
9 2 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E

Feature
B ecause there i s no sys temat ic way in ex i s t ing
use-case approaches to handle nonfunc t iona l
requi rements, the authors prop ose an approach
to ana lyze and eva luate use cases wi th goa ls
and to s t ruc ture use-case mo dels.

se-case approaches are increasingly attracting attention in requirements
engineering because the user-centered concept is valuable in eliciting,
analyzing, and documenting requirements.1-5 One of the main goals of
the requirements engineering process is to get agreement on the views

of the involved users,6 and use cases are a good way to elicit requirements from a
user’s point of view.

An important advantage of use-case-driven analysis is that it helps manage com-
plexity, since it focuses on one specific usage aspect at a time. Use cases start from
the very simple viewpoint that a system is built first and foremost for its users. The
approach looks at the interactions of a single category of users at a time, consider-
ably reducing the complexity of requirements determination.7 However, current
use-case approaches are somewhat limited in supporting use-case formalization,4

and in structuring and managing large use-case models.8

Analyzing User
Requirements by Use
Cases: A Goal-Driven
Approach

U

Jonathan Lee and Nien-Lin Xue, National Central University

The standard approaches to improving use cases
have two main problems. Although quality issues
are often crucial to the success of a software system,
no systematic way exists to handle nonfunctional
requirements. Also, although interactions between
requirements are an important issue in the require-
ments-acquisition phase,9,10 there have been no at-
tempts to address them with use cases. Inspired by
procedure logic (associating each process with a
purpose),11 we propose an approach to extend use
cases with goals, called goal-driven use cases, or
GDUC, to alleviate these problems. Our approach

♦ uses goals to structure use-case models and
derive use cases,

♦ differentiates between soft and rigid goals to
handle imprecise nonfunctional requirements,

♦ embeds goal information in the use cases, and
♦ analyzes interactions between requirements

by investigating the relationship between goals and
use cases.

We chose the meeting schedule problem as an
example throughout this article to illustrate GDUC,
because the research community has adopted it as
a benchmark;12 the requirements illustrate typical,
real system problems; and it can help us address the
main challenge of requirements analysis, which is
to turn a vague and contradictory mission statement
into a detailed specification.9,12

GOAL-DRIVEN USE CASES

The basic concepts of a use-case approach are
actor and use case. An actor is a specific role played
by a system user and represents a category of users
that demonstrate similar behaviors when using the
system. Use cases describe the way an actor uses
the system. A use case has one basic course and sev-
eral alternative courses. The basic course is the sim-
plest course, the one in which a request is delivered
without any difficulty. On the other hand, alterna-
tive courses describe variants of the basic course and
the errors that can occur.

A use-case model specifies the relationships be-
tween use cases, as well as relationships between
use cases and actors. Two powerful concepts, ex-
tends and uses, structure and relate use cases. An ex-
tends relation specifies how one use case may be
embedded into another one, extending its func-
tionality. A uses relation is used for refinement, ex-
tracting similar parts of two or more use cases. In
this way, we can describe a similar part once instead

of showing a behavior in all use cases.
In Anne Dardenne and her colleagues’approach,

goals determine the respective roles of agents in the
system and provide a basis for defining which
agents should best perform which actions.13 A goal
is a nonoperational objective while a constraint is
an operational one; a
goal cannot be
achieved directly by
the application of ac-
tions available to
some agents. Instead,
it is achieved by satis-
fying the constraints
that make it opera-
tional. To satisfy these constraints, we may require
appropriate restrictions on actions and objects.

According to John Mylopoulos and his col-
leagues, goals represent nonfunctional require-
ments, design decisions, and arguments in support
of or against other goals.14 Goals representing non-
functional requirements are rarely accomplished or
satisfied in a clear-cut sense. Instead, different de-
sign decisions contribute positively or negatively to-
wards a particular goal. They also propose a labeling
procedure to determining the degree to which a par-
ticular design supports a set of nonfunctional re-
quirements.

In a nutshell, goal-based approaches focus on
why systems are constructed and provide the mo-
tivation and rationale to justify software require-
ments. We conceived our approach based on the
concept to extend use-case approaches with goals.

Our approach is for requirements engineers to
structure and elicit users’requirements, and to ana-
lyze and evaluate relationships between require-
ments. We focus on how to structure and elicit users
requirements with a three-step approach to con-
structing use cases:

1. Identify actors by investigating all possible
types of users that interact with the system directly.

2. Identify goals based on a faceted classification
scheme.

3. Build use-case models.

IDENTIFYING ACTORS

A person can play several roles and thereby rep-
resent several actors, such as computer-system op-
erator or end user.1 To identify a target system’s use
cases, we identify the system actors. A good starting

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 9 3

Feature

Goals representing
nonfunctional
requirements are
rarely accomplished
or satisfied.

point is to check the system design and who it is sup-
posed to help. For example, the meeting schedule
system is mainly designed for an initiator to organize
a meeting schedule, so the initiator is an actor. The
actors who will use the system are primary actors.
Each actor will perform one or more of the main sys-
tem tasks. Besides these primary actors, secondary
actors supervise and maintain the system.

In the meeting schedule system, we identified
three actors: an initiator (to initiate a meeting, notify
participants, and make decisions if conflicts occur),
a participant (to register a meeting and indicate a
preference for meeting dates, locations, or equip-
ment), and an operator (to maintain and supervise
the system). The initiator and participant are primary
actors, whereas the operator is a secondary actor.

IDENTIFYING GOALS

To identify goals from domain descriptions and
system requirements, we propose a faceted classifi-
cation scheme based on our requirement classifica-
tion scheme.14 Each goal can be classified with three
facets: competence, view, and content.

Competence
The first facet relates to whether a goal is com-

pletely or partially satisfied. A rigid goal, which must
be completely satisfied, describes a target system’s
minimum requirement. A soft goal describes a de-
sirable property for a target system and can be par-
tially satisfied. For example, a meeting schedule that
is convenient for all attendees completely satisfies its
goal, MaxConvenientSchedule. However, if the sched-
ule is only convenient to some of the attendees, it is
only partially satisfied. A soft goal, therefore, is de-
pendent on the rigid one. That is, a weak relation-
ship exists between a rigid goal and its soft goals.

In our example, the rigid goal Meeting-
RequestSatisfied has two related soft goals, Max-
NumberofParticipants and MaxConvenientSchedule,
which are weakly dependent on it, because the in-
formation about the number of meeting partici-
pants and the meeting’s convenience will be mean-
ingless if the meeting request is not satisfied.

View
This facet concerns whether a goal is actor-spe-

cific or system-specific. Actor-specific goals are an
actor’s objectives in using a system; system-specific
goals are requirements on services that the system
provides. For example, by examining the system de-
scription, we found that the initiator has three ob-
jectives for the meeting schedule system: to create
a meeting, to make the meeting schedule as con-
venient as possible for the participants, and to max-
imize the number of meeting participants. There-
fore, we identified three actor-specific goals: Max-
NumberofParticipants, MeetingRequestSatisfied, and
MaxConvenientSchedule.

On the other hand, a system-specific goal con-
siders the properties the system needs to support
services for all users as well as those necessary for
system operation. Consider this partial system de-
scription for the meeting schedule system:

Dynamically replan a meeting to support as much
flexibility as possible to take some external con-
straints into account after proposing a date and lo-
cation, such as accommodating a more important
meeting.

An initiator constructs a meeting, but the system
can accommodate a more important meeting.
Therefore, we can identify a system-specific goal:
SupportFlexibility.

Content
We can classify requirements into functional and

nonfunctional requirements based on their con-
tent.15 The construction of functional requirements
involves modeling the relevant internal states and
behavior of both the component and its environ-
ment. Nonfunctional requirements usually define
the constraints that the product needs to satisfy.
Therefore, a goal can be further distinguished based
on its content and can be either related to a system’s
functional aspects or associated with the system’s
nonfunctional aspect. We achieve a functional goal
by performing a sequence of operations. A non-

9 4 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9

Extends

Original goal
(Rigid, actor-specific, and functional)

Achieve

System-specificSoft Nonfunctional

U1

Achieve

E2

Extention
goal

Extention
use caseE3

Optimize/
Maintain

Actor

E1

ExtendsExtends

Achieve

Figure 1. Deriving use cases with goals.

functional goal is defined as constraints to qualify
its related functional goal.

In our example, the initiator creates a meeting
with a sequence of operations. Therefore, we can de-
fine MeetingRequestSatisfied as a functional goal. We
can also view the goals MaxNumberofParticipants
and MaxConvenientSchedule as constraints for a
schedule to satisfy, or as nonfunctional goals.

BUILDING USE-CASE MODELS

In GDUC, we have extended Alistair Cockburn’s
work by considering several different types of goals
to structure a use case and its extensions.16

Essentially, each use case is viewed as a process as-
sociated with a goal that it must achieve, optimize,
or maintain (see Figure 2). Building a use-case model
involves three steps: identify original use cases to
capture minimum requirements, identify extension
use cases to construct a more complete model, and
refine a use case model to enhance reusability.

Identifying original use cases
We first consider original use cases to guarantee

that they can adapt the target system to the mini-
mum requirements. Each original use case in our ap-
proach is associated with an actor to describe the
process of achieving an original goal, which is rigid,
actor-specific, and functional (see Figure 1). Building
original use cases by investigating all original goals
will make the use-case model satisfy at least all the
actors’rigid and functional goals.

The basic course in an original use case is the

simplest course—the one in which the goal is de-
livered without any difficulty. The alternative
course encompasses the recovery or failure course,
or both. The recovery course describes the process
to recover the original goal, whereas the failure
course describes what to do if the original goal is
not recoverable.

In our example, the use case plan a meeting cov-
ers the case for an initiator to achieve the goal
MeetingRequestSatisfied, which is rigid, actor-spe-
cific, and functional (see the boxed text, “Sample
Use Case,” p. 100). The use case starts when an ini-
tiator issues a meeting request to the system and
lasts until a meeting schedule is generated or can-
celed. The basic course of plan a meeting describes
steps to generate a meeting schedule to achieve
the goal MeetingRequestSatisfied: (1) determining
the date range, locations, meeting type, and po-
tential attendees; (2) having participants input their
personal agenda; (3) making a schedule based on
the given information; and (4) informing all partic-
ipants of the meeting.

The use case has several alternative courses that
may change its flow. For example, there are differ-
ent ways of recovering the goal MeetingRequest-
Satisfied when a strong schedule conflict exists.

Note that the problem statements do not indicate
when to cancel a meeting, so we will need to elicit
this information. The boxed text “Sample Use Case”in-
cludes an example of an alternative meeting plan.

Extension use cases
Original use cases are designed to satisfy origi-

nal goals for modeling users’ minimum require-

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 9 5

MaxNumber
ofParticipants

(S, A, N)

MaxConvenient
Schedule
(S, A, N)

Appropriate
Performance

(S, A, N)

Support
Flexibility
(S, Y, F)

Extends
Extends

Extends
Extends

MeetingRequestSatisfied
(R, A, F)

Achieve

Plan a meeting

Maintain Optimize Optimize Optimize

Initiator Participant

Increase
attendance

Make a
convenient
schedule

Extend date
range

Keep
appropriate
performance

Accommodate
important
meetings

RegisterAMeeting
(R, A, F)

Key:
R: Rigid
A: Actor-specific
F: Functional

S: Soft
Y: System-specific
N: Nonfunctional

Achieve

Register a meeting

Uses

Uses

Figure 2. A goal-driven use-case model for a meeting schedule system.

ments. To extend the model to take into account dif-
ferent types of goals, we create extension use cases.

Optimize or maintain a soft goal
By achieving a rigid goal, we can also satisfy all

its related soft goals to some extent. To optimize or
maintain the soft goals, we create extension use
cases (see Figure 1, the use case E1). Therefore, the
basic course in an extension is to optimize or main-
tain its soft goal, whereas an alternative course de-
scribes what to do if it fails to optimize or maintain
the goal.

In our example, satisfying the rigid goal Meeting-
RequestSatisfied does not guarantee that the meet-
ing is convenient for all participants. To make the
schedule as convenient as possible, we create an ex-
tension make a convenient schedule. If the basic
course constraints are not satisfied, the alternative
course is to recover the soft goal’s optimization. For
example, the system may extend the date range or
ask participants to add dates to their preference sets.

An extension can also be used to maintain a soft
goal. If the basic course of the use case plan a meet-
ing goes successfully, all potential participants can
attend the meeting. This completely satisfies the soft
goal MaxNumberofParticipants. However, if an ex-
ception or conflict arises, a recovery course may im-
pair the soft goal because some participants may
withdraw from the meeting. To maintain the soft
goal, we establish an extension increase attendance.
This extension resolves the conflict by extending the
date range or asking participants to remove dates
from their exclusive sets. By doing so, it sustains the
number of participants and maintains the soft goal.

Achieve a system-specific goal
An extension use case can be created to achieve

a system-specific goal (see Figure 1, use case E2). The

original use case plan a meeting describes creating
a meeting from a personal view, or the initiator’s
view. The extension use case accommodate impor-
tant meetings extends it to take all actors into ac-
count—that is, to achieve a system-specific goal,
SupportFlexibility.

Achieve a nonfunctional goal
To extend a use-case model to capture nonfunc-

tional requirements, we add extension use cases to
achieve a nonfunctional goal (see Figure 1, use case
E3). In this case, an extension use case serves as a
constraint to qualify its original use case. In our ex-
ample, the original use case plan a meeting ignores
several meeting constraints: AppropriatePerfor-
mance, MaxNumberofParticipants, and MaxCon-
venientSchedule. The basic course of make a conve-
nient schedule indicates the soft constraints on a
meeting schedule. If the constraints are not satis-
fied, the alternative course is to recover the soft
goal’s optimization.

To summarize, an original goal is rigid, actor-spe-
cific, and functional, but an extension goal is
achieved, optimized, or maintained by an extension
use case. An extension goal is weakly dependent on
its associated original goal. Satisfying an original
goal does not always satisfy its associated extension
goals, unless the extension goal is soft.

Refining use-case models
The use-case model as described thus far is suf-

ficient to specify users requirements. However, to
further enhance reusability, we need to elaborate
the use-case model by looking for common frag-
ments among different use cases and extracting the
similar parts into an abstract use case, such as refin-
ing the use case model by uses relations.

Although both extends and uses add an addi-

9 6 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9

U1
U2

Um

Relationships between use case and goals

G1

Satisfied
Deniable

Deniable

G2

Denied
Satisfied

Satisfied

. . .

. . .

. . .

. . .

Gn

Satisfiable
Denied

Denied

U1
U2

Um

Interactions between goals in the use-case level

(G1, G1)

Conflicting
Conflicting

Conflicting

(G1, G3)

Cooperative
Conflicting

Cooperative

. . .

. . .

. . .

(Gn–1, Gn)

Irrelevant

Irrelevant

System

Interactions between goals in the system level

(a) (b)

(c)

(G1, G2)

Conflicting

(G1, G3)

Counterbalanced

. . . (Gn–1, Gn)

Irrelevant

Figure 3 . GDUC’s three steps for requirements evaluation.

tional subsequence into a base sequence, they are
essentially different. In an extends relation, both ex-
tension and original use cases have their corre-
sponding goals to achieve, optimize, or maintain.
In a uses relationship, an abstract use case en-
hances reusability and does not have a goal asso-
ciated with it.

We found that extending a meeting’s date range
is a common behavior of the use cases increase at-
tendance and make a convenient schedule, and then
this part of behavior is extracted into an abstract
use case extend date ranges (see Figure 2).

GOAL EVALUATION

It is important for a good requirements-model-
ing approach to take real-world entities into account,
although the results often contradict one another.9

Figure 3 shows how GDUC evaluates interactions
between goals in three steps:

♦ Analyze the relationships between use cases
and goals by investigating the effects on the goals
after performing use cases;

♦ Explore the interactions between goals in the
use-case level; and

♦ Derive the interactions between goals in the
system level.

Relationships between Use Cases and Goals
To better characterize the relationships be-

tween use cases and goals, we adopted the pro-
posal from John Mylopoulos and his colleagues on
nonfunctional requirements.14 A goal can be ei-
ther satisfied or denied, if the goal is completely
achieved or ceased, respectively. However, a goal
is either satisfiable and deniable if it can be par-
tially satisfied or denied. In addition, a goal is in-
dependent if it will not be affected by performing
a designated use case.

In GDUC, a use case is designed to achieve, opti-
mize, or maintain its directly associated goals.
However, goals not directly associated with the use
case can also be affected or cause side effects.

Effects on associated goals
We can satisfy an original goal either by per-

forming the basic course successfully or by recov-
ering the goal from an alternative course (see
Figure 4, arrow a). We can also deny the goal under
the condition that it is ceased by performing an al-
ternative course.

In GDUC, an extension goal
can be either rigid or soft. For
a rigid goal, its associated ex-
tension use case is designed to
achieve and satisfy the goal.
On the other hand, an exten-
sion use case can be designed
to optimize or maintain a soft
goal and make it satisfiable
(see Figure 4, arrow b). For ex-
ample, to completely satisfy
the soft goal MaxConven-
ientSchedule, we need to suc-
cessfully perform both use
cases plan a meeting and make
a convenient schedule. The role
of the extension use case
make a convenient schedule is
to make the soft goal Max-
ConvenientSchedule satisfiable.

Side effects
By performing an original

use case successfully, we can,
to some extent, achieve the extension goals that are
directly associated with specific extension use cases
(see Figure 4, the arrow c). For example, if the use
case plan a meeting is successfully performed, the
extension goal MaxConvenientSchedule is satisfied
to a degree.

Generally, an extension use case does not im-
pair the original goal that is directly associated
with its original use case, except that the exten-
sion is designed to achieve a system-specific goal
(see Figure 4, arrow d). In this case, the original goal
is denied. For example, the extension use case ac-
commodate important meetings may cease the
original goal MeetingRequestSatisfied under the
condition that there is a more important meeting
in conflict with it.

An extension use case may also achieve or im-
pair an irrelevant goal associated with other exten-
sion use cases (see Figure 4, arrow e). For example, if
the extension use case increase attendance extends
the date range for maintaining its soft goal, another
extension goal MaxConvenientSchedule may also be
satisfiable. A typical example of impairing an irrele-
vant goal in the meeting schedule system is that
performing the extension use case keep an appro-
priate performance may cease the activity to nego-
tiate a convenient schedule. Therefore, the soft goal
MaxConvenientSchedule is deniable.

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 9 7

Feature

Extends

(a)

(d)

(b)
(e)

(c)

Basic goal

Extension
goal

Original
use case

Extension
use case

Key:
Side effects
Effects on the
associated goals

Extends

Extension
goal

Extension
use case

Figure 4. Relationships between

use cases and goals.

Interactions between goals in the use-case
level

In GDUC, relationships between goals exist at
two levels: use-case and system. The former is the
relationships between goals and specific use cases,
and the latter focuses on the overall system.

In the use-case level, two goals conflict with a use
case if the satisfaction of one goal increases while the
other decreases after the use case is performed. Barry
Boehm and Hoh In’s system QARCC identifies and di-
agnoses quality-attribute conflicts.17 Their approach
focuses on domain-independent conflicts involving
high-level quality-attribute and architecture-strategy
conflicts to achieve generality and scalability. For ex-
ample, a layered architecture has a positive influence
on portability, but has a negative influence on per-
formance. In contrast, our approach deals with the
conflicts between requirements.15 On the other hand,
two goals are said to cooperate with each other if
both the satisfaction degrees of the goals are either
increased (positively cooperative) or decreased (neg-
atively cooperative). The third possibility is that the
satisfaction degrees of goals remain unchanged. In
this case, the goals are said to be irrelevant.

To obtain interactions between two goals, we
need to look at relationships between the use case
and those two goals. For example, if the relation-
ships between a use case Uk and goals Gi and Gj are
satisfiable and deniable respectively, it means that
the satisfaction degree of Gi increases and that of Gj

decreases after Uk is performed. Gi and Gj have a con-
flicting relationship with respect to Uk.

The predicates cpuk
(Gi ,Gj) and cfuk

(Gi ,Gj) are in-
troduced to describe the relationship between goals
Gi and Gj with respect to the use case Uk, where cpuk

(Gi,
Gj) is true if Gi and Gj are cooperative with respect to
the use case Uk, and cfuk

(Gi ,Gj) is true if Gi and Gj are
conflicting with respect to Uk. If the goals Gi and Gj are
irrelevant with respect to Uk, the predicates cpuk

(Gi,Gj)

and cfuk
(Gi ,Gj) are both false.

The interactions between the use case make a
convenient schedule and the goals MaxConvenient
Schedule and AppropriatePerformance are satisfiable
and deniable, respectively. Therefore, we can con-
clude that the two goals are conflicting with respect
to the use case make a convenient schedule: cfmake a

convenient schedule (MaxConvenientSchedule, Appropriate-
Performance)=True.

Interactions between goals in the system
level

Interactions between goals in the system level
are mainly analyzed on the use-case models where
related use cases are amalgamated together. We can
derive interactions between goals in the system
level based on use-case models and relationships
between use cases in the use-case level.

The interaction between the goals Gi and Gj in
the system level is denoted as Rs(Gi,Gj), and is de-
fined as a pair of predicates < cp(Gi,Gj), cf(Gi,Gj) >,
where cp(Gi,Gj) is true if Gi is cooperative with Gj, and
cf(Gi,Gj) is true if Gi is conflicting with Gj in the sys-
tem level. There are four possible relationships be-
tween goals in the system level:

♦ Rs(Gi,Gj) = < False,False >: Gi and Gj are irrelevant
♦ Rs(Gi,Gj) = < True,False >: Gi and Gj are cooperative
♦ Rs(Gi,Gj) = < False,True >: Gi and Gj are conflicting
♦ Rs(Gi,Gj) = < True,True >: Gi and Gj are counter-

balanced
We describe how to derive interactions between

goals in the system level in Figure 5, where Gi and Gj

are two original goals and Ui and Uj are their associ-
ated use cases, respectively. Ui1 is an extension use
case of Ui, and Gi1 is its associated extension goal.

Interactions between original goals
We can derive the interactions between any two

original goals in the system level by checking the
relationships between those two goals with re-
spect to their associated use cases. More specifi-
cally, the interactions between Gi and Gj are said to
be cooperative if they cooperate with respect to
use case Ui or Uj:

Similarly, the interaction between Gi and Gj con-
flicts if they conflict with the use case Ui or Uj:

cf G G cf G G cf G Gi j U i j U i ji j

, , ,() = ()∨ ()

cp G ,G cp G ,G cp G ,Gi j U i j U i ji j() = ()∨ ()

9 8 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9

Extends

Ui

Ui2
Ui3

Ui1

ExtendsExtends

Gi

Gi1 Gi2 Gi3

Uj

Uj2Uj1

ExtendsExtends

Gj

Gj1 Gj2

Figure 5. An illustration of a use-case model.

By definition, a goal is always cooperative with
itself. That is, Rs(Gi,Gj) = < True, False > if Gi = Gj.

Interactions between original goals and extension
goals

To explore the interaction between an original
goal and an extension goal in the system level, we
should also consider the original goal on which the
extension goal is weakly dependent. In Figure 5, the
extension goal Gj1 is achieved (optimized or main-
tained) if Gj is satisfied. Thus, we should also con-
sider the interaction between Gi and Gj while inves-
tigating the interaction between Gi and Gj1. More
precisely, let Rs(Gi,Gj1) = < cp(Gi,Gj1), cf(Gi,Gj1) >, where

We can determine the interaction between the
original goal GMRS (or MeetingRequestSatisfied) and
the extension goal GMCS (or MaxConvenientSchedule)
by (1) the interaction between the goal GMRS and the
original goal GMRS on which GMCS is weakly depen-
dent, (2) the interaction between GMRS and GMCS with
respect to the use case plan a meeting (UPM), and (3)
the interaction between GMCS and GMRS with respect
to the use case make a convenient schedule (UMCS).
That is, Rs(GMRS, GMCS)=< cp(GMRS, GMCS), cf(GMRS, GMCS)
>, where

Therefore, the goal MeetingRequestSatisfied co-
operates with the goal MaxConvenientSchedule.

Interactions between extension goals
The interaction between two extension goals,

Rs(Gi1,Gj1) hinges on the system-level interaction be-

tween Gi1 and Gj, the system-level interaction be-
tween Gi and Gj1, the interaction between Gi1 and
Gj1 with respect to Ui1, and the interaction between
Gi1 and Gj1 with respect to Uj1. That is, Rs(Gi1,Gj1) =
< cp(Gi1,Gj1), cf(Gi1,Gj1) >, where

In our example, let Rs(GMCS,GAP) =< cp(GMCS,GAP),
cf(GMCS,GAP) > be the interaction between the ex-
tension goals MaxConvenientSchedule (GMCS) and
AppropriatePerformance (GAP) (GKAP is an abbrevia-
tion for the use case keep appropriate performance):

Therefore, the goals MaxConvenientSchedule and
AppropriatePerformance conflict.

We created GDUC based on the belief that
goal information should be captured in the

requirements-acquisition phase.18 In GDUC, goals
assist requirements acquisition and modeling in two
roles: serving as a structuring mechanism and eval-
uating requirements.

Our approach offers several benefits:
♦ serving as a structuring mechanism to facili-

tate the derivation of use-case specifications;
♦ bridging the gap between the domain de-

scription and the system requirements—that is, the
interactions between functional and non-functional
requirements; and

♦ making easy the handling of soft requirements,
and the analysis among conflicting requirements.

cp G G cp G G

cp G G

cp G G

cp G G

False

cf G G cf G G

cf G G

cf G G

cp G G

True

MCS AP MCS MRS

AP MRS

U MCS AP

U MCS AP

MCS AP MCS MRS

AP MRS

U MCS AP

U MCS AP

MCS

KAP

MCS

KAP

, = ,

 ,

 ,

=

, = ,

 ,

 ,

=

() ()
∨ ()
∨ ()
∨ ()

() ()
∨ ()
∨ ()
∨ ()

,

,

cp G G cp G G cp G G

cp G G cp G G

cf G G cf G G cf G G

cf G G cf G G

i j i j i j

U i j U i j

i j i j i j

U i j U i j

i j

i j

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

, , ,

, , ;

, , ,

, ,

() = ()∨ ()
∨ ()∨ ()

() = ()∨ ()
∨ ()∨ ()

cp G G cp G G

cp G G

cp G G

True

cf G G cf G G

cf G G

cf G G

False

MRS MCS MRS MRS

U MRS MCS

U MRS MCS

MRS MCS MRS MRS

U MRS MCS

U MRS MCS

PM

MCS

PM

MCS

, = ,

 ,

 ,

=

, = ,

 ,

 ,

=

() ()
∨ ()
∨ ()

() ()
∨ ()
∨ ()

;

cp G G cp G G cp G G

cp G G

cf G G cf G G cf G G

cf G G

i j i j U i j

U i j

i j i j U i j

U i j

i

j

i

j

, , ,

, ;

, , ,

,

1 1

1

1 1

1

1

1

() = ()∨ ()
∨ ()

() = ()∨ ()
∨ ()

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 9 9

Feature

We plan to continue research in two specific areas.
Specifically, we will explore the possibility of extend-
ing object-oriented models to manage conflicting re-
quirements. After we develop a use-case model with
GDUC, we then move to the system-analysis model.
As interactions between goals are analyzed in GDUC,

the interactions can be utilized for object models to
manage conflicting requirements. Additionally, as
conflicting requirements are imprecise, we expect ob-
ject models to possess the capability to model im-
precise requirements. A fuzzy object-oriented mod-
eling technique is needed for GDUC to model
imprecise and conflicting requirements.

We will also investigate the issues of goal priori-
tizing using the Analytic Hierarchy Process19 to sup-
port a more accurate requirements model for
conflict resolution. The importance of users re-
quirements may vary; some can be critical for the
software system’s success, while others may merely
be adornments. Analyzing the importance of re-
quirements will help construct a software system
with high customer satisfaction. ❖

ACKNOWLEDGMENTS
The research was supported by National Science Council

(Taiwan) under grants NSC87-2213-E-008-024 and NSC88-
2213-E-008-006.

REFERENCES
1. I. Jacobson, Object-Oriented Software Engineering, Addison

Wesley Longman, Reading, Mass., 1992.

2. J. Rumbaugh, “Getting Started: Using Use Cases to Capture
Requirements,” J. Object-Oriented Programming, Vol. 7, No. 5,
Sept. 1994, pp. 8–12.

3. T. Rowlett, “Building an Object Process around Use Cases,” J.
Object-Oriented Programming, Vol. 11, No. 1, Mar./Apr. 1998,
pp. 53–58.

4. B. Dano, H. Briand, and F. Barbier, “Progressing towards Object-
Oriented Requirements Specifications by Using the Use Case
Concept,” Proc. Int’l Conf. Requirements Eng., IEEE Computer
Soc. Press, Los Alamitos, Calif., 1996, pp. 450–456.

5. K.S. Rubin and A. Goldberg, “Object Behavior Analysis,” Comm.
ACM, Vol. 35, No. 9, Sept. 1992, pp. 48–62.

6. K. Pohl, “The Three Dimensions of Requirements Engineering:
A Framework and Its Applications,” Information Systems, Vol.
19, No. 3, 1994, pp. 243–258.

7. P.A. Muller, Instant UML, Wrox Press Ltd., Olton, Birmingham,
UK, 1997.

8. B. Regnell, M. Andersson, and J. Bergstrand, “A Hierarchical Use
Case Model with Graphical Representation,” Proc. IEEE Symp.
and Workshop on Engineering of Computer-Based Systems, IEEE
Computer Soc. Press, Los Alamitos, Calif., 1996, pp. 270–277.

9. A. Borgida, S. Greenspan, and J. Mylopoulos, “Knowledge
Representation as the Basis for Requirements Specification,”
Computer, Apr. 1985, pp. 82–91.

10. A. Finkelstein and R.C. Waters, “Summary of the Requirements
Elicitation, Analysis and Formalization Track,” ACM Software
Eng. Notes, Vol. 14, No. 5, 1989, p. 40.

11. M.P. Georgeff and A.L. Lansky, “Procedural knowledge.” Proc.
IEEE, Vol. 74, No. 10, Oct. 1986, pp. 1383–1398.

12. C. Potts, K. Takahashi, and A.I. Anton, “Inquiry-Based
Requirements Analysis,” IEEE Software, Mar. 1994, pp. 21–32.

13. A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-Directed
Requirements Acquisition,” Science of Computer Programming,
Vol. 20, 1993, pp. 3–50.

14. J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach,”
IEEE Trans. Software Eng., Vol. 18, No. 6, 1992, pp. 483–497.

15. J. Lee and J.Y. Kuo, “New Approach to Requirements Trade-Off

1 0 0 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9

S A M P L E U S E C A S E : P L A N N I N G A M E E T I N G
Goal: Determine a meeting date and location (MeetingRequest-

Satisfied: rigid, actor-specific, and functional).

BASIC COURSE

1. The initiator issues a meeting request.

2. The system automatically fills in the submission date. The initia-

tor fills in the other fields, including the date range, meeting locations,

meeting type, and all potential meeting attendants. The initiator also

indicates attendees’ importance levels.

3. The initiator notifies the potential attendants to input their data.

Active participants should fill in the equipment they need. If an at-

tendee is designated an important participant, he is required to fill in

his preferred locations. The exclusive sets and preference sets should

be contained in the date range.

4. After all participants input their data, the initiator asks the sys-

tem to make a meeting schedule based on the given information. When

making a schedule, the system should consider the proposed meeting

date, the stated date range and none of the exclusive set, and find a

meeting room available at the selected meeting date. The meeting

room should support equipment requirements of all the active partic-

ipants, and a lower bound should be fixed between the time the meet-

ing date is determined and when the meeting is actually taking place.

5. The system lists all possible meeting schedules that satisfy the cri-

teria. The initiator then chooses one of them and notifies all participants.

ALTERNATIVE COURSE

If a strong conflict occurs while generating a meeting, the system

will notify the initiator and ask to

♦ notify a participant to remove a date from his exclusive set,

♦ propose a participant with low importance level to withdraw

from the meeting,

♦ extend a date range, or

♦ cancel the meeting.

If none of the proposed locations can meet the equipment re-

quirements while making a meeting schedule, the system should in-

form the initiator. The initiator can propose other locations or cancel

the meeting. In the first case, the initiator first inputs some new loca-

tions and then restarts a new round of meeting scheduling. In the sec-

ond case, the initiator cancels the meeting, and all participants should

be informed of the cancellation.

Feature

Analysis for Complex Systems,” IEEE Trans. Knowledge and Data
Eng., Vol. 10, No. 4, July/Aug. 1998, pp. 551–562.

16. A. Cockburn, “Goals and Use Cases,” J. Object-Oriented
Programming, Vol. 10, No. 7, Sept. 1997, pp. 35–40.

17. B. Boehm and H. In, “Identifying Quality-Requirement
Conflicts,” IEEE Software, Mar. 1996, pp. 25–35.

18. A. van Lamsweerde, R. Darimont, and P. Massonet, Goal-
Directed Elaboration of Requirements for a Meeting Scheduler
Problems and Lessons Learnt, Tech. Report RR-94-10, Universite
Catholique de Louvain, Louvain-la-Neuve, Belgium, 1994.

19. J. Karlsson and K. Ryan, “A Cost-Value Approach for Prioritizing
Requirements,” IEEE Software, Sept./Oct. 1997, pp. 67–74.

Feature

Jonathan Lee is a professor in the
Department of Computer Science and
Information Engineering at National
Central University in Taiwan. His
research interests include trade-off re-
quirements, agent-based software engi-
neering, and applications of fuzzy the-
ory to software engineering. He received

his PhD in computer science from Texas A&M University. He is
a member of the IEEE Computer Society, ACM, and AAAI.

Nien-Lin Xue is a PhD student in the
Department of Computer Science and
Information Engineering at National
Central University in Taiwan. His
research interests include requirements
engineering, object-oriented method-
ologies, and the applications of fuzzy
logic to software engineering. He

received his MS from National Central University and his BS
from Soochow University. He is a member of the IEEE
Computer Society. He can be reached at
nien@se01.csie.ncu.edu.tw.

About the Authors

Readers may contact Lee at National Central University, De-
partment of Computer Science and Information Engineering,
Chungli 32054, Taiwan; e-mail yjlee@se01.csie.ncu.edu.tw.

