and the data distributions.

Table 2 shows that beam search (besides degradation due

to copy noise) produces not only top scoring hypotheses

that are very good (single reference scoring at 41 and oracle

reference at 70) but most hypotheses in the beam are close

to a reference translation (as the difference between oracle

reference and average oracle is only 5 BLEU points). Unfor-

tunately, beam hypotheses lack diversity and are all close to

a few references as indicated by the coverage number, which

measures how many distinct human references are matched

6We also report inter-human pairwise corpus BLEU: 44.8 for
En-Fr and 34.0 for En-De; and concatenated corpus BLEU over
all human references: 45.4 for En-Fr and 34.4 for En-De.

beam sampling
k = 5 k = 200 k = 200

Prob. covered 4.7% 11.1% 6.7%

Sentence BLEU
single reference 41.4 36.2 38.2
oracle reference 70.2 61.0 64.1
average oracle 65.7 56.4 39.1
- # refs covered 1.9 5.0 7.4

Corpus BLEU (multi-bleu.pl)
single reference 41.6 33.5 36.9
10 references 81.5 65.8 72.8

Table 2. Sentence and corpus BLEU for beam search hypotheses

and 200 samples on a 500 sentence subset of the WMT’14 En-Fr

test set. “Single reference” uses the provided reference and the

most likely hypothesis, while oracle reference and average oracle

are computed with 10 human references.

to at least one of the hypotheses. In contrast, hypotheses

generated by sampling exhibit opposite behavior: the qual-

ity of the top scoring hypothesis is lower, several hypothe-

ses poorly match references (as indicated by the 25 BLEU

points gap between oracle reference and average oracle) but

coverage is much higher. This finding is again consistent

with the previous observation that the model distribution

is too spread in hypothesis space. We conjecture that the

excessive spread may also be partly responsible for the lack

of diversity of beam search, as probability mass is spread

across similar variants of the same sequence even in the

region of high likelihood. This over-smoothing might be

due to the function class of NMT; for instance, it is hard

for a smooth class of functions to fit a delta distribution

(e.g., a source copy), without spreading probability mass to

nearby hypotheses (e.g., partial copies), or to assign exact 0

probability in space, resulting in an overall under-estimation

of hypotheses present in the data distribution.

7. Conclusions and Final Remarks

In this study we investigate the effects of uncertainty in

NMT model fitting and search. We found that search works

remarkably well. While the model is generally well cali-

brated both at the token and sentence level, it tends to diffuse

probability mass too much. We have not investigated the

causes of this, although we surmise that it is largely due

to the class of smooth functions that NMT models can rep-

resent. We instead investigated some of the effects of this

mismatch. In particular, excessive probability spread causes

poor quality samples from the model. It may also cause the

“copy mode” to become more prominent once the probabil-

ity of genuine hypotheses gets lowered. We show that this

latter issue is linked to a form of extrinsic uncertainty which

causes deteriorating accuracy with larger beams. Future

work will investigate even better tools to analyze distribu-

tions and leverage this analysis to design better models.
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