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Abstract Anaplasma marginale and Anaplasma
phagocytophilum are the most important tick-borne bacteria
of veterinary and public health significance in the family
Anaplasmataceae. The objective of current review is to pro-
vide knowledge on ecology and epidemiology of
A. phagocytophilum and compare major similarities and dif-
ferences of A. marginale and A. phagocytophilum. Bovine
anaplasmosis is globally distributed tick-borne disease of live-
stock with great economic importance in cattle industry.
A. phagocytophilum, a cosmopolitan zoonotic tick transmitted
pathogen of widemammalian hosts. The infection in domestic
animals is generally referred as tick-borne fever. Concurrent
infections exist in ticks, domestic and wild animals in same
geographic area. All age groups are susceptible, but the prev-
alence increases with age. Movement of susceptible domestic
animals from tick free non-endemic regions to disease endem-
ic regions is the major risk factor of bovine anaplasmosis and
tick-borne fever. Recreational activities or any other high-risk
tick exposure habits as well as blood transfusion are important
risk factors of human granulocytic anaplasmosis. After infec-
tion, individuals remain life-long carriers. Clinical anaplasmo-
sis is usually diagnosed upon examination of stained blood
smears. Generally, detection of serum antibodies followed
by molecular diagnosis is usually recommended. There are
problems of sensitivity and cross-reactivity with both the
Anaplasma species during serological tests. Tetracyclines are
the drugs of choice for treatment and elimination of

anaplasmosis in animals and humans. Universal vaccine is
not available for either A. marginale or A. phagocytophilum,
effective against geographically diverse strains. Major control
measures for bovine anaplasmosis and tick-borne fever in-
clude rearing of tick-resistant breeds, endemic stability, breed-
ing Anaplasma-free herds, identification of regional vectors,
domestic/wild reservoirs and control, habitat modification, bi-
ological control, chemotherapy, and vaccinations (anaplasmo-
sis and/or tick vaccination). Minimizing the tick exposure ac-
tivities, identification and control of reservoirs are important
control measures for human granulocytic anaplasmosis.
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Introduction

Anaplasma marginale and Anaplasma phagocytophilum are
the most important tick-borne bacteria of veterinary and pub-
lic health significance. Bovine anaplasmosis (BA) caused by
A. marginale is a globally distributed tick-borne disease with
great economic importance in cattle industry including Asia,
Africa, Australia, Southern Europe, and Central and South
America (Jongejan and Uilenberg 2004), biologically trans-
mitted by Rhipicephalus ticks and mechanically by biting
flies, blood-contaminated needles, and farm equipments.
Anaplasma phagocytophilum is an emerging globally distrib-
uted, zoonotic tick-borne pathogen of wide mammalian hosts,
transmitted mainly by Ixodes ticks (de la Fuente et al. 2005).
The infection in domestic animals is generally referred as tick-
borne fever, responsible for important economic loss to cattle
and sheep industry (Stuen 2007; Grøva et al. 2011).
Anaplasma phagocytophilum is known since 200 years, but
it became real research focus after first case of human
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granulocytic anaplasmosis (HGA) in 1986 (Maeda et al.
1987). These closely related bacteria share some common
features such as coexistence during concurrent infection in
ticks, domestic, wild ruminant reservoir hosts in same geo-
graphic region (de la Fuente et al. 2005). In terms of develop-
ing diagnostic assays, vaccines, and future research, similari-
ties and differences of these organisms have to be considered.
Limited reviews are available in this perspective. The current
review focus on updated knowledge on epidemiology, ecolo-
gy of A. phagocytophilum and broad comparison of
A. marginale and A. phagocytophilum for effective prevention
and control of anaplasmosis in humans and animals.

Anaplasma phagocytophilum

Morphology

Anaplasma phagocytophilum is alpha pleomorphic gram-
negative bacterium measuring 0.4 to 1.3 or 2 μm in size.
The bacterial outer membrane is often coarse with irregular
periplasmic spaces without capsule. Bacterium lacks lipopoly-
saccharide and peptidoglycan. This obligate intracellular bac-
terium, after staining with Romanowsky stain, show purple
color mulberry-like microcolonies called Morulae with 1.5
to 2.5 or 6 μm in diameter (Foggie 1951; Woldehiwet and
Scott 1982; Rikihisa et al. 1997; Popov et al. 1998). The
bacteria can also be stained with May-Grünwald or Write-
Giemsa stains. Three species previously belong to Ehrlichia
were now included in genus Anaplasma namely Anaplasma
phagocytophilum, earlier known as Ehrlichia phagocytophila,
the causative agent of human granulocytic anaplasmosis;
Anaplasma bovis (formerly known as Ehrlichia bovis); and
Anaplasma platys (formerly Ehrlichia platys; Dumler et al.
2001; Table 1). All these aforementioned pathogens infect
blood cells of their respective hosts.

Life cycle

So far, no transovarial transmission (from adult ticks to
eggs) has been reported (Woldehiwet 2010), except for
moose tick (Dermacentor albipictus). Transovarial trans-
mission ability of moose tick is due to atypical feeding
systems as compared to normal Ixodes infection cycle
(Baldridge et al. 2009). A reservoir host is required to
keep A. phagocytophilum in nature. Life cycle starts with
blood meal after tick bite to infected mammals.
A. phagocytophilum survives and maintain in larva/
nymph to adult developmental stages of ticks and transmit
this to mammals during the next blood meal (Telford et al.
1996; Ogden et al. 1998; Zhi et al. 2002).

Clinical signs

Tick-borne fever is mostly seen in sheep and cattle, but it can
also be demonstrated in goats, reindeer, and deer. In sheep,
clinical signs include high fever, inappetence, dullness, sud-
den drop in milk yield, reduced weight gain, coughing, abor-
tion, stillbirth and low fertility in sheep, and reduced semen
quality in rams (CFSPH 2013). Dairy cattle upon its return
from pasture usually becomes infected with variable severity
of illness including dullness, anorexia, reduced milk produc-
tion, respiratory distress, coughing, abortions, and stillbirth
are common. The important finding that mild cases recover
within 14 days and death is unusual outcome (Tuomi 1967;
Taylor and Kenny 1980; Stuen et al. 1992; Grøva et al. 2011;
CFSPH 2013). The Anaplasma phagocytophilum-suspected
cases are usually subject to secondary infection with tick py-
emia, pasteurellosis, and septicemic listeriosis. Anaplasmosis
in equines is called as equine granulocytic anaplasmosis.
Horses with more than 3 years of age develop severe disease
including fever, anorexia, depression, petechial hemorrhages,
icterus, ataxia, and distal limb edema and may have severe
myopathy. Fever and lethargy is most commonly seen in ca-
nine granulocytic anaplasmosis. Infection in cats is called as
feline granulocytic anaplasmosis, and cats show generalized
nonspecific signs include fever, dullness, and anorexia
(CFSPH 2013). In humans (human granulocytic anaplasmosis
(HGA)), the major clinical signs include fever, headache, my-
algias, and chills. Leucopenia, thrombocytopenia and/or ane-
mia and elevated liver enzymes are usual hematological and
biochemical finding in humans and all animals species (com-
mon in dog, cat, and humans) (Bakken et al. 1994; Aguero-
Rosenfeld et al. 1996). Clinical signs 2–3 weeks after tick bite
is suggestive of HGA. The HGA cannot be diagnosed only on
the basis of clinical signs. Severe clinical signs include
prolonged fever, septic shock-like illness, respiratory distress,
acute renal failure, gastrointestinal tract bleeding, rhabdomy-
olysis, and secondary infections (AABB 2009).

The pathogenesis of HGA is inadequately understood.
Little amount of bacteria in infected animal and human’s pe-
ripheral blood indicate the presence of proinflammatory cyto-
kines. In human patients, increased concentrations of serum
gamma interferon and interleukin-10 protein have been de-
tected during acute infection as compared to restorative or
patients with no clinical signs (Dumler et al. 2000). This sug-
gests that human monocytes, rather human neutrophils, are
responsible for proinflammatory cytokine production.

Epidemiology

Geographic distribution Anaplasma phagocytophilum is en-
demic or potentially endemic in 42 countries of the world with
an overall case fatality of 5 % (Berger 2014). This has been
detected throughout Europe, America (North and South), Asia
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(Pakistan, India, Korea, and Japan) and Africa (Kawahara
et al. 2006; Kang et al. 2013; M’ghirbi et al. 2012; Djiba
et al. 2013; Stuen et al. 2013a; Borthakur et al. 2014;
Razzaq et al. 2015; Pantchev et al. 2015). Human seropreva-
lence in disease endemic area of Wisconsin and New York
(USA) is 15–36 %, whereas seroprevalence in Europe range
from 1 and 20 % depending upon immunity, tick exposure,
and age of the patients (CDC 2013). Majority of the human
cases of infection in USA occur in June–July.

Hosts Sheep and cattle are the main hosts but infection has
been detected in goat, horse, donkey, dog, cat, and wild rumi-
nants. Definite reservoir hosts for A. phagocytophilum in an-
imals and humans are not known to date. Identification of
reservoirs is important for epidemiological standpoint.
However, humans are the dead end host. Anaplasma
phagocytophilum is most frequently been found in roe deer,
red deer, and fallow deer, and the highest prevalence
A. phagocytophilum is reported in roe deer and red deer rang-
ing from 12 to 85 % (Hulínská et al. 2004; Zeman and Pecha
2008; Scharf et al. 2011; Overzier et al. 2013).

The pathogen has been detected in white tailed deer, sika
deer, Korean water deer, wild boar (Sus scrofa), Alpine ibex
(Capra ibex), chamois (Rupicapra rupicapra), mouflon (Ovis
musimon), European bison (Bison bonasus), mule deer
(Odocoileus hemonius hemonius), reindeer (Rangifer
tarandus), elk (Cervus elaphus nannodes), llama (Lama
glama), alpaca (Vicugna pacos), Suri alpaca (Vicugna pacos),
Swedish moose (Alces alces), and birds (Tinkler et al. 2012;
Stuen et al. 2013a; Malmsten et al. 2014); small mammals:
dusky-footed wood rats (Neotoma fuscipes) (Rikihisa 2003),
white-footed mice (Peromyscus leucopus) (Keesing et al.
2012), vole (Clethrionomys gapperi), Eastern chipmunk
(Tamias striatus), squirrel (Spermophilus lateralis), Virginia
opossum (Didelphis virginiana), striped skunk (Mephitis

mephitis); insectivorous mammals: hedgehog (Erinaceus
europaeus), shrew; reptiles and snakes: northern alligator liz-
ard (Elgaria coeruleus), Pacific gopher snake (Pituophis
catenifer); others: cotton tail rabbit (Sylvilagus floridanus),
gray fox (Urocyon cinereoargenteus), raccoon (Procyon
lotor), timber wolf (Canis lupus occidentalis), American
black bears (Ursus americanus) (Drazenovich et al. 2006),
European brown bear (Ursus arctos arctos) (Víchová et al.
2010). In cattle, A. phagocytophilum is usually associated dur-
ing concurrent infection with Borrelia burgdorferi and/or
A. marginale (Hofmann-Lehmann et al. 2004; Berger 2014).
Individuals recovered from acute disease develop persistent
infection. This is a complex process having cyclic episodes
of lowering and peak bacteremia phases, under the influence
of host immunity. Persistently infected individuals serve as
reservoir for maintenance and further spread of infection.

Breed resistance Little information is available on the breed
resistance of tick-borne fever and granulocytic fevers of do-
mestic and wild animals. As for bovine anaplasmosis, there is
individual variance in susceptibility to ticks and tick-borne
fever. Likewise, Old Norse sheep is naturally resistant to
tick-borne infections than other Norwegian breeds (Stuen
2003; Stuen et al. 2011; Granquist et al. 2010b).

Risk factors Young domestic animals purchased from tick-
free area and moved to tick-infested areas is the major risk
factor of tick-borne fever (Tuomi 1967). It has been seen in
some regions that the higher prevalence of roe deer and white
tailed deer resulted in higher prevalence of anaplasmosis
(Stuen et al. 2013a). Risk factors for human anaplasmosis
include high-risk outdoor activities (such as hiking and gar-
dening) and immunocompromised individuals (cancer treat-
ments, prior organ transplants, HIV infection), and people
after blood transfusion are at higher risk.

Table 1 Classification of genus
Anaplasma, Ehrlichia, and
Neorickettsia of family
Anaplasmataceae

Kingdom: Bacteria, Phylum: Proteobactria, Class: Alpha Proteobacteria, Order: Rickettsiales, Family:
Anaplasmataceae, Genus: Anaplasma, Ehrlichia, Neorickettsia

Genus: Anaplasma Host Ehrlichia Neorickettsia

Species A. marginale Cattle E. canis N. risticii

A. centrale Cattle E. chaffeensis N. sennetsu

A. bovis Cattle E. ewingii

A. ovis Sheep, goat E. muris

A. platys Dogs E. ruminantium

Aegyptianella pullorum Birds

A. phagocytophilum Wide host range: ruminants,
small mammals, horses, birds,
and humans

Candidatus Neoehrlichia mikurensisa, previously known as Candidatus Ehrlichia walkerii

Dumler et al. 2001; Andersson and Raberg 2011
a This organism still needs to be classified in appropriate genus (Jahfari et al. 2012)

Parasitol Res (2015) 114:3941–3957 3943



Transmission Ticks play a key role in multiplication, persis-
tence, and pathogen transmission to mammalian hosts
(Hodzic et al. 1998; Katavolos et al. 1998). The RNA inter-
ference (RNAi) technique identified that Salp16, a salivary
gland protein of I. scapularis tick, is required for infectivity
of salivary glands and further transmission (Ramakrishnan
et al. 2005; Sukumaran et al. 2006). Ixodes ricinus is the main
vector of A. phagocytophilum throughout Europe.
Additionally, the pathogen has been detected with molecular
methods in I. persulcatus from Latvia, Russia, and Estonia, as
well as inDermacentor reticulatus,Haemaphysalis concinna,
and I. ventalloi ticks (Santos et al. 2004; Masuzawa et al.
2008; Paulauskas et al. 2012; Tomanovic et al. 2013).

Bacterium is usually transmitted by I. pacificus (Western
black-legged tick) in Western USA, but Dermacentor
variabilis and D. occidentalis has also been reported from
California (Holden et al. 2003; Lane et al. 2010; Rejmanek
et al. 2011); by I. scapularis (deer tick or black-legged tick)
(Lovrich et al. 2011; Roellig and Fang 2012) in Eastern USA;
by I. scapularis and Amblyomma americanum in Florida
(USA); by I. spinipalpis in North Colorado (USA) (Zeidner
et al. 2000); by I. scapularis and D. albipictus in Canada
(Baldridge et al. 2009; Krakowetz et al. 2014); by
I. persulcatus, I. nipponensis, I. ovatus, Dermacentor
silvarum, Haemaphysalis megaspinosa, H. douglasii,
H. longicornis, and H. japonica in Asia (China, Japan,
Korea, Russia); by I. ricinus and Hyalomma (Hy.)
marginatum, Hy. detritum in North Africa (Algeria, Tunisia,
and Morocco) (Sarih et al. 2005; M’ghirbi et al. 2012); and by
Hyalomma marginatum, Rhipicephalus turanicus, and
Boophilus kohlsi in Israel (Keysary et al. 2007).

As mentioned above, various studies indicate presence of
A. phagocytophilum in different ticks, but the vector compe-
tence of only few American and European ticks have to date
been proved yet for I. ricinus, I. scapularis, I. pacificus, and
I. spinipalpis (Woldehiwet 2010). There is a lot more research
scope for the identification of competent vectors and reservoir
hosts. The prevalence of A. phagocytophilum in I. scapularis
(<1–50 %) and I. pacificus ticks (~1–10 %) in the USA has
been reported, whereas I. persulcatus had <1 to 21.6% inAsia
(Stuen et al. 2013a). Prevalence in questing I. ricinus ticks in
Europe range from 0.7 and 14.5 % (Hartelt et al. 2008; Rizzoli
et al. 2014). The DNA of A. phagocytophilum has also been
detected in Asia in I. ovatus, I. nipponensis, D. silvarum,
Haemaphysal is (H . ) megaspinosa , H. douglasi i ,
H. longicornis, andH. japonica tick species. Furthermore, this
pathogen has also been demonstrated in questing I. dentatus,
Amblyomma americanum, Dermacentor variabilis, and
D. occidentalis ticks (Goethert and Telford 2003).

Mechanical transmission by blood-sucking deer ked
(Lipoptena cervi) from red deer (Cervus elaphus), roe deer
(Capreolus capreolus), and fallow deer (Dama dama) have
been reported using PCR (Víchová et al. 2011). Similarly,

there are reports of transplacental (lambs and calves), perina-
tal, blood transfusions, and nosocomial associated transmis-
sions (Bakken et al. 1996; Horowitz et al. 1998; Dhand et al.
2007; Zhang et al. 2008; Annen et al. 2012; Henniger et al.
2013; Reppert et al. 2013). These modes of transmissions are
further complicating the epidemiology of TBF and HGA.

Strains

Anaplasma phagocytophilum have higher degree of genetic
diversity, variation in pathogenicity, and host tropisms
(Baráková et al. 2014). Higher degree of disparity exists in
the prevalence of variants within and among hosts as well as
between variants of different regions (Foley et al. 2008;
Morissette et al. 2009). Genetic variability have been studied
using 16S rRNA, major surface protein coding genes (msp4),
groEL heat-shock protein, msp2/p44, and ankA genes
(Granquist et al. 2010c; Silaghi et al. 2011a, b).

Strains isolated from human patients can cause clinical dis-
ease in horses. This may be considered as valuable animal
model for HGA (Madigan et al. 1995). American strain from
horse was not infectious for ruminants (Stannard et al. 1969),
whereas a European strain isolated from cattle did not show
any clinical signs in horses (Pusterla et al. 1998). Rodents do
not play a major role in the Europe whereas the white-footed
mouse (Peromyscus leucopus) is the important reservoir of
human pathogenic strain (Ap-ha) (Massung et al. 2003). The
Ap-ha is pathogenic to humans; ruminants and mice can be
experimentally infected, whereas the Ap-variant 1 is non-
pathogenic to humans and mice, conversely infectious to deer
and goats (Massung et al. 2003, 2005, 2006; Tate et al. 2005).

Several dis t inct ecological clusters have been
established. While the latest reports based on multilocus
sequencing mentioned that roe deer do not contribute in
Europe for human infection but suspected to be the reservoir
of Norwegian sheep strain belonging to different enzootic
cycle (Stuen et al. 2010; Huhn et al. 2014). However, an-
other study established link of human pathogenic strains to
ungulates (Baráková et al. 2014). A potential human path-
ogenic strain of A. phagocytophilum in Europe has been
connected to wild boars (Silaghi et al. 2014).

Four major ecotypes were identified. Ecotype-I has widest
host range. Up till now, all human cases grouped in ecotype-I
have the widest host range (including domesticated animals,
red deer, wild boar, and urban hedgehogs) and further expand-
ed incorporating I. ricinus ticks or urban vertebrates. Ecotype-
II was associated with roe deer and some rodents, and
ecotype-III included only rodents. Birds seem to have a dif-
ferent enzootic cycle and grouped in ecotype-IV. The study
based on population genetic parameters; revealed that
ecotype-I expressed the major expansion due to either increase
in the population of I. ricinus ticks or in the domestic verte-
brate hosts or both (Jahfari et al. 2014).
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Diagnosis

Clinical signs rarely aid in diagnosis. Usually, laboratory
tests are required for confirmatory diagnosis. Blue intra-
cytoplasmic inclusion microcolonies (morulae) can be
usually seen in granulocytes, especially monocytes and
neutrophils in peripheral blood-stained smear during acute
phase of the infection (Figs. 1, 2, and 3). Hematological
and biochemical parameters show anemia, leucopenia,
thrombocytopenia, and increase of aspartate aminotrans-
ferase and alanine aminotransferase enzymes, 5–21 days
after infected tick bite (Bakken and Dumler 2008).
Confirmation of Anaplasma can be done either by elec-
tron microscopy of blood/organs smears, cell culture or
immunohistochemistry. Common serological techniques
for sero-diagnosis of A. phagocytophilum include indirect
immunofluorescent antibody (IFA) test, ELISA, comple-
ment fixation test, and counter-current immunoelectro-
phoresis test. Commercially available BSNAP®4Dx®^
ELISA test is good for rapid in-house detection of
A. phagocytophilum antibodies in dog serum. The kit
has been used successfully on sheep and horse sera
(Granquist et al. 2010a; Hansen et al. 2010). Moreover,
BMegaFLUO® ANAPLASMA phagocytophilum^ is an
indirect semiquantitative immunofluorescent test commer-
cially available for the detection of A. phagocytophilum
IgG antibodies in horse and dog serum or plasma.
Fourfold rise of IgG antibodies in paired human samples
within 2–4-week interval for immunofluorescence assay
(IFA) is the gold standard test for HGA (CDC 2013).
Various PCR techniques including conventional, nested,
and real-time have been developed for the detection of
A. phagocytophilum infection in blood and tissue samples
targeting 16S rRNA, msp4, groEL, ankA, and p44 genes
(Chen et al. 1994; Courtney et al. 2004; Alberti et al.
2005). Four to five t imes enlarged spleen with
subscapular bleeding is the most important post-mortem
finding of sheep, roe deer, and reindeer (Gordon et al.
1932; Øverås et al. 1993; Stuen 2003).

Treatment

Tetracycline is the drug of choice although levofloxacin, a
fluoroquinolone, also showed vivo activity in cell culture in
a human patient with history of chronic obstructive disease at
the dose rate of 500mg daily intravenous every 6 h for the first
24 h and oral 500 mg for 6 days (a total of 13 days treatment)
but failed to control relapse of infection (Wormser et al. 2006).

Doxycycline, oral at the dose rate of 100 mg twice daily for
7–14 days, proved effective for adults in treating clinical hu-
man granulocytic anaplasmosis, and clinical recovery was no-
ticed within 24 h using tetracycline at the dose rate of
500 mg/kg four times per day orally for 14 days (Goodman
et al. 1996). Similarly, doxycycline hyclate 4.2 mg sustained
release proved 100 % effective in preventing anaplasmosis as
well as B. burgdorferi infection in mice (Zeidner et al. 2008).
In pregnant women and patients with intolerant or allergy to
tetracycline, rifampin at 10 mg/kg/day oral or chlorampheni-
col may be given (Goodman et al. 1996).

Long-acting oxytetracycline had proved effective for treat-
ment and elimination of Anaplasma phagocytophilum in
lambs at the dose rate of 20 and 10 mg/kg body weight intra-
muscular (Stuen and Bergstrom 2001). Similarly, this drug is
also effective against other ruminants and horses.
Doxycycline showed efficacy against canine and feline ana-
plasmosis in cat, dog, and captive timber wolf (CFSPH 2013).

Fig. 1 Anaplasma phagocytophilum (Morulae) in neutrophil of Giemsa-
stained blood smear of new born calf (Henniger et al. 2013). Magnifica-
tion 10×100

Fig. 2 Anaplasma phagocytophilum (Morulae) in lymphocyte of
Giemsa-stained blood smear of new born calf (Henniger et al. 2013).
Magnification 10×100

Fig. 3 Anaplasma marginale (arrow) in Giemsa-stained blood smears of
dairy cow (Bos indicus). Magnification 10×100

Parasitol Res (2015) 114:3941–3957 3945



Prevention

Various antigens have been recommended as vaccine candi-
dates, but the main problem associated with development of
effective vaccine is the existence of different variants, selec-
tion of suitable conserved antigen, lack of cross-protection
studies, and antigenic variation against diverse genotypes
(Stuen et al. 2013a). Recently, an important development in
vaccine development is the identification of three invasin pro-
teins OmpA, Asp14, and Aip A that are involved in infection
process. The antibodies against these proteins most effectively
blocked the A. phagocytophilum infection of host cells. The
binding domains of these proteins could be used to develop
vaccine (Seidman et al. 2015).

Control

Vaccine for A. phagocytophilum is not yet available. But, anti-
tick vaccines would be a good option to control infection. Use
of tick vaccines are environment-friendly, reduce tick load,
decrease the incidence of tick-borne diseases (bovine anaplas-
mosis, babesiosis, and theileriosis), and minimize acaricide
use (Graf et al. 2004; de la Fuente et al. 2006, 2011).
Understanding vector-pathogen interactions would be an im-
portant tool for the control of tick and tick-borne pathogens.
Immunization of animal reservoirs, high-risk animals, and hu-
man population would help in the control of anaplasmosis.
Tick vaccines based on tick proteins interfere with tick vector
competence such as SILK (Hajdušek et al. 2013; Zivkovic
et al. 2010) and TROSPA (Hajdušek et al. 2013; Antunes
et al. 2012). Rhipicephalus (R.) microplus tick proteins
(BM86/BM95) have proved effective in reducing cattle tick
infestations (Willadsen 2006; de la Fuente et al. 2007).
Labuda et al. (2006) found that tick vaccine containing tick
cement protein 64P of Rhipicephalus appendiculatus
protected mice against Ixodes ricinus tick infestation and
tick-associated encephalitis virus (TBEV). Subolesin (SUB)
protein have resulted in lower R. microplus infestations and
reduced levels of A. marginale and B. bigemina blood patho-
gens (de la Fuente et al. 2011; Merino et al. 2013). Tick pro-
teins such as Q38, SILK, and SUB when used as vaccine
reduced tick infestation and oviposition of R. microplus ticks
(Merino et al. 2013).

Subolesin and akirin proteins are conserved among differ-
ent vector species which might serve as a candidate for uni-
versal vaccine against various vector species, vector-borne
diseases, and pathogen infection (de la Fuente et al. 2013).
The vaccine that target both pathogen and vector for the pre-
vention of ticks and anaplasmosis is a good option as in case
of bovine anaplasmosis. Recently, Torina and associates
(2014), developed vector-pathogen vaccine using both tick
subolesin and Anaplasma marginale MSP1a proteins togeth-
er. This resulted in lower tick infestation percentage and lower

weight of female Boophilus microplus ticks and reduced
A. marginale infection in cattle (Torina et al. 2014).

Similarities and differences

Differences Anaplasma marginale and A. phagocytophilum
are closely related bacteria that invade different host cell types.
Only ruminants are prone to A. marginale infection, whereas
A. phagocytophilum is a hetero-genetic, zoonotic pathogen
with diverse host range including domestic and wild animals,
rodents, reptiles, birds, and humans infecting neutrophils,
monocytes, or endothelial cells (Foggie 1951; Rikihisa
2011). Bovine anaplasmosis caused by A. marginale charac-
terized by fever, severe anemia, jaundice, pale mucous mem-
branes, brownish urine, abortion, decreased milk production,
hyperexcitability, weight loss, and mortality without
hemoglobinemia and hemoglobinuria during acute phase of
the infection (Richey and Palmer 1990). Hemolytic anemia is
t he ma jo r hema to log i c a l f i nd ing . Conve r s e l y,
A. phagocytophilum infections generate sudden onset of fever
accompanied by secondary infection which is the common
sequel of tick-borne fever and HGA in contrast to bovine
anaplasmosis. Characteristic microcolonies of the bacterium
called Morulae develop in peripheral blood of granulocytes
(especially neutrophils) and monocytes and their precursors in
the bone marrow (Foggie 1951).

Anaplasma phagocytophilum can be cultured in Ixodes
scapularis tick cells ISE6 and IDE8, as well as human
promyelocytic cell line HL-60, and where A. marginale can-
not propagate in continuous mammalian culture system owing
to unknown cell surface receptors. The coinfection between
these pathogens cannot be achieved in same tissue culture
system or cell line (Munderloh et al. 2004). These organisms
show different gene expression on I. scapularis tick cell lines
(ISE6) (Zivkovic et al. 2009). Moreover, there are cellular and
humoral complexities in A. phagocytophilum as compared to
A. marginale.

Similarities A. marginale and A. phagocytophilum are closely
related organisms on the basis of amino acid sequences
(Aubry and Geale 2011). Concurrent infections, biological,
mechanical, transplacental, and blood-contaminated/blood
transfusion-associated transmission potentials are the major
similarities for both Anaplasma species. Common treatment,
prevention, elimination/chemosterilization, vaccination, tick
control, breed resistance/susceptibility, selected common
hosts, persistent infection, cross-reactivity, antigenic variation,
super-infection, re-infection, strain diversity, host tropism or
16SrRNA gene base classification (family Anaplasmataceae),
major surface proteins, pseudogenes, and hypothetical pro-
teins are the common attributes of these tick-associated
pathogens.
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Table 2 Comparison of Anaplasma marginale and Anaplasma phagocytophilum bacteria on epidemiology, diagnosis, treatment, prevention, and
control

Character A. marginale A. phagocytophilum

Diseases Bovine anaplasmosis (Kocan et al. 2010b) Tick-borne fever (TBF) or pasture fever (cattle, sheep,
goat) (Woldehiwet 2006; Stuen 2007)

Canine granulocytic anaplasmosis (Alberti et al. 2005)
Feline granulocytic anaplasmosis (Billeter et al. 2007)
Equine granulocytic anaplasmosis (Alberti et al. 2005)
Human granulocytic anaplasmosis (HGA) (Hing et al. 2014)

Common names Yellow fever, Yellow bag, gall sickness
(Whittier et al. 2009; Merck Veterinary
Manual 2014)

Tick-borne fever, pasture fever (Merck Veterinary
Manual 2014)

Zoonotic potential No (Howden et al. 2010) Yes (Hing et al. 2014)

Genome 1.2 Mb (Brayton et al. 2002) 1.47 Mb (Human) HZ strain (Rikihisa et al. 1997)

Morphology Round inclusion bodies measuring 0.3–1.0
μm, at margins of RBCs (OIE 2012)

Morulae in monocytes, granulocytes (especially neutrophils),
(1.5–2.5 μm) (Popov et al. 1998)

Geographic distribution Worldwide, mostly tropical, subtropical and
some temperate regions (OIE 2012)

Cosmopolitan (all Europe), northern hemisphere, America
(North, South), Asia, Africa and Australia (individuals
who visited out of country). Endemic or potentially
endemic in 42 countries of the world (Berger 2014)

Incubation period Cattle: 7–60 days (Kocan et al. 2003) Humans: 7–14 days after infected tick bite
Ruminants: 5–14 days after infected tick bite, 2–6 days
Equine: 1–3 weeks
Canine: 2–4 weeks (CFSPH 2013)

Hosts Cattle, buffalo, American bison (Bison bison),
mule deer, rocky mountain elk, white-tailed
deer, black-tailed deer, roe deer (Aubry and
Geale 2011)

Humans, domestic ruminants, roe deer, white-tailed deer,
black-tailed deer, mule deer, rocky mountain elk, wild
boar, rodents ticks, ruminants, rodents, equids, canids,
birds, wild mammals (Stuen et al. 2013a)

Common hosts Elk (Cervus elaphus nannodes), bison (Bison bison),
(Stiller et al. 1981, 1983), white-tailed deer
(Odocoileus virginianus), mule deer (Odocoileus
hemonius hemonius), black-tailed deer (Odocoileus
hemionus culumbianus; Aubry and Geale 2011)

Elk (Cervus elaphus nannodes), bison (Bison bison), and
moose tick (Dermacentor albipictus; Stiller et al. 1981,
1983), white-tailed deer (Odocoileus virginianus), mule
deer (Odocoileus hemonius hemonius), black-tailed deer
(Odocoileus hemionus culumbianus; Aubry and Geale
2011)

Clinical signs Cattle: Fever, severe anemia, jaundice, pale mucous
membranes, brownish urine, abortion, decreased
milk production, hyper-excitability, weight loss,
and mortality without haemoglobinemia and
haemoglobinuria during acute phase of the infection
(Richey and Palmer 1990)

Animals: Sudden fever, agalactia, anorexia, dullness,
abortion, low fertility in sheep while dogs, cats and
horses show nonspecific signs. Animals subject to
secondary infections (Pusterla and Braun 1997; Stuen
et al. 2005). Damage of cellular and humoral immune
system. Humans: Nonspecific flu-like signs, high fever,
severe headache, malaise, and generalized myalgias
(Dumler 1996)

Host cell Erythrocytes (Rikihisa 2011) (Fig. 3) Morulae in granulocytes (esp. neutrophils) and endothelial
cells (Rikihisa 2011)

Hematological finding Marked anemia (Atif et al. 2012a) Anemia, leucopenia, thrombocytopenia (Henniger et al. 2013)

Serology Competitive ELISA, card agglutination test
(OIE 2012)

Humans: IFA, detect IgG antibodies (CDC 2013). Dogs:
Commercially available BSNAP®4Dx®^/BSNAP®4Dx®
Plus Test^ (this test detects two
additional parasites; Ehrlichia ewingii and A. platys)
ELISA (BSNAP®4Dx®^ also proved effective for
diagnosis of A. phagocytophilum in sheep and horses

Horses, dogs: BMegaFLUO® ANAPLASMA
phagocytophilum^ is an indirect semi-quantitative
immunofluorescent test commercially available for the
detection of A. phagocytophilum IgG antibodies in horse
and dog serum or plasma.

Sero-diagnostic proteins MSP 5 (Fosgate et al. 2010) TBF: P44/MSP2 (Granquist et al. 2010c)
HGA: P44/MSP2 (Granquist et al. 2010c)

Molecular target genes 16S rRNA, groEL, gltA, msp1α, msp5
(Ybañez et al. 2013a); msp1β (Ashuma et al. 2013,
Bilgiç et al. 2013); msp4 (Hornok et al. 2007)

16SrRNA (Massung et al. 1998), msp4 (Bown et al. 2007),
groEL (Alberti et al. 2005), p44/msp2, ankA (Massung
et al. 2000; Von Loewenich et al. 2003; Scharf et al.
2011)
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Table 2 (continued)

Character A. marginale A. phagocytophilum

Biochemistry Increase total protein, total bilirubin, alanine
aminotransferase (Ashuma et al. 2013)

Increase aspartate and alanine aminotransferase, lactate
dehydrogenase, creatinine (Li et al. 2011)

Histopathology Not usually performed (OIE 2012) Not usually performed, immunohistochemistry (Lepidi
et al. 2000)

Post-mortem lesions Anaemia, jaundice, pale to yellow mucous membranes,
enlarged spleen distended gall bladder and brown
lymph nodes (Merck Veterinary Manual 2014)

TBF (sheep): Enlarged spleen (4–5 times) with
subscapular bleeding (Øverås et al. 1993)

Samples for laboratory
diagnosis

Live animal: EDTA blood for thin blood smear,
serum for serodiagnosis, whole blood spots on
filter paper Whatman no. 3 or 4 (Brandt 2009)

Dead animals: Air-dried thin impression smears
from the liver, heart, lungs, kidney, and from a
peripheral blood vessel (OIE 2012)

Blood, serum, spleen (Malmsten et al. 2014)

Cell culture I. scapularis cell lines ISE6, IDE8 (Munderloh
et al. 2004; de la Fuente et al. 2007)

I. scapularis cell lines ISE6, IDE8, Human promyelocytic
cell line, HL-60 (Munderloh et al. 1999, 2004;
Woldehiwet et al. 2002; Zivkovic et al. 2009)

Diagnostic tests Blood smear (early infection), cELISA (sero-daignosis),
card agglutination test (sero-daignosis), PCR
(OIE 2012), subinoculation blood in splenectomized
calf is a gold standard test (Coetzee et al. 2006)

Human HGA diagnostic tests sensitivity:
0–7 days post-infection (PCR>blood smear>HL-60)
8–14 days post-infection (IFAT>PCR)
15–30 days post-infection (IFAT>PCR)
31–>60 days post-infection (IFAT)
(Bakken and Dumler 2006)

Disease confirmation Electron microscopy, seroconversion, PCR,
subinoculation of infected blood in
splenectomized calves

Electron microscopy, PCR; fourfold rise in IgG titer
within 2–4-week interval (humans; CDC 2013)

Human pathogenic strains Not pathogenic to humans Yes, human pathogenic strains are linked to wild boar
(Michalik et al. 2012)

Adhesion proteins MSP1a (Garcia-Garcia et al. 2004) MSP2 (Park et al. 2003)

Stain charge Gram negative (Dumler et al. 2001) Gram negative (Rikihisa 2011)

Proved vectors B. microplus, B. annulatus, B. decoloratus, D. andersoni,
Dermacentor albipictus, B. calcaratus, D. variabilis,
Ixodes ricinus, I. scapularis, D. occidentalis, D. hunteri,
Argas persicus, Ornithodoros lahorensis, Hyalomma
excavatum, R. evertsi, H. rufipes, and R. simus
(OIE 2012)

I. ricinus, I. scapularis, I. pacificus, and I. spinipalpis
(Woldehiwet 2010)

Major common vectors/
pathogen detection

DNA detected in I. ricinus, D. albipictus, I. scapularis,
Dermacentor variabilis, D. occidentalis (Goethert and
Telford 2003), Hyalomma asiaticum (Zhang et al. 2013)

I. ricinus, Dermacentor albipictus, I. scapularis,
Dermacentor variabilis, D. occidentalis
(Stuen et al. 2013a; May and Strube 2014)

Mechanical/artific-ial
transmission

Nose tongs, surgical, veterinary instruments, contaminated
needle, horse fly (Tabanus spp.), mosquitoes (Psorophora
spp.) (Kocan et al. 2010a; OIE 2012)

DNA detected in deer ked (Lipoptena cervi) (Víchová et al.
2011), Syringophilidae quill mites (Skoracki et al.
2006). Blood transfusion (Townsend et al. 2014;
Proctor and Leiby 2015)

Biting insects (Merck Veterinary Manual 2014)

Mechanical transmission
(lices)

Haematopinus tuberculatus (da Silva et al. 2013) Not available

Transplacental transmission Experimental beef cow, natural cow calf (Salabarria and
Pino 1988)

Cow (Henniger et al. 2013); dog (CFSPH 2013)

Transstadial/interstadial
transmission (Boophilus,
Ixodes, Dermacentor spp.)

Yes (Boophilus annulatus) (Samish et al. 1993)
D. variabilis and D. andersoni (Kocan et al. 2010b)
Rhipicephalus simus (Walker et al. 2003)

Transstadial/interstadial transmission in Ixodes ricinus
(Ogden et al. 2002)

Intrastadial transmission (ticks)
(within the same life stage,
by males)

Most common in Dermacentor andersoni, D. variabilis
(Zaugg et al. 1986). Rhipicephalus simus
(Walker et al. 2003)

Not available

Transovarial transmission
(ticks)

No transovarial transmission in Dermacentor spp.
of ticks (Kocan et al. 2004), except D. albipictus

No transovarial transmission in Ixodes ticks (Woldehiwet
2010)
except D. albipictus (Baldridge et al. 2009)

MSP similarity MSP2 (Chávez et al. 2012) MSP2/P44 (Chávez et al. 2012)

Serodiagnostic proteins MSP5 (Fosgate et al. 2010) Tick-borne fever: P44 (Gaowa et al. 2014)
HGA: P44 (Gaowa et al. 2014)

Persistent infection/carriers Life-long (Richey 1991) Life-long (Granquist et al. 2010b)
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Table 2 (continued)

Character A. marginale A. phagocytophilum

Risk factors Variable region to regions
High risk: >4 years tick-infested exotic/crossbred

cattle (Atif et al. 2013)
Cattle movement from non-endemic to endemic

(Kocan et al. 2010a)

TBF: Young animals, purchased from tick free region and
reared in tick infested pasture (Woldehiwet and Scott
1993). HGA: Rural farmers (Zhang et al. 2014). High-
risk tick exposure outdoor activities (hiking, gardening),
blood transfusion (Leiby and Gill 2004), and
immunosuppression.

Concurrent infections Yes (Hornok et al. 2007) Yes, with Borelia burgdorferi and/or A. marginale and/or
with other tick borne pathogens (Hornok et al. 2007)

Re-infection Yes (Reinbold et al. 2010a) Yes (Stuen 2003)

Super-infection Yes (Palmer et al. 2004) Yes (Stuen et al. 2009)

Treatment Oxytetracycline (Atif et al. 2012b),
chlortetracycline in feed) (Reinbold et al. 2010b)

TBF: Tetracycline or oxytetracycline hydrochloride
10 mg/kg body weight, daily (Stuen and Bergstrom
2001)

Horses: Oxytetracycline (CFSPH 2013)
Dog: Doxycycline (CFSPH 2013), Cat: Doxycycline

10 mg/kg BW intramuscular for 4 weeks (Gorna et al.
2013)

Humans: Tetracycline (doxycycline hyclate 100 mg,
oral/intravenous twice daily for at least 3 days, preferred
7–14 days) (CDC 2013) and rifampin (for pregnant and
tetracycline allergic patients) (Bakken and Dumler 2006)

Elimination/
chemosterilization

Oxytetracycline (Atif et al. 2012b),
chlortetracycline in feed (Reinbold et al. 2010b)

Animals: Oxytetracycline 10 mg/kg BW daily for 5 days
did not eliminate infection in experimental lambs (Stuen
and Bergstrom 2001)

Humans: Tetracycline (doxycycline hyclate 100 mg,
oral/intravenous twice daily for 7 to 10 days) and
rifampin (for pregnant and tetracycline allergic patients)
(Bakken and Dumler 2006)

Prevention Oxytetracycline, chlortetracycline in feed
(Whittier et al. 2009)

TBF: Long-acting oxytetracycline (Woldehiwet 2007)
HGA: Antibiotic prophylaxis is not effective (CDC 2013).

No vaccine (CFSPH 2013)

Control Establishment of Anaplasma free herds, buffer
zone between housing, vector and fly control,
hygienic veterinary instruments and needles,
chemotherapy, chemosterilization and vaccination
(Aubry and Geale 2011)

TBF: Use of acaricides (pyrethroids), improvement of
host resistance, biological control of ticks (bacteria,
nematodes predatory mites and entomopathogenic
fungi, spiders, ants, beetles, rodents, birds and other
organisms. Habitat modification, use of acaricides
(Samish and Rehacek 1999; Chandler et al. 2000;
Jonsson and Piper 2007), long-acting tetracycline
(Woldehiwet 2007), cleaning vegetation, control of deer
population (Gilbert 2010)

HGA: Treatment, prevention of tick bite, protective
clothing, tetracycline/doxycycline (CDC 2013)

Reservoirs Cattle: white-tailed deer (Odocoileus virginianus;
Keel et al. 1995) and ticks (Aubry and Geale 2011)

USA: white-tailed deer (Massung et al. 2005). Europe: roe
deer (Overzier et al. 2013), red deer (Stuen et al. 2013b),
fallow deer (Ebani et al. 2011), dusky-footed wood rats
(Neotoma fuscipes) (Rikihisa 2003). Asia: Sika deer
(Hapunik et al. 2011), Korean water deer (Kang et al.
2013)

Other: white-footed mice (Peromyscus leucopus),
Eastern chipmunk (Tamias striatus), Eastern gray
squirrel (Sciurus carolinensis), Eastern red squirrel
(Tamiasciurus hudsonicus), Southern flying squirrel
(Glaucomys volans), Virginia opossum (Didelphis
virginiana), Striped skunk (Mephitis mephitis), Northern
short-tailed shrew (Blarina brevicauda), masked shrew
(Sorex cinereus), raccoon (Procyon lotor) (Keesing et al.
2012)

Vectors India, South Africa, Brazil: Rhipicephalus (Boophilus)
microplus (Guglielmone 1995; Potgieter 1996;
Ghosh et al. 2007)

Iraq: B. annulatus (Ameen et al. 2012)

Europe: Ixodes ricinus (Woldehiwet 2010)
Latvia, Russia, Estonia: I. persulcatus (Paulauskas et al.

2012; Rar et al. 2011)
USA: (Western USA): I. pacificus (Rejmanek et al. 2011)
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Concurrent infection with other tick-borne pathogens
(marginale and/or Borrelia burgdorferi) in animals and tick
vectors have been reported (Berger 2014; de la Fuente et al.
2005). Both pathogens have the ability to produce novel anti-
gens in the presence of other strains (super-infection).
Antigenic variants develop specific antibodies after each
rickettsemic peak by msp2/p44. Re-infection is also the attri-
bute of these organisms by their respective heterologous
strains (Stuen et al. 2009; Futse et al. 2008; Vallejo Esquerra
et al. 2014).

Molecular analysis of 16SrRNA gene of A. marginale and
A. phagocytophilum showed that both the organisms trans-
form major surface proteins variants during persistent infec-
tion in host and tick vectors. During each rickettsemic peak,
msp2 antigenic gene variants are formed that have specific
host antibody responses. Extensive antigenic variations of
msp2 gene of outer surface membrane of A. marginale influ-
enced by host immune system during persistence in host and
tick vectors during developmental cycle. Antigenic variations
and cross-protection are the challenges for vaccine develop-
ment (Kocan et al. 2010b).

The P44 protein of A. phagocytophilum is homologous to
msp2 belong to multigene family of A. marginale evolved due
to combinatorial gene conversion with the establishment of
condensed pseudogenes (Brayton et al. 2002). These two or-
ganisms are similar on the basis of diverse antigenic surface
proteins in their small genome and generate specific antibody
response. There are six major surface antigenic proteins in-
cludingmsp1α,msp1β,msp2,msp3,msp4, andmsp5, where-
as msp1α and msp1β are distinctive in A. marginale.

A dominant antibody response is established against 40-
kDa outer membrane protein (MSP2/P44) of Anaplasma
phagocytophilum, same as expressed in A. marginale

infections (Ijdo et al. 1997). Expression of immunodominant
antigenic major surface proteins (MSPs) share homology with
Anaplasma marginale MSP2 and MSP4 (Lin et al. 2004;
Vidotto et al. 2006). The MSP4 exhibits host-specific proper-
ties and involved in host-pathogen interaction, and because of
this property, MSP4 bear selective pressure by the host im-
mune system. Thus, a high degree of genetic heterogeneity is
seen among A. phagocytophilum strains (Massung et al. 2003;
de la Fuente et al. 2005). The msp4 gene sequences may not
give phylo-geographic information but can be used for
A. phagocytophilum strain differentiation from humans, rumi-
nants, and nonruminant domestic animals.

The msp5 gene is conserve in all the Rickettsiales, this is
highly stable among all Anaplasma species as well as isolates
from the USA (Palmer et al. 2004). This is the cause of cross
reactivity of Anaplasma marginale with A. phagocytophilum
during indirect and competitive ELISA (Strik et al. 2007)

Detailed knowledge about epidemiology, ecology, vector
biology and competence, risk factors and longitudinal studies
for clinical manifestations, pathogenesis, and cellular and hu-
moral responses of virulent pathogenic strains is lacking. Cell
culture techniques (animal and tick) with targeted knockdown
genes, transformation, multilocus sequence typing, blood
meal genetic analyses, pulse field gel electrophoresis, high-
throughput genome sequencing, and microbiomic and
metagenomic analyses are currently available methodologies
to explain population genetic structures and the evolutionary
mechanism. Upcoming studies should therefore focus on the
association between diverse genetic strains in different reser-
voir hosts and ticks by blood meal analysis and genetic fin-
gerprinting to unstitch the biology, phylo-geographic distribu-
tion for better estimation of risk factors, and disease
management.

Table 2 (continued)

Character A. marginale A. phagocytophilum

North America: Dermacentor andersoni (three host tick),
D. variabilis (three host tick), D. albipictus (one host tick)
(Aubry and Geale 2011)

USA: Dermacenter andersoni, Dermacenter variabilis,
Argas persicus (da Silva 2008)

North Africa: Ixodes ricinus (da Silva 2008). Central and
southern Africa: R. simus (Merck Veterinary Manual
2014).
South Africa: Rhipicephalus microplus, R. evertsi evertsi,
R.
simus, R. decoloratus, and Hyalomma marginatum rufipes
(de Waal 2000)

Zambia: A. variegatum, B. decoloratus, R. evertsi (Makala
et al.
2003). Europe: Ixodes ricinus (da Silva, 2008). Hungary:
D. reticulatus (Hornok et al. 2012). Australia:
Rhipicephalus
(Boophilus) microplus (Bock et al. 2006)

USA: (Eastern USA): I. scapularis (Roellig and Fang
2012)

Russia: I. persulcatus (Rar et al. 2011)
China: I. persulcatus, Dermacentor silvarum (Cao et al.

2006), H. longicornis, H. concinna (Jiang et al. 2011)
Japan: I. persulcatus, Haemaphysalis megaspinosa, I.

ovatus, H. douglasii (Wuritu et al. 2009; Yoshimoto
et al. 2010; Ybañez et al. 2012, 2013a, b)

Korea: H. longicornis, I. nipponensis (Chae et al. 2008)
North Africa: (Algeria, Tunisia and Morocco): I. ricinus

and Hyalomma marginatum, Hy. Detritum, I. spinipalpis
(Sarih et al. 2005; M’ghirbi et al. 2012)

IFA indirect immunofluorescence assay
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Conclusion

All age groups are susceptible to bovine anaplasmosis and
tick-borne fever, but prevalence increases with age.
Movement of susceptible domestic animals from tick-free
non-endemic regions to disease endemic regions is the major
risk factor. Recreational or high-risk tick exposure activities
and blood transfusion is an important risk factor of human
granulocytic anaplasmosis. Efforts are being focused for the
identification of novel antigenic parts for a universal vaccine,
effective against diverse geographic stains.

It is difficult to bridge the similarities and differences be-
tween two important tick-transmitted pathogens of family
Anaplasmataceae (Table 2). A. phagocytophilum is relatively
a new pathogen which got international research focus after
the first human case in 1986. Both the organisms share a
reasonable degree of commonality. The advances in epidemi-
ological, molecular, and genetic engineering approaches in
cell culture, vector ecology, clinical, experimental, immuno-
logical, and longitudinal studies may be utilized for both or-
ganisms being the member of family Anaplasmataceae keep-
ing in view the differences in pathogenicity, host tropism, and
strain diversity for ticks, humans, and domestic and wild an-
imals. Moreover, the whole plasmid (4.5 kb) was successfully
inserted in the chromosome of Anaplasma marginale by sin-
gle homologous crossover (Felsheim et al. 2010). Similarly,
this technique should be applied to transform Anaplasma
phagocytophilum as earlier performed for A. marginale for
better understanding the infection biology for effective pre-
vention and control of this pathogen as well.
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