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Abstract: Recently, there have been many proposals for objectively analyzing un-

replicated factorial experiments. We review these methods along with some earlier

and perhaps lesser known ones. New methods are also proposed. The primary

aim of this paper is to compare these methods and their variants via an extensive

simulation study. Robustness of the various methods to non-normality is also con-

sidered. Many methods are comparable, but clearly some cannot be recommended.

The results from the study also suggest some basic principles for evaluating new

methods. Finally, we outline some issues that this study has raised and which might

benefit from work in other areas such as multiple comparisons, outlier detection,

ranking and selection, and robust statistics.
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1. Introduction

Since the 1980’s, the objective analysis of unreplicated two-level factorial
and fractional factorial designs has attracted much attention. The analysis of
unreplicated experiments with say n runs presents a challenge because while n−1
effects (excluding the overall mean) can be estimated by contrasts, there are no
degrees of freedom left to estimate the error variance. Consequently, standard t
tests cannot be used to identify the “active” effects.

In practice, the standard method for identifying active effects continues to
be a probability plot of the contrasts, the first method for this problem proposed
by Daniel (1959). See Daniel (1983) for an interesting personal recollection.
Plotting the unsigned contrasts on half-normal probability paper, the contrasts
for the “inert” effects fall along a straight line while those for the active ones tend
to fall off the line. There is a subjective element in deciding what constitutes
“falling off the line”, which has motivated the recent work to provide an objective
method.

This paper reviews various methods for analyzing unreplicated experiments
given in Box and Meyer (1986), Voss (1988), Lenth (1989), Benski (1989), Bissell
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(1989, 1992), Berk and Picard (1991), Juan and Pena (1992), Loh (1992), Le
and Zamar (1992), Dong (1993), Schneider, Kasperski and Weissfeld (1993) and
Venter and Steel (1996). This flurry of activity seems to have been motivated in
part by Taguchi’s practice (Taguchi (1987)) of pooling the smallest contrasts to
estimate the error variance in an ANOVA and applying the usual F distribution
critical values (Box (1988), Bissell (1989) and Berk and Picard (1991)). The
methods proposed in two lesser known papers, Seheult and Tukey (1982) and
Johnson and Tukey (1987), are also studied as well as earlier work by Holms and
Berrettoni (1969) and Zahn (1975a, b). Note that Daniel’s (1959) proposal did
provide an objective method, guardrails on a standardized half-normal plot, but
for the most part has been ignored. In order to analyze unreplicated experiments,
the assumption that at least some of the effects are “inert” needs to be made.
In fact, most of the existing methods assume effect sparsity, that only a few
effects are active, which seems to hold up in practice, say 20% (Box and Meyer
(1986)). Daniel (1976), p. 75 suggested 25% and lowered it to 20% in Daniel
(1983). These methods have varied motivations which will be considered in more
detail in Section 2.

In this paper, we focus on methods based on the unsigned contrasts or their
corresponding mean squares. This is because of the arbitrariness of “low” and
“high” factor level labels which has been pointed out by Shapiro and Wilk (1965),
Seheult and Tukey (1982) and Loh (1992). Since the method’s results should not
depend on the labeling, we consider the half-normal version, e.g., the half-normal
probability plot of the unsigned contrasts rather than the normal probability plot
of the contrasts. Note that Daniel (1976, 1983) prefers the normal probability
plot for detecting problems with the data such as outliers, however.

We need a common notation to resolve some conflicts in the literature. Lists
of the notation used and methods studied in this paper are provided below for
easy reference. There are k (= n − 1) effects denoted by κi, i = 1, . . . , k, e.g., 7,
15, 31 for the commonly run 8, 16 and 32 run designs. By contrast or estimated
effect, we mean the difference of the averages of the observations at the high and
low levels; the contrasts are denoted by ci and the unsigned contrasts by |ci|.
Also, the ith ordered unsigned contrast out of j contrasts is denoted by |c|(i)j .
The process or error variance is σ2, so that the error variance of ci denoted by
τ2 is [4/(k + 1)]σ2. Thus the problem is to decide which κi are active, i.e., non-
zero, using the contrasts ci. Normally distributed errors are assumed so that the
contrasts ci are normally distributed. Finally, the size of the active effect κi will
be given in multiples of σ, the process or error standard deviation.

In Section 4, the paper compares the methods listed above as well as some
new proposals presented in Section 3. To date, only limited studies comparing
some of these methods have been done: Zahn (1975b), Voss (1988), Berk and
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Picard (1991), Loh (1992), Dong (1993), Haaland and O’Connell (1995), Benski
(1995) and Benski and Cabau (1995). The problem in comparing these methods
is to do so on an equitable basis. For example, the methods perform differently
when all the effects are inert. Thus, the methods need to be calibrated as much
as possible without destroying the essence of the methods. The goal of the
comparison is to identify the good performers. Performance of the procedures
is evaluated through an extensive simulation study, which includes a limited
investigation into their performance under nonnormality.

List of Notation

n number of runs
k number of contrasts
k′ current number of contrasts being considered in sequential test
σ error standard deviation
τ contrast standard error
κi ith effect
ci ith contrast - estimate of ith effect
|c|(i) ith order statistic of the unsigned contrasts
|c|(i)k ith order statistic out of k unsigned contrasts
Mi ith mean square
M(i) ith smallest mean square
|z|(i)j expected value of ith standard half-normal order statistic out

of j

|z̃|(i)j median of ith standard half-normal order statistic out of j

z(i)j expected value of ith standard normal order statistic out of j

z̃(i)j median of ith standard normal order statistic out of j

αpool pooling level in Holms and Berrettoni (1969)
αfinal final level in Holms and Berrettoni (1969)
floor[x] largest integer less than x

ceiling[x] smallest integer greater than x

dF interquartile range
αactive probability of an effect being active (Box and Meyer 1986)
K model parameter for active effects in Box and Meyer (1986)
PSE pseudo standard error; see Lenth (1989) (11)
IMAD0 iterated median absolute deviation; see Juan and Pena (1992)
pi probability of declaring i effects active under all inert effects
EER experimentwise error rate
IER individual error rate
#AE number of active effects
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In Section 5, the paper presents a basis for evaluating new methods and lists
some issues raised by the study that merit further attention. Section 6 concludes
with some specific recommendations for the practitioner.

List of Methods

BEN89 Benski (1989)
BI89 Bissell (1989) uses (12)
BI92 Bissell (1992) uses (14)
BM86 Box and Meyer (1986)
BP91 Berk and Picard (1991) uses (13)
CORR correlation coefficient probability plot uses (26)
DAN59 Daniel (1959) uses (1)
DISP dispersion test uses (29)
DONG93 Dong (1993) uses (22)
HB69 Holms and Berrettoni (1969) uses (2)
HLOH92 half-normal version of Loh (1992)
HSW half-normal Shapiro-Wilk uses (28)
JP92 Juan and Pena (1992) uses (21)
JTUK87 Johnson and Tukey (1987) uses (6)
LEN89 Lenth (1989) uses (11)
MDONG uses iterative DONG93 estimator
MLEN LEN89 accounting for k′

MLZ92 modified Le and Zamar uses (18)
MSKW SKW93 accounting for k′

SKW93 Schneider et al. (1993) uses (23)
STUK82 Seheult and Tukey (1982)
VS96 Venter and Steel (1996) uses (25)
ZAHN75 Zahn (1975a, version S) uses (4)
ZAHN75(m) uses m smallest contrasts to estimate τ

2. Existing Methods

Daniel (1959)
Daniel (1959) used the idea of detecting outliers in a data set by probability

plotting as discussed above: i.e., the outliers, those falling off the line, correspond
to active effects. Note the implicit assumption of few active effects in order to
draw a line through bulk of small contrasts and how this method ingeniously
avoids the need for estimating σ. Its subjectivity was mentioned above, however.

Daniel (1959) also presented an objective graphical method, a standardized
probability plot with guardrails, which plots the unsigned contrasts divided by
the ordered unsigned contrast corresponding to order statistic closest to the 0.683
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percentile. Note that the 0.683 percentile of the half-normal distribution is equal
to τ , and suggests an estimate for the contrast standard error τ when all the
effects are inert. Thus, for example, for k = 15 effects, the unsigned contrasts
are standardized by |c|(11) and have the form:

|c|(i)/|c|(11). (1)

These statistics are referred to as modulus ratios since they are ratios of
modulii or absolute values. Note how the unknown scale is removed by the stan-
dardization and that only about 25% of the largest unsigned contrasts can be
tested sequentially starting with the largest. The guardrails are the correspond-
ing critical values drawn on the plot, where the critical value for |c|(i) is based on
the distribution of |c|(i)k. Active effects are then identified by the standardized
contrasts which exceed their corresponding guardrails. Birnbaum (1959) gave
approximations for the distribution of the largest modulus ratio and showed that
it is the most powerful test when there is only one active effect.

Holms and Berrettoni (1969)
Holms and Berrettoni (1969) proposed a method called chain-pooling. The

method works with the mean squares Mi which are proportional to the squared
contrasts c2

i and compares the largest standardized mean squares. The stan-
dardization is based on the smallest mean squares whose corresponding effects
are likely not active; the determination whether a particular mean square is
pooled or not is based on all smaller mean squares.

More formally, starting with the m (possibly equal to one) smallest mean
squares, use U(m+1) = (m + 1)M(m+1)/

∑m+1
i=1 M(i) to determine whether the

next largest mean square M(m+1) should be pooled or not at level αpool, say 0.25.
Pooling is stopped once the p-value falls below αpool. Then declare active those
effects corresponding to the larger mean squares whose p-values are less than
αfinal using:

jM(l)/
( j−1∑

i=1

M(i) + M(l)

)
, (2)

where the j−1 smallest Mi’s are pooled. Critical values based on all inert effects
for k = 15 are given in their Table 1. That is, αpool controls how many of the
smallest mean squares are pooled while αfinal controls how many of the largest
mean squares are declared significant. Thus, a strategy is defined by m, αpool and
αfinal. The motivation for this procedure was the case when there are a large
number of active effects; thus, an estimate for error variance needs to be based
on a small number of contrasts in which case m should be set small and possibly
to one.
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Zahn (1975a)
Motivated by Daniel (1959), Zahn (1975a) proposed using an alternative

estimate of the contrast standard error for standardizing the unsigned contrasts
based on 68.3% of smallest unsigned contrasts. That is, τ can be estimated by
the slope of the regression line through the origin on Daniel’s half-normal plot:

SZAHN =
m∑

i=1

|c|(i)|z|(i)k/
m∑

i=1

|z|2(i)k , (3)

where m = floor[0.683k+0.5] and |z|(i)k is the expectation of |c|(i). Zahn (1975b)
showed that SZAHN has a smaller mean squared error (MSE) than |c|(11) for
k = 15 which explains the suggestion, his Version S, of using:

|c|(i)/SZAHN. (4)

Like (1), (4) is designed for testing only a few of the largest unsigned con-
trasts, i.e., four for k = 15 since m = 11. In contrast with Daniel (1959), the
critical value for |c|(i) is based on the distribution of |c|(i)i, i.e., the ith or largest
order statistic in a sample of size i.

Zahn (1975b) also studied Versions XR and SR based on (1) and (4) re-
spectively, where τ is re-estimated in subsequent tests based on a variable m,
m′ = floor[0.683k′ + 0.5], where k′ is the current number of contrasts being con-
sidered. Note that |z|(i)k′ is used in estimating τ in both the S and SR versions.

Seheult and Tukey (1982)
Seheult and Tukey (1982) used an outlier procedure based on the quartiles

of a synthetic batch of contrasts, namely zero plus all the contrasts with both
signs giving a total of 2k+1 − 1 items. The threshold is twice the interquartile
range or, because of the symmetry of the synthetic batch, is four times the
median of the unsigned contrasts plus zero. In the terminology coined by Tukey
(1977), the outliers are those exceeding one-and-a-half hinge spreads outside the
nearest hinge. Assuming normality, the probability of exceeding the threshold is
very small, 0.007. Seheult and Tukey (1982) then proposed using this threshold
iteratively by removing the largest contrast and its associate if they exceed the
threshold and applying the procedure to the remaining 2k −1 synthetic contrasts
and so on.

Box and Meyer (1986)
Box and Meyer (1986) presented a Bayesian approach based on effect spar-

sity, i.e., there is a small proportion of active effects αactive. They used a scale
contaminated model which assumes that the active effects κi have a N(0, σ2

active)
distribution. Thus, contrasts ci corresponding to active effects have distribution
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N(0,K2σ2
inactive), where K2 = (σ2

inactive + σ2
active)/σ

2
inactive; contrasts ci corre-

sponding to inert effects have distribution N(0, σ2
inactive). For each effect, the

marginal posterior probability of being active is computed and declared active
if the probability exceeds 0.5. Specifically, the posterior probability of each of
the possible 2k models (i.e., an effect is active or not) is first computed. Then,
the marginal posterior probability is the sum of the posterior probabilities over
all those models containing the particular effect. Box and Meyer (1986) noted
that estimates for αactive and K based on ten published analyses of data sets
was (0.13-0.27) and (2.7-18) with averages of 0.2 and 9.6, respectively. This pro-
vides empirical support for the principle of effect sparsity and motivated their
recommendation of 0.2 and 10 for αactive and K, respectively.

Johnson and Tukey (1987)
Johnson and Tukey (1987) proposed a procedure based on display ratios

which are the unsigned contrasts divided by their respective typical order statis-
tics; i.e.,

|c|(i)/|z̃|(i)k, (5)

where |z̃|(i)k is the median of the half-normal ith order statistic in a sample of size
k. Their motivation for the display ratios was to make comparison easier since
the natural reference line is now horizontal with its height being an estimate of
τ . Contrast this with the half-normal plot, whose natural reference line is a line
through the origin whose slope is an estimate of τ .

The objective method that Johnson and Tukey (1987) proposed is based on
ratio-to-scale statistics which are computed as:

ratio-to-scale = display ratio/median display ratio. (6)

Critical values for the ith largest ratio-to scale statistic given in their Table 12
are for the ith largest or maximum ratio-to-scale statistic in a sample of size i.
Johnson and Tukey (1987), p. 203 then proposed using the ratio-to-scale statistics
sequentially, dropping the contrast corresponding to the maximum ratio-to-scale
and applying the procedure to the remaining contrasts. Note the similarity with
Daniel (1959) except that display ratios are used and the denominator is the
median rather than the 0.683 percentile.

Voss (1988)
Voss (1988) presented what he termed generalized modulus ratio (GMR)

tests. He considered non-decreasing functions f of the |c|(i) standardized by a
linear combination of them:

f(|c|(i))/
∑

aif(|c|(i)), (7)
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for some constants ai. Note that (1), (2), (4) and (13) to be discussed later
fall into this class. The main result in the paper is that GMR tests control
the experimentwise error, the probability of declaring at least one inactive effect
active. Voss (1988) considered for example a method based on the smallest 50%
of the mean squares (f(x) = x2) in which ai is a constant 1/m for the smallest
m(= 0.5n) unsigned contrasts and zero, otherwise.

Benski (1989)
Benski (1989) proposed using a modified Shapiro-Wilk test for normality

(Shapiro and Francia (1972)) to test the presence of active effects coupled with an
outlier test for identifying the particular effects that are active. The motivation
for the Shapiro-Wilk test is a ratio of two estimates of variation, the squared
estimated slope of the probability plot regression line and the standard deviation
of the contrasts. The modified Shapiro-Wilk statistic W ′ is

W ′ =
( k∑

i=1

z(i)kc(i)

)
2/

( k∑
i=1

z2
(i)k

k∑
i=1

(c(i) − c̄)2
)
, (8)

where c̄ is the average of the ordered contrasts c(i) and z(i)k are expected standard
normal order statistics in a sample of size k. Normality is rejected for small values
of W ′ which in this context corresponds to the contrasts all not having the same
mean (i.e., some are non-zero). Since (8) can also be viewed as a correlation-
type statistic (i.e., the mean of z(i)k is exactly zero), a large value (close to one)
indicates a strong association between the normal distribution and the observed
data. Consequently, small values of W ′ are taken to indicate the presence of at
least one active effect. Note that the original Shapiro-Wilk test uses constants
ai based on best linear unbiased estimation rather than the z(i)k based on least-
squares estimation presented here.

Once the Shapiro-Wilk test indicates the presence of active effects, Benski
(1989) proposed using an outlier test to identify the active effects. The outlier
test is based on a robust estimate of spread which uses the assumption of zero
mean for the inert effects to arrive at the interval (−2dF ,+2dF ), where dF is
the interquartile range, the difference between the first and third quartiles of
the contrasts ci. Those contrasts falling outside the interval are candidates for
active effects. Benski (1989) proposed the following procedure: if the Shapiro-
Wilk test is rejected, combine the p-values of both tests and declare the largest
contrast active if the combined test is rejected. Then, drop the largest contrast
and perform the same procedure on the remaining contrasts.

A comment about the first test in Benski’s (1989) proposal is worthwhile.
The Shapiro-Wilk test does not account for the arbitrariness of the factor level
labels. Shapiro and Wilk (1965) noted this drawback in applying their test
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statistic to data from a factorial experiment. Also, the test does not use the
information that the mean of the inert contrasts is zero. This suggests using a
half-normal version with the unsigned contrasts |ci| which will be presented in
Section 3. Also note that the second test is almost the same as the outlier test
used by Seheult and Tukey (1982).

Lenth (1989)
Lenth (1989) considered a robust estimator of the contrast standard error τ ,

which he termed the pseudo standard error estimate or PSE:

PSE = 1.5 · median{|ci|<2.5s0}|ci|, (9)

where
s0 = 1.5 · median|ci|. (10)

That is, PSE is a trimmed median which attempts to remove contrasts corre-
sponding to active effects. Active effects are then identified using the margin
of error ME=t0.975;dfPSE with degrees-of-freedom df = k/3 or the simultaneous
margin of error SME=tγ;dPSE, where γ = (1 + 0.951/k)/2. Note that PSE is
asymptotically normal (Dong 1993) and is consistent for τ when there are no
active effects but overestimates τ , otherwise. The degrees-of-freedom k/3 come
from an approximation of PSE2 by a scaled χ2 distribution. Using the PSE to
standardize the contrasts gives statistics of similar form as in Daniel (1959) and
Zahn (1975a):

|c|(i)/PSE. (11)

Bissell (1989)
Bissell (1989) proposed using Bartlett’s (1937) test for variance homogeneity

to identify the presence of active effects using the statistic

B = ln((1/k)
∑

Mi) − (1/k)
∑

ln(Mi), (12)

where exp(B) is the ratio of the arithmetic mean of the mean squares to their
geometric mean.

Bissell (1989) proposed using B sequentially for which the critical value at
the ith stage is based on the remaining k − i + 1 effects being inert; the critical
value is based on an appropriate F distribution.

Berk and Picard (1991)
Berk and Picard (1991) used the 60% smallest mean squares assuming that

they correspond to inert effects to test the remaining larger mean squares with
the statistic:

M(l)/
m∑

i=1

M(i). (13)
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This is similar to Holms and Berrettoni (1969) except that m is fixed here
rather than being determined by the contrasts. The critical values given in their
Table 1 were computed under all inert effects and take account of the m smallest
mean squares being the m smallest order statistics in a sample of size k. Berk
and Picard (1991) commented that this formalizes Taguchi’s (1987) approach of
pooling the smallest mean squares by accounting for their true distribution. Voss
(1988) considered the same method except that he based it on the 50% smallest
mean squares.

Bissell (1992)
When there are no active effects, all the mean squares Mi have the same

scaled χ2 distribution, whose variance is a function of its mean. This relationship
between the theoretical mean and variance provided the motivation for Cochran’s
(1954) dispersion tests which evaluates whether the relationship is supported by
the data. Letting M̄ and S2

M denote the sample mean and variance of the mean
squares, respectively, then the test statistic is the coefficient of variation for the
Mi’s:

SM/M̄, (14)

where k is the number of mean squares. The test rejects for large values with crit-
ical values for SM/M̄ being based on the approximation that ((k−1)/2)(SM /M̄ )2

∼ χ2
(k−1), given in Table 12 of Bissell (1992) for k = 2(1)31.
Bissell (1992) suggested dropping several mean squares that are obviously

active and then retesting the remaining effects. That is, the critical value for the
test statistic is based on the remaining effects being inert from the corresponding
sample size. Note that the χ2 approximation does not account for the fact that
the estimate M̄ is used rather than the true mean.

Le and Zamar (1992)
Le and Zamar (1992) proposed using an outlier test based on the ratio of

two estimates of scale, a non-robust estimate divided by a robust one. They
suggested using two M -estimates S1 and S2 of τ which satisfy

(1/k)
k∑

i=1

ρ[(ci − T )/S] = E(ρ(Z)), (15)

where Z has a standard normal distribution, and whose ρ-functions are

ρ1(x) =

{
x2, if |x| < a,
a2, otherwise,

(16)

and
ρ2(x) = ρ1 + β(x4 − 6x2). (17)
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Using the statistic
RLZAM = S2/S1, (18)

they proposed a sequential procedure by dropping the largest contrast and then
recalculating (18) with the remaining contrasts. The critical values are based
on all effects being inert for a sample size equal to the remaining number of
contrasts. Note the similarity with the first part of Loh’s (1992) proposal which
also uses a ratio of a robust and non-robust estimates of scale.

A practical problem with ρ2, however, is that it has two roots. To avoid this
problem, another non-robust estimator could be used such as one based on

ρ∗2(x) = x2. (19)

Juan and Pena (1992)
Juan and Pena (1992) proposed standardizing the contrasts by a different

estimator for τ . It is similar to Lenth’s (1989) PSE except that the calculation is
iterative as follows: (a) Defining MAD0 as the median of the k unsigned contrasts,
recompute the median of those unsigned contrasts not exceeding wMAD0 for
some constant w > 2. Continue until the median stops changing and denote this
by IMAD0. (b) Then the estimator for τ is:

τ̂IMAD = IMAD0/aw, (20)

where aw is a correction factor (See their Table 1 for aw for a range of w.) Juan
and Pena (1992) recommended w=3.5 and aw = 0.6578 and showed that IMAD0

has better MSE than PSE (11) when more than 25% of the effects are active.
They also showed that the estimator based on the interquartile range dF behaves
poorly and that using the trimmed median is generally better than the trimmed
mean when more than 20% of the effects are active.

Their procedure for identifying active effects can then be put in terms of the
statistics:

|c|(i)/τ̂IMAD, (21)

whose distribution is approximated by a standard normal distribution.

Loh (1992)
The motivation for Loh (1992) was to formally extend the graphical normal

plot. Noting that the arbitrariness of labels yields different normal plots, Loh
(1992) chose the set of contrasts with median closest to zero; in the case of ties,
the one with largest correlation coefficient of the regression line on the normal
probability plot is chosen. (This is related to the Shapiro-Wilk goodness-of-fit
idea.) Like Benski (1989), it is a hybrid procedure. The initial test determines
the presence of active effects by comparing the slope of the least-squares line
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through all contrasts versus the slope of line through a set of smaller contrasts
thought to be inert. The inert contrasts are those whose magnitude are less
than twice dF , the interquartile range (see Seheult and Tukey (1982) and Benski
(1989)). The test is rejected for large ratio values with the outliers then becoming
potential active effects. For identification, Loh (1992) proposed using the Scheffé
prediction interval based on the fitted line to the inliers in the previous test; i.e.,
those outliers falling outside the prediction interval are identified as active.

Note that some computation is required in finding the set of contrasts used in
the normal plot. Working with the unsigned contrasts eliminates all this computa-
tion, however; this suggests using a half-normal version which will be considered
in Section 3.

Dong (1993)
Similar to Lenth (1989), Dong (1993) proposed an estimator for τ but based

it on the trimmed mean of squared contrasts rather than the trimmed median of
the unsigned contrasts: sDONG =

√
m−1

∑
{|cj |<2.5s0} c2

j , where m is the number
of terms being summed and s0 is defined earlier in (10). Dong (1993) showed
that sDONG has smaller MSE than PSE which provided his motivation for using
it to standardize the contrasts as

|c|(i)/sDONG (22)

and suggested using tγ,m as the critical value for suitable choice of γ. Dong
(1993) also proposed iteratively calculating sDONG until it stops changing when
there are a large number of active effects.

Schneider, Kasperksi and Weissfeld (1993)
Schneider, Kasperksi and Weissfeld (1993) proposed standardizing the con-

trasts by an estimator of τ given in Wilk, Gnanadesikan and Freeny (1963); by
treating the m smallest unsigned contrasts all thought to be inert as a Type II
right-censored sample, τ can be estimated using the maximum likelihood estima-
tor (MLE) τ̂CEN. The MLE does not have a closed form, however. See details in
Schneider et al. (1993). Their motivation for treating the contrasts as a censored
sample was to reduce the bias and suggests the following standardized contrasts:

|c|(i)/τ̂CEN. (23)

Schneider et al. (1993) use the asymptotic normality of (23) to calculate
approximate critical values.

Venter and Steel (1996)
Venter and Steel (1996) proposed using a procedure which first tests whether

all effects are inert and, if rejected, identifies the active contrasts causing rejec-
tion.
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Their procedure uses successive ratios Vi, where

Vi = |c|(i+1)|/
√√√√(1/i)

i∑
j=1

|c|(j)2, (24)

whose corresponding p value is Pi = 1 − Fi(Vi), where Fi(x) = Prob(Vi ≤
X| all k effects are inert). Assuming effect sparsity, i.e., there are at least l inert
effects,

Sl = min(Pi : l ≤ i ≤ k − 1) (25)

is used to test that all effects are inert. If Sl ≤ sl(α), the test is rejected and the
active contrasts causing rejection test are identified by the first index q̂ ≥ l such
that Pq̂ ≤ sl(α). sl(α) is the αth quantile of the Sl distribution which is given
in their Table 2. Note the similarity of the strategies of Venter and Steel (1996)
and Holms and Berrettoni (1968).

3. Modifications and New Proposals

Some modifications of existing methods as well as new proposals will be
considered next.

Modified Loh (1992)
As suggested by Loh (1992), a formalization of the half-normal plot of the

unsigned contrasts can be done as follows: (a) the inliers are those not exceeding
four times the median of the unsigned contrasts; (b) fit the least-squares line
through origin of all ordered unsigned contrasts against their respective expected
standard half-normal order statistics to obtain a slope estimate β̂1; (c) fit the
least-squares line through origin of the ordered set of inliers defined in (a) against
their respective expected standard half-normal order statistics to obtain a slope
estimate β̂2; (d) the test for presence of active effects is based on R = β̂1/β̂2

which rejects for large values of R; (e) identify the active effects corresponding to
those outliers exceeding the prediction interval based on fitted line to the inliers
in (c) above; i.e., ||c|(l) − β̂2|z|(l)k| > S2(k′Fk′,m−1;γ)1/2(1 + w)1/2 where m is the
number of inliers, k′ = ceiling[k/4], S2 is the root mean squared error of the
fitted line in (c), and w = |z|2(l)k/

∑m
i=1 |z|2(i)k.

Modified Schneider et al. (1993) and Lenth (1989)
Schneider et al. (1993) and Lenth (1989) estimate τ based on censoring and

trimming. This could be done sequentially by dropping the largest contrast and
applying the procedures on the remaining contrasts whose sample size is one less.
The critical values would then be calculated under the reduced sample size at
each stage.
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Probability Plot Correlation Coefficient
As a measure of linearity of a probability plot, Filliben (1975) proposed

calculating the correlation coefficient between the ordered contrasts c(i) and the
median standard normal order statistics z̃(i)k.

RCORR =
k∑

i=1

(z̃(i)k − ¯̃z)(c(i) − c̄)/
(√√√√ k∑

i=1

(z̃(i)k − ¯̃z)2

√√√√ k∑
i=1

(c(i) − c̄)2
)
. (26)

Note the similarity with the modified Shapiro-Wilk statistic W ′ in (8) except
that medians are used instead of means. Again because of the arbitrariness of the
labels, we will consider a half-normal version which uses unsigned contrasts |ci|
and expected standard half-normal order statistics |z|(i)k (instead of medians) in
(26) above. Small values of RCORR suggest the presence of active effects. The
procedure could be used sequentially with critical values being calculated for the
reduced sample size at each stage.

Half-Normal Shapiro-Wilk Test
While Shapiro-Wilk (1965) suggested a half-normal version, it has apparently

not been discussed further in the literature. In the present context, it is natural
to consider this version since working with the unsigned contrasts |ci| removes
the arbitrariness of the labels. Using the means, variances and covariances of the
standard half-normal order statistics tabulated by Govindarajulu and Eisenstat
(1965), the Best Linear Unbiased Estimator (BLUE) of τ based on the m smallest
order statistics is given by (see Balakrishnan and Cohen (1991), p. 74)

τ̂BLUE = µ
˜

T Σ−1|c
˜
|( )/(µ

˜
T Σ−1µ

˜
), (27)

where |c
˜
|( ) denotes the vector of m smallest |ci|, µ

˜
is the vector of the means of

the m smallest standard half-normal order statistics in a sample of size k and
∑

is the variance-covariance matrix of these order statistics. (See Tables A1 and A2
in the Appendix for the coefficients used to compute (27) for n = 8 and n = 16,
respectively.) Since the MLE of τ based on the |ci| values is

τ̂MLE =

√√√√1
k

k∑
i=1

|ci|2,

we consider a Shapiro-Wilk type goodness-of-fit test given by

HSW = τ̂BLUE/τ̂MLE, (28)

which suggests the presence of active effects for small values of HSW. This statis-
tic can be used sequentially by removing the largest unsigned contrast and so
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forth with critical values being calculated for the reduced sample size at each
stage. Analogous to the Shapiro-Wilk test, the critical region is taken to be
small values of HSW which has been confirmed by empirical analysis.

Dispersion Test
Since the |ci| have a half-normal distribution (under all inert effects), the

ordered |c|(i) on average should be close to τ |z|(i)k. Consequently, we propose a
dispersion test procedure based on the m smallest |ci| values, using the statistic

Dm =
1
m

m∑
i=1

( |c|(i)
PSE |z|(i)k

− 1
)2

. (29)

Note that since PSE is a “robust” estimator of τ , a significant departure of
|c|(i)/PSE from its expected value |z|(i)k (under all inert effects) suggests an
active contrast so that the test rejects for large values of Dm in (29). This
statistic can also be used sequentially with critical values being calculated for
the reduced sample size at each stage.

4. A Comparison of the Methods

First, similarities in the form of the methods will be presented in Section
4.1. Then a comparison of their performance based on a simulation study will
be discussed in Section 4.2.

4.1. An initial comparison

Grouping the methods into the following broad categories is helpful:

Directed vs. Composite Directed methods test the individual effects directly.
DAN59, DONG93, JP92, LEN89, SKW93 and ZAHN75 (also the modified ver-
sions MDONG, MLEN, MSKW) standardize the contrasts by various estimates
of σ. BM86 and JTUK87 use individual posterior probabilities and ratio-to-scale
statistics, respectively. HB69, BP91 and VS96 use mean squares. The second
parts of BEN89 and HLOH92 test are also directed; BEN89’s second part is the
same as STUK82 and that of HLOH92 is related. The composite methods test all
the effects as a group. These include BI89, BI92, CORR, DISP, HSW, MLZ92,
as well as the first parts of BEN89 and HLOH92.
Sequential BI89, BI92, DAN59, HB69, JP92, JTUK87, MLZ92, STUK82, and
ZAHN75 as proposed are sequential meaning that some computation is done at
each stage with the remaining contrasts. For all the sequential methods except
DAN59, the critical values are based on all inert effects for the current sample
size at a given stage; DAN59 bases its critical values on all k = n − 1 effects
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being inert. The other methods not listed above are not sequential but a suitable
version could be developed.
Hybrid BEN89 and HLOH92 are hybrids of two methods.

4.2. A simulation study

Limited studies comparing only some of the existing methods listed above
have been done: Zahn (1975b), Voss (1988), Berk and Picard (1991), Loh (1992),
Dong (1993), Haaland and O’Connell (1995), Benski (1995) and Benski and
Cabau (1995). Because the off-the-shelf performance of these methods is not the
same when all effects are inert, it is difficult to compare the power of the various
methods directly. Table 1 gives the off-the-shelf performance of the existing
methods presented in Section 2 when all effects are inert. Note that the half-
normal version of Loh (1992) given in Section 3 is used rather than the original full
normal version. Based on 10,000 simulations for a 16 run experiment (k = 15),
Table 1 gives the observed proportion of simulations when zero to eight effects
were declared active under all effects being inert. Note that no two procedures
have exactly the same performance.

Table 1. Off-the-shelf performance of existing methods pi = observed propor-
tion of simulations detecting i effects under all inert effects for 16 run design
(∗ indicates ≥ 8 declared effects)

number of declared effects
method 0 1 2 3 4 5 6 7 8 IER EER

BEN89 .975 .020 .003 .002 .000 .000 .000 .000 .0022 .025
BI89 .948 .023 .007 .004 .002 .003 .002 .002 .009∗ .0139 .052
BI92 .834 .118 .032 .011 .004 .001 .000 .0157 .166
BM86 .748 .176 .044 .016 .007 .004 .003 .002 .000 .0262 .252
BP91 .555 .259 .119 .050 .017 .004 .000 .0492 .445
DAN59 .598 .193 .093 .050 .065 .0527 .402
DONG93 .569 .302 .085 .029 .011 .004 .001 .000 .0418 .431
HB69 .629 .157 .067 .045 .033 .029 .042 .0634 .371
HLOH92 .951 .017 .018 .010 .004 .001 .000 .0070 .049
LEN89 .755 .144 .054 .024 .013 .007 .003 .001 .0290 .245
JP92 .799 .104 .039 .021 .014 .010 .006 .004 .003∗ .0294 .201
JTUK87 .950 .034 .010 .003 .002 .001 .001 .000 .000 .0054 .050
MLZ92 .953 .023 .007 .007 .003 .003 .002 .001 .001 .0074 .047
SKW93 .590 .254 .105 .038 .011 .002 .000 .0421 .410
STUK82 .742 .129 .054 .026 .017 .012 .008 .005 .005∗ .0387 .258
VS92 .900 .083 .015 .001 .000 .000 .0079 .100
ZAHN75 .618 .190 .089 .048 .055 .0487 .382
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Two summary measures which will be useful for reference are the experi-
mentwise error rate (EER) and the individual error rate (IER). Let pi denote the
proportion of simulations for i inert effects declared active. Then EER is propor-
tion of the simulations when one or more effects is declared active, 1 − p0. The
IER is the average proportion of inactive effects declared active,

∑
(i/(n− 1))pi.

This definition of IER when all effects are inactive can be extended to the case
when some effects are active by suitably changing n−1 to the number of inactive
effects. Note that the EER and IER given in Table 1 vary across the different
methods.

The different off-the-shelf performance of these methods depend in part on
how they were designed which often involve the IER or EER criteria. DAN59
(critical values from Zahn 1975a) and ZAHN75 attempt to control IER at 0.05.
Note that DAN59 and ZAHN75 as used here can detect at most four effects.
HB69 was started by pooling the nine smallest effects (m = 9) and used αpool=
0.25 and αfinal=0.05 so that IER at 0.05 is implied. LEN89, SKW93 and
DONG93 as reported here attempt to control IER at 0.05; differences for these
tests arise from approximate distributions used in calculating the critical values.
Also, an attempt to control EER can be done using a suitable choice of IER
based on simultaneously testing k contrasts per experiment; this is the basis for
JP92 which attempts to control EER at 0.05 (but still turns out to be as large
as 0.201). BM86 uses (αactive,K) = (0.2, 10) and a marginal posterior proba-
bility threshold of 0.5. There were no parameters to set for STUK82. BEN89
used 0.05 levels for the normality test (for presence of active effects) and the
pooled normality-outlier test (for identification of active effects); thus, the initial
test attempts to control the EER at 0.05. BP91 controls IER exactly at 0.05.
HLOH92 used a 0.05 level test for the presence of active effects and a 95% simul-
taneous prediction interval for identifying the active effects; consequently, EER
is controlled at 0.05. JTUK87 attempts to control IER at 0.05 (values for 11-14
are not given in Johnson and Tukey (1987) and were simulated based on 10,000
samples). BI89, BI92 and MLZ92 (MLZ92 uses (19) instead of (17).) as reported
here control EER at 0.05, whereas VS96 controls EER at 0.10.

The challenge then is to compare these methods on as equal a basis as pos-
sible without destroying the essence of the methods. Comparing them on an
exactly equal basis is not possible because of the different forms of the methods
as listed in Section 4.1. For example, the sequential methods control EER while
the non-sequential methods control IER. STUK82, BEN89 and HLOH92 are hard
to change and best evaluated as originally proposed. An earlier version of this
paper (Balakrishnan and Hamada 1994) compared directed sequential versions
of all the methods (except BEN89 and LOH92) which were controlled to have
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the same EER and IER; that is, the absolute contrasts were standardized by a
suitable measure. One of the referees asked whether this standardization had de-
stroyed the essence of some of the methods. Consequently, the simulation study
was redone to use the methods as originally proposed. In order to compare the
power of these methods fairly, each has been adjusted so that IER for all inert
effects is controlled at 0.044; the critical values are based on a simulation using
100,000 samples. Note that STUK82’s IER of 0.038 is close to the others with
0.044. To compare BEN89 and HLOH92, BP91 was also studied at an IER of
0.007 (BEN89 and HLOH92’s IERs are 0.002 and 0.007, respectively). See Fig-
ure 1 which gives the EER and IER of the methods and shows that IER is near
0.044 for the non-hybrid methods and near 0.007 for the hybrid methods. Note
that each method has a pair of values. The left value is based on normal errors.
The right value is based on errors with a standardized Student t distribution
with nine degrees of freedom, where these errors were standardized to have vari-
ance one. The study with Student t errors was undertaken to address a question
raised by one of the associate editors regarding the robustness of the methods to
nonnormality; this will be discussed later.
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Figure 1. EER, IER for N(0, 1) and std. t(9) errors (1st, 2nd of pair) and
n = 16 no active effects (e =EER, i =IER)

Some details for the particular versions of the methods used in the study
follows. HB69 uses (m = 7, αpool = 0.50, αfinal = 0.01), the version given in
the original paper with an IER closest to 0.044 (0.049). BP91, SKW91 and
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VS96 use m = 9 so that the six largest contrasts are tested. The sequential
methods DAN59, MLEN, MSKW, ZAHN75, JTUK87, BI89, BI92 and MLZ92
test the eight largest contrasts; MLEN and MSKW are the modified versions of
LEN89 and SKW93 which account for k′, the current number of contrasts being
considered at a given stage. The estimators of contrast standard deviation for
ZAHN75 and DAN59 are based on the nine smallest contrasts instead of 11 so
that up to six active effects could be detected. MDONG refers to the procedure
which uses the iterative estimate of τ based on (22) proposed by Dong (1993).

Since most of the methods have been adjusted so as to have the same IER
under all inert effects, their power can be investigated under various scenarios.
This was also done by simulation based on 10,000 samples. For n = 16 runs,
one, two, four and six active effects all having the same magnitude from 0.5σ
to 4σ were studied (.5(.5)3,4 σ). Recall that σ denotes the process or error
standard deviation not the contrast standard error. Active effects with the same
magnitude were used because they provide bounds on the performance of when
the effects have different magnitudes. Note that the value at 0.0σ is the method’s
size which is 0.044 for all the methods except BEN89, HLOH92 and STUK82.
Figures 2-5 display the power (or average proportion of active effects that were
declared active).
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Figure 2. Power for N(0, 1) and std. t(9) errors (1st, 2nd of pair) and n = 16
one active effect = 0, .5(.5)3, 4 σ (labels 0-7)



20 M. HAMADA AND N. BALAKRISHNAN
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DAN9 DONG MDONG JP LEN MLEN SKW MSKW ZAHN9 BM JTUK HB BP VS BI89 BI92 CORR DISP HSW MLZ BP007 BEN HLOH STUK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0

0 0 0
0

1 1 1 1 1 1 1
1 1 1 1 1 1

1
1

1

1 1 1
1

1 1 1

1
1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

1

1 1 1
1

1 1 1

1

2 2 2

2 2
2

2

2
2

2
2

2

2

2

2

2

2 2 2

2

2 2
2

2

2 2 2

2
2

2

2

2
2

2
2

2

2

2

2

2

2 2
2

2

2 2
2

2

3 3 3

3
3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3 3

3

3

3 3 3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3 3

3

3

4
4 4

4
4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4
4

4

4

4 4 4

4
4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4
4

4

4

5 5 5
5 5 5 5

5
5

5 5

5

5

5

5

5

5

5

5
5

5

5

5

5
5 5 5

5 5 5 5
5

5
5 5

5

5

5

5

5

5

5

5
5

5

5

5

5

6 6 6 6 6 6 6 6 6 6 6
6

6
6

6

6
6

6

6 6

6

6

6
66 6 6 6 6 6 6 6 6 6 6

6
6

6

6

6
6

6

6 6

6

6

6
67 7 7 7 7 7 7 7 7 7 7 7 7 7

7

7 7

7

7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7
7

7 7

7

7 7 7 7 7 7

Figure 3. Power for N(0, 1) and std. t(9) errors (1st, 2nd of pair) and n = 16
two active effects = 0, .5(.5)3, 4 σ (labels 0-7)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DAN9 DONG MDONG JP LEN MLEN SKW MSKW ZAHN9 BM JTUK HB BP VS BI89 BI92 CORR DISP HSW MLZ BP007 BEN HLOH STUK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0

0 0 0
0

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

1
1 1 1 1

1 1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1

1

1
1

1 1 1 1

1 1 1

1

2 2 2 2 2 2
2

2
2 2 2 2 2

2

2

2

2
2

2

2

2 2
2

2

2 2 2 2 2 2
2

2
2 2 2 2 2

2

2

2

2

2
2

2

2 2
2

2

3

3 3

3 3 3 3 3

3

3
3

3
3

3

3

3

3

3

3

3

3
3

3

3
3

3 3

3 3 3 3
3

3

3 3
3

3

3

3

3

3

3

3

3

3

3

3

3

4

4
4

4 4 4
4 4

4

4 4

4

4

4

4

4

4

4 4

4

4

4

4

4
4

4
4

4 4 4
4 4

4

4 4

4

4

4

4

4

4

4 4

4

4

4

4

4

5
5 5

5 5 5
5 5

5
5 5

5

5

5
5

5

5

5

5

5

5

5

5

5
5

5 5

5 5 5
5 5

5
5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

6 6 6
6 6 6 6 6 6 6 6

6
6

6

6

6

6
6

6
6

6

6

6

66 6 6
6 6 6 6 6 6 6 6

6
6

6

6

6

6
6

6
6

6

6

6

6
7 7 7 7 7 7 7 7 7 7 7 7 7

7

7
7 7

7
7 7

7

7

7 77 7 7 7 7 7 7 7 7 7 7 7 7

7

7
7 7

7
7 7

7

7

7 7

Figure 4. Power for N(0, 1) and std. t(9) errors (1st, 2nd of pair) and n = 16
four active effects = 0, .5(.5)3, 4 σ (labels 0-7)



ANALYZING UNREPLICATED FACTORIAL EXPERIMENTS 21
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DAN9 DONG MDONG JP LEN MLEN SKW MSKW ZAHN9 BM JTUK HB BP VS BI89 BI92 CORR DISP HSW MLZ BP007 BEN HLOH STUK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0

0 0 0
0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

1 1 1 1

1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1
1

1
1

1 1 1 1

1 1 1

1

2 2 2 2 2 2 2 2 2
2 2

2
2

2 2
2

2
2 2

2

2 2 2

22 2 2 2 2 2 2 2 2
2 2

2
2

2

2
2

2
2

2

2

2 2 2

2

3
3

3

3 3 3

3

3 3

3

3

3

3 3 3

3

3

3
3

3

3 3
3

3

3
3

3

3
3

3

3

3 3

3

3

3

3 3

3

3

3

3

3

3

3 3
3

3

4

4

4

4

4

4

4

4 4

4

4

4

4

4
4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4 4

4

4

4
4

4

4

4

4

4

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6
6

6

6

6
6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6
6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

7
7

7

7 7 7
7

7 7 7
7

7 7

7

7

7

7 7
7 7

7

7

7

7
7

7
7

7 7 7
7

7 7 7
7

7 7

7

7

7

7 7
7 7

7

7

7

7

Figure 5. Power for N(0, 1) and std. t(9) errors (1st, 2nd of pair) and n = 16
six active effects = 0, .5(.5)3, 4 σ (labels 0-7)

Some conclusions from the simulation study based on normal errors follow
in which #AE denotes the number of active effects:
• There is little difference between the methods for small size effects, say 0.5σ,

which exibit little power. Also, there is not much of a difference for large
size effects, say 4σ. There are marked differences between the methods for
intermediate size effects (σ − 3σ) which become more pronounced for larger
size effects in this range as the #AE increases; there is less of a difference for
smaller size effects as the #AE increases.

• The power decreases as the number of active effects increases.
• Except for BI92 (see the six active effect case), the power increases as the size

of the active effects increases. Note that the effects need to be rather large
relative to the process standard deviation σ. For example, the power is around
0.7 for a single 1.5σ effect.

• The directed methods which focus on the current largest unsigned contrast
tend to perform better than the composite methods, BI89, BI92, MLZAM,
CORR, DISP and HSW. HSW is a goodness-of-fit procedure which tests for
any violation of half-normality and is not directed specifically for detecting
extreme values; this explains why its power is not as high as those which are so
directed. MLZ92 is an exception which performs surprisingly well, especially
for large #AE, however. CORR is clearly the worst of all the composite
methods.
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• BI92, a composite procedure appears promising say for up to four active effects
but then its performance seriously degrades for six active effects. This can be
explained since the variance of the mean squares will tend to decrease when
there are too many active effects (i.e., the roles of the inert and active contrasts
are switched) while their mean increases resulting in small values for (14). This
is clearly an undesirable property.

• Many of the directed methods only differ in the estimator used for τ . Var-
ious proposals were motivated by better MSE properties of the estimators.
For example, SZAHN outperforms |c|(11)15 (Zahn (1975b)). Juan and Pena
(1992) showed that IMAD0 performed better than Lenth’s (1989) PSE and
an estimator based on dF performed much worse than both IMAD0 and PSE.
SKW93 was motivated similarly with censoring being used to reduce the bias
of the estimator. DONG93 used trimmed means instead of the trimmed me-
dians used by PSE because of improved efficiency. Nair (1984) also com-
pares different estimators based on the full normal probability plot. Yet, the
gains in estimator performance appear to have little impact on the test per-
formance. Rather, the #AE seems to affect two groups of the methods differ-
ently. DAN59, DONG94, MDONG and SKW93 do better than JP92, LEN89,
MLEN, MSKW and ZAHN75 for small #AE whereas the latter group perform
better for large #AE. Overall, DAN59 and SKW93 perform the best in the
first group. ZAHN75 performs the best in the second group although there is
not much of a difference between these methods.

• Among the other directed methods (BM86, JTUK87, HB69, BP91, VS96),
BP91 performs the best, although BM86 is quite competitive for small #AE;
BM86 performs poorly for six active effects, but recall that αprior was set at
0.2, i.e., it was designed for three active effects.

• The modified procedures MLEN and MSKW provide little if any improvement
over LEN89 and SKW92, except for large #AE.

• MDONG has almost the same power as DONG93 for small #AE, and actually
performs worse as #AE increases. Thus, there is no real benefit offered by the
iteration in estimating τ .

• STUK82 is quite competitive with the best of the other methods for #AE
up to four and is slightly worse for six active effects. Recall that it is at a
slight disadvantage since its IER is 0.038 as compared with 0.044 for the other
methods.

• Among the two hybrid methods, HLOH92 performs better than BEN89 al-
though BEN89’s IER and EER is smaller. BEN89’s performance degrades
dramatically for large #AE. HLOH92 also outperforms BP91 which was ad-
justed to have the same IER of 0.007. Recall that BP91 is one of the best
methods.
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Besides power, the IER or average proportion of inactive effects that are
declared active under the various scenarios needs to be studied. Such plots of
IER are not shown here to conserve space; a summary will be given, instead.
Recall that under all inert effects, the IER is 0.044. The plots show that the
methods for the most part are conservative, i.e., IER is below 0.044 and decreases
as #AE increases. The IER depends on the magnitude of the active effects and
for many of the methods is a nonmonotonic function of active effect magnitude.

Robustness of Methods to Nonnormality

As mentioned previously, the methods were studied using standardized Stu-
dent t with nine degrees of freedom errors to address the robustness of methods
to nonnormality. Here, the error distribution is flatter than the normal distribu-
tion. Figure 6 displays contrasts for n = 16 based on this error distribution and
shows that the contrasts are nearly normal. Recall that the contrasts are linear
combinations of the observations, so that the Central Limit Theorem effect ex-
plains why the contrasts are more normal-like than the individual observations.
Consequently, it is not surprising that the majority of the methods have nearly
the same performance with these flatter distributed errors. (See the right values
of the pairs in Figures 1-5.) The IER and consequently the power of the methods
are slightly higher which can also be explained by the flatter error distribution.
Note that VS96 is effected the most by the flatter error distribution with its size
approximately doubling.

z

Quantiles of Standard Normal

Figure 6. Normal probability plot of contrasts for n = 16 and std. t(9) error
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5. Discussion
Recently, several papers have proposed methods but have only compared

their performance with some existing methods using some data sets. Based on
this paper, some recommendations for evaluating new procedures are:
• A simulation study is needed to evaluate the performance of the new method

with existing ones. Calibration of the new procedure needs to be done in order
to provide a fair comparison. At a minimum, it should report the pi values
under all inert effects.

• In addition to examining the power of the proposed procedure, its IER behavior
should also be studied.

• One should check to see if the method is exploiting the following properties
of the contrasts: (1) The contrasts have equal variances and are normally
distributed. (2) Contrasts for inert effects have zero means while those for
estimating active effects have non-zero means.

• The method should not depend on the arbitrariness of the factor level labels.
For example, methods that work with unsigned or squared contrasts avoids
this problem.

In the course of this research, several issues and possibility of connections
with other areas in statistics arose which warrant more study.
• What are desirable EER, IER and pi when all effects are inert? For example,

using an IER of 0.044 for n = 16, some methods had an EER of 0.40, which
some might consider large.

• Should other measures of performance be used such as an overall performance
measure that accounts for both a procedure’s ability to detect active effects
as well as its tendency to identify inactive effects as active? See Benski (1995)
and Benski and Cabau (1995) who make one proposal.

• Should other non-inert scenarios be considered such as different sized active
effects? If so, what would be appropriate choices for the sizes of the active
effects? See Holms and Berrettoni (1969), Haaland and O’Connell (1995),
Benski (1995) and Benski and Cabau (1995) for some different scenarios.

• Are there non-sequential procedures which have better performance or are
sequential directed tests preferable?

• Can gains be made by combining methods, i.e., hybrid methods? The simula-
tion study showed that the half normal version of Loh (1992) is promising.

• Can information on how many active effects there are likely to be present in
the experiment be exploited? The simulation results suggest an affirmative
answer, but which methods are less sensitive to such a specification?

• How robust are the methods to other nonnormal distributions? In such a
situation, would a nonparametric method be preferable? For example, Loughin
and Noble (1997) propose a permutation test procedure.



ANALYZING UNREPLICATED FACTORIAL EXPERIMENTS 25

• There are connections with other areas of statistics. For example, the work
of Le and Zamar (1992) drew on the robust statistics literature. Seheult and
Tukey (1982) and Benski (1989) viewed the active effects as outliers which has
an extensive literature (Barnett and Lewis 1994). The ranking and selection
(Gupta and Panchapakesan 1979) and multiple comparison (Hochberg and
Tamhane 1987) literatures are also likely to be relevant. It will be interesting
to explore how these different areas may help in suggesting new and possibly
optimal tests and alternative ways to evaluate such methods.

6. Specific Recommendations
To conclude, we briefly summarize the results of our simulation study in

terms of specific recommendations for the practitioner. The recommendations
are:
• For up to six active effects, overall DAN59, SKW93, ZAHN75, BP91 and

HLOH92 performed well, although others are competitive if one has a good
idea about how many active effects there are. For example, for eight active
effects, the versions of DAN59 and ZAHN75 used here would not be expected
to do well since they assumed there would be no more than six active effects.

• The power for BI92 seriously degrades when there are many active effects so
that this method is not recommended. For the same reasons, BEN89 is also
not recommended.

• Especially for n = 8, the substantial variability exhibited in the probability
plots when all effects are inert makes it difficult to both identify the active
effects and to not choose the inert effects. Objective methods, which directly
account for this variability, are therefore preferable. Nevertheless, Balakrish-
nan and Hamada (1994) showed that for such a small run size, the active
effects need to be large relative to the process standard deviation for any hope
of detecting them. Consequently, a larger run size (n = 16) is recommended.
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Appendix
Tables used to implement HSW (28) are given in this appendix.
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Half-Normal Shapiro-Wilk Test
The statistic τ̂BLUE (27) can be written as a linear combination of the k′(m =

k′) order statistics whose coefficients are given in Table A1 for n = 8 and Table
A2 for n = 16.

Table A1. Half-normal Shapiro-Wilk test coefficients for n = 8 (order i
corresponds to |c|(i)k′ )

k′

order 4 5 6 7
1 .262082 .215692 .183441 .159674
2 .553365 .447641 .376949 .326047
3 .911363 .711950 .589027 .504204
4 1.464728 1.044305 .834874 .702123
5 .0 1.569834 1.149021 .934437
6 .0 .0 1.653996 1.234854
7 .0 .0 .0 1.723853

Table A2. Half-normal Shapiro-Wilk test coefficients for n = 16 (order i

corresponds to |c|(i)k′ )

k′

order 4 5 6 7 8 9 10 11 12 13 14 15
1 .0939 .0636 .0461 .0353 .0279 .0224 .0186 .0156 .0137 .0116 .0100 .0089
2 .1599 .1048 .0747 .0559 .0437 .0354 .0289 .0246 .0205 .0180 .0158 .0139
3 .2496 .1557 .1079 .0798 .0615 .0491 .0402 .0331 .0282 .0240 .0214 .0184
4 .4502 .2242 .1485 .1073 .0816 .0643 .0522 .0434 .0367 .0312 .0265 .0237
5 .0 .3786 .2031 .1406 .1047 .0817 .0657 .0542 .0453 .0390 .0338 .0292
6 .0 .0 .3279 .1857 .1330 .1015 .0805 .0658 .0549 .0466 .0398 .0348
7 .0 .0 .0 .2899 .1711 .1258 .0980 .0790 .0656 .0548 .0474 .0408
8 .0 .0 .0 .0 .2603 .1587 .1192 .0944 .0770 .0648 .0548 .0476
9 .0 .0 .0 .0 .0 .2366 .1481 .1132 .0908 .0750 .0634 .0543

10 .0 .0 .0 .0 .0 .0 .2170 .1388 .1077 .0876 .0733 .0625
11 .0 .0 .0 .0 .0 .0 .0 .2006 .1307 .1027 .0842 .0709
12 .0 .0 .0 .0 .0 .0 .0 .0 .1867 .1236 .0982 .0814
13 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1746 .1173 .0940
14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1641 .1115
15 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1549
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COMMENT

Claudio Benski

Schneider Electric

Hamada and Balakrishnan must be commended for have written a very ex-
tensive review concerning a wide variety of methods used to identify active effects
in unreplicated factorial experiments. Economical and technical reasons have
contributed considerable appeal to the ever-increasing use of unreplicated exper-
imental designs in industrial settings. It is therefore important to determine what
kind of approach should an experimenter adopt to assess the statistical signifi-
cance of the considered factors in the absence of an independent noise estimate.
The consequences of a mistake on this decision-making process can be enormous
and industry would certainly be very interested in a clear answer in this area.
Several researchers have previously tested some of the available methods and have
reported them in the literature, for example, Haaland and O’Connell (1995) and
Benski and Cabau (1995). More recently, Loughin and Noble (1997) have pur-
sued the comparisons among available techniques while suggesting yet another
method. Obviously, this is still a very open and active research field. The paper
by Hamada and Balakrishnan is still another valuable attempt at establishing a
comparison among these techniques by adopting their own approach, which we
will discuss herewith.

The complexity of this problem stems for the multiple types of comparisons
and hypotheses that can be made. One common such hypothesis is that of factor
sparsity. It states that just a few of the considered factors have an influence on
the response. Another widely accepted assumption is the normality of the noise
distribution. In real-life, these assumptions may or may not be realistic. But,
beyond that, the merits of a statistical method used in the identification of active
effects is an elusive concept and has a much finer structure than the paper by
Hamada and Balakrishnan may acknowledge. In the following discussion we will
try to illustrate this point.

Assume that out of n measured effects there are j factors, which are truly
active. That is, j factors are active and n−j factors are not and can therefore be
considered to be sampled values from the noise distribution. Of course, an ideal
method would always find this result with probability 1. This would be “the
truth, the whole truth and nothing but the truth”. Now, what are the non-ideal
alternatives? Rejecting the Null Hypothesis (no active effects exist) but for the
wrong reasons is one case in point. In fact, there can be several such wrong
reasons. The following is an exhaustive list of all the errors that can be made in
this context:
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Declaring
1. All j real factors as significant and, in addition, 1, 2, . . . , n− j spurious effects

as well,
2. Only some of the j real factors as significant and no spurious effects,
3. Only some of the j real factors as significant, plus 1, 2, . . . , n − j spurious

effects as well,
4. None of the j real factors as significant but identifying instead as significant

1, 2, . . . , n − j other spurious effects,
5. None of the n effects as significant.

These five alternatives are either partially wrong or totally wrong. Notice
that, from the Test of Hypothesis standpoint, all of these are alternatives to the
Null Hypothesis and should be considered separately. The performance of the
methods considered must be measured by taking into account how often they fall
into one or the other of the above five wrong decisions.

Consider, for instance, declaring that a given drug treatment is safe and
effective when in fact it is not or declaring that some treatments for weight loss
are ineffective when in fact some of them may have a positive effect. These
are not equivalent statements. What decision is preferable will depend on the
circumstances.

Hamada and Balakrishnan have chosen to compare the different methods by
measuring only their statistical power while fixing the number of experimental
runs at 16 and tuning all the methods so that their IER is controlled at 0.044.
(This is the average proportion of “false positives” for the particular method
being considered when no real effects exist.) However, the proportion of false
positives when there are some real effects is also important. In addition, this
proportion may vary depending on the actual number and size of these effects.
Clearly, this problem is compounded by the fact that it is impossible to consider
each and all the possible situations that can arise in all the factorial experiments.
Benski and Cabau (1995) suggested a Figure of Merit Q, which summarized some
desirable properties of these techniques. Although this Q factor was far from
perfect, we felt it conveyed more of the story than just statistical power and
IER (or EER). Hamada and Balakrishnan in their Discussion recognize some of
these points and give suggestions for further work in this area. One may add
robustness to deviations from the assumptions as another characteristic worth
investigating. In addition, the extension of these measurements to other common
sample sizes, 8 and 32 come to mind, would have been valuable.

We fail to understand why Hamada and Balakrishnan claim in their Dis-
cussion that other publications testing methods for unreplicated experimental
designs “have only compared their performance . . . using some data sets”, imply-
ing that no simulation tests were performed by others. Benski and Cabau (1995)
clearly state that samples were Monte-Carlo generated for their tests.



ANALYZING UNREPLICATED FACTORIAL EXPERIMENTS 31

Another important point in which we differ from the approach of Hamada
and Balakrishnan is in the treatment of active effects. For their simulation ex-
periments, they considered active effects as fixed. Although this is not wrong, we
think that a more realistic approach is to consider active effects as random values
issued from a scale enlarged distribution with respect to the noise distribution,
as suggested by Box and Meyer (1986). In the random effects approach only the
scale-shift is fixed.

In spite of these shortcomings, we view the paper by Hamada and Balakr-
ishnan as a worthy addition to the ongoing efforts at better understanding the
decision-making process in unreplicated experimental designs.
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COMMENT

Perry D. Haaland

Becton Dickinson Research Center

The authors have made an important contribution to the literature by pro-
viding a comprehensive and equitable comparison of the wide variety of tests for
active effects in effect saturated fractional factorial designs. The explanations
of the methods are clear, excellent recommendations are made for new methods
and extensions of existing methods, the comparisons are well justified, and the
conclusions are clear. A key component of the informative nature of this study is
that the authors have adjusted for common individual error rates (IER) in a sen-
sible way. They have also proposed and used a common notation for describing
the various methods and their properties. This sets a high standard for future
work, and referees and editors should hold future authors to this standard.

Given this excellent start, the time now seems right for those of us in industry,
who stand the most to benefit from the continued evolution of this technology,
to find a means of supporting and extending the approach taken by the authors.
I would like to propose an industry financed project for this purpose. This
project could support an archive of software for the standardized comparison of
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new methods. Clear guidelines could be given for this evaluation. Hopefully
the authors could begin this effort by contributing their own code as the start
of the software archive. Then new code could be submitted to evaluate any
new method in comparison to the existing library of procedures. It would be
highly advantageous if the archive could be organized so that simulations of
existing methods would not need to be repeated, and so that it would be easy
to evaluate all methods already in the library according to new criteria as they
arise. It would be highly desirable if this project could also support work into
the development of better, more interactive graphical displays for the analysis of
effect saturated designs. I would like to invite anyone interested to contact me
directly (pdh@bdrc.bd.com) if they would like to support or participate in this
effort.

Since there is little to criticize or improve about this paper, let me instead
espouse a few opinions regarding the general problem of testing for active effects
in saturated fractional factorial designs. First, in my opinion, a purely statistical
(that is, objective) identification of the active effects is not possible. The “vital
few” and “trivial many” will in general be obvious regardless of the test method
used. The “statistical in-between” effects will always be a problem (as the authors
note) due to a combination of lack of power and the absence of an omnibus test
that works over a wide range of the number of active effects. In addition, this
is not purely a statistical problem as the physical interpretation of the marginal
effects will always be critical to the analysis; for example, see Carlson (1992),
p155 ff in which the largest marginal effect has no sensible interpretation.

So why does anyone use effect saturated fractional factorial designs? In my
opinion, all experimenters are Bayesian, otherwise they would not be willing to
use these small designs. This implies a substantial combination of subject matter
knowledge and previous experience that they bring to bear on the problem. Does
this mean that the experimenter has a well defined prior on the number of active
effects that can be used to formulate the best test? I think not, because the
experimenter’s priors are generally quite complex – different factors have different
likelihoods of being active or interacting with other factors. In addition, priors
also get transformed to posterior distributions in a complex way. Consequently,
it does not seem to be sufficient to use a method that relies too heavily on the
assumption of factor sparsity with a fixed alpha. The choice of alpha = 0.20 by
Box and Meyer (1986) is probably subject to a publication bias. My experience
is that alpha is usually greater than 0.2 and often as high as 0.4. I think that the
practical use of Bayesian methods is to vary the prior on alpha until the posteriors
seem “reasonable” or to estimate alpha and k from the data (empirical Bayes).
The Bayesian approach to analysis, however, has not seemed to be that useful in
practice.
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Whether using a frequentist or Bayesian approach, you cannot avoid the
problem that the best test depends on knowing the unknown results; that is,
the number of active effects. When there are only a few important effects, then
any of the direct methods are going to be more or less equivalent with methods
based on efficient estimation of sigma having a slight edge. When there are an
intermediate number of active effects, the authors identify several tests that are
appropriate. Based on my experience in practice, I recommend the use of the
pseudo standard error method LEN89 as modified by Haaland and O’Connell
(1995) to add some power for a moderate number of effects without much cost
when effects are sparse. There is no clear choice for large numbers of effects.
Given this state of affairs, the experimenter derives the most value from choosing
a good design and then from interacting with graphical displays of the results.
Consequently, there is no practical means to evaluate test performance in use
because it becomes a subjective function of the experimenter’s interpretation of
the results and of the true number of active effects.

There is some advantage, then, to thinking about what the authors’ results
imply for the graphical analysis of effect saturated designs. A key issue is how
the experimenter (often a nonstatistician) is going to interact with the analy-
sis/software when interpreting the results. Thus, great value is added if the test
results can be readily displayed; for example, by drawing a line on the Pareto
plot of the absolute values of the effects (Haaland and O’Connell (1995)). This
can be done with any of the direct tests. In general, I prefer the Pareto plot to
half normal plots because there are fewer complex visual comparisons to make.
(I concur with the authors in their recommendation against the use of full normal
plots for this purpose.) For example, is the line sensible? Which effects depart
from the line? You do, however, lose the information in the y-axis when doing
the Pareto plot. The method for redefinition of the reference line presented by
Johnson and Tukey (1987) is quite interesting in this regard. It is not clear,
however, that the inherent variability of the half normal plot is improved by this
method. While methods such as Zahn (1975a) may derive from the half normal
plot, the results are still probably best displayed on the Pareto plot.

Given the lack of a single best test, it seems worthwhile to allow for the use
of multiple lines in the Pareto plot wherein each line corresponds to a different
test method and the test methods are chosen to provide good performance over
a range of numbers of active effects. Given the lack of a clear choice for a best
test and the importance of graphical display, we would do ourselves a disservice
by relying too much on formal testing and P-values. Consider the role that two
factor interaction plots play in the identification of important effects and in the
choosing of directions for follow up experiments (Haaland (1989)). If there are
any two factor interactions among the marginal or obviously significant effects,
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then most experimenters need to look at interaction plots in order to evaluate
what to do next. For one reason, the estimated effects correspond to a particular
set of contrasts and careful study of an interaction plot may reveal that there are
other more interesting or important contrasts to consider. There is in general no
need to go back and estimate these contrasts as the experimenter can evaluate
them graphically. Interestingly, this procedure is tied in with the assessment of
significant effects because interaction plots are most useful when there are confi-
dence bars shown. These confidence bars are generally derived from an estimate
of sigma based on the smallest effects. Testing of effects is most meaningful
in connection with an examination of the corresponding interaction plots, and
this adds further complication to the meaningful evaluation of competing test
methods.

Another complication in the comparison of these methods arises from how
these designs are used in practice. In particular, the objectives of the experiment
are generally to move toward the best process settings while at the same time
deciding which factors are important. This is a composite objective, but it is
only easy to evaluate the methods based on the second part of the objective.
In fact, the experimenter often needs to compromise on the second part of the
objective in order to better satisfy the first part. If null effects are misidentified
as being active, the cost to the experimenter will primarily be in including excess
factors in a follow-up experiment, as long as all of the important factors have
been identified. The cost of failing to find an important factor is almost certain
failure to optimize the process. Most experimenters would be willing to having a
higher Type I error rate in order to more quickly and surely optimize the process
under study, which leads us into the discussion of error rates.

My experience suggests that the power to detect individual important effects
(and by implication the ability to optimize the process) suffers severely when
the experimentwise error rate (EER) is tightly controlled. Consequently, an
experimenter is seldom going to care very much about the EER, and to the
extent that control is important it is better to focus on the individual error rate
(IER). I have been uniformly disappointed with the performance of sequential
tests and iterative methods, and I believe this is because sequential methods
control the EER rather than the IER. Furthermore, IER will generally be quite
small for direct methods when there is at least one large effect (we have empirical
results for tests based on the PSE). As it is rare not to have at least one important
effect, a good recommendation for process optimization would be to use methods
that control the IER but choose a value of alpha greater than 0.05.

Equitable comparison of the methods is critical and the authors have chosen
quite sensibly to control the IER in comparing tests. Other approaches could
also be taken. For example, the power could be fixed for all methods and then
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the IERs could be compared for the null model and for the second largest effect. I
think that this would also lead to the practical recommendation that IER values
greater than 0.05 should be used.

Whether or not an appropriate transformation is used can be more important
than the test selected. The same is true for the impact of outliers. It is good to
see that slight departures from normality do not affect the distributions of the
test statistics too much, but of course, outliers do impact the sizes of estimates
of the effects so their effective detection and elimination is critical to successful
process optimization. More work needs to be done on this problem. In particular,
it would be wonderful if interactive graphical methods could be developed for this
problem.

In conclusion, fractional factorial designs seem destined to remain an impor-
tant tool in an experimenter’s toolbag for sometime to come. Given restrictions
on time and cost, unreplicated designs will also continue to be widely used. There
are many competing test methods, which are difficult to distinguish among based
on performance, and it is easy to come to wrong conclusions if a careful com-
parison is not made. The choice of a test is further complicated by the fact that
there is no one test that performs well over a wide range of numbers of active
effects. In this regard, we need to ask software designers to provide us with an
appropriate choice of tests with well controlled IER that are implemented within
the context of a graphical analysis environment. I highly recommend that fu-
ture authors take the comprehensive approach of this paper as a guideline for
the evaluation of new methods, and that those who benefit the most from the
development of new methods should help finance more practical evaluations and
refinements, especially graphical displays.
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COMMENT

Russell V. Lenth

The University of Iowa

Hamada and Balakrishnan are to be congratulated for bringing together the
sizeable literature on the subject of unreplicated experiments, and for their efforts
to classify the various methods and to compare them fairly.
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In this discussion, I have a few comments on the scope of the study and on
its practical implications. Then I offer some ideas regarding the capability of an
experiment (and of a procedure), and the kind of investigation I would like to
see in the future.

1. Inference Space

In evaluating Monte Carlo results, it is important for the reader to under-
stand that a Monte Carlo study is an experiment; and, like all experiments, one
should take a careful look at the inference space. To what situations, exactly,
do the results apply? And how generalizable are the results to situations not
covered in the study? Due to practical constraints, a Monte Carlo study is often
very limited in scope, and this one is no exception.

This particular study considers only cases where there are 15 independent
effects (based on n = 16 observations). I feel that that is not a serious limitation.
It is appropriate to keep the focus on behavior for small amounts of data because
that is where these methods apply. The authors comment (based on another
study of theirs) that it is hard to make any inferences with only 7 effects. One
can guess that the methods perform comparatively the same as the number of
effects increases above 15. That is, 15 effects are probably enough so that the
“true” properties of the methods themselves have “kicked in”. Thus, there is a
comfort level in believing that the study makes a reasonable comparison among
the methods.

Another limitation, perhaps more serious, is that in the power comparisons,
all active effects are of the same magnitude. Again, however, it seems reasonable
that power would be some continuous function of effect size and effect mix. It
is possible, however, that different methods could compare differently depending
on the mix of active effects of different sizes. This seems particularly likely in
comparisons of different general classes of methods (i.e., composite, directed,
sequential).

The limitations in the robustness area are more severe and are worth noting
carefully. The authors do consider the case where the data have standardized
t(9) errors; however, this is not a particularly heavy-tailed distribution, especially
when 16 such observations are averaged together (as the authors show in their
Figure 6). Moreover, it could very well be true that a skewed distribution of
errors could cause as much or more havoc than a heavy-tailed one. So I would
say that we still do not know very much about robustness.

2. Pick Your Favorite
The most striking result to me is the degree of sameness of power of most of

the methods being compared—particularly the directed ones. If a directed pro-
cedure is desired, there is little to lose in picking the one that is most convenient,
aesthetically pleasing, or whatever.
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There is a limited amount of information available in an unreplicated exper-
iment, and apparently these analyses make good use of it. For that reason, I
forecast that there will be no breakthrough in this area of research, where some
new method of analysis is found that greatly outperforms the ones already stud-
ied here. (Nevertheless, I thank the authors for suggesting guidelines for testing
future methods.)

I am also happy to see the directed methods as being so successful in com-
petition with the sequential and composite methods. I like the directed methods
because they go straight to the point of comparing effects with a standard. They
are easy to explain, and can be displayed using a Pareto chart or similar graph.
It is important to remember that our analyses have an audience, and (assuming
that it is a good analysis) the simpler it is to explain and to present, the better.

3. Capability of an Experiment
For convenience in this discussion, let me define the “decent-chance detection

capability”—DCDC(α)—to be the effect size that can be detected with 50%
power when the size of the test is α. In Figure 4 we see that if n = 16 and there
are 4 active effects, then DCDC(.044) is at least 3σ for most procedures. When
there is only one active effect, the DCDC reduces to about 2.5σ.

I like having this quantitative result available. Coincidentally, a DCDC of
3σ is a particularly useful point of conversation when discussing the capability of
a proposed experiment with engineers and managers. That’s because the most
popular measures of process capability are also based on 3σ.

In a control chart, the control limits are also at “±3σ”, but this refers to the
standard deviation σx of the batch mean. For batch sizes of size 5 (very popular),
3σ ≈ 6.7σx—far beyond the control limits. In short, 3σ is no small effect, and in
particular an effect of much smaller magnitude could throw a process seriously
out of control.

Now, let’s look at this from a practical angle. These small unreplicated
experiments are usually used for screening; they are seldom meant to serve as
definitive scientific experiments. Instead, a screening experiment is only one
part of a process of experimentation where the results of one experiment guide
the design of the next. In a screening experiment, the consequence of making
a type I error would be doing the wrong experiment in the sequel—maybe not
that serious a mistake. Perhaps it is unrealistic in this context to even think
about testing effects at α = .044 or .05. An α of .20 may be quite suitable; and
DCDC(.2) would be closer to the 1σ–1.5σ range of effect sizes that one would
want to detect. (This said, I necessarily have to be comfortable with a really
large EER in a screening experiment. That says that we are guaranteed to chase
down some blind alleys once in awhile in the sequence of experiments.)
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It seems useful to develop some good ways of describing and quantifying the
capability of an experiment. We could in fact use DCDC(.2) for that purpose.
But in light of the above discussion, I suggest as an alternative the following:
Let Ck,m denote the value of α such that DCDC(α) = mσ when there are k

active effects of size mσ. It is a measure of risk, so that a small Ck,m is desired.
For practical purposes, C1,1.0 seems most appropriate, but some may prefer to
raise the number of active effects (e.g., C4,1.0). The same capability measure
could be used to compare different procedures, an alternative to the one cited in
Benski (1995) (I have not seen that paper).

4. An Idea for the Future

I have already said that I am not holding my breath for any new procedures
that will outperform the ones already studied. What I would like to see instead
would be studies that in some way simulate the process of iterative experimen-
tation where the results of one experiment determine the design of the next. For
example, suppose that there are 30 factors available to experiment on, but that
we can do screening experiments of n = 16 runs (so that at most 15 factors can
be investigated in one experiment). Given that there are, say, 4 active main
effects and 6 active two-way interactions, how many experiments will it take to
identify at least 8 (or all 10) of these effects?

It sounds like a real challenge to develop a realistic model for such a process
of iterative experimentation but any success in doing so would shed new light
on how these procedures compare in practice. We would also want to compare
the procedures with unsophisticated strategies, such as “always incorporate the l

largest absolute effects in the next experiment”. The procedures might compare
very differently in such a setting. I’m guessing that there would be a few surprises.
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Comparing the Methods

The discussants suggest additional criteria for evaluation. Benski points out
that a single criterion such as power need not tell the whole story; he suggests
looking at IER (i.e., the average number of inert effects declared active) when
some of the effects are active. We captured these results in the study although
we did not report them; they were consistently below 0.044 which suggests there
is an opportunity for devising methods that are less conservative and therefore
more powerful. Lenth proposes using a criterion based on the “decent-chance
detection capability” (DCDC). We like the practical importance of DCDC for
conveying a proposed experiment’s capability to experimenters and their man-
agers; experimenters will know the magnitude of the effects that have a decent
chance of being detected by the experiment.

The discussants make several remarks about the scope of our simulation
study. Lenth suggests that there might be more differentiation between the
methods under scenarios with unequal magnitude active effects; this needs more
study. Benski suggests using a random effects approach for generating the active
effects – from the model specified in Box and Meyer (1986), the number of active
effects varies from experiment to experiment and the magnitudes of the active
effects are also random. Thus, evaluation under this approach can be interpreted
as the performance under all possible experiments where the average number
of active effects and average magnitude of the active effects are specified. Here,
perhaps there will be less differentiation between the methods because evaluation
is done over a mixture of “fixed effects” situations; i.e., a method will do better for
certain fixed effect configurations but not for others. Regarding distributional
assumptions, Lenth raises the possibility of skewed errors which is related to
Haaland’s issue of transforming the data. For example, reliability data tend to
be skewed and are modeled by the exponential or Weibull regression models; for
these models, the log data follow a location-scale model as is assumed by the
methods for unreplicated experiments except that errors are no longer normal
but skewed. Thus, the data first need to be transformed before estimating the
factorial effects! The skewness of the errors should be ameliorated by the central
limit theorem effect since the estimates are linear combinations of observations,
but this needs to be explored further.

Using the Methods in Practice

Haaland and Lenth note that a primary context for small unreplicated exper-
iments is screening. Here, because it is more serious to miss important factors
(which would not be studied in subsequent experiments) than to misidentify
unimportant factors, both have no qualms with using an IER exceeding 0.05.
(Consequently, neither are concerned with the high EER that results.) Lenth
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chooses an IER of 0.20 because the methods have a decent chance of detecting
active effects in the 1σ-1.5σ range. It is worth commenting that the experimental
“σ” (which depends on the way the experiment was carried out) may be much
smaller than the process σ; thus, the methods using an IER as small as 0.05 would
still have a decent chance of detecting 3“σ” sized effects, where 3“σ” could be as
small as 1σ. This suggests that the low power results for small sized effects from
our simulation study need not be viewed so disappointingly.

Haaland emphasizes the importance of graphical methods for helping the
experimenter to interpret the experimental results. He suggests using a vertical
plot of the absolute values of the estimated effects with a horizontal line (as-
sociated with one of the objective methods) drawn where the important effects
are easily identified as those exceeding the line. Several lines might be drawn
corresponding to a different methods and/or different IER values. We heartily
agree. The guidance provided by the objective methods is needed, especially for
8 run experiments.

Future Research

To clarify a misunderstanding raised by Benski, we had noticed that some
papers had proposed new methods and had only demonstrated their use with
some data sets. Our point was that such demonstrations alone do not provide
a sufficient evaluation of a new method. Accordingly, we made suggestions for
evaluating new methods. We are happy to see that Loughin and Noble (1997),
who had a copy of our technical report, followed our recommendations. Notably,
Loughin and Noble (1997) propose a nonparametric method that performs com-
petitively with Lenth’s (1989) method for a small to moderate number of active
effects and that performs amazingly well for up to 10 active effects (out of 15)!

Lenth issues a tantalizing challenge: evaluate a procedure or more likely a
suite of procedures in an iterative experimentation process, where the results
of one experiment determine the design for the next. Haaland’s remarks about
the impact of two-factor interaction plots on subsequent experimentation is also
relevant. For such an evaluation, an integral component is the experimental de-
signs employed. For example, screening designs need not be restricted to regular
two-level fractional factorial designs. Lenth notes that the regular 16 run design
can screen up to 15 factors, but there are 12 run supersaturated designs that can
handle up to 66 factors. The estimated effects are no longer independent so that
the methods discussed here are no longer applicable. (See Chipman, Hamada
and Wu (1997) for an appropriate analysis methodology.) Experimental designs
also need to be suitably chosen in subsequent stages. We look forward to seeing
this research pursued.
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In conclusion, we fully agree with the suggestion made by Haaland that an
industry-funded repository of methods for analyzing unreplicated experiments be
created. We are certainly interested in participating in such a venture. We would
also like to encourage industry to support and participate in research pertaining
to experimental design beyond unreplicated experiments such as that raised by
Lenth’s challenge. We believe that such a collaboration will only result in benefits
for both parties concerned.
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