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Abstract

Purpose: This paper aims to determine the urban traffic flow spatiotemporal characteristics and correlation with

the built environment using SCATS (Sydney Coordinated Adaptive Traffic System) and POIs (Point of Interests) data

of Shenyang, China.

Methods: A standard analysis framework based on these data is proposed in the paper. The study analyzes the

traffic volume spatiotemporal distributions and built environment influence factors determined by the geographical

detector. An improved gravity model using simple structural parameters (lanes number and road length) is

proposed to estimate the traffic flows of day and peak hour scales for specific flow ranges.

Results: The results show that the peak hours of different intersections and roads are heterogeneous and reveal

trip time flexibility. The correlation between peak hour flows and day flows is significant in the multidimensional

analysis. Based on the investigation of lanes, more interesting conclusions are found. In this case, when the

numbers of lanes of intersections and roads are more than 14 and 4 respectively, the lane resources are wasted to

a great extent. There is also a certain correlation between these factors. Proposed gravity model establishes the

connection between structure and function of urban roads.

Conclusions: Flexible work time and places will be effective methods to reduce traffic congestion. The day flows

could be estimated via a traffic survey on peak hour flows, especially in developing cities. The traffic flow mainly

concentrates in a relatively small part of city roads. The maximum service traffic volumes exhibit segmentation, we

should reconsider the maximum optimal lanes number of intersections and roads under better performance and

utilization rate of the network. The effect of lanes number on the service traffic volumes is found to be more

significant compared with the other factors. Our conclusions will be helpful for policy-makers and sustainable urban

planning.
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1 Introduction

Transportation is an important aspect of a sustainable

city and society. Urban road transportation networks, as

the carrier of human activities in the city, have been

studied in terms of the structural characteristics and dy-

namics for decades. Most of the academic studies, how-

ever, are in a fragmented state. In the fields of geography

and urban planning [1–3], physics [4–7] and related do-

mains, academic scholars have paid more attention to

the structure of urban street networks, and the transport

dynamics is the traditional research content of transpor-

tation scholars [8, 9]. Determining the network charac-

teristics of structure and function is the key challenge of

current research, and the ultimate goal of the network

research is to better understand the behaviors of the

transport systems [10]. Hence, the research involving the

fusion of the two aspects is a more comprehensive re-

search approach [11–14].

However, the actual data acquisition of the network

level is always difficult, with most of the results obtained

via traffic simulation. Currently, big data provides oppor-

tunities to gain insight into the relationship between

transport dynamics and network intrinsic properties.

The source and quality of big data are the main con-

straints for most scholars. There are many studies based

on trajectory data or smart cards from different location

devices (GPS, phone, etc.), however, the traffic detector

data is managed by the government and traffic police.

Related work is seldom reported. Even worse, data

sources from different modes or samples are likely to

show diverse urban mobility patterns [15]. It should

be paid more attention to comparative data analytics

to urban and transportation research. Confronted with

the three fundamental problems in transport system

(i.e., traffic accidents, environment pollution and traf-

fic congestion), we believe it will take a very long

time to solve or mitigate these problems. In fact,

many transport characteristics are not well studied,

primarily because of the lack of data. The research on

this topic should include the characteristics of road

network structure, traffic flow, traffic demand and

traffic organization and control. In particular, under-

standing traffic demand is indispensable. Moreover,

with the rapid development of the technology of au-

tonomous vehicles, the mode of traffic flow will

change as the popularity of automated vehicles in-

creases in the next few years. As a result, the existing

research on traffic flow may not conform to future

conditions. Therefore, here we focus on the correl-

ation between traffic flow and built environment

because the relative relationship is fixed in general. In

the context, the transport dynamics refers to traffic

flow, and the built environment is the typical part of

the road network structure.

Some studies have analyzed the relationship between

the built environment and traffic systems, such as traffic

behaviors [16–20], the association between network struc-

ture and road safety [13, 21, 22], and the correlation be-

tween traffic congestion and different attributes of urban

land use [23–25]. Though they found strong empirical evi-

dence to show the correlation, limited research has inves-

tigated the impact of the built environment on traffic flow

or complicated relationships between them at the level of

the network. Because research data as a kind of scarce re-

source in this domain is often comprised of location data

and other data [24, 25]. Trajectory, traffic state or other

data in these studies are sample data in a sense and do not

involve the traffic flow of different traffic modes. These

data have restricted the ability to reflect the whole traffic

flow conditions. Many existing studies are still limited and

restrained because of lack of the whole investigation. The

deficiency is also common in European transport studies.

For example, the conclusions of the spatial distribution of

traffic flow in existing studies derived from travel time

and taxi data [26, 27], not traffic volume of all transport

modes. Moya-Gómez and García-Palomares studied

changes in automobile accessibility over the course of the

day, as caused by congestion of the road network in eight

European cities [28], however, it is not a direct investiga-

tion towards trip time. Meanwhile, the correlation analysis

between traffic flow and built environment is seldom

mentioned in European cases. Therefore, this correlation

needs to be analyzed in more empirical evidence especially

from traffic detector data. The authors have also con-

ducted a preliminary exploration of the road network

structure characteristics [29–33], and greatly appreciated

the importance of the number of lanes for traffic which is

different from existing studies significantly. The lane is the

carrier of urban traffic glow and plays a significant role in

the transportation systems. However, to our knowledge,

the empirical research involved lanes at the level of the

network is still very limited. And research on the network

structure is just a small step; a more important task is to

establish the connection between the structure and func-

tion of the network, i.e., determine how to predict or infer

the operation law of the whole system with structural

measures after quantitative observation of the structure of

the network. Unfortunately, compared with the de-

scription of the network structure, research on this

topic has developed slowly [10]. Our research is based

on SCATS and POI data which have a detailed de-

scription of the whole traffic state. The detector data

from SCATS is complete and can show the real traffic

burden or demand. The beauty of real data lies in

this capability. Therefore, the first and most import-

ant contribution of the paper is to help researchers to

understand these characteristics and correlations de-

rived from the whole, not samples before modeling

Wang et al. European Transport Research Review           (2018) 10:50 Page 2 of 17



analysis and engineering application. In the overall

view, we will answer the following two questions in

the paper.

(1) Based on the empirical population evidence,

what are the time and space characteristics for traffic

demand in the road network? How to illustrate them

systematically?

(2) In our case, whether the correlation between traffic

flow and the built environment exists? If so, is it the

same as the existing studies?

Based on the simple thought, we will analyze the

SCATS data and built environment data to reveal inter-

esting results. Our empirical analysis could offer a more

comprehensive understanding of the temporal and

spatial distribution characteristics of urban transporta-

tion demand, and also further reveal the relationships

between structure and function information. The results

of this study provide an empirical and theoretical refer-

ence for the network analysis and management of urban

road traffic as well as exploring how universal these

findings are by conducting a similar analysis for Euro-

pean and other cities.

2 Materials and methods

2.1 Traffic flow data description

In this paper, the functional information of the urban road

traffic network is extracted from the SCATS (Sydney Co-

ordinated Adaptive Traffic System) [34] in Shenyang City

of China. In 2014, the city which is one of the biggest cit-

ies in the northeast region of China had a population of

8.29 million, and the number of cars was 1.46 million. As

a form of spatial distribution of travel demand, traffic flow

is selected as the basic parameter to reflect the function

information of the urban road traffic network. The SCATS

system has a total of 525 intersections in the main urban

area of the city, as shown in Fig. 1. The number of inlet

lanes of intersections is 3–24, including T-intersections,

crossing intersections and five-way intersections.

Considering the regularity of the travel patterns of the

residents, we randomly selected data of a typical intersec-

tion and the corresponding western entry road for a week

(July 29, 2014 – Aug. 4, 2014). As an example, these data

exhibited time similarity separately in traffic flow, as shown

in Fig. 2, making it necessary to select the day which has

maximum traffic demand as the research object.

Fig. 1 Intersection distributions controlled by SCATS in Shenyang, China
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a

b

Fig. 2 Typical network elements’ flows, (a) the intersection; (b) the road

Table 1 The daily total flow of the intersection and 15-min flow correlation coefficients

Date July 29, 2014 July 30, 2014 July 31, 2014 Aug. 1, 2014 Aug. 2, 2014 Aug. 3, 2014 Aug. 4, 2014

Flow/(vehicle/day) 66,994 66,949 66,947 67,974 67,074 61,109 66,294

July 29, 2014 1 0.9945 0.9949 0.9943 0.9677 0.9892 0.9595

July 30, 2014 – 1 0.9948 0.9933 0.9694 0.9595 0.9637

July 31, 2014 – – 1 0.9938 0.9635 0.9631 0.9912

Aug. 1, 2014 – – – 1 0.9667 0.9567 0.9934

Aug. 2, 2014 – – – – 1 0.9609 0.9925

Aug. 3, 2014 – – – – – 1 0.9929

Aug. 4, 2014 – – – – – – 1

Wang et al. European Transport Research Review           (2018) 10:50 Page 4 of 17



The calculation formula of the Pearson correlation co-

efficient is given,

R ¼

X

n

i¼1

xi−xð Þ yi−yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

xi−xð Þ2
X

n

i¼1

yi−yð Þ2
s ; ð1Þ

where n is the total number of samples, i refers to a spe-

cific sample. x and y are the variables, and x and y are

the means of the corresponding variables, respectively. If

the two variables are positively linearly correlated, then

0 < R ≤ 1. If two variables are negatively linearly corre-

lated, then −1 ≤ R < 0. If there is no linear correlation be-

tween the two variables, then R = 0. Generally, if |R| >

0.8, then the two variables are considered to have a

strong linear correlation.

At this typical intersection, the change trends and

values of the flow time series of 15 min during the con-

tinuous week are consistent. Fig. 2(a) exhibits the correl-

ation between variables directly. The corresponding west

entrance road also has similar characteristics, as shown

in Fig. 2(b). Table 1 shows the total traffic volume and

correlation coefficients of the 15-min flow time series of

the intersection on different days. In terms of the total

volumes, except Sunday (Aug. 3, 2014), the traffic de-

mand of this intersection is relatively stable, and the

maximum value occurred on August 1, 2014. The cor-

relation coefficients at different dates were found to be

R > 0.95 indicating that the flow time sequence of differ-

ent dates has obvious time similarity. The average cor-

relation coefficient of the flow time series of the

corresponding western inlet road is 0.9692, which also

has obvious time similarity. In view of the maximum

traffic demand of August 1, 2014, the traffic of the road

network on that day is selected for the following

analysis.

Data quality and detectors condition were checked.

According to the statistics, there are 318 intersections

having the output data on the day, 63 of which are nor-

mal for all detectors. There are 521 segments having the

complete data, 64 of which are normal for the two-way

detectors.

2.2 Built environmental influence factors

The primary built environmental factors affecting traffic

state of travel behaviors could be divided into traffic-re-

lated and land-use related factors [11, 35, 36]. The geo-

graphical detector [37] was introduced to assess the

built environmental parameters that may be responsible

for the road traffic state [24]. Zhang et al. defined the

power of determinant (PD) to determine whether a

spatial factor may be responsible for clustering results of

traffic state [24]. The equation of PD is as follows,

PD ¼ 1−
1

nσ2

X

k

i¼1

nD;iσ
2
D;i; ð2Þ

where nD, i is the number of samples in the sub-

region i of the determinant Di, and n is the total

number of samples. n ¼
P

i¼1

k
nD;i , where k is the number of

the sub-regions. σ2 is the global variance of an influence

factor in the study region, and σ2
D;i is the weighted div-

isional variation. The value range of PD is [0, 1]; a larger

value indicates the factor’s determinant power is stronger.

Zhang et al. investigated the relationship between traffic

congestion and the built environment based on taxi GPS

data of Shanghai, China; the built environment factors

and PD are shown in Table 2.

Table 2 presents the explanatory power of the factors.

Num_bus (0.130) has the highest PD, i.e., more bus

Table 2 Built environmental factors for traffic flow and PD [24]

Variables Abbreviation Power of determinant

F1: Road type Rd_type 0.105

F2: Road segment length (m) Rd_len 0.018

F3: Distance to the nearest ramp (m) Dis_ramp 0.044

F4: Number of bus stations along the segment per 100 m (stations/100 m) Num_bus 0.130

F5: Distance to the nearest metro station (m) Dis_metro 0.045

F6: Relative location to the freeway rings Ring 0.005

F7: Number of parking lot with 500 m Parking 0.052

F8: Number of schools within 500 m per 100 m (schools/100, r = 500 m) Num_scho 0.084

F9: Distance to the nearest hospital (m) Dist_hosp 0.091

F10: Commercial area proportion (%) Com_pro 0.048

F11: Residential area proportion (%) Res_pro 0.021

F12: Transportation area proportion (%) Trans_pro 0.071
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stations along the road segment per 100 m are related to

the high possibility of congestion, because bus stations of

higher density reflect greater commuting volume along

the road segments. Considering the possibility of data col-

lection and the values of PD, the following factors were

chosen for further analysis in this study: Num_bus (0.130),

Rd_type (0.105), Dist_hosp (0.091), and Num_scho (0.084).

Different from the simple description (1 for the primary

road and 2 for the secondary road) in Zhang’s work, the

paper replaces that factor with the lane number as well as

considering the importance of lane number based on our

previous studies [29–33]. The complete data of traffic de-

mand from SCATS is more convincing with comparison

to taxi data of Zhang’s work.

Correspondingly, this study extracted 8643 POIs

(point of interests), including bus stations, hospitals and

schools using web-crawler software, as shown in Fig. 3.

2.3 Research methods

Based on the analysis mentioned above, the analytical

flow of this study is shown in Fig. 4. Section 2 presents a

description of the used data and methods in the study.

In section 3, traffic demand spatiotemporal characteris-

tics will be analyzed from the two dimensions (time and

space) within the actual road network data in Shenyang,

China. For variable traffic demand in a day, peak periods

will be firstly investigated in this section. Except for the

peak time distributions in the scales of the morning,

evening and the whole day, the correlations between

peak hour flows and day flows of specific peak periods

will be also considered. From the spatial point of view,

we will show traffic flow distribution of roads with di-

verse lane numbers in the urban street network. Subse-

quently, the correlation between the traffic flow and the

built environment (Num_bus, lane number, Dist_hosp,

Num_scho) is investigated, and some interesting findings

will be given. Finally, we will present the research con-

clusions and discussions of future work in section 4.

2.3.1 Traffic demand analysis

The analysis object is the city’s traffic data on August 1,

2014. Because of the lack and fault of detectors, it is dif-

ficult to obtain the traffic flow of all intersections; thus

the results represent a relative relationship. At first, this

section analyzed the temporal distribution of traffic de-

mand in the three scales of the whole day, the morning

peak and the evening peak.

As the bottleneck of the urban traffic system, the in-

tersections play a significant role in the process of trans-

portation operation. Analyzing the peak hour and flow

distributions of an intersection is helpful to gain the pro-

found understanding of the temporal operation charac-

teristics of urban traffic flow. As shown in Fig. 3, the

traffic flow chart in urban roads is usually in the form of

a saddle shape. qhi indicates the traffic in the ith hour.

There are peaks in the morning and afternoon, and each

corresponding hour is called the peak hour. The traffic

Fig. 3 Heat map of POIs including bus stations, hospitals and schools
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volume within that peak hour is called the peak hour

flow qhm. Define peak hour flow ratio,

λ ¼
qhm
Q

: ð3Þ

In the eq. (3), Q is the full day flow, that is Q ¼
P

i¼1

24
qhi.

And then we mainly analyzed the spatial distribu-

tion of traffic flow in different types of roads and

the distribution of traffic in double directions of the

road. We screened out detectors, and the segments

with fully covered and normal detectors were se-

lected. There are 521 segments in one way meeting

the research requirement according to the statistics,

and the number of lanes is 1~ 7. There are 64

two-way segments with normal data output.

2.3.2 Correlation analysis between traffic flow and built

environment

The correlation analysis in this part includes two objects,

i.e. the intersections and roads.

To study the relationship between the intersection traf-

fic flow and the built environment, the aforementioned

several factors were first analyzed in the context of the in-

tersections. Given that intersection traffic flow comes

from the adjacent road segments, the number of lanes be-

comes the only analysis factor. In this section, we investi-

gated the correlation between the actual maximum

capacity and number of lanes. The number of approach

detectors, peak hour time throughout the day and the cor-

responding flow data of each intersection were counted.

The traffic analysis report of China major cities in the

third quarter, 2014 (http://report.amap.com/

download_city.do) indicates the rankings of Shenyang’s

peak time and all-day congestion in key cities were both at

the top of the list. Therefore, Shenyang is the typical case

for analysis in China. The traffic function of the intersec-

tions at the network level is measured by peak hour flow

of the full-day. Moreover, considering the lower traffic de-

mand of some roads, the 30 percentile of the average lane

hour flows (227veh/(h * ln)) is selected for the threshold

value to remove intersections of lower traffic pressure.

Define detector integrity rate,

ξ j ¼
n j

N j

: ð4Þ

In the formula, nj is the number of actual detectors at

the intersectionj; Nj refers to the actual number of ap-

proach lanes. The sample size U is assumed to represent

a set S of intersections. Other influence factors will be

considered in the part of roads.

To analyze the road traffic’s relationship with POIs, we

combined the roads with the same names and obtained

42 roads. The flows are the maximum values of the same

roads. In the seventeenth century, Newton proposed that

the force of any two objects is proportional to its mass

and inversely proportional to the square of the distance

between them. Currently, the gravity model has become

a widely used model in spatial interaction. The improved

gravity model formula is given below,

T ij ¼ K
Mα

i M
α
j

D
γ
ij

; ð5Þ

where K is a constant; M is the fitness that refers to the in-

trinsic properties of the nodes and indicates the ability to

Fig. 4 Analytical flow of this study
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get an edge; D is generally defined as the Euclidean distance,

but it can also represent other physical quantities, such as

time; The values of the two exponents α and γ depend on

the network’s dependence on node fitness and geography

[38]. A classic application of the gravity model in the field

of transportation planning is trip distribution forecast of

the four stages, in which trips between two traffic zones

are directly proportional to the number of trip produc-

tions and attractions and is inversely proportional to the

traffic impedance between the origin and destination. Pre-

vious studies have validated the applicability of the gravity

model in network flow analysis including highway systems

[39], airport systems [40–42] and rail systems [43]. Related

research on urban traffic flow focuses on the human mo-

bility among towns or cities [44–47], however, to our

knowledge, no study has used the gravity model to esti-

mate traffic flow between two adjacent intersections from

the perspective of spatial interaction.

Here, we defined M as degree [10], improved degree

[29] and lane number of the connecting road (i.e., esti-

mated road). The distance function is described in the

forms of the power function, the exponential function

and the combination function [48]. The interactions Q

between the adjacent intersections will be investigated in

the fitting experiments. Q includes total day flows of

two-way roads and peak hour flow of larger traffic de-

mand direction. When fitness (M) is defined as the

two-way lane number and the form of combination

function is selected for D, eq. (6) is true within a specific

flow range.

Qij ¼ K
Mα

i M
β
j

D
γ
ije

ηDij
þ k: ð6Þ

In the formula, α, β, γ, η, k, K are parameters that re-

quire calibration in the fitting experiments. The values

a b

c

Fig. 5 Whole day time characteristics: (a) peak hour distribution and APHR (average peak hour ratio), (b) correlation between average peak hour

flows (APHF) and average daily total flows (ADF), and (c) correlation between peak hour flows and day flows
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of root mean square error (RMSE), mean absolute error

(MAE), mean absolute percentage error (MAPE) and

correlation coefficient (R) were calculated to determine

the accuracy and agreement between the observed and

estimated values.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1;i< j

Qij−Q
0

ij

� �2

v

u

u

t ; ð7Þ

MAE ¼
1

n

X

n

i¼1;i< j

Qij−Q
0

ij

�

�

�

�

�

�
; ð8Þ

MAPE ¼
1

n

X

n

i¼1;i< j

Qij−Q
0

ij

Qij

�

�

�

�

�

�

�

�

�

�

; ð9Þ

where n is the total number of observed (and fore-

casted) values; Qij refers to the observed values of

daily flows (or peak hour flows) of intersection i and

j; Q0
ij refers to the corresponding traffic estimated

values.

3 Results

3.1 Traffic demand spatiotemporal distribution

characteristics

3.1.1 Temporal distribution characteristics analysis

In the 318 intersections of Shenyang city, China, the

peak hours of the day were mainly concentrated in

the morning peak (07:00–09:15) and the evening peak

(16:15–18:15), as shown in Fig. 5(a). The trip peak

period is similar to that of European cases [28]. The

combined peak hour frequencies of both peaks

accounted for 82.22% of the peak hours. The max-

imum flow of the day mainly occurred in the

morning peak. The ratio of the frequency of the

morning peak to that of the evening peak was 3.18:1.

The morning peak accounted for 62.54% of the day.

The average peak hour flow ratio of the whole day

was 0.0844. The average peak hour flow ratio ranged

from 0.0654 to 0.1087 according to the time interval

statistics.

As shown in Fig. 5(b), the average flow distributions

and change trends of the peak hours were consistent

with those of the day flows of corresponding sample

sets, especially during the morning peak and the

evening peak, and the correlation coefficient R was as

high as 0.9821. A linear correlation was found be-

tween day flow and peak hour flow of individual

intersection, as shown in Fig. 5(c). The model is as

follows,

Q ¼ -709:870þ 13:883q; ð10Þ

where Q is the day flow of the intersection, q is the peak

hour flow of the intersection, and the number of sam-

ples is 318.

In addition to the time distribution of all day traffic,

the morning and evening peaks will be inspected separ-

ately, as shown in Figs. 6 and 7. The morning average

peak hour flow ratio was 0.0831, slightly less than that

of the full-day. The average peak hour flow ratios of the

time interval segment ranged from 0.0646 to 0.1510 (the

second largest ratio is 0.1087). The correlation coeffi-

cient between average daily flows and average flows of

the morning peak hours in the corresponding samples

was 0.8704. The average flow ratio of the evening peak

hour was 0.0733, which was significantly less than that

of all-day and the morning peak. The average peak hour

a b

Fig. 6 Morning peak time characteristics, (a) peak hour distribution and APHR; (b) correlation between average peak hour flow and average daily

total flow
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flow ratio of the time-sharing segment was 0.0605–

0.2131 (the second largest ratio was 0.1075). The cor-

relation coefficient is 0.9073 between average daily

flows and the average flows of the evening peak

hours. The flows of the morning peak and the even-

ing peak were in line with the changing trend. Be-

cause the bottleneck of urban traffic flow is the

intersection, the time distribution of the road was not

discussed here. The average peak hour flow ratio of

the road was 0.0801, which was the 63rd percentile.

The 93rd percentile was 0.1003.

This section reviewed the consistency of trends be-

tween peak hour flows and full-day flows from three di-

mensions of the day, morning and afternoon. In the

form of an example, the full-day service traffic volumes

could be estimated by the peak hour flow ratio because

the peak hour volume is a typical item of the traffic

survey.

3.1.2 Spatial distribution characteristics analysis

Figure 8(a) shows the total day flows of the same lane num-

ber in ascending order throughout the day. Although the

average daily flows of the roads are linearly increasing with

the number of lanes (R2 = 0.9684), as shown in Fig. 8(b),

the ranges (max-min) of the total flows of the same number

of lanes first gradually expanded and then decreased. These

findings show that the actual traffic function of different

roads is quite different, despite having the same road

structure. It provides the possibility for the refined

design of traffic control strategy and the further

optimization of transportation resources. Note that

there is only one normal one-way road whose number

of lanes is 7; this road is ignored in the range ana-

lysis. The distribution of peak hour flows is similar to

that of the daily flows.

Similar to the intersections, the correlation be-

tween the daily flows and peak hour flows of roads

was analyzed. A significant linear relationship was

found, as shown in Fig. 8(c). The linear model is as

follows,

Q0 ¼ 276:455þ 12:688q0; ð11Þ

where Q' is the day flow of the road, q' is the peak hour

flow of the road, and the number of samples is 521.

In addition, the total traffic volume of each road

type was obtained by multiplication of the number

of segments of different lanes and the average values

of the daily total flows. The subgraph of Fig. 8(a)

shows the daily flow cumulative probability with

increasing number of lanes. We find that urban traf-

fic flows are mainly concentrated in a small number

of roads. Approximately 66% of the small and

medium-sized roads were covered by about 38% of the

traffic flow, and 34% of the medium and big-size roads

served approximately 62% of the traffic. One-lane roads,

which occupied 42.54% of the total number of segments

accounted for 14.64% of the traffic, and their traffic func-

tions were equal roughly to those of arterial roads (five,

six and seven lanes in one direction), which accounted for

5.19% of all roads (the latter served 13.40% of the traffic

demand). Service traffic volumes of one-way two, three

and four lane roads were 23.02%, 25.11% and 23.82%, re-

spectively, all exceeding 20%. The proportions of the three

kinds of roads were 23.76%, 17.69% and 10.81% for two,

three and four lane roads, respectively. The finding from

China’s real traffic data is a powerful supplement of street

hierarchies for Lammer’s work [26] on the German cities

using travel time and betweenness centrality to reflect the

real flows, Jiang’s European taxi case [27] and Huang’s

Wuhan case [49].

a b

Fig. 7 Evening peak time characteristics, (a) peak hour distribution and APHR; (b) correlation between average peak hour flow and average daily

total flow
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As an important arterial road connecting the north

and south of the city, Fig. 9 shows that the traffic flows

in both directions of the Qingnian street were relatively

close, which were 54,639 veh/d and 53,714 veh/d. The

flow ratio was 0.8–1.2, and the mean was 1.01; thus, the

flows in both directions were balanced. Upper carriage-

ways 1–4 are distributed from the inside to the outside,

and the inlet is forbidden to turn left. Lanes 1–3 are

straight lanes, and lane 4 is the right lane. According to

the distribution map of the lane flows, there were more

vehicles in the second and third lanes, all of which had

flows of approximately 15,000 veh/d. The flows of 1st

and 4th lanes on both sides were relatively less, with

values of 13,740 veh/d and 10,685 veh/d, respectively. In

the case of 64 samples, the correlation between the

up-flow and down-flow was also significant. For peak

hour flows, R = 0.7938. For day flows, R = 0.7845.

3.2 Correlation between the traffic flow and the built

environment

3.2.1 Correlation between intersection traffic flow and lane

number

Statistical results of the set S1 (U1 = 318) of all intersec-

tions, intersection set S2 (U2 = 63) of ξj = 1, intersection

set S3 (U3 = 97) of ξj = 0.9 and intersection set S4 (U4 =

138) of ξj = 0.8 are shown in Fig. 10. After deleting the

a

c

b

Fig. 8 Correlation between day flow and lane number: (a) daily total flow of segments with different lanes, and subgraph is day flow cumulative

probability with increasing number of lanes; (b) average daily flow and range (max-min); (c) peak hour flow and day flow of roads
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a

c d

b

Fig. 10 Correlation between entry lane number and peak hour flow of intersections: (a) the whole M1; (b) intersection set M2; (c) intersection set

M3 of ξj = 0.9; (d) intersection set M4 of ξj = 0.8

a b

Fig. 9 Flow direction distribution and flow lane distribution of Qingnian Street
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intersections with lower traffic demand, U1
′ = 222. The

difference between samples U1 and U1
′ is that average

flows of the latter are slightly greater than that of the

former. The frequency is the opposite case. Moreover,

they have same correlation with the entry lane number.

U2, U3, and U4 are the cases of filtering out the

intersections.

According to the relationship shown in Fig. 10 be-

tween the number of lanes and the mean of traffic flow,

the number of inlet lanes in the intersections was

linearly positively correlated with the peak hour flow. In

general, the peak hour load flow (actual capacity) at the

intersection increased with the increase of the number

of inlet lanes. Different sets of samples, however, re-

vealed that the maximum carrying capacity for each type

of individual was optimal when entry lane number was

14, namely, a marginal effect of entry number of lanes

existed in the urban road network. The marginal effect

is that the increase of the traffic capacity will gradually

decrease when the other inputs are fixed. Since the flow

is still larger when the number of entry lanes is 15, it

can also be considered.

In SCATS, Degree of Saturation (DS), which refers to

the ratio of effectively used green time to the total avail-

able green time, is utilized to evaluate the saturated state

of the traffic control system [50]. Similar to the previous

study, we acquired the DS data of the intersections with

ξj ≥ 80% and removed outliers whose phase number is sig-

nificantly less than the illustrated number in the system.

The distribution of the average degree of saturation in as-

cending order for each intersection is shown in Fig. 11.

The figure indicates the average DSs of different

intersections and phases are larger in peak hours, with the

average values of 77.08% and 76.09% respectively.

In addition to signal control, another important factor

affecting the capacity of intersections is lane function

division. As one of the common traffic facilities on the

city roads, the commonly used signals are red, green and

yellow. In the green light period, vehicles that arrive at

the intersection can go straight into the intersection,

turn right or left (unless other traffic signs forbid a flow).

But when the yellow light starts, the vehicles are prohib-

ited from entering the intersection and wait in line until

the restart of the next green light. Because of the releas-

ing or interrupting traffic flow of a certain direction

periodically, vehicles in a given lane go through the

intersection at part of the time, and they will wait for

the green light signal or the previous release at other

times. According to the control of the signal, the traffic

flow of the signal intersection having conflict in space

could be separated in time. The lane group is an import-

ant analysis object when calculating the capacity of a

single intersection. From the perspective of network traf-

fic flow analysis, however, vehicles during peak time are

in a state of saturation or even oversaturation for most

intersections. Moreover, each approach usually has lanes

of three directions (straight, left and right). When the

total number of lanes is fixed, the specific lane combina-

tions are no longer analyzed in the comparison among

multiple intersections in the urban road network.

3.2.2 Correlation between the road traffic flow and the built

environment

From the perspective of traffic flow, however, a signifi-

cant correlation among traffic flow, bus stations, hospi-

tals and schools found from a speed analysis [24] did not

occur. Dist_hosp did not also show correlation with

other factors, so it was replaced by the number of hospi-

tals within 500 m. This discrepancy may be the result of

the differences in various research cases and analysis in-

dicators. Despite the discrepancy in this aspect, we

found a new correlation among the built environment

factors. Figure 12(a) exhibits the positive linear correl-

ation between road length and the number of bus sta-

tions along the roads. Figure 12(b) shows the correlation

among the number of hospitals within 500 m, the num-

ber of schools within 500 m and the degree. Figure 12(c)

shows the correlation between the degree and the num-

ber of schools within 500 m. Here, the degree is the

number of connecting roads for a road, and it is a basic

indicator in network science [10]. Although a simple

and clear correlation has not been found in this case, we

think the correlation should exist in a mature develop-

ment status of the city systems.

When examined the prediction result of the gravity

model, we found that when fitness is defined as the

two-way lane number, the form of combination function is

selected for D, within a specific flow range, there exists eq.

Fig. 11 Distribution of the average degree of saturation in

ascending order
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(5). The traffic is filtered, and the model is calibrated ex-

cluding smaller traffic values and several outsized values.

When the daily total flow range is [36000, 75000], K =

106.31, α = 5.75, β = − 1.49,γ = − 2.55,η = 4.60, and k =

39491.35. When peak hour flow range is [1700, 3500], K =

0.13,α = 1.48,β = 1.93,γ = 0.31,η = ‐ 0.48, and k = 1729.14.

The number of estimated segments is 31 for day flow and

66 for peak hour flow. The former is the sum of the vehi-

cles in two directions, and the latter is the larger one of the

two ways, including one-way data of partial roads. The fit-

ting results and tests are shown in Tables 3 and 4. The two

tests indicate there is no significant difference between the

observed and estimated values. The fitting functions are

a

c

b

Fig. 12 Correlation analysis of built environment factors: (a) road length and number of bus stations; (b) number of hospitals within 500 m, number of

schools within 500 m and degree; (c) degree and number of schools within 500 m

Table 3 Regression goodness for the estimated models and the

samples test

Statistics RMSE MAE MAPE R R2

Model

Model 1 230.99 183.67 8.57% 0.7465 0.5573

Model 2 6872.25 5364.61 10.99% 0.7545 0.5692

2-Related Samples Test Wilcoxon signed ranks test Sign test

Statistics Model Model 1 Model 2 Model 1 Model 2

Z −0.208 −0.412 −1.354 −0.718

Asymp. Sig. (2-tailed) 0.836 0.681 0.176 0.472

Model 1-peak hour flow fit; Model 2-day flow fit
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given by 1stOpt 7.0 (http://www.7d-soft.com/en), and Sam-

ples tests are outputted by SPSS 20.

4 Conclusions and discussions

In this paper, real data of Shenyang, China was taken as

an example to study the urban traffic flow spatial-tem-

poral characteristics and its relationship with the built

environment; and some interesting findings were ob-

tained. The conclusions were derived from empirical

data analysis from the perspectives of time and space.

The temporal characteristics focus on the trip time flexi-

bility and the trip quantity variability of city traffic de-

mand. The spatial aspect focuses on the difference of

road utility at the network level, i.e., the road utilization

rate. The potential important findings were elaborated in

figures and models.

In terms of the temporal distribution of traffic de-

mand, the peak hours of different intersections and

roads were found to be heterogeneous, revealing trip

time flexibility. The primary trip peaks were the morning

and evening peaks (07:00–09:15 and 16:15–18:15). Citi-

zens’ commute behaviors determine the phenomenon;

however, we found that the trip quantity of the morning

peak is larger than that of the evening peak under fixed

traffic demand (average peak hour flows are 40,956 and

33,989 vehicles for morning and evening peaks, respect-

ively). The peak period of the day mainly occurs in the

morning, accounting for approximately three quarters of

peak hours. It indicates that, after work, people’s destina-

tions and the variability of routes caused less traffic bur-

den for the roads. Therefore, flexible work times and

places is an effective method to reduce the number of

vehicles and improve the traffic condition. Considering

the influence of routes and trip times on the traffic state

and the imbalance of the network flow distribution, the

study of the traffic signal control strategy should

emphasize the time difference and signal optimization of

heavy traffic burden routes. In addition to traffic control,

another link that must be strengthened is traffic infor-

mation service based on GIS-T (Geography Information

System-Transportation). It will be more important in the

next era of autonomous vehicles. After studying the traf-

fic flow of the intersections and roads, the interesting

scope and number of the average peak hour flow ratio

were discovered. The scope was found to be 0.06~ 0.10,

and 88% of the intersections and 93% of the roads are in

this interval. The average values of peak hour flow ratios

are 0.08 (0.0844 for the intersections, 0.0801 for the

roads). Since the correlation between peak hour flows

and day flows is significant, day flows could be estimated

when we have traffic survey of the peak hour flows. This

estimation is more important for developing cities

because of the lack of data collection equipment. More-

over, even if the roads have similar road structure with

the same number of lanes, the actual traffic functions of

different roads are quite different. The traffic flow is

found to be concentrated in a relatively small part of city

roads. The small and partial medium-sized road seg-

ments account for 66% of all roads, but only cover ap-

proximately 38% of the day service traffic, and the large

and partial medium-sized road segments (34% of the

whole) account for 62% of the traffic.

Built environment influence factors (Num_bus,

Rd_type, Num_hosp, Num_scho) were considered in the

correlation analysis with traffic flow. We found that the

effect of lane number on service traffic volumes of the

intersections and roads is more significant compared

with the other factors. The lane number has a significant

positive linear correlation with average service traffic

flow. The greater the number of lanes is, regardless of

whether roads or intersections are considered, the

greater the number of vehicles serviced is. However,

maximum values of traffic flow revealed that the service

capacity is different. There is a segmentation feather.

Namely, for both of cases, optimal network function is

achieved at a certain number of lanes. The case results

indicate that the maximum number of lanes of intersec-

tions and roads should be 14 and 4, respectively. The lat-

ter, 4 lanes, is merely a reference because the utility of

roads is also determined by the green time or split. In

this context, we should reconsider the road diet [51]

from the view of point of better performance and

utilization rate of the road network. The discovery of the

optimal lane number provides new insight and reference

for urban planning and traffic design. Other factors were

not found to be strongly correlated with traffic flow.

However, the correlations among these factors were re-

vealed, such as road length with the number of bus sta-

tions, numbers of hospitals and schools with degree, and

degree with the number of schools. Finally, we proposed

Table 4 Results of Paired-Samples T Test

Paired Differences

Mean Std. Deviation Std. Error Mean 95% Confidence Interval of the Difference t df Sig. (2-tailed)

Lower Upper

Pair 1 −0.010 232.760 28.651 −57.230 57.210 0.000 65 1.000

Pair 2 −0.094 6985.851 1254.696 − 2562.525 2562.337 0.000 30 1.000

Pair 1-peak hour flow; Pair 2-day flow

Wang et al. European Transport Research Review           (2018) 10:50 Page 15 of 17

http://www.7d-soft.com/en


an improved gravity model to estimate the traffic flow at

the day and peak hour scales for specific flow ranges.

This model represents a new approach to investigate the

traffic flow using simple structural parameters (number

of lanes and length of a road).

The results of this study provide quantitative support

for urban traffic flow spatiotemporal characteristics and

its relationship with the built environment. It could pro-

vide the reference for current traffic management and

help determine how to reduce the waste of road re-

sources in the form of empirical evidence. However, the

results are perhaps only valid in this case; thus more

data from other cities are required to explore whether

there is a universality rule. It would be interesting to ex-

plore how universal our findings are by conducting

a similar analysis for European and other cities so that

we can have a better understanding of urban transport

systems. Proposed analysis method and subsequent re-

sults will be important references for trip demand distri-

butions and the correlation between traffic flow and

built environment of European transport studies. Related

work on the urban traffic flow spatiotemporal character-

istics and its relationship with the built environment

must be further investigated in future studies. Except

for the traffic demand of vehicle level, the characteristics

of selecting routes of drivers based on trajectory data

will also be our next research content.
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