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Abstract 

Background: Anaplasma phagocytophilum is currently regarded as a single species. However, molecular studies indi‑
cate that it can be subdivided into ecotypes, each with distinct but overlapping transmission cycle. Here, we evaluate 
the interactions between and within clusters of haplotypes of the bacterium isolated from vertebrates and ticks, using 
phylogenetic and network‑based methods.

Methods: The presence of A. phagocytophilum DNA was determined in ticks and vertebrate tissue samples. A frag‑
ment of the groEl gene was amplified and sequenced from qPCR‑positive lysates. Additional groEl sequences from 
ticks and vertebrate reservoirs were obtained from GenBank and through literature searches, resulting in a dataset 
consisting of 1623 A. phagocytophilum field isolates. Phylogenetic analyses were used to infer clusters of haplotypes 
and to assess phylogenetic clustering of A. phagocytophilum in vertebrates or ticks. Network‑based methods were 
used to resolve host‑vector interactions and their relative importance in the segregating communities of haplotypes.

Results: Phylogenetic analyses resulted in 199 haplotypes within eight network‑derived clusters, which were allo‑
cated to four ecotypes. The interactions of haplotypes between ticks, vertebrates and geographical origin, were visu‑
alized and quantified from networks. A high number of haplotypes were recorded in the tick Ixodes ricinus. Communi‑
ties of A. phagocytophilum recorded from Korea, Japan, Far Eastern Russia, as well as those associated with rodents had 
no links with the larger set of isolates associated with I. ricinus, suggesting different evolutionary pressures. Rodents 
appeared to have a range of haplotypes associated with either Ixodes trianguliceps or Ixodes persulcatus and Ixodes 

pavlovskyi. Haplotypes found in rodents in Russia had low similarities with those recorded in rodents in other regions 
and shaped separate communities.

Conclusions: The groEl gene fragment of A. phagocytophilum provides information about spatial segregation and 
associations of haplotypes to particular vector‑host interactions. Further research is needed to understand the circula‑
tion of this bacterium in the gap between Europe and Asia before the overview of the speciation features of this 
bacterium is complete. Environmental traits may also play a role in the evolution of A. phagocytophilum in ecotypes 
through yet unknown relationships.
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Background

Communities of organisms co-evolve across time and 

space [1–4]. Recent studies have stressed the need to 

capture the ecological relationships of large sets of inter-

acting species [5, 6]. Many tick-borne pathogens have 

a considerable impact on human, livestock and wild-

life health. The different species of ticks and associated 

pathogens differ largely in the level of specialization 

for different wildlife hosts. Due to this complexity, the 

understanding of transmission cycles of most pathogens 

and the resulting phylogeny is still rudimentary. The 

application of graph analysis is a promising approach to 

understand the coevolution of the foci of ticks and asso-

ciated pathogens [5, 7]. Properties of network analysis 

allow for the visualization and quantification of the pecu-

liarities of their ecological relationships [8], revealing 

more or less distinct and/or nested subgroups of interact-

ing organisms [9]. Modularity is a key element in these 

constructs, characterizing the degree of interactions of 

organisms among themselves and with other members of 

the network. For the interacting triad of ticks, pathogens 

and their vertebrate hosts, a high clustering and nested-

ness seem to be the rule rather than the exception [10]: 

some organisms interact more frequently among them 

than with other species, generating nested “communities” 

when the complete set of interactions is analyzed.

Anaplasma phagocytophilum is the etiological agent of 

human granulocytic anaplasmosis (HGA), and tick-borne 

fever in domesticated animals [11–13]. Although a wide 

range of wildlife species can be infected with A. phagocyt-

ophilum, the impact of these infections on wildlife health 

is unclear [14]. The main vectors of A. phagocytophilum 

are ticks of the Ixodes ricinus complex: Ixodes ricinus in 

Europe, Ixodes persulcatus in eastern Europe and East 

Asia, and Ixodes scapularis and Ixodes pacificus in North 

America, although several other Ixodes species have been 

implicated in maintaining A. phagocytophilum in enzo-

otic cycles as well [12, 13, 15]. The transmission dynamics 

of A. phagocytophilum predominantly rely on horizontal 

transmission between ticks and vertebrate hosts and on 

transstadial transmission in its vectors. While its vertical 

transmission (transovarial) has only been documented 

for Dermacentor albipictus in laboratory conditions [16], 

no conclusive evidence of such a route has been reported 

in Ixodes ticks. Therefore, A. phagocytophilum is exposed 

to the evolutionary pressures of complex interactions 

among the vertebrate reservoirs and its vectors, which 

are instrumental in shaping the underlying tapestry of 

the genetic constellation of A. phagocytophilum.

The role of wildlife species in the circulation of A. 

phagocytophilum is yet to be clearly determined, but sev-

eral species of wild ruminants are thought to be impor-

tant reservoirs [17]. Free ranging ruminants, such as the 

roe deer (Capreolus capreolus) in Europe [18] and the 

white-tailed deer (Odocoileus virginianus) in America 

[19], also largely contribute to the propagation of the 

ticks. Small mammals, on the other hand, contribute 

more to the feeding of immature stages of I. ricinus spe-

cies [18–20]. These animals also harbour nidicolous ticks, 

such as Ixodes acuminatus and Ixodes trianguliceps, 

which have been implicated to circulate A. phagocytophi-

lum in cryptic cycles [21]. Domesticated animals some-

times act as super-spreaders of ticks, and maybe also 

of A. phagocytophilum, since they boost amplification 

cycles by feeding large numbers of ticks [22]. Genetic 

analyses could help to further elucidate the pathogenic-

ity and zoonotic potential of particular A. phagocytophi-

lum isolates, as well as the direction of spill-over between 

livestock and wildlife.

Since its reclassification in 2001 [23], A. phagocyt-

ophilum is viewed as a single species based on genetic 

analyses of 16S rRNA, groEL and surface protein genes. 

This taxon includes what formerly had been recorded as 

Ehrlichia equi, the etiological agent of equine ehrlichio-

sis, the unnamed causative agent of human granulocytic 

ehrlichiosis, and Ehrlichia phagocytophila. However, 

the circulating variants of A. phagocytophilum do not 

equally infect different hosts or result in the same clini-

cal picture. While 16S rRNA is valuable for rough phy-

logenetic reconstruction, more variable genes such as 

ankA, msp4 and groEL heat-shock operons are preferred 

to capture strains and population structure [15, 24, 25]. 

Two studies proposed the existence of four clusters of A. 

phagocytophilum strains based on the ankA gene [24, 26]. 

Both studies concur in the clear separation of variants 

recorded in humans and roe deer. A distinct lineage asso-

ciated with rodents in Europe has also been described, 

which is believed to be vectored by I. trianguliceps [21]. 

Furthermore, one multi-locus approach [27] showed 

that strains from roe deer, voles and shrews did not fall 

into the same clonal complex as the variants infecting 

humans, dogs and horses, while wild boars (Sus scrofa) 

and hedgehogs (Erinaceus europaeus) could be reser-

voirs for a zoonotic A. phagocytophilum variant. Red deer 

(Cervus elaphus) have also been suspected of harbour-

ing zoonotic types [28], as well as pathogenic variants 

of domestic ruminants [26, 27, 29, 30]. A previous study 

[31] supported these findings, and identified four differ-

ent ecotypes in Europe based on a fragment of the groEl 

gene. The study revealed that the zoonotic ecotype could 

be linked to a multitude of hosts, but did not cluster with 

the bird, rodent or roe deer ecotypes.

In this study, we follow the working theory of Jah-

fari et  al. [31] that an ecotype is a cluster of genetically 

similar A. phagocytophilum isolates based on groEL 

sequences. We expand previous concepts exploring the 
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relationships among haplotypes of A. phagocytophilum, 

its reservoirs and the ticks involved in its circulation. By 

unifying methods from the fields of molecular biology, 

phylogenetics, and network theory, we test whether and 

quantify how A. phagocytophilum segregates into nested, 

interconnected networks of ticks and vertebrates, quanti-

fying the levels of hierarchy embedded in the large back-

ground. We apply indices of modularity and centrality of 

the network, together with unambiguous measurements 

of phylogenetic clustering, to the largest available data-

set of haplotypes of the bacterium to show how the eco-

logical relationships of A. phagocytophilum emerge into a 

robust, nested, and connected epidemiological structure, 

which the bacterium exploits to diversify, spread into 

new niches and evolve along different strains.

Methods

Collection of A. phagocytophilum field isolates

The collection of A. phagocytophilum field isolates pre-

dominantly relied on convenience sampling from numer-

ous previous or ongoing studies in Europe [32–49]. Ticks 

and tissue samples from vertebrates were stored below 

− 20  °C before further processing in the laboratory. All 

A. phagocytophilum field isolates are described in Addi-

tional file 1: Table S1.

DNA extraction and sequencing

DNA from vertebrate samples and engorged ticks 

was extracted in different laboratories using various 

techniques [32–48]. DNA from tissues and engorged 

ticks which were specifically analysed for this study 

were extracted with the  DNeasy® Blood & Tissue 

kit (Qiagen, Hilden, Germany) as per the manufac-

turer’s instructions. Ticks from the vegetation were 

lysed with ammonium hydroxide [50]. These samples 

were screened for the presence of A. phagocytophi-

lum DNA with a real-time polymerase chain reaction 

(qPCR) targeting a 77-bp portion of the msp2 gene [51]. 

Amplification of the qPCR-positive samples was per-

formed, targeting a 530-bp fragment of the groEL gene 

of A. phagocytophilum following published methods 

[52]. The PCR-products were analyzed with gel elec-

trophoreses on a 1.5% agarose gel and coloured with 

SYBR™ Gold Nucleic Acid Gel Stain (Invitrogen, Carls-

bad, CA, USA). When the initial PCR did not result in a 

visible product, a nested PCR was performed using the 

primers ApNest-F (5′-GTG GAA TTT GAA AAT CCA 

TAC-3′) and ApNest-R (5′-GTC CTG CTA GCT ATG 

CTT TC-3′). The PCR program had a pre-incubation 

step of 95  °C for 15 min, followed by 40 cycles of 30 s 

at 94 °C, 30 s at 55 °C and 40 s at 72 °C. Final extension 

was performed using a 10 min step at 72 °C. This nested 

PCR results in a 366-bp fragment. The PCR products 

were cleaned with ExoSAP-IT™ PCR Product Cleanup 

Reagent (Applied Biosystems, Foster City, CA, USA) 

and sequenced by BaseClear (Leiden, Netherlands). 

The chromatographs of the sequences were analyzed 

and the primer sites were trimmed in Bionumerics v.7.6 

(Applied Maths, Sint-Martens-Latem, Belgium).

Compilation of the molecular epidemiological dataset

We compiled a dataset with the A. phagocytophilum 

isolates that had a groEL DNA sequence, the geographi-

cal origin (country) and information on vertebrate/tick 

species from which the isolate originated [31]. A search 

for additional A. phagocytophilum isolates with an 

explicit statement of the geographical origin (country) 

and vertebrate/tick from which the isolate originated 

was performed in the Entrez Nucleotide Database. Iso-

lates that did not originate from field or case studies, 

or lacked the minimum required epidemiological infor-

mation were excluded. Only A. phagocytophilum iso-

lates which contained the DNA fragment from 655 to 

1020 (366) bp of the groEL open reading frame, using 

GenBank entry CP015376 as a reference, were included 

in the initial dataset. The complete dataset with DNA 

sequences is included in Additional file 1: Table S1 and 

consists of 1992 field isolates, including the samples 

obtained from GenBank. While the size of this frag-

ment had previously been used to identify ecotypes 

[31], a smaller subset of isolates with groEL sequences 

that spanned a longer fragment with a higher genetic 

resolution (LF), from 589 to 1118 (530) bp, was 

extracted for further analyses. After this selection, the 

dataset consisted of 1623 field isolates. We acknowl-

edge that the grouping according to large administra-

tive divisions (countries) is too rough to describe the 

fine geographical structure of segregation of A. phago-

cytophilum. While data on provinces or localities of 

collection were available for some samples, their use 

(instead of the country) reduced the available dataset 

by about 50%. We thus decided to keep the name of the 

country as the only geographical indicator, to better 

exploit a longer list of available data.

Haplotype and cluster delineation

A haplotype was defined here as a group of A. phagocy-

tophilum isolates in the dataset in which all members 

shared an identical 530-bp fragment of the groEL gene. 

For this, a multiple alignment based UPGMA tree was 

generated in BioNumerics with groEl sequences that had 

been extracted from the dataset. Molecularly similar hap-

lotypes (clusters) were identified according to published 

methods [31].
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Vertebrate and arthropod haplotype distributions 

between clusters

We tested the possibility of over-representation of a 

cluster among the isolates using a multinomial model in 

which an isolate from a single species is evenly associated 

across all eight clusters, i.e. with the probability of 1/8 per 

cluster. The Monte Carlo method was used to estimate 

the probability (P-value) that the number of most numer-

ous clusters in a random realization from the multino-

mial is equal to or greater than the observed maximum 

among the isolates. These calculations were performed 

in Mathematica v.11.3 [53]. A probability of less than 

0.05 was considered significant support for selective 

distribution.

Building associations among ticks‑reservoirs‑haplotypes: 

associations of clusters with carriers and geography

Once the list of haplotypes of A. phagocytophilum iso-

lates was completed with data about the species of ver-

tebrate or tick and the country of origin, a network 

capturing interactions was built. While molecular meth-

ods delineate the evolution of the target sequence of 

the bacterium, a network records how the strains of A. 

phagocytophilum segregate throughout the ticks and the 

vertebrates involved in its circulation. In our application, 

a “record” is a pairwise A. phagocytophilum-tick/verte-

brate combination at a single geographical site. Each time 

a haplotype was found linked to either a vertebrate or a 

tick, a link was drawn, matching haplotype-vertebrate or 

haplotype-tick for a given country. The complete network 

includes the number of times each haplotype was found 

in each species of vertebrate or tick plus the country. In 

our application, nodes represent “carriers” (ticks or ver-

tebrates) that are linked to a “cargo” (a haplotype of A. 

phagocytophilum) in a given country.

We examined several hypotheses regarding the rela-

tionships among the partners of the network. Modular-

ity resolves communities of organisms that interact more 

among themselves than with other members of the net-

work. We used the Louvain algorithm for calculating 

modularity, as integrated in the software Gephi v.0.92 

[54], detecting communities of haplotypes of A. phagocy-

tophilum and the carriers to which they are associated. 

Modularity resolves the compartmentalization of the 

network, displaying subnetworks of interacting entities 

separated from other subnetworks. These nested struc-

tures provide information about which elements (carri-

ers, cargo) should be considered a “sub-part” of another 

larger network element, which is a major indication of 

clusters of haplotypes being derived from another, prob-

ably larger, cluster of samples. We used the algorithm 

provided by Bastolla et al. [55] for calculation of nested-

ness. We also calculated the articulation points of these 

subnetworks, using the package igraph [56] of the R pro-

gramming environment [57]. Articulation points are the 

nodes linking two or more different communities, whose 

removal increases the number of isolated sub-networks.

We already demonstrated that the structure of the net-

works in which tick-transmitted pathogens circulate cor-

relates with critical scales of connectivity between ticks 

and hosts and that these relationships can be described 

based on their centrality indices. Centrality measures 

in ecological networks indicate the presence of “high-

ranking nodes in the network that have significantly 

higher-than-average connectivity” [58]. Identifying the 

most central nodes was addressed using the betweenness 

centrality (BNC) defined as the number of shortest paths 

between pairs of nodes that pass throughout a given 

node, and the PageRank (PR) defined as the number and 

quality of links to a node to estimate how important the 

node is. The underlying assumption is that more impor-

tant nodes are likely to receive more links from other 

nodes. We tested whether these high centrality nodes 

exist in each community, and how they are inter-related. 

A highly central node is a carrier (tick/vertebrate) found 

to be infected by many cargo haplotypes that infect many 

other carriers in the network. The vertebrates or the ticks 

with the greatest centrality are super-spreaders [59].

We aimed to obtain measures of the phylogenetic 

diversity of the A. phagocytophilum haplotypes at the 

level of species of vertebrates and ticks. These calcula-

tions are intended to understand if a higher or lower 

phylogenetic diversity of A. phagocytophilum is linked 

to some groups of vertebrates/ticks. In other words, we 

aimed to explicitly demonstrate the association of given 

haplotypes or their clusters to species of vertebrates or 

ticks. The phylogenetic tree of haplotypes of A. phago-

cytophilum implicitly includes a measure of distance 

among the tips of the tree. Phylogenetic diversity of A. 

phagocytophilum per vertebrate/tick species was cal-

culated using Faith’s phylogenetic diversity (PD) [60] as 

the total branch length spanned by the tree, including 

all of the haplotypes of A. phagocytophilum recorded in 

a single species of “carrier”. We also calculated the mean 

pairwise distance (MPD) as described previously [61]. 

Null models were generated that randomized the tips of 

the phylogeny to calculate the significance of the phylo-

genetic association between ticks/vertebrates and haplo-

types of A. phagocytophilum evaluating the significance 

of MPD [61]. The package picante [62] of the R program-

ming environment [57] was used for these calculations. 

Both PD and MPD aim to demonstrate the significance of 

associations with portions of the phylogenetic tree of the 

haplotypes of A. phagocytophilum using different meth-

ods. The congruence of results between methods is sup-

portive of such phylogenetic clustering.
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Results

Haplotypes of A. phagocytophilum cluster 

along vertebrate, tick and geographical gradients

We identified 199 unique haplotypes in a total of 1623 

isolates of A. phagocytophilum. Tables  1 and 2 sum-

marize the field isolates according to vertebrates and 

questing or feeding vectors, respectively. In 730 ver-

tebrate isolates, 135 A. phagocytophilum haplotypes 

were recorded, while 127 haplotypes were detected in 

893 ticks: 789 collected from the vegetation and 104 

feeding on vertebrates (Tables  1, 2). Haplotypes were 

grouped into 8 clusters according to the phylogenetic 

tree using shorter DNA fragments from 1992 isolates 

(Fig. 1, Additional file 1: Table S1). However, a network 

analysis of the relationships among haplotypes, ticks 

and vertebrates (see below) produced a total of 12 com-

munities of interacting organisms. All of these extra-

communities, containing only one or a few haplotypes, 

remained undetected in the phylogenetic tree. We 

chose to keep the original numbering of clusters based 

on genetic procedures (i.e. 8 clusters), while retaining 

the complete structure of the network to show the rela-

tionships among interacting partners.

Association of A. phagocytophilum haplotypes to countries, 

hosts and vectors

Anaplasma phagocytophilum haplotypes were linked to 

the carriers (hosts and vectors) and countries in which 

they were recorded, resulting in a network (Fig.  2 and 

Additional file  2: Figure S1). The haplotypes linked to 

Cluster 1 were present in the widest range of carriers: 

Artiodactyla, Perissodactyla, Carnivora, Nearctic Roden-

tia, I. ricinus, I. scapularis, I. pacificus and I. hexagonus. 

Cluster 1 remained unrecorded in six other species of 

ticks. Geographically, Cluster 1 was present in the West-

ern Palaearctic and Nearctic regions (Fig.  2, Additional 

file  3: Figure S2). However, Cluster 1 was found to be 

absent in rodents in Far Eastern Russia, Japan and Korea. 

Cluster 4 is a segregated group of haplotypes recorded 

in South Korea, Ixodes persulcatus ticks in Russia and 

one vertebrate in Japan. Cluster 5 appeared in rodents 

and I. trianguliceps in Europe. Cluster 6 was recorded 

Table 1 List of vertebrates, divided by taxonomic orders (columns) and countries of collection, that yielded a 530‑bp groEl fragment 
of A. phagocytophilum. The number of haplotypes and clusters per vertebrate order is shown

Country Artiodactyla Aves Carnivora Erinaceomorpha Primates Lagomorpha Perissodactyla Rodentia Soricomorpha Total

Albania 1 3 4

Austria 22 1 23

Belgium 3 1 4

Brazil 12 12

Czech Republic 1 3 11 1 16

Finland 2 2

France 27 3 30

Germany 52 6 2 15 75

Hungary 1 54 55

Italy 7 3 4 14

Netherlands 149 7 13 5 174

Norway 105 22 63 190

Poland 9 1 1 11

Scotland 2 2

Slovakia 5 5 10

Slovenia 29 5 1 35

Spain 3 3

Sweden 2 2 7 11

Switzerland 8 1 1 10

Japan 3 1 4

Korea 1 3 1 5 10

Russia 11 1 12

USA 3 4 1 7 8 23

Total 419 3 54 67 8 1 44 70 64 730

Haplotypes 106 2 16 3 4 1 15 15 2

Clusters 4 2 2 1 2 1 1 4 1
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in rodents or rodent-feeding ticks (I. persulcatus) in 

Japan. Haplotypes similar to those in Cluster 5 were also 

detected in the group of haplotypes restricted to Far East 

Russia and Japan. Cluster 7 is a group of haplotypes asso-

ciated with birds and endophilous ticks associated with 

them (such as I. frontalis).

The network of interacting organisms (Fig.  2) is a 

tightly nested set of relationships. The giant component 

of the network (i.e. the one that stays connected) had 

117 articulation points. This means a high resilience of 

the network against the removal of one of these articula-

tion points, allowing ample circulation of the bacterium. 

Cluster 1, Cluster 2 (detected in Capra aegagrus, Ovis 

aries and Rupicapra rupicapra) and Cluster 3 were heav-

ily linked to Ixodes ricinus, highlighting the dominance 

of this vector in the circulation of most A. phagocytophi-

lum haplotypes in Europe (Fig. 2). The remaining clusters 

4 to 8 were either isolated or can be disconnected from 

the giant component by removing only one articulation 

point. This finding means that every haplotype recorded 

in rodents in Europe is independent of the main circu-

lation of other haplotypes in the network. Addition-

ally, this implies that these haplotypes are different from 

those recorded in rodents and associated ticks in Rus-

sia and Japan, but still retain some genetic similarities 

with haplotypes circulating among rodents in Europe. 

Table 2 List of arthropod samples collected from the vegetation and from vertebrates that yielded a 530‑bp groEl fragment of A. 

phagocytophilum. Included are the number of haplotypes

Arthropod species Sampling on Samples (n) Haplotypes (n)

Dermacentor reticulatus Vegetation 1 1

Haemaphysalis douglasi Vegetation 1 1

Haemaphysalis flava Hydropotes inermis 2 1

Ixodes acuminatus Vegetation 3 1

Ixodes frontalis Aves 2 1

Ixodes hexagonus Vegetation 1 1

Erinaceus europaeus 22 1

Martes martes 2 1

Mustela putorius 4 3

Ixodes nipponensis Vegetation 1 1

Hydropotes inermis 2 1

Ixodes pacificus Vegetation 2 2

Ixodes pavlovskyi Vegetation 3 2

Ixodes persulcatus Vegetation 26 7

Hydropotes inermis 1 1

Rodentia 3 1

Ixodes ricinus Vegetation 741 101

Aves 6 1

Capreolus capreolus 14 8

Cervus elaphus 5 5

Deer (unknown species) 4 2

Erinaceus europaeus 7 1

Homo sapiens 3 3

Mustela erminea 2 2

Martes martes 8 3

Ovis aries 1 1

Rodentia 3 3

Ixodes trianguliceps Vegetation 4 4

Rodentia 6 3

Ixodes ventalloi Vegetation 6 3

Lipoptena cervi Cervus elaphus 6 5

Rhipicephalus sanguineus (s.l.) Canis familiaris 1 1

Total 893
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Haplotypes recorded in South Korea were also independ-

ent of the complete network. The disconnection of this 

group of South Korean haplotypes seems to be derived 

from the fact that they are associated with different tick 

species (Haemaphysalis spp.). This finding must be con-

sidered with caution since it was impossible to know if 

A. phagocytophilum is circulated by ticks of the genus 

Haemaphysalis, because every tick was collected while 

feeding. Nevertheless, these associations promote a dis-

connection of these haplotypes with others found in 

Japan and Far East Russia. Additionally, the haplotypes 

recorded from birds and engorged I. frontalis (Cluster 

7) were disconnected from the main giant network com-

ponent, even if there was an overlapping geographical 

distribution with other hosts and I. ricinus (Fig.  2). No 

clear conclusions can be drawn about the segregation of 

haplotypes connected to carnivores and their endophil-

ous ticks (such as I. hexagonus) since they shaped a sepa-

rate cluster but were also tightly connected to the rest of 

the giant component (Fig. 2 and Additional file 2: Figure 

S1). The isolates from North America formed a discon-

nected sub-network (Fig. 2) which resulted from the lack 

of geographical overlap with the European isolates. In 

any case, both European and American human isolates 

belong to Cluster 1. It is noteworthy that a previously 

unexplored species of tick, I. ventalloi, provided haplo-

types belonging to a completely different cluster.

Figure 3 includes the values of BNC and PR for the hap-

lotypes, grouped according to clusters. To simplify visu-

alization, we included only haplotypes with a BNC higher 

than 0 or a PR higher than 0.5. A high BNC value is typi-

cal for a major hub in a network, “circulating” many hap-

lotypes. For the complete A. phagocytophilum network, 

the major hub was I. ricinus, with BNC values in the 

range of 600–25,000 for the associated haplotypes. Other 

tick species scored much lower in BNC values: I. ventalloi 

(BNC = 1098); I. persulcatus (BNC = 264); I. pavlovskyi 

(BNC = 24); and I. trianguliceps (BNC = 14). Haplotypes 

with high PR values were connected to well-represented 

carriers in the network, therefore having larger probabili-

ties for spreading. Both indices were only partially corre-

lated. The correlation between values of BNC and PR was 

clear for haplotypes in clusters 1 and 3. However, while 

network indices indicate high values of PR for haplotypes 

Fig. 1 The phylogenetic tree of the clusters of A. phagocytophilum haplotypes detected in this study. Each branch of the tree includes the name 
of the cluster, with the number of haplotypes that belong to it, and some details of distribution or new carriers. Coloured lines labelled with the 
“Ecotype” refer to the original groups proposed by Jahfari et al. [31]
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in clusters 5 and 6 (restricted to rodents and geographi-

cally separated) and therefore high chances of spread, 

their low values of BNC confirm that they are poorly con-

nected within the network. This is hypothesized to hap-

pen due to a lack of circulation out of the subnetwork(s) 

containing the vertebrates and ticks in which they have 

been recorded.

Association of A. phagocytophilum haplotypes 

with vertebrate and tick species

To further demonstrate how the haplotypes fit into the 

framework of clusters, the association of vertebrates 

(Table  3) and (feeding) arthropods (Table  4) to certain 

clusters was tested with the Monte Carlo method. Con-

firming the results from the network analysis, a signifi-

cant support was found for an association of I. ricinus 

with the large Cluster 1 (Table  4). An association of I. 

hexagonus, feeding on Erinaceus europaeus, with Cluster 

1 was also found (Table 4). We found a significant asso-

ciation of I. ricinus feeding on C. elaphus with Cluster 1 

(Table 4), and of I. ricinus feeding on Capreolus capreolus 

with Cluster 3. Cluster 4 was significantly linked to quest-

ing I. persulcatus ticks and Apodemus agrarius, a rodent 

found in eastern Europe and Asia. This cluster contained 

different samples, mainly from South Korea and Russia, 

and was not limited to Soricomorpha-Rodentia and I. 

a

b

Fig. 2 a The network of the communities of A. phagocytophilum haplotypes, as linked to carriers (ticks or vertebrates). Circles (nodes) are 
haplotypes from ticks or vertebrates, but the labels are included only in nodes representing haplotypes of A. phagocytophilum to improve reading 
(i.e. labels are not included for ticks and vertebrates). Labels are the number of the cluster obtained in the phylogenetic tree in Fig. 1. The colours 
represent the communities detected by an agglomerative clustering algorithm and the size of each circle is proportional to its centrality in the 
network. Large circles are organisms that are well represented in the network (i.e. a carrier in which several haplotypes have been detected, or 
a haplotype that widely circulates among different carriers). The links among nodes represent relationships among interacting organisms (a 
haplotype and a carrier) displaying the colour of the community. The width of the link is proportional to the number of interactions among the 
organisms. The complete network with labels for every node is included in Additional file 2: Figure S1. b A reduced version of the network is 
included to simplify interpretations. Each circle has the same colour as the set of nodes of each cluster in a. Labels identify the communities that do 
not necessarily match the phylogenetic clusters. Labels enclosed in rectangles are communities that are disconnected from the giant component 
of the network
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trianguliceps like Cluster 5 (Europe) or to only Rodentia 

and I. pavlovskyi/I. persulcatus ticks like Cluster 6 (east-

ern Europe and Asia).

Table 5 includes the values of PD for the species of ver-

tebrates for which samples of A. phagocytophilum were 

obtained. A low PD value means phylogenetic clustering 

and therefore a lower variability in the samples associated 

with a given vertebrate. Eighteen species of vertebrates 

showed values of significant association with a given por-

tion of the phylogenetic tree of A. phagocytophilum. The 

same index was provided for the arthropods (ticks and 

one species of insect, Lipoptena cervi) with similar results 

for I. pacificus, I. ricinus and I. trianguliceps (Table  6). 

Samples recorded in I. ricinus were separately evaluated 

for PD according to the geographical origin, resulting in 

highly significant associations with given haplotypes of 

A. phagocytophilum. If data from I. ricinus were included 

in calculations without geographical segregation, the PD 

value for the tick was 0.94 (highly non-significant). At 

least in the case of the most prominent tick vector, the 

associations of A. phagocytophilum with I. ricinus are of 

a local nature: considering these associations at a conti-

nental level could not give evidence to the segregation of 

haplotypes in the tick, strongly suggesting an adaptation 

to regional populations of the tick. Tables 7 and 8 include 

further results about phylogenetic clustering using the 

mean pairwise genetic distance, comparing the observed 

phylogenetic relatedness of the haplotypes recorded for 

vertebrates/arthropods to the pattern expected under a 

null model of phylogeny or community randomization. 

Results confirm the findings obtained by PD: there is a 

phylogenetic clustering of the haplotypes of A. phago-

cytophilum with the carriers. The highly significant val-

ues for I. ricinus and I. trianguliceps are demonstrative 

of segregation of the bacterium in these ticks, further 

supported by the significant values found in I. pacificus, 

a tick with a distribution range disconnected from the 

main range of the others.
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Fig. 3 Values of betweenness centrality (BNC) (a) and PageRank (PR) (b) for each of the haplotypes of A. phagocytophilum. Only the haplotypes 
with values higher than 0 for either BNC or PR are included in each chart. Categories correspond to the phylogenetic clusters shown in Fig. 1. 
Betweenness centrality represents the relative importance of a haplotype in the complete network. Betweenness centrality is related to the 
connectivity of a network, in so much as high betweenness vertices have the potential to disconnect graphs if removed. Therefore, a node with 
high BNC is a node that is very central and connected to many other nodes. PR represents the importance of the nodes to which a given link is 
connected. It is thus a measure of the potential spread of a node through connected nodes, according to its relative importance
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Discussion

Enhancing the understanding of the transmission net-

works of tick-borne pathogens requires a challenging 

blend of molecular biology, phylogenetics and network 

theory. Here, we delineated the existence of a relatively 

high number of haplotypes of A. phagocytophilum by 

standard molecular methods, based on the presence of 

DNA and bacterial groEL sequences originating from a 

large variety of ticks and vertebrates from a broad geo-

graphical range. These haplotypes grouped into eight 

well-defined genetic clusters. We acknowledge that pres-

ence of bacterial DNA in samples of vertebrates or ticks 

is not sufficient to document the infectivity of the bac-

terium. In addition, vector competence requires ticks 

to be infected and passing viable pathogens to the next 

stage and to a new host. We also recognize that the 

sampling effort has not been the same for every region, 

vertebrate or tick. This is, however, currently the most 

geographically extensive and largest available dataset of 

groEL sequences of A. phagocytophilum. It provides an 

Table 3 Selective vector distributions between the clusters of A. phagocytophilum haplotypes (columns). Only vertebrate hosts with 
more than one isolate are shown. The Monte Carlo method was used to estimate the probability (P‑value) that the number of most 
numerous clusters in a random realization from the multinomial is equal to or greater than the observed maximum among the isolates

Note: A low P-value (P <  0.05) indicates a significant association between a cluster and the species of vertebrate (marked with an asterisk)

Vertebrate species 1 2 3 4 5 6 7 8 Total (n)

Alces alces 23* 12 35

Bos taurus 29* 29

Capra aegagrus 4 1 3 8

Capreolus capreolus 10 95* 105

Cervus elaphus 105* 105

Capra ibex 2 2

Cervus nippon 5* 5

Dama dama 14* 1 15

Ovis aries 83* 83

Ovis musimon 16* 16

Rupicapra rupicapra 7* 7

Sus scrofa 5* 5

Turdus merula 2 1 3

Canis familiaris 32* 2 34

Felis catus 2 2 4

Neotoma sp. 7* 7

Nictereutes procyonoides 3 3

Ursus arctos 2 2

Vulpes vulpes 7* 7

Mustela putorius 2 2

Erinaceus europaeus 8* 8

Erinaceus roumanicus 59* 59

Equus caballus 44* 44

Homo sapiens 7* 1 8

Myodes glareolus 1 24* 25

Rodentia 1 15* 16

Apodemus agrarius 5* 5

Myodes rufocanus 2 2 4

Myodes rutilus 3 1 4

Apodemus sylvaticus 2 2

Microtus agrestis 3 3

Tamias sibiricus 2 2

Sorex araneus 30* 30

Sorex isodon 33* 33

No. per cluster 479 1 111 8 112 3 1 0 720
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unexpected picture of the considerable spread of some 

haplotypes and the affinity of some others towards well-

defined groups of vertebrates, ticks and regions, expand-

ing the previous view on the evolution and segregation of 

the bacterium [15, 21, 28, 31].

Reservoir‑driven rather than vector‑driven selection 

mechanisms?

This study corroborated the preferential and differential 

association of lineages of the bacterium to several groups 

of vertebrates and ticks, also showing a geographical vari-

ation in pathogen-host-vector associations. Observed 

delineation of A. phagocytophilum could be driven by 

geographical isolation (environmental traits acting on 

ticks or reservoirs), or by peculiarities of the life-cycle 

or interacting molecular phenomena of ticks and/or res-

ervoirs, including immune peculiarities differing across 

hosts. The different geographical distribution of some 

groups of Artiodactyla in which A. phagocytophilum 

has been recorded is a support for a geographical isola-

tion. However, it has been demonstrated that haplotypes 

circulating in Cervus elaphus are different from those 

associated with Alces alces, even if some mix of haplo-

types can be found in both vertebrates because of habitat 

Table 4 Selective vector distributions between clusters of A. phagocytophilum haplotypes (columns). The Monte Carlo method was 
used to estimate the probability (P‑value) that the number of most numerous clusters in a random realization from the multinomial is 
equal to or greater than the observed maximum among the isolates

Note: A low P-value (P < 0.05) indicates a significant association between a cluster and the species of (engorging) arthropod (marked with an asterisk)

Arthropod species Sampling on 1 3 4 5 6 7 8 Total (n)

Dermacentor reticulatus Vegetation 1 1

Haemaphysalis douglasi Vegetation 1

Haemaphysalis flava Hydropotes inermis 2 2

Ixodes acuminatus Vegetation 3 3

Ixodes frontalis Aves 2 2

Ixodes hexagonus Vegetation 1 1

Erinaceus europaeus 22* 22

Martes martes 2 2

Mustela putorius 3 1 4

Ixodes nipponensis Vegetation 1 1

I. nipponensis H. inermis 2 2

Ixodes pacificus Vegetation 2 2

Ixodes pavlovskyi Vegetation 1 2 3

Ixodes persulcatus Vegetation 16* 10 26

H. inermis 1 1

Rodentia 3 3

Ixodes ricinus Vegetation 601* 139 1 741

Aves 6* 6

Capreolus capreolus 1 13* 14

Cervus elaphus 5* 5

Deer (unknown species) 1 3 4

Erinaceus europaeus 7* 7

Homo sapiens 3 3

Mustela erminea 1 1 2

Martes martes 7* 1 8

Ovis aries 1 1

Rodentia 1 2 3

Ixodes trianguliceps Vegetation 4* 4

Rodentia 6* 6

Ixodes ventalloi Vegetation 1 5* 6

Lipoptena cervi Cervus elaphus 3 3 6

Rhipicephalus sanguineus (s.l.) Canis familiaris 1 1

No. per cluster 662 167 23 10 16 9 5 893
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overlap and a shared tick vector being the same (I. rici-

nus) [41]. This provides support for reservoir-driven 

delineation and appears to exclude a vector-driven selec-

tion mechanism of haplotypes. Reservoir-driven deline-

ation is also supported by the finding that the cluster of 

haplotypes associated with birds is separated from the 

main set of haplotypes circulating through mammals. 

While birds are prominent hosts for the immature stages 

of I. ricinus [63] they do not seem competent hosts of the 

main mammals-associated haplotypes, and birds could 

filter these haplotypes and prevent their spread through 

birds carrying I. ricinus. This is an interesting outcome 

of our study, since only a few (4 out of 857) A. phagocyt-

ophilum-positive I. ricinus from the vegetation and mam-

mals were infected with haplotypes associated with birds 

[64], likely due to a tick strictly specific to birds, I. fron-

talis, being vector of the bird-associated haplotypes. This 

would contribute to the restricted circulation of most 

mammal-associated haplotypes through birds carrying I. 

ricinus.

Geographical differences in haplotype clustering

Previous studies demonstrated the potential of networks 

to disentangle the complex relationships among ticks, 

transmitted pathogens and vertebrates in general [22] 

and the tight association between strains of Borrelia 

burgdorferi (s.l.) and allopatric species of ticks [58]. The 

former study set the basics for unravelling these ecologi-

cal associations, the later outlined the segregation of B. 

burgdorferi (s.l.) according to the species of vector ticks. 

These general insights into networks of ticks, pathogens 

and hosts were also found in A. phagocytophilum: consid-

ered as a single species, it seems to evolve along different 

lines that shape clusters of haplotypes that are, in some 

cases, tightly circumscribed to particular combinations of 

vertebrates and ticks. The combined use of both molec-

ular and network-derived methods pointed out that 

rodents have at least two different clusters of haplotypes. 

The first one, already outlined [31], is linked with rodents 

in the Western Palaearctic, while the other cluster is 

linked with rodents (and ticks feeding on rodents) in the 

Far Eastern Russia and Japan. Of most importance, the 

present results from the networks point to a restricted 

circulation of these clusters, even when the ecological 

communities suggest they could have the potential for a 

wider circulation. Moreover, phylogenies clearly point to 

Table 5 Faith’s phylogenetic diversity (PD) of the A. 

phagocytophilum haplotypes associated to each vertebrate 
species investigated. A low PD value indicates a significant 
association between a haplotype and a vertebrate (marked with 
an asterisk)

Vertebrate order Vertebrate 
species

Samples (n) Haplotypes (n) PD

Artiodactyla Alces alces 35 22 0.10

Bos taurus 29 15 0.01*

Capra aegagrus 8 7 0.36

Capreolus 
capreolus

105 33 0.01*

Cervus elaphus 105 29 0.01*

Cervus nippon 7 7 0.41

Dama dama 15 8 0.12

Felis catus 4 4 0.54

Ovis aries 83 19 0.01*

Ovis musimon 16 11 0.02*

Rupicapra rupi-
capra

7 7 0.02*

Sus scrofa 5 3 0.01*

Aves Turdus merula 3 2 0.94

Carnivora Canis familiaris 34 13 0.05*

Mustela putorius 2 2 0.05*

Neotoma sp. 7 3 0.01*

Ursus arctos 2 2 0.32

Vulpes vulpes 7 2 0.02*

Erinaceomorpha Erinaceus euro-
paeus

8 2 0.01*

Erinaceus rou-
manicus

59 2 0.04*

Perissodactyla Equus caballus 44 15 0.01*

Primates Homo sapiens 8 4 0.46

Rodentia Apodemus 
agrarius

5 3 0.01*

Myodes glareolus 25 3 0.38

Myodes rufocanus 4 3 0.01*

Myodes rutilus 4 2 0.05*

Soricomorpha Sorex araneus 30 2 0.01*

Table 6 Faith’s phylogenetic diversity (PD) of the A. 

phagocytophilum haplotypes associated with the investigated 
arthropods species. A low PD value indicates a significant 
association between a haplotype and an arthropod species 
(marked with an asterisk)

Notes: The I. ricinus isolates were first separated according to the 17 countries 

of collection. Four countries (Germany, the Netherlands, Norway and Slovakia) 

represent 83% of the I. ricinus isolates. Results for I. ricinus are the average of 

each sample/country calculated separately

Arthropod (species) Samples (n) Haplotypes (n) PD

Ixodes pacificus 2 2 0.01*

Ixodes pavlovskyi 3 2 0.81

Ixodes persulcatus 26 7 0.13

Ixodes ricinus 741 101 0.01*

Ixodes trianguliceps 4 4 0.01*

Ixodes ventalloi 6 3 0.46

Lipoptena cervi 6 5 0.20
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a close relationship between Cluster 5 (former ecotype 

III, rodents in Europe) and Cluster 6 (rodents plus feed-

ing ticks in Far Eastern Russia and Japan), suggesting 

that the disconnection of these clusters could be derived 

from the gap in obtaining isolates in the large territory 

between Western and Eastern Russia. We hypothesize 

that these clusters associated with rodents and ticks of 

the I. ricinus complex could actually be a gradient of vari-

ability of strains of A. phagocytophilum throughout most 

of the Palaearctic, of which we captured “the picture” at 

both extremes.

It is striking that a high phylogenetic clustering of A. 

phagocytophilum in I. ricinus has been found only when 

the geographical component has been considered in cal-

culations. This result strongly points to a separation of 

haplotypes not only regarding specific combinations of 

ticks and vertebrates, but also to a selection by an envi-

ronmental gradient shaping the life-cycle of tick vec-

tors, at least in the widespread I. ricinus. Since ticks are 

ectothermic organisms, climate strongly regulates their 

development and mortality rates, therefore resulting in 

populations of the tick exhibiting adaptations to a spe-

cific set of weather conditions [65]. A further selection 

of haplotypes of A. phagocytophilum by this mechanism, 

emerging as definite associations among haplotypes and 

populations of the tick, should not be discarded, since it 

has been already demonstrated for Anaplasma marginale 

[66]. An explicit examination of the effects of the envi-

ronment, such as temperature and humidity, on the phy-

logenetic diversity of circulating haplotypes in ticks could 

not be addressed in this study because of the lack of coor-

dinates of the isolates. The handling of the effects of envi-

ronmental diversity assuming large areas like countries is 

not possible because of the considerable variety of envi-

ronmental traits that can exist within a single geographi-

cal category.

The role of other tick species

Other outcomes of this study provided unexpected rela-

tionships between A. phagocytophilum, vertebrates and 

other species of ticks. The largely neglected I. ventalloi 

has already been pointed out as carrier of A. phagocyt-

ophilum [67] but our results suggest a dual role for this 

tick regarding the circulation of the bacterium. Available 

data outlined that this tick species is involved in both a 

subnetwork of haplotypes with restricted circulation, 

serving as an articulation point with the giant compo-

nent of haplotypes of the Cluster 1, and thus directly 

connected with haplotypes circulated by I. ricinus. This 

seems to derive from the large spectrum of hosts of I. ven-

talloi (formerly considered to be specific to the European 

rabbit, Oryctolagus cuniculus) and its sympatry with I. 

Table 7 The mean pairwise distance (MPD) of A. 

phagocytophilum haplotypes found in different vertebrate 
species. MPD‑C is the comparison of MPD against null 
communities

Notes: Negative values of MPD-C together with low P-values mean significant 

associations of the haplotypes to the species of vertebrate (marked with an 

asterisk)

Species No. of 
haplotypes

MPD MPD‑C MPD (P‑value)

Alces alces 22 1.19 − 1.20 0.12

Bos taurus 15 0.62 − 5.71 0.01*

Capra aegagrus 7 1.35 0.03 0.49

Capreolus capreolus 33 0.91 − 7.44 0.01*

Cervus elaphus 29 0.96 − 5.59 0.01*

Cervus nippon 7 1.32 − 0.04 0.45

Dama dama 8 1.03 − 1.64 0.08

Ovis aries 19 0.77 − 5.50 0.01*

Ovis musimon 11 0.72 − 4.39 0.01*

Rupicapra rupicapra 7 0.79 − 2.69 0.02*

Sus scrofa 3 0.32 − 3.11 0.01*

Turdus merula 2 1.96 1.00 0.83

Canis familiaris 13 1.08 − 2.42 0.03*

Felis catus 4 1.43 0.24 0.59

Mustela putorius 2 0.11 − 2.02 0.04*

Ursus arctos 2 1.01 − 0.52 0.22

Vulpes vulpes 2 0.11 − 1.92 0.05*

Erinaceus europaeus 2 0.07 − 2.38 0.03*

Erinaceus roumanicus 2 0.07 − 2.21 0.03*

Equus caballus 15 0.92 − 3.47 0.02*

Homo sapiens 4 1.40 0.25 0.52

Apodemus agrarius 3 0.02 − 3.87 0.01*

Myodes glareolus 3 1.32 − 0.13 0.33

Myodes rufocanus 3 0.06 − 3.12 0.01*

Myodes rutilus 2 0.09 − 2.07 0.04*

Neotoma sp. 3 0.09 − 3.31 0.01*

Sorex araneus 2 0.04 − 2.24 0.01*

Table 8 The mean pairwise distance (MPD) of A. 

phagocytophilum haplotypes found in different arthropod 
species. MPD‑C is the comparison of MPD against null 
communities

Notes: Negative values of MPD-C together with low P-values mean significant 

associations of the haplotypes to the species of arthropod (marked with an 

asterisk)

Arthropod (species) Haplotypes (n) MPD MPD‑C MPD (P‑value)

Ixodes pacificus 2 0.11 − 2.12 0.04*

Ixodes pavlovskyi 2 1.96 0.89 0.82

Ixodes persulcatus 7 1.13 − 1.26 0.11

Ixodes ricinus 101 1.15 − 5.66 0.01*

Ixodes trianguliceps 4 0.05 − 4.31 0.01*

Ixodes ventalloi 3 1.31 − 0.20 0.37

Lipoptena cervi 5 1.21 − 0.59 0.23
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ricinus in its southern European range [68]. Interestingly, 

the cluster of haplotypes associated with I. ventalloi is 

more divergent than the Cluster 1, circulated by I. ricinus, 

which suggest a secondary evolution of the bacterium in 

the niche of I. ventalloi and its hosts. The results obtained 

for I. ventalloi support the finding that this tick consti-

tutes an articulation point in the evolutionary pressures 

of haplotypes in the Clusters 1 and 8, the latter so far 

found exclusively in this tick. Both I. ricinus and I. vental-

loi overlap in portions of their environmental niche in the 

southern portion of the distribution range of the former 

and share some hosts, the latter observing a semi-endo-

philic behaviour. It is thus not unexpected that a different 

cluster of haplotypes segregated in I. ventalloi because of 

its different life habits and environmental niche.

Future studies and remaining challenges

Our data on the phylogenetic segregation of haplo-

types of A. phagocytophilum in ticks revealed interest-

ing results and potential for future studies. Of these, the 

most obvious is the high variability of haplotypes (low 

phylogenetic clustering) found in I. persulcatus, I. pavlos-

vkyi and I. ventalloi. Ixodes pavlovskyi exploits a portion 

of the environmental niche of I. persulcatus [58] and both 

are involved in the circulation of rodent haplotypes in Far 

Eastern Russia and Japan. This suggests the need of wide 

surveys collected in the gap between eastern Europe and 

Japan, incorporating new information to the network-

derived construct, opening additional perspectives to the 

view presented here, and contributing to a better under-

standing of the evolution of such a singular bacterium.

A high clustering indicates a higher affinity of some 

haplotypes for a carrier than expected by chance, and 

therefore a segregation of haplotypes according to car-

riers, which would circulate different haplotypes. Our 

analysis revealed a higher than expected clustering of 

haplotypes of A. phagocytophilum for most species of 

vertebrates or ticks, with a few exceptions, such as the 

common blackbird Turdus merula, or the wild goat C. 

aegagrus. One could argue that the high values of phy-

logenetic clustering of A. phagocytophilum in verte-

brates/ticks could be derived from the low sample sizes 

for some taxa, which is likely for some of our isolates. 

However, high values of phylogenetic clustering were 

also obtained with well-represented vertebrates, such 

as C. elaphus, C. capreolus or Myodes spp. The same is 

applicable to the ticks I. ricinus and I. trianguliceps, the 

former exceptionally well surveyed, the latter under-

represented. Therefore, we contemplate these results 

reflect true phylogenetic relationships between the bac-

terium and either vertebrate or vector (or both). Ana-

plasma phagocytophilum has to survive in and colonize 

both a vertebrate and an arthropod, a dual mode of life, 

and therefore the still not completely studied metabolic 

adaptations of the bacterium need to cope with a large 

gradient of conditions regarding the defensive mecha-

nisms of both partners. It is thus expected that the adap-

tive plasticity of the bacterium can be detected as a result 

of its fitness to particular conditions. Empirical studies 

exist about the tight interactions between the tick and the 

pathogen, demonstrating that A. phagocytophilum is able 

to rewire literally dozens of the tick metabolic pathways 

[69] and that infected ticks have an increased expres-

sion of some proteins, such as heat-shock proteins [70], 

allowing a prolonged survival under otherwise adverse 

environmental conditions. This kind of molecular adap-

tation has led to the ubiquitous occurrence of this bacte-

rium both geographically and in terms of vertebrate and 

arthropod hosts which is an example of ecological fitting 

[71] that will enable its further spread. Studies from sam-

ples collected in the still unsurveyed gap would incorpo-

rate new information to the network-derived construct. 

Other than rodents, the role of birds in segregation of A. 

phagocytophilum should be further investigated, opening 

additional perspectives to the view presented here, and 

contributing to a well-focused overview of the evolution 

of such a singular bacterium.

Conclusions

Our study incorporated methods from different fields, 

aiming to uncover the variability of haplotypes of A. 

phagocytophilum using the largest available set of iso-

lates from ticks and vertebrates in the widest geo-

graphical area so far. The use of molecular methods, 

phylogenetic clustering and network-based associa-

tions of interacting organisms provided results about 

an unexpected molecular variability in the groEL 

gene of A. phagocytophilum. Results widely exceeded 

the previous view of the evolution of the bacterium, 

recording 199 haplotypes. These haplotypes conform so 

far to eight clearly separated clusters, either widely cir-

culating in the Western Palaearctic, confined to specific 

taxa of vertebrates, or restricted to smaller regions and 

patently segregated from the main network. While I. 

ricinus is still unquestionably the driving force behind 

the circulation of most haplotypes, evidence is accumu-

lating about the role of other ticks (I. ventalloi, I. per-

sulcatus, I. pavlovskyi, I. frontalis and I. trianguliceps) 

circulating different clusters that remain unconnected 

with the main giant component of the network. Our 

data also suggest that the two clusters of haplotypes 

associated with rodents could actually be the extremes 

of a large gradient of evolving strains of the bacterium.
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