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Abstract. In recent years, autoregressive models have
had a profound impact on the description of astronom-
ical time series as the observation of a stochastic process.
These methods have advantages compared with common
Fourier techniques concerning their inherent stationarity
and physical background. However, if autoregressive mod-
els are used, it has to be taken into account that real data
always contain observational noise often obscuring the in-
trinsic time series of the object. We apply the technique
of a Linear State Space Model which explicitly models
the noise of astronomical data and allows to estimate the
hidden autoregressive process. As an example, we have
analysed the X-ray flux variability of the Active Galaxy
NGC 5506 observed with EXOSAT.
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1. Introduction

A common phenomenon of active galactic nuclei, which
presumably harbor supermassive black holes with masses
of 106 − 109M� (Rees 1984), is the strong variability
which can be observed in X-ray lightcurves. These AGN
lightcurves seem to show featureless “red noise”, i.e. scale-
free, divergent variability at low frequencies, often also
described as flickering or 1/f fluctuation (Lawrence et al.
1987). The 1/f term describes the power law distribution
of the spectral power with the function f−α in the power
spectrum, often denoted as “1/f” behavior.

We present an alternative model to analyse the vari-
ability seen in the X-ray lightcurves of AGN. The standard
method of analyzing time series in the frequency domain is
discussed briefly in Sect. 2. The alternative is known as a
Linear State Space Model (LSSM) based on the theory of
autoregressive processes (Scargle 1981; Honerkamp 1993)

which usually cannot be observed directly since the obser-
vational noise (i.e. detectors, particle background) over-
lays the process powering the AGN. A LSSM fit applied to
the time series data yields the dynamical parameters of the
underlying stochastic process. These parameters should be
strongly correlated to the physical properties of the emis-
sion process. The corresponding LSSM power spectrum
exhibits both the decrease of power at medium frequen-
cies and a limitation of spectral power at low frequencies.
The detailed mathematical background of LSSM and the
fit procedure are described in Sects. 3 and 4. Finally we
present first results using this technique with EXOSAT
data from the Seyfert galaxy NGC 5506 in Sect. 5.

2. Description of the method based on the 1/f�-
model

Although measured astronomical data are time domain
data, a commonly applied method works in the frequency
domain by analyzing the power spectrum of the time se-
ries. As the observational window function is convoluted
to the true spectrum of the source, artefacts might be
produced in the power spectrum, which make a proper in-
terpretation more difficult (Papadakis & Lawrence 1995;
Priestley 1992). In most cases, the power spectra are fit by
a power law function with an offset described as 1/fα+ c,
with values of α ranging from 0 to 2 and a mean of about
1.5 (Lawrence & Papadakis 1993). The value c is often
denoted as the “observational noise floor” which describes
the random process comprising the observational errors
whereas the “red noise” component is the signal of in-
terest. In the case of long AGN observations, however, a
flattening at low frequencies occurs which cannot be mod-
elled by the 1/fα-model (McHardy 1988).

The 1/fα-model is an ad hoc description of the mea-
sured periodogram, without any direct physical motiva-
tion. However, it is possible to generate time series with a
1/fα-spectrum using self-organized criticality models sim-
ulating the mass flow within an accretion disc of the AGN
(Mineshige et al. 1994). Such models produce a stationary



time series that exhibits a 1/fα-power spectrum by lim-
iting the timescales occurring in the simulated accretion
process. A 1/fα-model without limited timescales would
be stationary only if the power law slope is smaller than
unity (Samorodnitsky & Taqqu 1994). The observed time
series is composed by the superposition of single luminos-
ity bursts. The slope of the 1/fα-spectrum of data sim-
ulated in that way is about 1.8, significantly higher than
those measured from real data (Lawrence & Papadakis
1993). If the inclination of the accretion disk is brought in
as an additional model parameter the slope can be dimin-
ished, but not in a way that leads to convincing results
(Abramowicz et al. 1995). Another point that contradicts
this assumption is that there is no correlation between the
spectral slope and the type of the Seyfert galaxy (Green
et al. 1993). This correlation should be present since the
Seyfert type is believed to be caused by the inclination of
the line of sight (Netzer 1990).

The periodogram which is used to estimate the true
source spectrum is difficult to interpret in the presence of
non-equispaced sampling time series arising from real as-
tronomical data (Deeter & Boynton 1982 and references
therein). The estimation of the 1/fα-spectrum is ham-
pered even in the absence of data gaps. This is due to
the finite extent of the observed time series. Therefore,
the transfer function (Fourier transform of the sampling
function) is a sinc-function which will only recover the true
spectrum if this is sufficiently flat (Deeter & Boynton 1982;
Deeter 1984). In the case of “red noise” spectra the side-
bands of the transfer function will cause a spectal leakage
to higher frequencies which will cause the spectra to ap-
pear less steep (the spectral slope will be underestimated).

Even periodograms of white noise time series deviate
from a perfectly flat distribution of frequencies as the pe-
riodogram is a χ2

2-distibuted random variable with a stan-
dard deviation equal to the mean (Leahy et al. 1983).
Thus the periodograms fluctuate and their variances are
independent of the number of data points in the time se-
ries. Due to the logarithmic frequency binning, AGN pe-
riodograms will always show this strong fluctuation due
to the low number of periodogram points averaged in the
lowest frequency bins (see Fig. 1).

Furthermore, additional modulations can be created
in white noise periodograms if the time series consists of
parts which slightly differ in their means and variances,
respectively (Krolik 1992). In the case of the EXOSAT
ME X-ray lightcurves this effect is due to the swap-
ping of detectors as each detector has its own statis-
tical characteristics which cannot be totally suppressed
(Grandi et al. 1992; Tagliaferri et al. 1996). Figure 1a
shows a typical X-ray lightcurve which mainly consists of
uninterrupted 11 ksec observation blocks before detectors
are swapped. If the periodogram frequency corresponds
to the observation block length, the calculated sum of
Fourier coefficients equals its expected white noise value
of σ2 due to the constant mean and variance within the

Fig. 1. a) EXOSAT ME X-ray lightcurve of the quasar
3C 273 (Jan. 1986), b) corresponding periodogram. Each dot
represents the spectral power at its frequency, stepped with
1/Ttot. The periodogram is binned logarithmically (squares in-
dicates a single point within the frequency bin)

entire oscillation cycle. At other, mainly lower, frequencies
the Fourier sum yields non-white values due to temporal
correlations caused by different means and variances of ob-
servation blocks located in the test frequency cycle. These
deviations from a flat spectrum will be very strong at fre-
quencies which correspond to twice the observation block
length. The arrows in Fig. 1b clearly show this minimum
feature at 9.1 10−5 Hz and another shortage of power at
1.4 10−5 Hz which corresponds to the long uninterrupted
72 ksec observation block starting at the second half of
the EXOSAT observation (Fig. 1a).

Consequently a model is required which operates in
the time domain and avoids any misleading systematical
effects occuring in power spectra.



3. Mathematical background of the linear state
space model

In this section we briefly introduce the Linear State Space
Model (LSSM). For a detailed discussion, see Honerkamp
(1993) and Hamilton (1995). The LSSM is a generalization
of the autoregressive (AR) model invented by Yule (1927)
to model the variability of Wolf’s sunspot numbers.

We follow Wold’s decomposition theorem (Wold 1938;
Priestley 1992; Fuller 1996) which states that any discrete
stationary process can be expressed as the sum of two
processes uncorrelated with one another, one purely deter-
ministic (i.e. a process that can be forecasted exactly such
as a strictly period oscillation) and one purely indeter-
ministic. Further, the indeterministic component, which is
essentially the stochastic part, can be written as a linear
combination of an innovation process, which is a sequence
of uncorrelated random variables.

A given discrete time series x(t) is considered as a
sequence of correlated random variables. The AR model
expresses the temporal correlations of the time series in
terms of a linear function of its past values plus a noise
term and is closely related to the differential equation de-
scribing the dynamics of the system. The fact that x(t) has
a regression on its own past terms gives rise to the termi-
nology “autoregressive process” (for detailed discussions
see Scargle 1981; Priestley 1992). A time series is thus a
realization of the stochastic process or, more precisely, the
observation of a realization of the process during a finite
time interval. The AR model expresses the temporal cor-
relations in the process in terms of memory, in the sense
that a filter (ai) remembers, for a while at least, the pre-
vious values x(t − i). Thus the influence of a predecessor
value decreases as time increases. This fading memory is
expressed in the exponential decay of the AR autocorrela-
tion function (see Eq. 10). The AR processes variable x(t)
remembers its own behavior at previous times, expressed
in a linear relationship in terms of x(t−1), x(t−2), . . . plus
ε(t) which stands for an uncorrelated (Gaussian) white
noise process.

x(t) =

p∑
i=1

aix(t− i) + ε(t), ε(t) ∼ N(0, σ2). (1)

The number of terms p used for the regression of x(t) de-
termine the order of the AR process, which is abbreviated
to an AR[p] process. The parameter values ai have to be
restricted for the process to be stationary (Honerkamp
1993). For a first order process this means |a1| < 1, for a

second order process:
∣∣∣a1 ±

√
a2

1 + 4a2
2

∣∣∣ < 2. Depending

on the order p, the parameters ai of the process repre-
sents damped oscillators, pure relaxators or their super-
positions. For the first order process AR[1] the relaxation
time τ of the system is determined from a1 by:

τ = −
1

log |a1|
· (2)

In the case of a damped oscillator for an AR[2] process
the parameters, the period T and the relaxation time τ
respectively, are related by:

a1 = 2 cos

(
2π

T

)
e−1/τ (3)

a2 = −e−2/τ . (4)

For a given time series the parameters ai can be esti-
mated e.g. by the Durbin-Levinson- or Burg-algorithm
(Honerkamp 1993). By statistical testing it is possible to
infer whether a model is compatible with the data.

A first generalization of AR models are the
autoregressive-moving-average (ARMA) models that in-
clude also past noise terms in the dynamics:

x(t) =

p∑
i=1

aix(t − i) +

q∑
j=1

bjε(t− j) + ε(t). (5)

Both models, AR and ARMA processes, assume that the
time series is observed without any oberservational noise.
In presence of such noise the parameters ai will be under-
estimated and statistical tests will reject the model even
if its order is specified correctly.

LSSMs generalize the AR and ARMA processes by
explicitly modelling observational noise. Furthermore,
LSSMs use the so called Markov property, which means
that the entire information relevant to the future or for the
prediction is contained in the present state. The variable
x(t) that has to be estimated cannot be observed directly
since it is covered by observational noise η(t). Following
the Markov property it is possible to regressively predict
the values x(t), though.

The measured observation variables y(t) may not nec-
essarily agree with the system variables x(t) that provide
the best description of the system dynamics. Thus a LSSM
is defined with two equations, the system or dynamical
Eq. (6) and the observation Eq. (7).

x(t) = Ax(t− 1) + ε(t) ε(t) ∼ N(0,Q) (6)

y(t) = Cx(t) + η(t) η(t) ∼ N(0, R). (7)

This definition is a multivariate description, which means
that the AR[p] process is given as a p-dimensional AR pro-
cess of order one, with a matrix A that determines the dy-
namics. By combining the different dimensional terms of
the multivariate description the typical AR[p] (see Eq. 1)
form can be derived easily. The observation y(t) is formu-
lated as a linear combination of the random vectors x(t)
and η(t). The matrix C maps the unobservable dynamics
to the observation. The terms ε(t) and η(t) represent the
dynamical noise with covariance matrix Q and the obser-
vational noise with variance R, respectively.

The estimation of the parameters in LSSMs is more
complicated than for AR or ARMA processes. There are
two conceptually different procedures available to obtain



Fig. 2. a) EXOSAT ME X-ray lightcurve of NGC 5506 (Jan. 1986), b) Hidden AR[1]-process, estimated with the LSSM fit

the maximum likelihood parameters estimates. Both are
iterative and start from some initial values that have to
be specified. The first procedure uses explicit numerical
optimization to maximize the likelihood. The other ap-
plies the so called Expectation-Maximization algorithm.
The latter procedure is slower but numerically more stable
than the former and is described in detail by Honerkamp
(1993). Statistical evaluation of a fitted model is generally
based on the prediction errors. The prediction errors are
obtained by a Kalman filter which estimates the unob-
servable process x(t) (Hamilton 1995). Such a linear filter
allows us to arrive at the variables x̂(t) (and its predic-
tion errors), used to describe the system dynamics, start-
ing from a given LSSM and the given observations y(t)
(Brockwell & Davis 1991; Koen & Lombard 1993).

Multiplying the estimated process x̂(t) with the esti-
mated C yields an estimate ŷ(t) of the observed time series
y(t). A necessary condition that the model fits to the data
is that the difference y(t)− ŷ(t) represents white noise, i.e.
the time series of prediction errors should be uncorrelated.
This can for example be judged by a Kolmogorov-Smirnov
test that tests for a flat spectrum of the prediction errors
or by the Portmanteau test using their autocorrelation
function. We have used the first method to quantify the
goodness of fit of the tested LSSMs (see Table 1).

Another criterion to judge fitted models is the decrease
in the variance of prediction errors with increasing order
of the fitted models. A knee in this function gives evi-

dence for the correct model order. Any further increase
of the model order will not reduce the variance signifi-
cantly. The so called Akaike information criterion (AIC)
formulizes this procedure including the different number
of parameters of the models (Hamilton 1995). Any oscil-
lators and relaxators which might occur in unnecessarily
more complex LSSMs should be highly damped and can
be neglected therefore.

The last method to judge a fitted model is to compare
the spectrum that results from the fitted parameters with
the periodogram of the sample time series. The spectrum
of a LSSM is given by:

S(ω) = C(1− Ae−iω)−1Q
(
(1− Aeiω)−1

)T
CT +R. (8)

The superscript T denotes transposition. Spectra of AR
or ARMA processes are special cases of Eq. (8). In the
simplest case of an AR[1] process modelled with a LSSM,
the corresponding spectrum is given by:

S(ω)LSSM AR[1] =
Q

1 + a2
1 − 2a1 cos(ω)

+R. (9)

This function provides both the flattening at low and the
decrease of power at medium frequencies seen in peri-
odograms (e.g. see Fig. 4).

In a first approach gaps in the observed lightcurve were
filled with white noise with the same mean and rms as the
original time series in order to create a continuous time
series. In a second run these gaps were refilled with the



predictions of the Kalman filter plus a white noise realiza-
tion with the original lightcurves variance. Generally, gaps
in an observed time series can be handled by the LSSM
in a natural way avoiding the filling of gaps with Poisson
noise. The key is again the Kalman filter. The Kalman fil-
ter considers the fact that there are still decaying processes
taking place even if the object is not observed. In each cy-
cle of the iterative parameter estimation procedure x(t)
is estimated based on an internal prediction, corrected by
information obtained from the actual data y(t). In case of
gaps no information from y(t) is available and the internal
prediction decays in its intrinsic manner until new infor-
mation is given. In the case of the lightcurve of NGC 5506
the resulting parameters are consistent with those of the
first approach due to the high duty cycle of the original
time series.

4. The EXOSAT observation of NGC 5506

As the X-ray lightcurves from EXOSAT are the longest
AGN observations available, we have used the longest in-
dividual observation of about 230ks of the Seyfert galaxy
NGC 5506 for applying the LSSM (Fig. 2a). The data
which have been extracted from the HEASARC EXOSAT
ME archive, are background subtracted and dead time cor-
rected, with a 30 s time resolution obtained over 1−8 keV
energy range. The Seyfert galaxy NGC 5506 holds a spe-
cial place in AGN variability studies, as it is both bright
and one of the most variable AGN. The chosen lightcurve
contains only few gaps providing a duty cyle of 92.4%. The
mean and rms of the lightcurve are 6.87 and 1.55 counts
in 30 s bins.

Table 1. Results of LSSM fits to the EXOSAT NGC 5506 data

Model Raη Periods τ b KS testc

LSSM AR[p] (s) (s) .

0 1 - - 0.0%
1 0.722 - 4799 93.5%
2 0.701 - 26.1 66.8%

- 5011
3 0.510 - 10.6 88.2%

- 18.9
- 4798

4 0.395 236.3 71.1 92.1%
- 6.7
- 4780

a Variance of the observational noise.
b Relaxation time.
c Kolmogorov-Smirnov test for white noise.

We applied LSSMs with different order AR processes.
An LSSM using an AR[0] process corresponds to a pure
white noise process without any temporal correlation and

a flat spectrum. The used Kolmogorov-Smirnov test re-
jects this model at any level of significance (see Table 1).
Without loss of generality, Q is set to unity, the mean and
variance are set to 0 and 1, respectively. We see that the
X-ray lightcurve of NGC 5506 can be well modelled with
a LSSM AR[1] model, as the residuals between the esti-
mated AR[1] process and the measured data are consistent
with Gaussian white noise. Figure 3 shows the distribu-
tion and the corresponding normal quantile plot of the
fit residuals which both display the Gaussian character
of the observational noise. The standard deviation of the
distribution is 0.738 which is in good agreement to the
estimated observational variance of 0.722 for the LSSM
AR[1] fit (see Table 1). Furthermore, the lightcurve of the
estimated AR[1] looks very similar to the temporal be-
havior of the hidden process (Fig. 2). The corresponding
dynamical parameter a1 of the LSSM AR[1] fit is 0.9938
which corresponds to a relaxation time of about 4799 s.

Fig. 3. a) Distribution and b) normal quantile plot of the
residuals of the LSSM AR[1] fit to the EXOSAT ME NGC 5506
lightcurve (the dotted lines in a) indicate the mean and rms of
the observational noise). A normal quantile plot arranges the
data in increasing order and plot each data value at a position
that corresponds to its ideal position in a normal distribution.
If the data are normally distributed, all points should lie on a
straight line

The LSSM AR[1] gives a good fit to the EXOSAT
NGC 5506 data as the variance of the prediction errors
nearly remains constant from model order 1 to 2 and the
residuals conforms to white noise. The decrease in the vari-
ance for higher model orders might be due to correlations
in the modelled noise, generated by the switching of the
EXOSAT detectors. Since each detector has its own noise
charateristics a regular swapping between background and
source detectors would lead to an alternating observa-
tional noise level (see Sect. 2). The higher order LSSM
AR[p] fits try to model the resulting correlations with
additional but negligible relaxators and damped oscilla-
tors (τ ≈ bintime, τ � Ttot).



We have used the Durbin-Levinson algorithm (see
Sect. 3) to estimate the parameters of a competing sim-
ple AR[p] model (see Table 2). As expected for time
series containing observational noise, the characteristic
timescales are underestimated by fitting a simple AR pro-
cess and the statistical test rejects the AR[p] model. A
test for white noise residuals fails, which means that there
are still correlations present which cannot be modelled
with an AR[p] procces. We have performed AR[p] fits for
model orders up to 10 and we never found residuals con-
sitent with white noise, indicating that there is no pre-
ferred model order. All occuring relaxators and damped
oscillators are insignificant due to their short relaxation
timescales compared with the bintime of 30 s. As the ob-
servational noise is not modelled explicitly in AR models,
it is included accidentally in the inherent AR noise term.
Thus, any correlation in the observed time series which
can be detected in the LSSM fits, is wiped out and the
higher order AR fits only reveal fast decaying relaxators
and oscillators.

Table 2. Results of AR fits to the EXOSAT NGC 5506 data

Model Qaε Periods τ b KS testc

AR[p] (s) (s)

0 1 - - 0.0%
1 0.9235 - 23.3 0.5%
2 0.8814 - 55.6 0.3%

- 29.8
3 0.8566 - 97.0 0.4%

197.4 40.6
4 0.8362 - 153.2 0.4%

- 51.2
127.7 55.1

a Variance of inherent AR noise.
b Relaxation time.
c Kolmogorov Smirnov test for white noise.

One might expect that the resulting best fit LSSM light
curve (Fig. 2b) might also be produced by just smooth-
ing the original lightcurve. This assumption is wrong as a
smoothing filter would pass long timescales and suppress
all short time variability patterns. Thus all information
about the variations on short timescales would be lost
(Brockwell & Davis 1989). The Kalman filter concedes
not only the time series values x(t) but also its prediction
errors. These errors are much smaller than the errors of
the observed lightcurve y(t). In the case of the NGC 5506
observation (Fig. 2) the estimation errors are about
0.18 counts/s and the errors of y(t) are about 1.3 counts/s,
respectively. Both lightcurves in Fig. 2 are shown without
error bars due to reasons of clarity.

We have used Monte Carlo Simulations to determine
the error of the dynamical parameter a1. Using the dis-

tribution of the estimated parameters of 1000 simulated
AR[1] time series with the best fit results, we found
a1 = 0.9938 ± 0.0007. As the dynamical parameter is
close to unity the corresponding relaxation time error is
high, with τ = 4799+632

−472 s. To prove the quality of the
LSSM results we have fitted a LSSM AR[1] spectrum to
the periodogram data. This fit yields the dynamical pa-
rameter a1 = 0.9936 ± 0.0021 which is consistent with
the LSSM AR[1] fit in the time domain, but the corre-
sponding error is much higher due to the lower statistical
significance of frequency domain fits (see Sect. 2).

The autocovariance function of the AR[1] process is
given by:

ACFAR[1](∆) =
Q

1− a2
1

elog(a1) ∆ (10)

which is an exponentially decaying function for stationary
(|a1| < 1) time series, very similar to the temporal behav-
ior of the autocorrelation function of a shot noise model
(Papoulis 1991):

ACFshot noise(∆) =
λτ

2
e−∆/τ . (11)

The variable λ denotes the density and τ is the lifetime
of the shots. This similarity means that an AR[1] process
can also be modelled by a superposition of Poisson dis-
tributed decaying shots (Papoulis 1991). The shot noise
model, which has been used as an alternative to the 1/fα

model, appears to give a good fit to the power spectrum
of NGC 5506 (Papadakis & Lawrence 1995; Belloni &
Hasinger 1990 and references therein). But instead of all
the shots having the same lifetime, Papadakis & Lawrence
(1995) used a distribution varying as τ−2 between τ1 and
τ2. They fixed τ2 arbitrarily at 12 000 s and found that τ1
is around 300 s for NGC 5506, much lower than the re-
laxation time of about 4800 s found with the LSSM fit. A
possible explanation for this difference could be the distri-
bution of lifetimes. Since the power law slope of the shot
noise model is constantly −2 at medium and high frequen-
cies, this distribution is necessary to modify the slope and
to maintain a good fit to the spectrum. The advantage of
a LSSM is a variable slope at medium frequencies which
depends on the dynamical parameter (see Fig. 4).

The shot noise model can be regarded as an approx-
imation of an AR[1] model for values a1 near unity. The
mean density of the Poisson events λ then corresponds to
the variance Q of the dynamical noise in the LSSM system
Eq. (6). Thus Q could be used to quantify and compare
the rate of the accretion shots occuring in AGNs.

5. Discussion

We obtain a convincing fit to the observed X-ray
lightcurve of an AGN using a LSSM AR[1] process as
well in the time and in the frequency domain. The ex-
plicit modelling of observational noise allows to estimate



Fig. 4. Periodogram of the EXOSAT ME X-ray lightcurve
of NGC 5506 (dots) and the spectrum of the best fit LSSM
AR[1] model in the time domain (line) (see Fig. 2a). The spec-
tra of the higher order LSSM AR fits differ less than 2%
from the LSSM AR[1] spectrum. The dashed lines display the
±1σ - spectra of the corresponding frequency domain fit. The
time domain fit yields 1σ errors which are more than 3 times
smaller (see text for details)

the covered AR[1] process, indicating that the stochas-
tic process is dominated by a single relaxation timescale.
We show that the general AR[p] model (see Eq. 1) can be
restricted to a simple AR[1] process which succeeds in de-
scribing the entire dynamics of the observed AGN X-ray
lightcurve.

It has been suggested by McHardy (1988) that the sin-
gle shots, which are supposed to be superimposed to build
the lightcurve, may arise from subregions of an overall
larger chaotic region which are temporarily lit up, per-
haps by shocks. Since one would expect a non uniform
electron density throughout this region (probably decreas-
ing with distance from the central engine), the resulting
difference in cooling timescales yields the different decay
timescales (Green et al. 1993). As the LSSM predicts that
the stochastic process is dominated by a single relaxator,
we presume the existence of a single cooling timescale or a
uniform electron density in the emission region following
the shot noise model (see Sutherland et al. 1978).

The assumption of an exponentially decaying shot
seems to be reasonable as time-dependent Comptonisation
models lead to such a pulse profile. The scenario for a ther-
mal Comptonisation model (Payne 1980; Liang & Nolan
1983) starts with UV photons which arise as the accre-
tion inflows inhomogeneities, each producing a single flare
when gravitational energy is set free as radiation. The im-
pulsive emission of the Poisson distributed delta peaks in
a cloud of hot electrons triggers X-ray flares with a spe-
cific pulse profile depending on the seed photon energy,
the density, and the temperature of the electrons. This
impulsive emission is delayed and broadened in time and
spectrally hardened due to repeated Compton scattering.

Some approximate analytic solutions of this process show
that the temporal evolution of the generated X-ray pulse
can be described by a nearly exponentially decaying func-
tion (Miyamoto & Kitamoto 1989). The only difference to
the “shots” used above is the (more realistic) non-zero rise
time. Using this model it should be possible to associate
the estimated relaxator timescale τAR[1] with the physical
properties of the Comptonisation process.

The presented LSSM can also be used to analyse X-ray
variability of galactic X-ray sources. As both, relaxators
and (damped) oscillators can be estimated, it is possi-
ble to use the algorithm to search for periodocities and
QPO phenomena in the lightcurves of X-ray binaries (see
Robinson & Nather 1979; Lewin et al. 1988; van der Klis
1989).
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