ANAPSID: An Adaptive Query Processing Engine for
SPARQL Endpoints

Maribel Acosta', Maria-Esther Vidal', Tomas Lampo?, Julio Castillo', and Edna
Ruckhaus!

! Universidad Simén Bolivar, Caracas, Venezuela
{macosta,mvidal,ruckhaus}@ldc.usb.ve, julio@gia.usb.ve
2 University of Maryland, College Park, USA
tlampo@cs.umd. edu

Abstract. Following the design rules of Linked Data, the number of available
SPARQL endpoints that support remote query processing is quickly growing;
however, because of the lack of adaptivity, query executions may frequently be
unsuccessful. First, fixed plans identified following the traditional optimize-then-
execute paradigm, may timeout as a consequence of endpoint availability. Sec-
ond, because blocking operators are usually implemented, endpoint query en-
gines are not able to incrementally produce results, and may become blocked if
data sources stop sending data. We present ANAPSID, an adaptive query engine
for SPARQL endpoints that adapts query execution schedulers to data availabil-
ity and run-time conditions. ANAPSID provides physical SPARQL operators that
detect when a source becomes blocked or data traffic is bursty, and opportunis-
tically, the operators produce results as quickly as data arrives from the sources.
Additionally, ANAPSID operators implement main memory replacement policies
to move previously computed matches to secondary memory avoiding duplicates.
We compared ANAPSID performance with respect to RDF stores and endpoints,
and observed that ANAPSID speeds up execution time, in some cases, in more
than one order of magnitude.

1 Introduction

The Linked Data publication guideline establishes the principles to link data on the
Cloud, and make Linked Data accessible to others®. Based on these rules, a great num-
ber of available SPARQL endpoints that support remote query processing to Linked
Data have become available, and this number keeps growing. Additionally, the W3C
SPARQL working group is defining a new SPARQL 1.1 query language to respect
the SPARQL protocol and specify queries against federations of endpoints [19]. How-
ever, access to the Cloud of Linked datasets is still limited because many of these end-
points are developed for very lightweight use. For example, if a query posed against
a linkedCT endpoint # requires more than 3 minutes to be executed, the endpoint will
timeout without producing any answer. Thus, to successfully execute real-world queries,

3 http://www.w3.org/Designlssues/LinkedData.html
4 Clinical Trials data produced by the ClinicalTrials.gov site available at http://linkedCT.org.
and http://hcls.deri.org/sparql.

it may be necessary to decompose them into simple sub-queries, so that the endpoints
will then be capable of executing these sub-queries in a reasonable time. Additionally,
since endpoints may unpredictably become blocked, execution engines should modify
plans on-the-fly to contact first the available endpoints, and produce results as quickly
as data arrives.

Several query engines have been developed to locally access RDF data [1, 10, 12,
17,24]. The majority have implemented optimization techniques and efficient physical
operators to speed up execution time [12,17,24]; others have defined structures to
efficiently store and access RDF data [17,25], or have developed strategies to reuse
data previously stored in cache [1, 10, 17]. However, none of these engines are able to
gather Linked Data accessible through SPARQL endpoints, or hide delays from users.

Recently several approaches have addressed the problem of query processing on
Linked Data [2,7,9, 13-16,21]; some have implemented source selection techniques
to identify the most relevant sources for evaluating a query [7,14,21], while others
have developed frameworks to retrieve and manage Linked Data [2,8,9, 13, 15, 16],
and to adapt query processing to source availability [9]. Additionally, Buil-Aranda et
al. [4] have proposed optimization techniques to rewrite federated queries specified
in SPARQL 1.1, and reduce the query complexity by generating well-formed patterns.
Finally, some RDF engines[18, 20] have been extended to query federations of SPARQL
endpoints. Although all these approaches are able to access Linked Data, none of them
can simultaneously provide an adaptive solution to access SPARQL endpoints.

In this paper we present ANAPSID, an engine for SPARQL endpoints that extends
the adaptive query processing features presented in [22], to deal with RDF Linked
Data accessible through SPARQL endpoints. ANAPSID stores information about the
available endpoints and the ontologies used to describe the data, to decompose queries
into sub-queries that can be executed by the selected endpoints. Also, adaptive phys-
ical operators are executed to produce answers as soon as responses from available
remote sources are received. We empirically analyze the performance of the proposed
techniques, and show that these techniques are competitive with state-of-the-art RDF
engines which access data either locally or remotely.

The paper is comprised of six additional sections. We start with a motivating exam-
ple in the following section. Then, we present the ANAPSID architecture in section 3
and describe the query engine in section 4. Experimental results are reported in section
5, and section 6 summarizes the related work. Finally, we conclude in section 7 with an
outlook to future work.

2 Motivating Example

LinkedSensorData® is a dataset that makes available sensor weather data of approx-
imately 20,000 stations around the United States. Each station provides information
about weather observations; the ontology O&M-OWLS is used to describe these ob-
servations; a Virtuoso endpoint is provided to remotely access the data. Further, each

5 http://wiki.knoesis.org/index.php/LinkedSensorData.
¢ http://knoesis.wright.edu/ssw/ont/sensor-observation.owl

station is linked to its corresponding location in Geonames’.

Consider the acyclic query: Retrieve all sensors that detected freezing temperatures
on April 1st, 2003, between 1:00am and 3 :00am®. The answer comprises 1,600 sensors.

prefix om-owl:<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

prefix rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

prefix weather:<http://knoesis.wright.edu/ssw/ont/weather.owl#>

prefix sens-obs:<http://knoesis.wright.edu/ssw/>

prefix xsd:<http://www.w3.org/2001/XMLSchema#>

prefix owl-time:<http://www.w3.0rg/2006/time#>

prefix gn:<http://www.geonames.org/ontology#>

SELECT DISTINCT ?sensor

WHERE {

?sensor om-owl:generatedObservation ?observation .

?observation rdf:type weather:TemperatureObservation .

?observation om-owl:samplingTime ?time .?time owl-time:inXSDDateTime ?xsdtime .
?observation om-owl:result ?result .?result om-owl:floatValue ?value .

?result om-owl:uom weather:fahrenheit .FILTER(?value <= "32.0"""xsd:float).

FILTER(?xsdtime >= "2003-04-01T01:00:00-07:00" "http://www.w3.0rg/2001/XMLSchema#dateTime")
FILTER(?xsdtime <= "2003-04-01T03:00:00-07:00" "http://www.w3.0rg/2001/XMLSchema#dateTime").
?sensor om-owl:hasLocatedNearRel ?location .?location om-owl:haslLocation ?ga. ?ga gn:name ?name}

Using the LinkedSensorData endpoint’, we executed several versions of the former
query with different date ranges. Table 1 reports on the observed execution time values.
Different instantiations of the SPARQL endpoint parameter SPARQL SPONGE '© were
set up to indicate the type of dereferences to be executed during query processing.

Table 1. Execution Time (secs.) of Queries Against the LinkedSensorData SPARQL Endpoint;
SPONGE parameter: Local, Grab All, Grab All seeAlso, Grab Everything

Local |Grab All|Grab All (seeAlso)|Grab Everything
Average 0.35| 100.78 Timeout Timeout
Standard Deviation| 0.04 | 38.32 Timeout Timeout
Minimum 0.30 | 58.95 Timeout Timeout
Maximum 0.45 | 155.59 Timeout Timeout

We can observe that if the query is run on data locally stored in the endpoint, i.e.,
SPONGE is equal to Local and only one endpoint is contacted, the queries can be ex-
ecuted in less than one second. However, if IRI’s are dereferenced by using the Grab
All option, the execution time increases in average two orders of magnitude. Moreover,
if the seeAlso references are considered and the corresponding endpoints are contacted
(Grab All seeAlso), the execution reaches a timeout of 86,400 secs. (one day). Similarly,
if all the referred resources are downloaded (Grab Everything), the endpoint reaches the
timeout without producing any answer. These results suggest that when the LinkedSen-
sorData endpoint requires to download data from remote endpoints, it may become
blocked waiting for answers; this may be caused by a blocking query processing model
executed by existing endpoints.

7 http://www.geonames.org/ontology.

8 Time is specified in Mountain Time; temperature in Fahrenheit scale.
® http://sonicbanana.cs.wright.edu:8890/sparql

10 http://docs.openlinksw.com/virtuoso/virtuososponger.html.

Traditionally, query processing engines are built on top of a blocking iterator model
that fires a query execution process from the root of the execution plan to the leaves, and
does not incrementally produce any result until its corresponding children have com-
pletely produced the answer. Thus, if any of the intermediate nodes becomes blocked
while producing answers, the root of the plan will also be blocked. We consider plans
whose leaves are endpoints; however, similar problems may occur, if leaves corresponds
to URISs that need to be dereferenced.

To overcome limitations of existing execution models when Linked Data is deref-
erenced, some state-of-the-art approaches have proposed adaptive query engines that
are able to produce answers as data becomes available [9, 14]. For example, Hartig et
al. [9] extend the traditional iterator model and provide an adaptive query engine that
hides delays that occur when any linked dataset becomes blocked. This adaptive iter-
ator detects when a URI look-up stops responding, and resumes the query execution
process executing other iterators; results can be incrementally produced, and delays in
retrieving data during URI look-ups are hidden from the users. Further, Ladwig et al.
[14] use a non-blocking operator to opportunistically produce answers as soon as deref-
erenced data is available. However, none of these approaches support the access to a
federation of SPARQL endpoints. Finally, some RDF engines have been extended to
deal with SPARQL queries against federations of endpoints[4, 18, 20], but no adaptive
query techniques have been implemented, and queries are frequently unsuccessful when
endpoints become blocked. In this paper we present an adaptive engine that makes use
of information about endpoints, to decompose the query into simple sub-plans that can
be executed by the remote endpoints. Also, we propose a set of physical operators that
gather data generated by the endpoints, and quickly produce responses.

3 The ANAPSID Architecture

ANAPSID is based on the architecture of wrappers and mediators [26] to query feder-
ations of SPARQL endpoints (Figure 1).

User X Query
queries Decomposer

Query

Plan
. Query Adaptive
Optimizer Query Engine
Planner
Mediator } ﬁ ﬁ
4 SPARQL ANARSIDS
Endpoint Wrapper

Descriptions Wrapper
Catalog ;z !

Fig. 1. The ANAPSID Architecture

Lightweight wrappers translate SPARQL sub-queries into calls to endpoints as well
as convert endpoint answers into ANAPSID internal structures. Mediators maintain
information about endpoint capabilities, statistics that describe their content and per-
formance, and the ontology used to describe the data accessible through the endpoint.

Following the approach developed in previous work [11], the Local As View (LAV)
approach is used to describe endpoints in terms of the ontology used in the endpoint
dataset. Further, mediators implement query rewriting techniques, decompose queries
into sub-queries against the endpoints, and gather data retrieved from the contacted
endpoints. Currently, only SPARQL queries comprised of joins are considered; how-
ever, the rewriting techniques have been extended to consider all SPARQL operators,
but this piece of work is out of the scope of this paper. Finally, mediators hide delays,
and produce answers as quickly as data arrives; they are composed of the following
components:

— Catalog: maintains a list of the available endpoints, their ontology concepts and ca-
pabilities. Contents are described as views with bodies comprised of predicates that
correspond to ontology concepts; execution timeouts indicate endpoint capabilities.
Statistics are updated on-the-fly by the adaptive query engine.

— Query Decomposer: decomposes user queries into multiple simple sub-queries, and
selects the endpoints that are capable of executing each sub-query. Simple sub-
queries are comprised of a list of triple patterns that can be evaluated against an
endpoint, and whose estimated execution time is less than the endpoint timeout.
Vidal et al. [24] suggest that the cardinality of the answer of sub-queries comprised
of triple patterns that share exactly one variable, may be small-sized; so the query
decomposer will try to identify low cost sub-queries that meet this property.

— Query Optimizer: identifies execution plans that combine sub-queries and bene-
fits the generation of bushy plans composed of small-sized sub-queries. Statistics
about the distribution of values in the different datasets are used to identify the
best combination of sub-queries. These statistics and capabilities of the endpoints
are collected by following an Adaptive Sampling Technique [3, 24], or on-the-fly
during query execution.

— Adaptive Query Engine: implements different physical operators to gather tuples
from the endpoints. These physical operators are able to detect when endpoints
become blocked, and incrementally produce results as the data arrives. Addition-
ally, the query engine can modify an execution plan on-the-fly to execute first the
requests against the endpoints that are available; information gathered during run-
time is used to update catalog statistics, and to re-optimize delayed queries.

4 The ANAPSID Query Processing Engine

The ANAPSID query engine provides a set of operators able to gather data from dif-
ferent endpoints. Opportunistically, these operators produce results by joining tuples
previously received even when endpoints become blocked. Additionally, the physical
operators implement main memory replacement policies to move previously computed
matches to secondary memory, ensuring no duplicate generation. Each join operator
maintains a data structure called Resource Join Tuple (RJT), that records for each in-
stantiation of the join variable(s), the tuples that have already matched. Suppose that
for the instantiation of the variable ?X with the resource r, the tuples {7, ..., T),} have
matched, then the RJT will be the pair (r, {T}, ..., T,}), where the first argument, head of
the RJT, corresponds to the resource and the second, tail of the RJT, is the list of tuples.

4.1 The Adaptive Group Join (agjoin)

The agjoin operator is based on the Symmetric Hash Join [5] and Xjoin [22] operators,
defined to quickly produce answers from streamed data accessible through a wide-area
network. Basically, the Symmetric Hash Join and Xjoin are non-blocking operators that
maintain a hash table for the data retrieved from sources A and B. Execution requests
against A and B are submitted in parallel, and when a tuple is generated from source
A (resp. B), it is inserted in the hash table of A (resp. hash table of B) and probed
against the hash table of B (resp. hash table of A). An output is produced each time a
match is found. Further, the Xjoin implements a main memory replacement policy that
flushes portions of the hash tables to secondary memory when they become full, and
ensures that no duplicates are generated. Even though these operators produce results
incrementally, results are produced one-by-one because tuples are first inserted in the
corresponding hash table and then probed against the other hash table to find one match
at a time. To speed up query answering, we propose the agjoin operator. The agjoin
maintains for source A (resp. B) a list L (resp. Lg) of RITs, which represents for each
instantiation, ¢(?X), of the tuples already received from source A, the tuples received
from B that match u(?X). L4 (resp. Lp) is indexed by the values of u(?X) that correspond
to the heads of the RJTs in Ly (resp. Lp); thus, agjoin provides a direct access to the
RJTs. When a new tuple ¢ with instantiation ¢(?X) arrives from source A, agjoin probes
against Ly to find an RJT whose head corresponds to u(?X); if there is a match, the
agjoin quickly produces the answer as the result of combining ¢ with all the tuples in
the tail of RIT of w(?X); if not, nothing is added to L4. Independently of the success
of the probing process, ¢ is inserted in its corresponding RJT in Lg. Figure 2 illustrates
main memory contents during the execution of agjoin between sources A and B.

(a)

(r1,{B1,B2,83))

(r2,{B4,B5,B6})

(r1,{A1,A2))

(r3,(B7,88))

(r3,{A3,A4})

LA

<3

Source A

<3

Source B

L8

| (2{B4,B5,B6))

(r3,{B7,B8})

() (A5,B4),(A5,B5),(A5,B6)
Output
(r1,{B1,82,83) (r1.{A1,A2))

T

(r2{A5})

(r3,{A3,A4})

Fig. 2. agjoin between sources A and B: (a) L, and Ly current state; (b) effects of arriving a tuple
AS from source A, three tuples are immediately produced, and RJT (12,{AS}) is inserted in Lg.

L4 and Lg in Figure 2 (a) indicate that tuples (B1,A1), (B1,A2), (B2,A1), (B2,A2),
(B3,A1), (B3,A2), (B7,A3), (B7,A4), (B8,A3), (B8,A4) have been already produced;
also, at this time, no tuples with u(?X) = r, have been received from A, while three of
these tuples have arrived from source B. Figure 2 (b) shows the current state of L4 and
L after a tuple A5 with u(?X) = r, arrives from source A, i.e., shows the effects in Lg
of arriving a new tuple AS with u(?X) = r, from source A. In this case, A5 is probed
against L4 and three outputs are produced immediately; concurrently, the insert process
is fired, and RJT (12,{AS5}) is inserted in Lp.

Property 1 Consider the current state of lists Ly and Ly in an instant t, the number of
answers produced until t, NAP,, is given by the following formula:

NAP, = (tail(RIT,)| X |tail RIT})).
RJIT, €Ly A RITyeLp A head(RJT,)=head(RJT})

A three-stage policy is implemented to flush RJTs; completeness and no duplicates
are ensured. A first stage is performed while at least one source sends data; a second
stage is fired when both sources are blocked, and the third is only executed when all data
have completely arrived from both sources. Note that the same operator can execute first
or second stages at different times and depending on the availability of the sources, it
can move from one stage to the other; however, the third stage is executed only once.

In a first stage, when a tuple ¢ arrives from source A, it is inserted in an RJT in
Lp; the probe time of ¢ in L4 and the insert time of ¢ in Lg are stored with 7. Further,
if a portion of the main memory assigned to A becomes full, an RJT victim is chosen
based on the time of the last probe; thus, the least recently probed RIT is selected,
flushed to secondary memory, and annotated with the flush time. In case RJTs with
the same head are chosen as victims at different times, only one RJT will be stored
to secondary memory; the tail will be comprised of the tails of the different victim
RJTs; these tails will be annotated with the respective flush time. Figure 3 illustrates
the process performed when a main memory failure occurs and the timestamps of the
stored tuples.

(@)

(b)

(r1,{(B1,(1,2)),(B2,(2,3)),(B3,(3,4)}):7

(r2,{(B4,(2,5)),(B5,(3,6)),(B6,(5,7))}):8

(r3,{(B7,(6,8)),(B8,(8,9))}):6

r1.4(A1,(3,5),(A2,(7,8))}):3

(2,{(A5,(8,10))}):5

r34(A3,(3,4)),(A4,(6,7))}):7

LA

«

Source A

LB

«3

Source B

Memory Failure in LA at 11.
RJT for r3 is chosen as victim

(r1,{(B1,(1,2)),(B2,(2,3)),(B3,(3,4)}):7

(r2,{(B4,(2,5)),(B5,(3,6)),(B6,(5,7))}):8

LA

«3

Source A

(r3,{(B7,(6,8)),(B8,(8,9)}):11

LA in Secondary Memory

(r1,{(A1,(3,5)),(A2,(7,8))}):3

(r2,{(A5,(8,10))}):5

(r3.{(A3,(3,4)),(A4,(6,7))}):7

«

Source B

LB

Fig. 3. Timestamp annotations and Main Memory Failures: (a) L, and Lg timestamps; (b) effects
of a main memory failure in L,; RJT for r3 is flushed.

Figure 3 (a) illustrates the RJTs in Figure 2, annotated with the probe and insert
times of the tuples, and the RJTs probe times''. Thus, we can say that B1 was probed
at time 1 and inserted in L4 at 2; also, timestamp 7 associated with the RJT of r1 in Ly,
indicates that the last probe of a tuple from source B was performed against this RJIT
at time 7. Further, suppose that a failure of memory occurs at time 11 in the portion of

" An RJT probe time corresponds to the most recent probe time of the tuples in the RIT.

main memory assigned to source A, then the RJT with head r3, is flushed to secondary
memory and its flush time is annotated with 11. Figure 3 (b) illustrates the final state of
L, (main and secondary memory) and Lg after flushing the RJT to secondary memory.
Definition 1 states the conditions to meet when tuples are joined during a first stage.

Definition 1 Let RJT; and RJT; be Resource Join Tuples in Ly and Lp, respectively,
such that, head(RJT;)=head(RJT ;). Suppose RJT; has been flushed to secondary mem-
ory. Then, a tuple B; € tail(RJT;) was matched to tuples of tail(RJT ;) during a first stage
of the agjoin, i.e., before RJT; was flushed, if and only if:

probeTime(B;) < flushTime(RJT j).

A second stage is fired when both sources become blocked; Definition 2 establishes
the conditions to be satisfied by tuples that are matched in a second stage.

Definition 2 Let RJT; and RJT; be Resource Join Tuples in Ly and Lp, respectively,
such that, head(RJT;)=head(RJT ;). Suppose RJT has been flushed to secondary mem-
ory. Then, a tuple B; € tail(RJT;) was matched to tuples of tail(RJT;) during a second
stage of the agjoin, i.e., before RIT; was flushed to secondary memory'?, if and only if,
there is a second state ss:

SlushTime(RJT;) < insertTime(B;) < TimeSecondStage(ss) < flushTime(RJT;).

To produce new answers during a second stage, the agjoin selects the largest RJTs
in secondary memory, and probes them against their corresponding RJTs in main mem-
ory. To avoid duplicates, conditions in Definitions 1 and 2 are checked. The execution
of a second stage is finished, when one source becomes unblocked, and all the RJTs in
secondary memory are checked to find new matches. A global variable named Time-
LastSecondStage, is maintained and updated when a second stage finishes; also, for
each second stage, we maintain the time it was performed.

Suppose tuple ¢ from RJT; matches tuples in RJT; in the second stage at time st,
then the probe time of ¢ and the probe time of its RJT in main memory are updated to
st. To illustrate this process, consider the current state of L4 and Lg reported in Fig-
ure 3 (b); also suppose that the last second stage was performed at time 14. Following
the policy to select RJTs in secondary memory, (13,{(B7,(6,8)),(B8,(8,9))}) in the sec-
ondary memory version of Ly, is chosen and probed against (13,{(A3,(3,4)),(A4,(6,7))})
in Lg; the RJT in secondary memory was chosen because it has the longest tail. Since
conditions in Definition 1 hold for tuples B7 and B8, no new answers are produced and
their timestamps are not changed. Finally, one of the sources becomes available at time
15, then the second stage finalizes, and TimeLastSecondStage is updated to 15.

The third stage is fired when data has been completely received. Tuples that do
not satisfy conditions in Definitions 1 and 2 are considered to produce the rest of the
answers. First, RITs in main memory are probed with RJTs in secondary memory. Then,
RJTs in secondary memory are probed to produce new results. Figure 4 illustrates states
of L4 and Lp right after all the tuples have been received at time 100 and the third stage

12 1f an RJT is in main memory, then its flush time is co.

(r1,{(B1,(1,2)),(B2,(2,3)),(B3,(3,4)),
(B10,(20,21))}):43

(r2,{(B4,(2,5)),(B5,(3,6)),(B6,(5,7)),
(B17,(22,23))}):44 (r2,{(A5,(8,10)),(A15,(44,45))}):22

(r1,{(A1,(3,5)),(A2,(7,8)),(A14,(43,44))}):20

(r3,{(B25,(51,52)),(B26,(52,53)),(B27,(54,56))}):57 | | ("3:{(A20,(57,58)),(A21,(59,63))}):54

LA LB

r3,{(B7,(6,8)),(B8,(7,9))}:15,{(B11,(12,13),(B12,(14,15))}:17) | |(r3,{(A3,(3,4)),(A4,(6,7))}:16,
{(A11,(18,19)),(A12,(19,20))}:23)

14,{(A13,(22,23)),(A14,(24,25))}):30
(r5,{(B15,(30,31)),(B16,(41,42))}):50 15,{(A15,(35,36)),(A16,(37,38))}):65

(r4,{(B13,(16,17)),(B14,(18,19))}):28

LA in Secondary Memory LB in Secondary Memory

«3 4

Source A Source B

TimeLastSecondStage=60 CurrentTime=100

Fig. 4. The agjoin third stage at time 100, after having the last second stage at time 60.

is fired; the last second stage was performed at time 60. First, agjoin tries to combine
RIJT of 13 in secondary memory of source A with RJT of r3 in main memory of source
B. Because A21 was inserted in the RJT at time 63, i.e., after the last second stage
was performed, the combination of A21 with all the tuples of RJT of 13 in secondary
memory of source A, must be output. The rest of the combinations between tuples in
these RJTs were already produced. Then, RJT of 13 in secondary memory of B and RJT
of r3 in main memory of source A are considered, and no answers are produced because
all the tuples satisfy conditions in Definition 2. Next, RJTs in secondary memory are
combined, but no answers are produced: (a) tuples of RJTs of r3 in secondary memory
were matched in a first stage, (b) tuples of RJTs of r4, and tuples of RJTs of r5, were
matched in a first stage; at this point agjoin finalizes.

Property 2 Let A and B be sources joined with the agjoin operator, no duplicates are
generated. Additionally, if A and B send all the tuples, the output is complete.

4.2 The Adaptive Dependent Join (adjoin)

The adjoin extends the Dependent join operator [6] with the capability to hide delays to
the user. The Dependent join is a non-commutative operator, that is required when in-
stantiations of input attributes need to be bound to produce the output. Similarly, the ad-
join is executed when a certain binding is required to execute part of a SPARQL query.
For example, suppose triple pattern #;={s p; ?X} is part of an outer sub-query, triple
pattern ©,={?X p, o} is part of the inner sub-query, and the predicate p; is foaf:page,
rdfs:seeAlso, or owl:sameAs. For each instantiation u of variable ?X, dereferences of
4 must be performed before executing the inner sub-query, i.e., the adjoin is used when
instantiations from the outer sub-query need to be dereferenced to execute the inner
sub-query. Also, the clause BINDINGS in SPARQL 1.1 represents this type of depen-
dencies. We implemented the adjoin as an extension of the agjoin operator, but instead
of asynchronously accessing sources A and B, accesses to source B are only fired when
tuples from source A are inserted in Lg. The rest of the operator remains the same.

S Experimental Study

We empirically analyze the performance of the proposed query processing techniques,
and report on the execution time of plans comprised of ANAPSID operators versus
queries posed against SPARQL endpoints, and state-of-the-art RDF engines.

Dataset Number of triples| |Benchmark|#patterns|answer size
LinkedSensorData-blizzards 56,689,107 1 24-30 [1,298-9,008
linkedCT 9,809,330 2 13-17 1-99
DBPedia 287,524,719 3 16-20 0-7

(a) Dataset Cardinality (b) Query Benchmarks

Fig. 5. Experiment Configuration Set-Up

Datasets and Query Benchmarks'3: LinkedSensorData-blizzards'4, linkedCT'3, and
DBPedia (english articles)'® were used; datasets are described in Table of Fig-
ure 5(a). Sensor data '7 was accessed through a Virtuoso SPARQL endpoint; the
timeout was set to 86,400 secs. We could not execute our benchmark queries against
existing endpoints for clinical trials because of timeout configuration, so we im-
plemented our own Virtuoso endpoint with timeout equal to 86,400 secs.'® Three
sets of queries were considered (Table of Figure 5(b)); each sub-query was exe-
cuted as a query against its corresponding endpoint. Benchmark 1 is a set of 10
queries against LinkedSensorData-blizzards; each query can be grouped into 4 or
5 sub-queries. Benchmark 2 is a set of 10 queries over linkedCT with 3 or 4 sub-
queries. Benchmark 3 is a set of 10 queries with 4 or 5 sub-queries executed against
linkedCT and DBPedia endpoints.

Evaluation Metrics: we report on runtime performance, which corresponds to the user
time produced by the time command of the Unix operation system. Experiments
were executed on a Linux CentOS machine with an Intel Pentium Core2 Duo 3.0
GHz and 8GB RAM. Experiments in RDF-3X were run in both cold and warm
caches; to run cold cache, we cleared the cache before running each query by per-
forming the command sh -c "sync ; echo 3 > /proc/sys/vm/drop_caches";to
run on warm cache, we executed the same query five times by dropping the cache
just before running the first iteration of the query. Each query executed by ANAP-
SID and SPARQL endpoints was run ten times, and we report on the average time.

Implementations: ANAPSID was implemented in Python 2.6.5.; the SPARQL End-
point interface to Python (1.4.1)!° was used to contact endpoints. To be able to
configure delays and availability, we implemented an endpoint simulator in Python

14 http://wiki.knoesis.org/index.php/LinkedSensorData
15 http://linkedCT.org

16 http://wiki.dbpedia.org/Datasets

17 http://sonicbanana.cs.wright.edu:8890/sparql

18 http://virtuoso.bd.cesma.usb.ve/sparql

19 http://spargl-wrapper.sourceforge.net/

2.6.5. This simulator is comprised of servers and proxies. Seven instances of this
script were run and listened on different ports, simulating seven endpoints. Servers
materialize intermediate results of queries in Benchmark 2, and were implemented
using the Twisted Network framework 11.0.0%°. Proxies send data between servers
and RDF engines, following a particular transfer delay and respecting a given size
of messages; they were implemented using the Python low level networking socket
interface.

5.1 Performance of the ANAPSID Query Engine

We compare ANAPSID performance with respect to Virtuoso SPARQL endpoints,
ARQ 2.8.8. BSD-style?!, and RDF-3X 0.3.4.22. RDF-3X is the only engine that ac-
cessed data stored locally, so we ran queries in both cold and warm caches. Execution
times in warm caches indicate a lower bound on the execution time, and correspond
to a best scenario when all the datasets are locally stored and physical structures are
created to efficiently access the data. Datasets linkedCT and DBPedia were merged;
RDF-3X ran queries in Benchmark 3 against this dataset. Queries ran in ANAPSID
were comprised of sub-queries combined using the agjoin and adjoin operators. To fa-
cilitate the execution of queries against the Virtuoso endpoints, the SPONGE parameter
was set to Local, i.e., the endpoint only considered data locally stored in its database;
the rest of the configurations of SPONGE failed, reporting the errors: server stopped
responding and proxy error 502. Table 2 reports on execution times and geometric
means for Benchmarks 1, 2 and 3.

We can observe that RDF-3X is able to improve cold cache execution time by a
factor of 1.37 in the geometric mean when the Benchmark 1 queries were run in warm
cache, by a factor of 1.8 for Benchmark 2, and by a factor of 2.85 for Benchmark 3.
This is because RDF-3X exploits compressed index structures and caching techniques
to efficiently execute queries in warm cache. ANAPSID accesses remote data and does
not implement any caching technique or compressed index structures; however, it is able
to reduce the execution time geometric means of the other RDF engines. For queries in
Benchmark 1, Virtuoso SPARQL endpoint execution time is reduced by a factor of
19.31, and RDF-3X warm cache execution time is improved by a factor of 3.62; ARQ
failed evaluating these queries.

Further, queries in Benchmark 2 timed out in all linkedCT SPARQL endpoints.
Similarly, queries g4 to q9 timed out after 12 hours in ARQ. However, ANAPSID was
able to run all the Benchmark 2 queries, and overcome RDF-3X in warm cache and
ARQ by a factor of 1.1 and 4,160.56, respectively. Finally, for queries in Benchmark
3, which combine data from linkedCT and DBPedia, we observed that RDF-3X did
not exhibit a good performance, while the SPARQL endpoints as well as ARQ, failed
executing all the queries. Bad performance of RDF-3X may be because, the dataset
result of mixing linkedCT and DBPedia has around 18GB, and this size impacts on
the aggregated index structures needed to be accessed during both optimization and

20 http://twistedmatrix.com.
2! http://sourceforge.net/projects/jena/
22 http://www.mpi-inf.mpg.de/ neumann/rdf3x/

Table 2. Execution Time (secs) Different RDF Engines; Virtuoso Endpoint Sponge Local.

Benchmark 1

ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 Geom.
[[*] []
Cold Caches
RDF-3X 783 [702 [84T [745 [636 [523.89] 551.20 [462.77 [472.42 [473.20 [60.60
Warm Caches
4.40 4.14 4.09 4.18 4.05 [466.79 | 46526 | 464.65 | 475.95 | 463.96 44.10
SPARQL
Endpoint | 380.71 147.03 | 129.40 | 141.06 | 93.86 | 374.56 | 464.02 | 330.16 | 466.62 | 198.86 | 234.86
ANAPSID| 16.60 9.22 9.54 6.80 9.59 21.48 14.34 1348 | 11.08 | 16.19 12.16
Benchmark 2
ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 Geom.
[[*] LT
Cold Caches
RDF-3X 635 [355 [413 [1,54382] 371 [436 [13819 275] 383 [051 | 10.62
Warm Caches
2.44 2.28 2.41 1,385.09 [2.71 175 T1,321.05] 1.74 1.73 0.14 5.87
SPARQL
Endpoint | Timeout | Timeout | Timeout | Timeout | Timeout | Timeout| Timeout | Timeout | Timeout | Timeout| Timeout
ANAPSID| 6.21 6.11 6.67 7.27 6.94 6.24 6.89 6.76 4.28 1.10 5.30
ARQ [21,043.34[17,686.52|18,936.85| 43,200+ [43,200+|43,200+ | 43,200+ |43,200+ 43,200+ | 593.36 [22,051.01+
Benchmark 3
ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 Geom.
[“ [=[] [T]
Cold Caches
RDF-3X 6.84 | 415 [412 [34,037.87]2,954.76]2,447.02[35,497.11]2,403.11]2,402.71] 0.33 [268.49
Warm Caches
0.88 0.92 0.90 [27,779.41(2,468.83(2,416.54|26,420.77|2,374.60]2,374.51| 0.003 94.01
SPARQL
Endpoint | Timeout | Timeout | Timeout | Timeout | Timeout| Timeout| Timeout | Timeout | Timeout | Timeout| Timeout
ANAPSID| 12.54 11.66 12.97 18.17 10.41 9.79 12.60 12.87 6.68 7.03 11.03

query execution. Furthermore, the endpoints were not able to execute these queries,
because they could not dereference the URIs in the queries before meeting the timeout.
Finally, ARQ executed all the joins as Nested Loop joins, and invoked many times the
different endpoints, which failed executing the queries because the maximum number of
allowed requests was exceeded. However, ANAPSID showed a stable behavior along
all the queries, overcoming RDF-3X in warm caches by a factor of 8.52. ANAPSID
performance relies on the operators and the shape of plans; they are composed of small-
sized sub-queries that can be executed very fast by the endpoints. These results indicate
that even in the best scenarios where data is locally stored and state-of-the-art RDF
engines are used to execute the queries, ANAPSID is able to remotely access data and
reduce the execution time.

5.2 Adaptivity of ANAPSID Physical Operators

We also conducted an empirical study to analyze adaptivity features of ANAPSID oper-
ators in presence of unpredictable data transfers or data availability. We implemented an
endpoint simulator, and ran different types of physical join operators to analyze the im-
pact on the query execution time, of different data transfer distributions. We considered
three join implementations: (a) Blocking corresponds to a traditional Hash join which
produces all the answers at the end of the execution, (b) SHJ implements a Symmetric
Hash Join, and (c) the ANAPSID agjoin operator. All the operators were implemented

Delays with Gamma Distribution (k'=0.1,8=0.5) and No Delays and Message Size = 100 Tuples
Message Size = 100 Tuples

25 AWAW%
2 == Hash Join

4 \ SHI 12 Tuple

SHJ 12 Tuple
’ \M\ e SHI Total ~—No 0 \ e Total
1
= ANAPSID 12 Tuple

1 ¥
“w—/__‘_"—"—‘\\k 2 ===ANAPSID 12 Tuple
05 = v =\ —#— ANAPSID Total 05 —H—ANAPSID Total

al g2 93 g4 95 g6 97 q8 g9 ql0 Gl 92 o3 94 o5 g6 o7 g8 o9 qlo

= Hash Join

)
s
/i

Execution Time (ecs)
Execution Time fse

(a) Gamma(k=0.1;0=0.5), 100 tuples. (b) No Delays, 100 tuples.

Delays with Gamma Distribution (k=0.1,8=0.5) and No Delays and Message Size = 10 Tuples
Message Size = 10 Tuples

45 3

.
25
35 m@%\i —— i ? ‘
3 4= Hash Join g —4—tash Join
2
5 £ \ SHI 12 Tuple

X —— SH) Total H 0\,_(’\.__/"0\\ ——5HI Total
\ i ANAPSID 12 Tuple 1 =< ANARSID 12 Tuple
N\ —eanaesinTonl 03 = —#=ANAPSID Total

al 92 93 ¢ 95 96 97 q8 g8 ql0 Gl 92 93 94 95 g6 7 g8 g9 ql0

.

SHI 12 Tuple

Execution Time (5ecs)

Execution Time fsecs)

o

(c) Gamma(k=0.1,60=0.5), 10 tuples. (d) No Delays, 10 tuples.

Fig. 6. Execution time (secs.) of Hash Join, Symmetric Hash Join (SHJ), and ANAPSID opera-
tors.

in Python 2.6.5. We measured the time to produce the first tuple, and time to com-
pletely produce the query answer. To run the simulations, queries of Benchmark 2 were
executed and all intermediate results were stored in files, which were accessed by the
endpoint simulator server during query execution simulations; five different simulated
endpoints were executed. Data transfer rates were configured to respect a Gamma dis-
tribution with £ = 0.1 and 6 = 0.5; message sizes were set to 100 and 10 tuples. Finally,
the performance of all the operators in an ideal environment with no delays, was also
studied.

Figure 6 reports on the performance of the proposed operators. We can observe that
the usage of RJTs in ANAPSID, benefits a faster generation of the first tuple as well as
the output of the complete answer, even considering the cost of managing asynchronous
processes in the non-blocking operators. In case that the tuple transfer delays are high
(Figure 6 (c)), SHJ and ANAPSID operators exhibit a similar behavior; this is because
the savings produced by using the RJTs are insignificant with respect to the time spent
in receiving the data. Based on these results, we can conclude that ANAPSID opera-
tors overcome blocking operators, and that their performance may be affected by the
distribution data transfer rate.

Finally, we ran ARQ, Hash join, SHJ, and ANAPSID against the endpoint simulator,
and evaluated their performance in the following SPARQL 1.1. query:

SELECT DISTINCT ?£fn3 ?fn5 ?C WHERE
{ {SERVICE <http://127.0.0.1:9000> {
?A4 <http://data.linkedct.org/resource/linkedct/intervention_name> "Coenzyme Q10" .
?A3 <http://data.linkedct.org/resource/linkedct/intervention> ?A4 .
?A3 <http://data.linkedct.org/resource/linkedct/condition> ?C .
?A3 <http://xmlns.com/foaf/0®.1/page> ?fn3 .}} .

{SERVICE <http://127.0.0.1:9001> {
?A6 <http://data.linkedct.org/resource/linkedct/intervention_name> "Niacin" .
?A5 <http://data.linkedct.org/resource/linkedct/intervention> ?A6 .
?A5 <http://data.linkedct.org/resource/linkedct/condition> ?C .
?A5 <http://xmlns.com/foaf/0®.1/page> ?fn5 .}} .}

Intermediate results to answer the query were loaded in 15 files which were accessed
through two simulated endpoints. We considered three types of delay distributions as
well as no delays; Figure 7 reports on execution time (secs. log-scale).

FirstTuple Time
Total Time

maRQ 7 mam0
Hash Jain e

fash Join
msH e

W ANAPSID

Execution Time (secs)
Logsale

maNARSID
Gam Gamma___Gamma
k=01, k=04, (k=1.0, (XN d (k=01, (k=04, k=10,
8=05) 8=05) 8=30) 8=0.5) 8=05) =20

(a) Time First Tuple (b) Total Time

Fig.7. ANAPSID Physical Operators versus state-of-the-art Join Operators. Execution time in
(secs. log-scale).

We observe that SHJ and ANAPSID operators are able to produce the first tuple
faster than ARQ or Hash join, even in an ideal scenario with no delays; further, ARQ
performance is clearly affected by data transfer distribution and its execution time can
be almost two orders of magnitude greater than the time of SHJ or ANAPSID. We
notice that SHJ and ANAPSID are competitive, this is because the number of interme-
diate results is very small, and the the benefits of the RJTs cannot be exploited. This
suggests that the performance of ANAPSID operators depend on the selectivity of the
join operator and the data transfer delays.

6 Related Work

Query optimization has emphasized on searching strategies to select the best sources
to answer a query. Harth et al. [7] present a Qtree-based index structure which stores
data source statistics that have been collected in a pre-processing stage. A Qtree is a
combination of histograms and an R-tree multidimensional structure; histograms are
used for source ranking, while regions determine the best sources to answer a join
query. Li and Heflin [16] build a tree structure which supports the integration of data
from multiple heterogeneous sources. The tree is built in a bottom-up fashion; each
triple pattern is rewritten according to the annotations on its corresponding datasets.
Kaoudi et al. [13] propose a technique that runs on Atlas, a P2P system for processing
RDF distributed data that are stored in hash tables. The purpose of this technique is
to minimize the query execution time and the bandwidth consumed; this is done by
reducing the cardinality of intermediate results. A dynamic programming algorithm was

implemented that relies on message exchange among sources. None of these approaches
use information about the processing capacity of the selected sources; in consequence,
they may select endpoints that will time out because the submitted query is too complex.

The XJoin [22] is a non-blocking operator based on the Symmetric Hash Join, and it
follows two principles: incremental production of answers as sources become available,
and continuous execution including the case when data sources present delays; access
to the sources is not done through SPARQL endpoints, and the XJoin operator can only
be applied when its arguments are evaluated independently. The Tukwila integration
system [5] executes queries through several autonomous and heterogeneous sources.
Tukwila decomposes original queries into a number of sub-queries on each source, and
uses adaptive techniques to hide delays. We consider dependency between arguments
and define operators able to respect binding pattern restrictions while delays are hidden.

Urhan et al. [23] present the algorithm of scrambling query plans that aims to hide
delays; in case a source becomes blocked and all the previously gathered data have al-
ready been considered, the execution plan is reordered to produce at least partial results.
Hartig et al. [9] rely on an adaptive iterator model that is able to detect when a derefer-
enced dataset stops responding, and submits other query requests to alive datasets; also,
heuristics-based techniques are proposed to minimize query intermediate results [8].
Ludwig and Tran [14] propose a mixed query engine; sources are selected using ag-
gregated indexes that keep information about triple patterns and join cardinalities for
available sources; these statistics are updated on-the-fly. Execution ends when all rel-
evant sources have been processed or a stop condition given by the user is hold; addi-
tionally, the Symmetric Hash Join is implemented to incrementally produce answers;
recently, this approach was extended to also process Linked Data locally stored [15].
Avalanche [2] produces the first k results, and sources are interrogated to obtain statis-
tics which are used to decompose queries into sub-queries that are executed based on
their selectivity; sub-queries results are sent to the next most selective source until all
sub-queries are executed; execution ends when a certain stop condition is reached. Fi-
nally, some RDF engines are able to process federated SPARQL queries[4, 18, 20]. Al-
though these approaches are able to access Linked data, none of them provide an adap-
tive solution to query SPARQL endpoints.

7 Conclusions and Future Work

We have defined ANAPSID, an adaptive query processing engine for RDF Linked Data
accessible through SPARQL endpoints. ANAPSID provides a set of physical operators
and an execution engine able to adapt the query execution to the availability of the
endpoints and to hide delays from users. Reported experimental results suggest that our
proposed techniques reduce execution times and are able to produce answers when other
engines fail. Also, depending on the selectivity of the join operator and the data transfer
delays, ANAPSID operators may overcome state-of-the-art Symmetric Hash Join oper-
ators. In the future we plan to extend ANAPSID with more powerful and lightweight
operators like Eddy and MJoin [5], which are able to route received responses through
different operators, and adapt the execution to unpredictable delays by changing the
order in which each data item is routed.

References

1.

2.

3.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”Bit” loaded: a scalable lightweight
join query processor for RDF data. In Proceedings of the WWW, pages 41-50, 2010.

C. Basca and A. Bernstein. Avalanche: Putting the Spirit of the Web back into Semantic
Web Querying. In The 6th International Workshop on SSWS at ISWC, 2010.

E. Blanco, Y. Cardinale, and M.-E. Vidal. A sampling-based approach to identify qos for
web service orchestrations. In iiWAS, pages 25-32, 2010.

. C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and optimization of the spargl 1.1

federation extension. In ESWC (2), pages 1-15, 2011.

. A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foundations and

Trends in Databases, 1(1):1-140, 2007.

. D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of

limited access patterns. In SIGMOD Conference, pages 311-322, 1999.

. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data summaries

for on-demand queries over linked data. In WWW, pages 411-420, 2010.

. O. Hartig. Zero-knowledge query planning for an iterator implementation of link traversal

based query execution. In ESWC, pages 154-169, 2011.

. O. Hartig, C. Bizer, and J. C. Freytag. Executing sparql queries over the web of linked data.

In ISWC, pages 293-309, 2009.

S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction in column-
stores. In SIGMOD Conference, pages 297-308, 2009.

D. Izquierdo, M.-E. Vidal, and B. Bonet. An expressive and efficient solution to the service
selection problem. In International Semantic Web Conference (1), pages 386—401, 2010.
Jena TDB. http://jena.hpl.hp.com/wiki/TDB, 2009.

Z. Kaoudi, K. Kyzirakos, and M. Koubarakis. Sparql query optimization on top of dhts. In
ISWC, pages 418-435, 2010.

G. Ladwig and T. Tran. Linked data query processing strategies. In ISWC, pages 453-469,
2010.

G. Ladwig and T. Tran. Sihjoin: Querying remote and local linked data. In ESWC (1), pages
139-153, 2011.

Y. Li and J. Heflin. Using reformulation trees to optimize queries over distributed heteroge-
neous sources. In ISWC, pages 502-517, 2010.

T. Neumann and G. Weikum. Scalable join processing on very large rdf graphs. In SIGMOD
International Conference on Management of Data, pages 627-640, 2009.

B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql. In ESWC, pages
524-538, 2008.

E. P. Steve Harris, Andy Seaborne. SPARQL 1.1 Query Language, June 2010.

M. Stoker, A. Seaborne, A. Bernstein, C. Keifer, and D. Reynolds. SPARQL Basic Graph
Pattern Optimizatin Using Selectivity Estimation. In WWW, 2008.

T. Tran, L. Zhang, and R. Studer. Summary models for routing keywords to linked data
sources. In ISWC, pages 781-797, 2010.

T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled pipelined join operator. /[EEE
Data Eng. Bull., 23(2):27-33, 2000.

T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query scrambling for initial delays. In
SIGMOD Conference, pages 130-141, 1998.

M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Martinez, J. Sierra, and A. Polleres. Efficiently
Joining Group Patterns in SPARQL Queries. In ESWC, pages 228-242, 2010.

C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web data
management. PVLDB, 1(1):1008-1019, 2008.

G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer,
25(3):38-49, 1992.

