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Abstract. This paper is concerned with the application of Web services
to distributed, cross-organizational business processes. In this scenario,
it is crucial to answer the following questions: Do two Web services fit
together in a way such that the composed system is deadlock-free? –
the question of compatibility. Can one Web service be replaced by an-
other while the remaining components stay untouched? – the question of
equivalence. Can we reason about the soundness of one given Web service
without considering the actual environment it will by used in?
This paper defines the notion of usability – an intuitive and locally prov-
able soundness criterion for a given Web services. Based on this notion,
this paper demonstrates how the other questions could be answered.
The presented method is based on Petri nets, because this formalism is
widely used for modeling and analyzing business processes. Due to the
existing Petri net semantics for BPEL4WS – a language that is in the
very act of becoming the industrial standard for Web service based busi-
ness processes – the results are directly applicable to real world examples.

Keywords: Business Process Modeling, Web Service, BPEL4WS, Tool
based Verification, Petri nets.

1 Introduction

Over the past years, the Internet has evolved from just a communication media
into a platform for B2B integration. Emerging technologies and industrial stan-
dards in the field of Web services enable a much faster and easier cooperation
of distributed partners. This paper is concerned with the application of Web
services to distributed, cross-organizational business processes.

The Scenario. A Web service [1] is a self-describing, self-contained modular
application that can be published, located, and invoked over a network, e. g. the
Internet. A Web service performs an encapsulated function and can be accessed
via a standardized interface. In this paper, each local sub-process of each par-
ticipating company is realized through one Web service. The composition of all
Web services of all participating companies realizes the global business process.
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Instead of one new specific technology, the Web service approach provides a
stack of closely related technologies [4] to cover heterogeneity and distribution
underneath a homogenous concept of components and composition. Among other
things, the language BPEL4WS [2] belongs to this stack. Due to this layered
architecture, the presented analysis method can be focussed on the Web service’s
BPEL process model without losing generality or practical relevance.

The Goal. The Web service technologies define a technical framework to im-
plement distributed business processes while a minimum of syntactic consistency
is guaranteed. But as this paper will show, there is a need for more advanced
analysis, and there exist effective methods that are able to support the develop-
ment of Web services and Web service based business processes according to the
Service oriented architecture (SOA [9]).

The service oriented architecture describes three roles: The service provider
implements the Web service and publishes its description (the Web service
model) to one or more repositories for potential users to locate. For him, it
is crucial to determine errors and weaknesses of his service prior to publication.
Hence, this paper presents the notion usability – a locally provable soundness
criterion for a given Web service – that prevents publication of erroneous services.

The service requestor is searching for a Web service that he could bind to his
own components. For him, it is crucial to determine whether or not a given Web
service does interact properly with his components. Hence, this paper defines
the criterion of semantic compatibility and provides its verification.

Finally, the service broker manages a repository and allows the service re-
questor to find an adequate service. According to the query-by-example approach,
he compares the actual Web service model (published by provider) with an ab-
stract Web service model submitted by the requestor. Beside other use cases, the
presented equivalence criterion provides a basis for the necessary matchmaking.

The Method. Many of the Web services technologies are still in the standard-
ization process, and therefore some specifications will likely be changed several
times until a consistent status is reached. Hence, the presented method refrains
from the actual syntax of any proposed Web service modeling languages. Instead,
it applies a generic formalism of Petri nets [16] to addresses the core problems
of distributed business processes. This formal method is widely used for mod-
eling and analyzing business processes and Web services [21, 5, 6]. Applying the
rich theory of distributed systems, the presented method is able to define and
verify usability, compatibility and equivalence of Web services. Moreover, the pre-
sented results can easily be adopted to almost any concrete modeling language
(e. g. WS-CDL [7], OWL-S [25] or YAWL [23]). In particular, there exists already
a Petri net semantics for BPEL4WS [18] – a language that is in the very act
of becoming the industrial standard for modeling Web service based business
processes. Hence, the method is directly applicable to real world examples.

The remaining paper is structured as follows: Section 2 gives a short intro-
duction to Petri nets and describes the structure and composition of workflow
modules – the formal model of a Web Sevice. Section 3, discusses and defines the
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notion of usability by help of examples, and derives the properties of compatibil-
ity and equivalence. Section 4 establishes the core section of this paper: Applied
to an example, the verification algorithm is presented. Finally, Section 5 summa-
rizes the results and discusses their correlation to other published approaches.

2 Modeling

The Business Process Execution Language for Web Services BPEL4WS [2] pro-
vides a syntax to describe Web service process models. But, its semantics so
far is defined only by English prose or encoded into middleware components,
more ore less accurately. To verify properties like properties compatibility or
equivalence of two models a formal semantics of all its concepts is needed. The
presented method is based on a Petri net semantics [18]. Petri nets are a well
established method for modeling and analyzing (cross-organizational) business
processes [20, 21, 8]. They possess an intuitive graphical representation as well
as an algebraic foundation, and therefore Petri nets allow an effective analysis.
Other recent research projects apply Petri nets to Web Services [6, 15], too.

In contrast to the mentioned Petri net semantics, the current approach ab-
stracts from data aspects. This is an usual procedure in the field of computer
aided verification. On the one hand, a model without data has the disadvan-
tage of less precision (i. e. a more general behavior), but on the other hand, this
enables analysis methods yielding important results that are not applicable to
models with full expressive power of arbitrary data objects. The mapping of a
BPEL process model into an analyzable Petri net is explained in [13].

2.1 Modeling with Petri Nets

Figure 1 shows Petri net models of three Web service: A route planning service,
a services that acts as mediator and a customer’s service. These examples will
be used to demonstrate the modeling method, and to visualize composition and
compatibility of Web services. But first, some basic Petri net notions have to be
introduced:

Petri Nets. A Petri net N = (P, T, F) consists of a set of transitions T (boxes),
a set of places P (ellipses), and a flow relation F (arcs) [16]. A transition repre-
sents a dynamic element, i. e. an activity of a business process (e. g. Get Itinerary).
A place represents a static element, i. e. the causality between activities or a
message channel (e. g. Itinerary). The marking (i. e. state) of a Petri net is repre-
sented by black tokens distributed over the places (see places p0, q0 and s0). A
transition t is enabled if on each place p, (p, t) ∈ F there is at least one token. If
an enabled transition t fires, t removes one token from each place p1, (p1, t) ∈ F
and produces one token on each place p2, (t, p2) ∈ F. Based on this firing rule, it
is possible to reason about the behavior of a Petri net in term of firing sequences,
reachable states and/or concurrent runs (cf. [17]).
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Fig. 1. Modeling with Petri nets

Workflow Modules. A stateful Web service defines an internal process (i. e.
activities building its internal structure), and an interface to communicate with
other Web services. Hence, the Petri net model of such a Web service consists of
a workflow net – a special Petri net that has two distinguished places (α, ω ∈ P)
to denote the begin and the end of a process [21] – supplemented by a set of
interface places – each of them representing one directed message channel. Such
a model is called workflow module.

Definition 1 (Module). A finite Petri net M = (P, T, F) is called workflow
module (or just module) if the following conditions hold:

(i) The set of places is divided into three disjoint sets: internal places PN ,
input places P I and output places PO.

(ii) The flow relation is divided into internal flow FN ⊆ (PN × T) ∪ (T × PN )
and communication flow FC ⊆ (P I × T) ∪ (T × PO).

(iii) The net PM = (PN , T, FN ) is a workflow net.
(iv) No transitions is connected both to an input place and an output place.

Within a workflow module M , the workflow net PM is called the internal pro-
cess of M and the tuple I(M) = (P I , PO) is called its interface. Lets have a
closer look on the module Route Planning shown in Figure 1. The internal pro-
cess is triggered by an incoming Itinerary. Then the control flow splits into two
concurrent threads. On the left side, an available Means of travel are offered to
the customer and the service awaits his Selection. Meanwhile, on the right side, a
Rough Planning may happen. The Detailed Planning requires information from the
customer. Finally, the service sends a Route Planning to the customer.
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2.2 Composing Workflow Modules

A distributed business process is realized by the composition of a set of Web ser-
vices. The following section defines the pairwise composition of workflow mod-
ules. Because this yields another workflow module, composition of more than
two modules is realized by recurrent application of pairwise composition.

Compatibility. Figure 1 shows the module Default in the middle. The purpose
of this service is to unburden the customer from making a selection: The module
consumes the message on available Means of travel and returns a default Selec-
tion. Intuitively, it looks like the modules Default and Route Planning could be
composed. Formally, we will define the property of syntactic compatibility as a
precondition for composition of two modules.

Definition 2 (Syntactic compatibility). Two workflow modules are called
syntactically compatible if both internal processes are disjoint, and each common
place is an output place of one module and an input place of the other.

Referring to previous definition, the modules Default and Route Planning are syn-
tactically compatible. Nevertheless, this is not a sufficient criterion for proper
interaction between two partners. Lets consider a workflow module of an online
shop and a workflow module of a customer: The customer sends the payment
after he has received the ordered product, whereas the online shop waits for pay-
ment before sending the product. Both modules have a syntactically compatible
interface, but the resulting distributed process leads to a deadlock. To avoid such
errors, Section 3.2 will define the property of semantic compatibility.

Composition. As the example has shown, two syntactically compatible mod-
ules do not need to have a completely matching interface. They might even have
a completely disjoint interface. When two modules are composed, the common
places are merged and the dangling input and output places become the new
interface. To achieve a syntactically correct workflow module, it is necessary to
add new components for initialization and termination.

Definition 3 (Composed system). Let A = (Pa, Ta, Fa) and B = (Pb, Tb, Fb)
be two syntactically compatible modules. Let αs, ωs /∈ (Pa ∪ Pb) two new places
and tα , tω /∈ (Ta ∪Tb) two new transitions. The composed system Π = A⊕B is
given by (Ps, Ts, Fs), such that: Ps = Pa ∪ Pb ∪ {αs, ωs}, Ts = Ta ∪ Tb ∪ {tα , tω}
and Fs = Fa ∪ Fb ∪ {(αs, tα), (tα , αa), (tα , αb), (ωa, tω), (ωb, tω), (tω , ωs)}.

If the composed system contains more than one components for initialization
and termination, the corresponding elements are merged.

It can be easily proven that the composition of two syntactically compatible
workflow modules always yield a workflow module, too. This is because of the
additional components for initialization and termination. If more than two mod-
ules are composed, it is important to guarantee associativity of pairwise com-
position (i. e. (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)). Hence, if there are already such
syntactic components, they are merged while composition (cf. Figure 2(b)). In
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Fig. 2. Composition of workflow modules

Figure 2(a), the workflow module Default Planning is shown – the model of the
composed Web service Route Planning ⊕ Default. This service offers a simpler in-
terface to the customer: He only has to submit the Itinerary to obtain the Route
Planning information. To use this service, it is not relevant for a customer wether
or not the actual service was deployed at once or was formed by composition.

Environment. The composition of two workflow modules A and B yields a
model of a distributed business process, if both sets of interface places completely
match, i. e. the composed system Π = A⊕B has an empty interface. With other
words, Π is also a workflow net. In that case, module A is called an environment
of module B – obviously, this notion is symmetric.

The module Customer shown in Figure 1 is an environment of the (composed)
module Default Planning and vice versa. Figure 2(b) shows the resulting workflow
net. While composing both modules, the existing and the new added components
for initialization and termination are merged, as already mentioned.

Given a workflow module and its environment, it is possible to reason about
the soundness of the composed process model. This notion is an established
quality criterion for workflow nets [21]. Basically, it requires each initiated process
to reach eventually a proper final state. Additionally, each transition should be
relevant, i. e. there should be at least one firing sequence of the process in which
this transition participates. Although the second requirement was reasonable if
a business process was modeled from scratch, in the Web service approach, a
process arises from composition of several predefined components. Due to this, a
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workflow net is acceptable even if not all functionality of each specific component
is used in that system. Hence, a slightly alleviated criterion is used in this paper.

Definition 4 (Weak soundness). A workflow net (P, T, F) with the final place
ω ∈ P is called weak sound if the following conditions hold:

(i) For each reachable marking m holds: the final marking [ω] is reachable.
(ii) For each reachable marking m with m ≥ [ω] holds: m = [ω].

The weak soundness of the module Planning Process shown in Figure 2(b) can
be easily proven. Because of that, intuitively, the modules Default Planning and
Customer seem to be semantically compatible. In Section 3.1, the core notion of
usability will be discuss and precisely defined. Based on this notion, definition
of semantic compatibility can be derived that meets this intuition.

3 Properties

This section discusses the property of usability – the proposed soundness cri-
terion for workflow modules – and derives the definitions of compatibility and
equivalence. Obviously, the purpose of a Web service is to be bound to other com-
ponents such that a proper realization of a distributed business process arises.
Hence, the purpose of a workflow module is to be composed with an environ-
ment such that the resulting workflow net is at least weak sound. But, for a given
module there might exist infinitely many possible environments. The question is:
How many of these environments have to match to call the given module usable?

3.1 Usability

An example of a ticket service and a customer is used to address the question
above. Figure 3(a) shows a workflow module C1 representing the customer and
a module T1, which models the ticket service. The ticket service initiates the
communication by sending a Ticket and waits for payment (either VISA or eCash).
By receiving the Ticket, the customer solves an internal conflict and determines
the kind of payment. The composed system C1 ⊕ T1 is weak sound, and therefore
it seems reasonable to call these two modules semantically compatible. Is this
enough to call both modules usable, as well?

Figure 3(b) shows two slightly modified workflow modules C2 and T2. The
ticket service solves an internal conflict and sends the Ticket. Thereafter, module
T2 is either in state p1 waiting for eCash only, or in state p2 waiting for VISA only.
The customer receives the Ticket and has the choice between the two kinds of
payment. But, he does not know the internal state of the ticket service module.
Hence, he might choose the“wrong”payment, and the composed system C2 ⊕ T2
ends up in a deadlock, i. e. it is not weak sound.

Obviously, these two modules are not semantically compatible. To locate the
modeling error, lets consider the other two possible combinations: The system
C2 ⊕ T1 is also weak sound, whereas the system C1 ⊕ T2 may reach a deadlock,
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Fig. 3. Usability of workflow modules

too. Hence, there are two compatible environments for module T1 and no com-
patible environment for module T2. By help of the developed analysis method
(cf. Section 4), it can be proven that there can’t be any environment that forms
a weak sound composed system together with module T2. This is because of a
severe error in module T2: An internal decision is made and not communicated
properly to the environment. This type of errors is known in the literature as
the non local choice problem [3]. Consequently, the module T2 is not usable.

For both modules C1 and C2, there is one compatible environment (T1) and
one incompatible environment (T2). One might think of calling a module usable
if all possible environments form a weak sound composed system together with
that module. In that case, both modules C1 and C2 would be not usable – because
of the environment T2. However, this definition is unfair: the error within the
module T2 should not determine the quality of module C1. Moreover, for each
given module it is possible to construct a malicious environment (cf. [12]). Hence,
this paper proposes a more appropriate definition of usability:

Definition 5 (Usability). Let M be a workflow module. An environment U
utilizes module M if the composed system Π = M ⊕ U is weak sound. Module
M is called usable if there exists at least one environment U that utilizes M .

Thus, the modules C1, C2 and T1 are called usable. Section 4 presents the algo-
rithm to decide usability of a workflow module by creating an utilizing environ-
ment (if possible). A further discussion on usability can be found in [11].

3.2 Compatibility

In the previous section, the notion of semantic compatibility has already be men-
tioned. Now, a definition of this notion shall be derived. There are two cases: If a
workflow module and its environment are given, obviously, they are semantically
compatible if the composed system is weak sound. But, if there are two arbitrary
modules (e. g. modules Default and Route Planning shown in Figure 1), a different
definition is required. Obviously, two modules are not compatible in case the
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composed system has an error, i. e. the resulting module is not usable. Hence,
this paper proposes the following definition.

Definition 6 (Semantic compatibility). Two syntactically compatible work-
flow modules A and B are called semantically compatible if the composed system
A ⊕ B is usable.

Thus, the modules Default and Route Planning are semantically compatible. More-
over, this definition also cover the composition of a module and its environment:
Because the composition of those two modules yields workflow module with an
empty interface (cf. Figure 2(b)), it is easy to find an utilizing environment –
with an empty interface, too. Consequently, each weak sound composed sys-
tem is usable. Hence, the modules Default Planning and Customer are semantically
compatible. More details on compatibility can be found in [10].

3.3 Equivalence

There are many use cases, where it is crucial to decide whether two Web services
behave similar, i. e. their models are equivalent. Beside the already mentioned
problem of discovery (cf. Section 1), the problem arises if a Web service – being
already part of a global business process – needs to be replaced, e. g. because of
efficiency. Of course, all other participating components should stay untouched.

Intuitively, two Web services are equivalent if in a comparable situation one
Web service behaves like the other and vice versa. Concerned with various formal
methods, there are countless approaches published dealing with the comparison
of behavior in terms of simulation or equivalence. This variety results from dif-
ferent interpretations of the terms“comparable situation”and“behave like” ([24]
gives a substantial overview on equivalence notions). But, none of them seems to
fit exactly to this field of application: The purpose of a Web service is to be used
by an environment. Hence, an adequate notion of simulation or equivalence, first
of all, should be derived semantically from the field of application.

Definition 7 (Simulation/Equivalence). A workflow module A simulates a
workflow module B if each utilizing environment of module B is an utilizing
environment of module A, too. Two workflow modules A and and B are called
equivalent, if module A simulates module B and module B simulates module A.

This definition exactly meets the requirement of the cross-organizational business
process scenario: Lets consider a workflow module M and an utilizing environ-
ment E. For each module M ′ simulating M and for each module E′ simulating E
holds: E′ is an utilizing environment of M ′ and vice versa. This property follows
directly from Definition 7.

In this approach, the verification of equivalence is based on a formal simu-
lation relation between the communication graphs of both workflow modules –
the explicit representation of the module’s externally visible behavior, explain in
the following section. Because of limited space a detailed discussion is omitted
here, but some results are presented: The workflow modules C1 and C2 (shown
in Figure 3) can be proven equivalent, whereas e. g. classical bisimulation does
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not yield this result. In contrast, the workflow modules T1 and T2 are proven to
be not equivalent, whereas referred to trace equivalence those modules can’t be
distinguished. These examples, the comparison of selected notions of equivalence
and the precise definition of the verification algorithm can be found in [13].

4 Analysis

The usability of a workflow module is defined through the existence of an uti-
lizing environment. Hence, the definition does not describe how to disprove the
usability of a given Web service. This section provides a different approach: First,
an adequate representation of the Web service’s external behavior is derived –
called the communication graph. Second, the usable behavior of the Web service
is determined – called the u-graph. Finally, the usability of a given workflow
module and the algorithmic constructing its usability graph are related within
the core theorem, such that usability can be decided effectively.

4.1 Reflecting the Behavior

A workflow module is a reactive system, it consumes messages from the environ-
ment and produces answers depending on its internal state. Problems may arise
because an environment has no explicit information on the internal state of the
module. But each environment can derive some information by considering the
communication towards the module. Hence, an environment has some implicit
information. We reflect exactly that kind of information within a data structure
– called the communication graph (abbr. c-graph).

Definition 8 (Communication graph/c-graph). A communication graph
((V,H,E),m) is a directed, strongly connected, labeled, bipartite graph such that:

– The graph has two kinds of nodes: visible nodes V and hidden nodes H.
– Each edge e ∈ E connects two nodes of different kinds.
– The graph has a definite root node v0 ∈ V, each leaf is a visible node, too.
– The labeling m maps each visible node to a set of states of the corresponding

Petri net, and each edge to a bag of messages.

Figure 4 presents the c-graphs of those workflow modules shown in Figure 3;
Section 4.2 will explain why one graph is drawn with dashed lines. Lets have a
closer look on the graph C(C1). The root node v0 is labeled with the initial state
of the module [q0]1.

Each edge, starting at a visible node, is labeled with a bag of messages sent
by the environment – called input. In the initial state, the module C1 is able to
consume only the message Ticket. Each edge, starting at a hidden node, is labeled

1 The actual labeling of the node v0 is { [q0] } – the singleton containing the state [q0].
For reasons of simplicity, we omit these extra braces as well as the brackets around
the bags of messages.
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with a bag of messages sent by the module – called output. In the example, the
customer replies to the Ticket by paying either with VISA or with eCash. An edge
may be labeled with an empty bag as well, denoted by [ ]. Each path from the
root to a leaf represents a complete communication sequence between the module
an an environment. In general, a visible node may be labeled with more than one
state (e. g. v1 in C(T2)), and an edge may be labeled with more than on message
(not present in the chosen examples). The c-graph of a given workflow module
is well defined, and it can be calculated based on the following notions:

Activated input: Referring to a given state, an activated input is a bag of input
messages that are consumed by the module along a firing sequence, whereas
no output message was produced and the firing sequence ends either in the
module’s final state or in a state that enables a transition that can produce an
output message. The function inp yields the set of activated inputs.

Successor state: Referring to a given state, a successor state is a maximal reach-
able state w. r. t. one possible behavior (i. e. one concurred run [17]) of the mod-
ule. The function nxt yields the set of successor states.

Possible output: Referring to a given state, a possible output is the bag of output
message that was produced while reaching one successor state. The function out

yields the set of possible outputs.

Communication step: A four-tuple (z, i, o, z′) is called communication step if
z, z′ are states of a module, i is an input and o is an output, and (z′ + o) is a
successor state of (z + i). S(M) denotes the set of all communication steps.

The c-graph of a workflow module may contain cycles. That doesn’t affect
the presented analysis method as long as the graph is finite. But, workflow
modules with an infinite c-graph always contain an severe modeling error. The
precise, mathematical definition of all notions mentioned above, a discussion on
the complexity of the algorithm and possible optimizations, and the problem of
infinite graphs is discussed in [12]. Applying these notions, we are now able to
present the construction of the c-graph. The algorithm starts with the root node
v0 labeled with the initial state:
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1. For each state within the label of vk calculate the set of activated inputs:
⋃

z∈m(vk) inp(z).
2. For each activated input i within this set:

(a) Add a hidden node h, add a new edge (vk, h) with the label i.
(b) For each state within the label of vk calculate the set of possible outputs:

⋃
z∈m(vk) out(z + i).

(c) For each possible output o within this set:
i. Add a visible node vk+1, add a new edge (h, vk+1) with the label o.
ii. For each state z ∈ m(vk) and for each communication step

(z, i, o, z′) ∈ S(M) add z′ to the label of vk+1.
iii. If there exists a visible node v such that m(vk+1) = m(v) then merge

v and vk+1. Otherwise, goto step 1 with node vk+1.

The c-graph of a workflow module contains the maximal information an environ-
ment can derive. The environment always sends only those messages the module
is able to consume (in at least one of the possible reached states), but enough to
achieve an answer or to terminate the process in a proper state. By considering
all reachable successor states (and all possible outputs), the choices within the
module are not restricted.

4.2 Analyzing the Behavior

In general, the c-graph may have several leaf nodes. But in each c-graph, there is
at most one leaf node that is labeled with the defined final state of the workflow
module. All other leaf nodes contain at least one state, where there are messages
left or which is a deadlock state of the module (e. g. v4 in C(T2)). Consequently,
if an environment was communicating with the module according to the labels
along the path towards such a leaf node, this environment would not be an
utilizing environment. The elimination of all such erroneous sequences yields
a (possibly empty) subgraph that can be regarded as directions for using the
module – called the usability graph (abbr. u-graph). of that module.

Definition 9 (Usability graph/u-graph). A finite, non-empty subgraph U of
the c-graph C is called usability graph if the following conditions hold:

– U contains the root node of C and only that leaf node of C, which is labeled
with the defined final state of the workflow module.

– For each hidden node of C that is in U, all outgoing edges are in U, as well.
– Each node within U lies on a path between the root and the defined leaf node.

An u-graph arises by removing only those edges (and succeeding nodes) that
start at a visible node. Hence, it restricts the behavior of an utilizing environment
(some inputs are removed), but it does not restrict the behavior of the module
(all output are still available). In that sense, an u-graph of a workflow module
describes a instruction manual for a possible environment.

In Figure 4, those parts of the c-graphs that does not belong to any u-graph
are drawn with dashed lines. The graph C(T2) does not contain any u-graphs.
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Hence, this module is not usable. Referring to modules C1 and C2, the whole
c-graph is their only u-graph. But in general, a c-graph may contain several u-
graphs. The whole graph C(T1) is an u-graph, and removing the hidden node
h2 (or h3, resp.) yields another u-graph, i. e. this ticket module can be used as
well by a customer who exclusively pays with eCash (or VISA, resp.). To find
the maximal u-graph, the algorithm walks backwards through the c-graph, and
removes nodes according to Definition 9.

4.3 Theorem of usability

An u-graph U of a module M can easily be transformed into an environment
of the M : Each node of the graph becomes a place, each edge starting at a
visible node becomes a sending transition, and each remaining edge becomes
a receiving transition of the environment. The resulting module is called the
constructed environment, denoted by Γ(U). Based on the restrictions of U , it is
easy to prove that the composed workflow module M ⊕ Γ(U) does not contain
any deadlock. If M ⊕Γ(U) also does not contain any livelock (i. e. the composed
module always can terminate), the constructed environment Γ(U) is an utilizing
environment of M . The following theorem formulates the correlation between
the usability of a workflow module and the existence of an u-graph:

Theorem 1 (Usability). Let M be a workflow module and let C be the c-graph
of M. The module M is usable, if and only if C contains at least one u-graph U
and the composed system M ⊕ Γ(U) always can terminate.

The entire proof can be found in [12]. The following paragraph sketches its
idea. Implication: As already mentioned, it can be proven easily that M ⊕ Γ(U)
does not contain any deadlock. Hence, if the composed system terminates, it
must have reached the desired final state, otherwise it would have reached a
deadlock. Thus, Γ(U) is an utilizing environment of M . In case M is an acyclic
module, termination is granted, and the theorem only requires the existence of
an u-graph. Revers implication: If the module M is usable, there is at least one
utilizing environment E. Based on this property it is possible to project the all
reachable states of the composed system M ⊕ E to the c-graph of M (without
sticking to one specific environment). This yields a subgraph C ′ ⊆ C, which can
be proven to meet the requirements of Definition 9. Hence, Γ(C ′) is an utilizing
environment of M .

The theorem on usability makes it possible to decide usability in many cases:
An acyclic workflow module has a finite c-graph. Thus, we can search for an
u-graph and decide usability. The most cyclic modules have a finite c-graph,
too. Even if an usable cyclic module has an infinite c-graph, there exists a finite
u-graph. Applying breadth-first-search, this graph will be found after finite time.

5 Summary

In this paper, a framework for modeling and analyzing Web service based busi-
ness processes by help of Petri nets was presented [12]. Each Web service has
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an interface and an internal process structure. Hence, a Web service is modeled
in terms of a workflow module – a workflow net with a set of interface places.
Based on this formalism, the notion of usability was defined – an intuitive and
locally provable soundness criterion for workflow modules. On top of usability,
the questions compatibility and equivalence could be precisely addressed, and
there are effective algorithms to verify all these properties. Due to the available
Petri net semantic of BPEL4WS [18], the method is directly applicable to real
world examples.

Of course, the current work was inspired by many other approaches, dealing
with the problems of cross-organizational workflow and Web services. Some ap-
proaches also use Petri nets [20, 6] and/or specify the global interaction by help
of Message Sequence Charts (MSC) [22, 8]. But, none of them presents such a
focussed view on a components externally visible behavior as the communica-
tion graph does. Due to this representation, the comparison of behavior is more
adequate w. r. t. the field of application than traces [24] or automaton [26].

All presented algorithms are implemented within the prototype Wombat4ws

[27]. Currently, the work is focussed on improving the algorithms’ efficiency
by the application of partial order reduction techniques [19]. Moreover, up to a
certain degree the integration of data aspects into the formalism is planned. Es-
pecially the dependencies between the content of incoming message and internal
decisions made by the process are the focussed target. Applying technologies of
static program analysis (e. g. slicing [14]), it seems possible, to achieve a higher
level of precision in mapping a given process model into a Petri net, without
loosing the possibility of efficient analysis.
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