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Abstract

We advocate a new approach to study models of fermion masses and mix-
ings, namely anarchy proposed in Ref. [l. In this approach, we scan the O(1)
coefficients randomly. We argue that this is the correct approach when the
fundamental theory is sufficiently complicated. Assuming there is no physical
distinction among three generations of neutrinos, the probability distributions
in MNS mixing angles can be predicted independent of the choice of the mea-
sure. This is because the mixing angles are distributed according to the Haar
measure of the Lie groups whose elements diagonalize the mass matrices. The
near-maximal mixings, as observed in the atmospheric neutrino data and as
required in the LMA solution to the solar neutrino problem, are highly probable.
A small hierarchy between the Am? for the atmospheric and the solar neutrinos
is obtained very easily; the complex seesaw case gives a hierarchy of a factor of
20 as the most probable one, even though this conclusion is more measure-
dependent. U3 has to be just below the current limit from the CHOOZ
experiment. The CP-violating parameter sin ¢ is preferred to be maximal. We
present a simple SU(5)-like extension of anarchy to the charged-lepton and
quark sectors which works well phenomenologically.
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1 Introduction

The seemingly useless repetition of families has been a big puzzle in particle physics
since the discovery of the muon. Even more puzzling has been the fact that the
particles in three families, despite their exactly the same gauge quantum numbers,
have hierarchical masses and small mixing angles. It appears, however, that we have
lost the sense of the initial surprise having been accustomed to hierarchical masses
and small mixings. The very reason of the puzzle was the following simple naive
expectation: the quantum mechanical states with the same quantum numbers are
likely to have similar energies and should mix significantly. Having tried to explain
the hierarchy and small mixing angles for decades, we seem to have forgotten what
the naive expectation was.

There was a revolution when the top quark was finally discovered. We were used
to the idea that the weak gauge bosons are “heavy” while the quarks, leptons are
“light.” During the search for the top quark for almost two decades, we used to
question why the top quark is so heavy, i.e., beyond the reach of the experiments.
After the discovery of the top quark, however, we realized that the top quark has the
most natural mass among all quarks and leptons because its Yukawa coupling to the
Higgs boson condensate is hy = 1.0 similarly to the gauge coupling constants e = 0.3,
g = 0.8, g, = 1.2. Now we think that the puzzle is not why the top quark is heavy,
but rather why all the other quarks and leptons are light.

In our opinion, the near-maximal mixing in the atmospheric neutrino data from
the SuperKamiokande experiment is another revolution of the same kind as the case
with the top quark. It simply demands us to go back to the naive expectation:
unless there are definite quantum numbers for three neutrino flavor states to be
distinguished, they should fully mix and have comparable masses. We are proposing
this simple change in the perspective. One may suspect, however, that this naive
expectation would not lead to the apparent “maximal mixing” nor the hierarchy
between two Am? values required to explain atmospheric and solar neutrino data.
It was pointed out that a seesaw mass matrix without a particular structure should
appear random from the low-energy point of view (anarchy), and a random matrix
can well account for the observed pattern of neutrino mass and mixings [fll].

Therefore, it appears phenomenologically viable to consider all mass matrix el-
ements for neutrinos within the seesaw mechanism for small neutrinos to be O(1)
without a particular structure: anarchy. However, one should ask if any of the results
based on this idea would depend on the particular choice of the measure. We show
that the key requirement is that the measure should not depend on the choice of the
basis with which the matrix elements are defined. Once this requirement of basis-
independence is made, distributions over the mixing angles are determined by the
invariant Haar measure of the diagonalization matrices as we will see in Section f.

We first present the concept of anarchy in Section f. We argue that the anarchy
is an alternative approach to traditional model building which is applicable to wider



range of theories. In Section [, we show how the distributions in the MNS mixing
angles can be obtained from anarchy. The assumed lack of fundamental distinction
among three generations of neutrinos implies that the basis-independence of the mea-
sure. Then the distributions in mixing angles are obtained solely by the Haar measure
of the group which diagonalizes the mass matrices. The predicted distributions are
contrasted to the experimental data in Section f]. Anarchy, however, raises another
question: why the charged leptons, down quarks, and especially up quarks have
hierarchical masses and small mixings. We introduce a simple approximate U (1) flavor
symmetry which can answer this question in Section [J. In Section i, we conclude.

2 Anarchy

The idea of anarchy is simple: all coefficients of operators which do not have particular
reasons to be small, i.e., allowed by symmetries of the theory, are O(1), and do
not have particular pattern, i.e., appear random from the low-energy point of view.
A fundamental theory should determine the O(1) constants, but if it is sufficiently
complex, the O(1) constants indeed likely appear random. Even though it is difficult
to quantify the “random”ness of the O(1) constants, what should appear random
are the parameters in the Lagrangian, such as Yukawa matrix elements, rather than
the physical observables such as masses and mixing angles which are defined only
after diagonalization of matrices in the Lagrangian. Therefore, we take the point of
view that the individual elements of the Yukawa or mass matrices are distributed
randomly:.

The idea of random O(1) constants is used commonly in many different contexts.
For instance, in the chiral Lagrangian description of the low-energy hadron physics,
one often faces the situation that one cannot predict the coefficient of the operators
in the chiral Lagrangian from the corresponding operator written in terms of quarks
and gluon fields. Even though there should be in principle one-to-one correspondence
between the Wilson coefficient in the QCD and the coefficient of chiral Lagrangian
operators, it is beyond the scope of current techniques. In this kind of situation, one
often revokes the “naive dimensional analysis” where one assumes an O(1) coefficient
unless there is a symmetry reason that the coefficient is suppressed. For instance,
if two chiral Lagrangian operators contribute to a single process at the same order,
people often argue that there should not be any severe cancellations between two
contributions unless there is a reason for it. Similar situation arises, for instance,
if some of the particles in the Standard Model are actually composite. From the
point of view of the low-energy effective theory, the couplings are all O(1) without a
particular pattern: random.

In most compactifications of the superstring theory, Yukawa couplings among
light degrees of freedom are O(1), sometimes zero. It is quite unusual to have small
Yukawa, couplings such as 107° for the electron whenever there is no reason that they
are suppressed. From the point of view of the low-energy effective field theory, the



O(1) couplings do not seem to have any particular pattern: random.

In grand-unified theories (GUTs) or Froggatt—Nielsen models of flavor, one intro-
duces (quite a few) vector-like particles which become massive at a certain energy
scale and decouple. Even if all coupling constants are very close to unity, the low-
energy coupling constants depend on many coupling constants, many VEVs and
many inverse masses, and small deviations of coupling constants from unity get
amplified.f] In the end we expect that the low-energy coupling constants are somewhat
randomly distributed around unity. Even the famous “prediction” of the SU(5) grand-
unification mp = m?%, where mp and my, are down-quark and charged-lepton Dirac
mass matrices, is likely to be spoiled by the mixing of many vector-like particles
at the GUT-scale picking the GUT-breaking VEVs. In the limit of large number of
vector-like particles mixed with each other, the low-energy coupling constants become
completely randomized.

In all of the above examples, seemingly random O(1) coefficients arise in the low-
energy effective theories as a consequence of the lack of precise knowledge on the
fundamental theory. Once the dynamics of the fundamental theory is completely
understood, which we hope to do with the lattice QCD on the first example, the
seemingly random O(1) numbers can be predicted. Still, in the absence of a fun-
damental theory behind the fermion masses and mixings, as opposed to the case of
the hadronic physics where we know that the QCD is the fundamental theory, we
should attempt to obtain some quantitative results without relying on the details of
the dynamics.

We know of a perfectly sensible and beautiful theory of this kind: statistical
mechanics. When studying a collection of an astronomical number of particles, e.g.,
Avogadro number, it is hopeless to measure the positions and the momenta of each
particle precisely to predict the configuration of the particles in the future, even in
the deterministic classical mechanics. However the large number of particles allow
us to believe that the motion of particles is completely randomized under various
symmetry requirements, such as conservation of charges, number of particles, energy,
etc, at least on average. We can draw quantitative conclusions out of the randomness
on the statistical basis. We cannot predict the precise configuration of particles at
a given instance. However, we can predict the distributions in momenta, energies,
positions, etc, with confidence.

What we advocate is a similar statistical treatment on the seemingly random
O(1) coefficients in low-energy effective theories consistent with certain symmetry
requirements. We scan over the O(1) coefficients randomly. However, an important
question that arises here is what measure to use for the random scan. In the case
of statistical mechanics, Boltzmann distribution is justified as a consequence of the
interaction between the relevant system with the infinitely large heat reservoir. In
our case, the choice of a particular distribution appears unwarranted. Nonetheless,

*In fact, the seesaw mechanism can be viewed as the simplest example, which does amplify the
hierarchy, as seen in Section @



one may obtain distributions out of the random scan over the O(1) parameters which
do not depend on the choice of a particular measure; then such distributions can be
regarded as rigorous predictions of the anarchy|] As we will see below, the mixing
matrices among neutrinos can be predicted from the anarchy and be compared to the
experimental situations.

The anarchy is a complimentary approach to the traditional model building.
Traditionally, one attempts to write down a complete model of flavor by imposing
certain symmetry which (hopefully) forbids all unwanted operators while explaining
the observed structure of masses and mixings. We would call this “monarchy”
approach, as one aims for a model which is constrained tightly by the symmetries
imposed and the particle content assumed with little freedom so that the model
is predictive. Then one hopes that the nature chose that particular model. The
advantage of this approach is that the model is predictive by design. The disadvantage
is that the model tends to become rather contrived and is not necessarily be believable.
The whole idea is based on the optimism that the high-energy physics is rather simple
so that we can (eventually) test it directly from the low-energy observables. The
anarchy is the opposite approach. We impose as little as possible. Based on the
statistical method, we try to figure out the tendency of the consequences from a
given framework on the low-energy physics. This approach is certainly not predictive,
while it can be powerful enough so that it is applicable even in the situation where
the high-energy physics is extremely complicated. This way, we can test if a certain
simple idea is viable or not without going into details of particular models.

3 Anarchy of Neutrinos

In this section, we apply the anarchy approach to the neutrino mass matrices. The
fundamental assumption of our analysis is that there is no physical distinction among
three generation of lepton doublets. We would like to test this assumption by working
out its consequences using the statistical method as discussed in the previous section.
The key requirement is that the measure should not depend on the choice of the basis
with which the matrix elements are defined because there is no physical distinction
among three generations by assumption. Once this requirement of basis-independence
is made, distributions over the mixing angles are determined by the invariant Haar
measure of the diagonalization matrices.

Tt is interesting to note that one of the definitions of the word “anarchy” is “a utopian
society of individuals who enjoy complete freedom without government” according to Merriam-
Webster’s Collegiate Dictionary [E] This definition is commensurate with what anarchism is: “a
political theory holding all forms of governmental authority to be unnecessary and undesirable and
advocating a society based on voluntary cooperation and free association of individuals and groups”
[E] Therefore we can hope to obtain phenomenologically successful theory of neutrino masses and
mixings out of seemingly random numbers from anarchy.



3.1 A Simple Two-by-two Case

It is instructive to study the consequence of a simple two-by-two Majorana mass
matrix for neutrinos assuming that each independent matrix element is distributed
randomly. Since a Majorana mass matrix is a symmetric matrix, there are only three

parameters
[ My My
Ml/ - < M12 M22 ) 9 ( ]‘)

and we assume the matrix elements to be real for simplicity of the discussion. One
can rewrite this matrix in terms of physical observables,

Am [ —cos26 sin 260
( ) )

MV = Maverage + T sin 26 cos 20

Based on the assumption that the matrix elements M, Mis, My are distributed
randomly, we can qualitatively understand how the mixing angle is distributed. By
rewriting the volume element dMi; A dMis A dMss in terms of the observables, we
find

dM11 A dM12 A dM22 = Amdmavoragc N d(Am) A d@, (3)

and the volume is flat write respect to the mixing angle. (We will omit the wedge
symbol below.) Then the distribution in sin? 26 is naturally peaked at zero and the

maximal angles,
1

b= 4 cos 20 sin 20
Note that the measure df over the angle is the invariant Haar measure of the U(1)
group.

In the realistic situation, we should consider a complex matrix. As suggested by
the phenomenological success of Kobayashi-Maskawa theory of CP violation, Nature
appears to have chosen complex Yukawa matrices. Then all the three independent
elements of the matrix Eq. ([[) are complex. Correspondingly, the diagonalization
matrix is unitary. It can always be diagonalized by a unitarity matrix U,

d(sin® 20). (4)

MV:U<m1 O)UT, (5)

0 mo

where the unitarity matrix U can be parameterized as

_ (€ 0 cosf  sind e’ 0
U=e ( 0 e‘“")(—sin@ cos@)( 0 e )° (6)

We chose this parameterization such that the angles n and w are unphysical. They
can be absorbed by rephasing into the definition of the flavor and mass eigenstates.
The angle ¢ is a CP-violating phase, even though it does not appear in neutrino



oscillation for this two-flavor case. The measure for the matrix elements can then be
rewritten as

d2M11d2M12d2M22 = (mg — m%)dmfdmgdU, (7)
where the measure over the angles is the invariant Haar measure over the U(2) group
dU = d(sin’ 0)dndwde (8)

up to a normalization constant. Note that the distribution in 6 is peaked even more
strongly at the maximal mixing

d(sin® §) = 2sin 6 cos 0df = d(sin® 26). 9)

4 cos 260

We therefore conclude that a mass matrix without a particular structure would
lead to a near-maximal mixing quite “often.” This observation should be contrasted to
the wide-spread perception that a near-maximal mixing in the atmospheric neutrino
data is very special.

3.2 Why Haar Measure?

In general, the measure over the angles are given solely in terms of the invariant
Haar measure over the relevant group. This is true as long as that the measure does
not depend on the basis with which the matrix elements are defined. The proof is
very simple. Since we discuss seemingly random mass matrix of neutrinos here, the
measure with which we scan the parameter space should not depend on a particular
choice of the basis of neutrino states. This is the central assumption of basis-
independence. The measure discussed above for the two-flavor case, linear w.r.t. the
individual mass matrix elements, satisfies this property, because the change of basis
transforms the elements homogeneously as a unitarity rotation. In fact, one can show
that the distributions are determined by the invariant Haar measure over the relevant
group from the requirement of the basis-independence. This observation allows us to
separate the measure over the mass matrix elements in terms of eigenvalues and group
transformations.
Taking the complex Majorana case as an example, any mass matrix can be written
as
M =UDU?, (10)

where U € U(N) and D = diag(my, ma,---,my) is a real diagonal matrix. Because
of the invariance of the measure dM under the change of basis M — VMVT, the
measure dM should contain the measure over the group dU which is invariant under
the left translation U — VU. Since U(N) is a compact Lie group, a left-invariant
measure is also right-invariant. Therefore, dU should be the invariant Haar measure
over the group U(N). Then the measure dM can be written as

dM:f(ml,---,mN)ﬁdmidU. (11)

i=1



Here the yet-undetermined function f is symmetric under the interchange of eigenval-
ues. In the appendix it is shown that the weight function f should contain the factor
[Li<; (m? — mf) [1; m;, and for the case of the linear measure, this exhausts the weight
function f. The only possible change of the measure is to introduce a weight function
which depends on invariants, such as TrMTM, detM. However, such weight functions
can depend only on the eigenvalues of the mass matrix, consistent with the basis-
independence. Therefore the measure over the angles obtained from the Haar measure
cannot be changed by the choice of the measure, and hence the distributions of the
angle above are predictions of anarchy. Exactly the same argument goes through for
the Dirac and seesaw mass matrices.

Of course one should consider the diagonalization of the charged lepton mass
matrix we well, since the MNS matrix is the mismatch between two diagonalization
matrices, one of the neutrinos and the other of the charged leptons. However, the
translational invariance of the Haar measure guarantees that the diagonalization of
the charged lepton mass matrix can be absorbed into the Haar measure and hence the
Haar measure gives the distributions of the MNS angles. We consider a random scan
over both the neutrino mass and the charged lepton mass matrices. For a particular
pick of the charged lepton mass matrix M; = U;D;U;, we still scan over the neutrino
mass matrix M, = U,,DVUVT , which we assume to be a complex Majorana matrix
again for definiteness. The measure is given in general by

AMdM, = f(m,, U.)g(my,)dmy,dm,, dUdU.dU,,. (12)

The basis-independence is imposed only on left-handed lepton doublets, and hence
the measure may depend non-trivially on U,. However, U, is an unobservable matrix.
We can integrate over U, and obtain an effective weight factor

f(mlz) = /dUef(mlia Ue)' (13)

Now we can use Upynsg = Ul_lU,, instead of U,, and the translational invariance
of the Haar measure guarantees that dU,dU.dU, = dU,dU.dU,;ns, where U; is now
unobservable and its measure can be dropped. The measure simplifies tof]

dM,dM,, = f(my,)g(m,,)dmy,dm,,dUyNs. (14)

Therefore, the distributions for the MNS mixing angles and the CP-violating phases
are predicted in terms of the Haar measure again. The only implicit assumption made
in this argument is that the scan over the charged lepton and neutrino mass matrices
are uncorrelated. We believe this is a natural consequence of typical flavor models as
the mass matrices of the fields with different gauge quantum numbers are generated
independently from different chain of the Froggatt—Nielsen fields, for example.

*For the case of the linear measure, f(my,) = [],;(mf —m{,)* [];mu, and g(my,) = [],o;(m3, —

vi

m;, ) [1;m., as shown in the appendix.



Because of this, distributions in the mixing angles are direct consequences of the
group structure and do not depend on the details of how one defines the measure. On
the other hand, the measure for the eigenvalues can depend on the details because one
can modify the weight factor f(m;) which is a symmetric function of all eigenvalues
without affecting the basis-independence of the measure.

3.3 Three-by-Three case

For three generation case, details are discussed in Appendix [A]. Here we merely
summarize the results. We decompose the linear measure over the real or complex
elements of both Majorana and Dirac mass matrices into the measure over the angles
and the mass eigenvalues.

For the real Majorana case, the symmetric real mass matrix is written as M =
ODOT where O is an SO(3) diagonalization matrix and D = diag(my, ma, m3). Then
we find

dM = (m1 — mg)(mg — mg)(mg — ml)dmldmgdmng, (15)

where dO is the invariant Haar measure of the SO(3) group.
For the real Dirac case, the mass matrix is written as M = OLDOg where Oy, g
are SO(3) diagonalization matrices and D = diag(my, mg, m3). Then we find

dM = (m? —m3)(m3 — m3)(m3 — m?)dmidmadmsdOdOg. (16)

Again dOyp, dOg are invariant Haar measures for the corresponding SO(3) groups.
For the complex Majorana case, the mass matrix is written as M = UDUT where
U is a U(3) diagonalization matrix and D = diag(my, mg, m3). Then we find

dM = (m3 — m3)(m3 — m3)(m3 — mi)mymamadm;dmadmsdU, (17)

where dU is the invariant Haar measure of the U(3) group.
For the complex Dirac case, the mass matrix is written as M = U LDU}T{ where
UL r are U(3) diagonalization matrices and D = diag(my, ma, m3). Then we find

dULdUR

. 18
dprdpades ( )

dM = (m? —m3)*(m3 — m3)*(m3 — m?)*mymomsdm,dmadms
Because of the reparameterization invariance U, — Up®, Up — Ugr®, with & =
diag(e', "2 e'¥3), the Haar measure dUrdUp is modded out by this invariance.

Finally, we consider also seesaw neutrino mass matrices, which are arguably the
most promising ones in order to explain the smallness of neutrino masses as well as
the most motivated one from the point of view of grand unification. In this case,
we have Majorana-type right-handed neutrino mass matrix Mg as well as Dirac-type
mass matrix between left- and right-handed neutrinos Mp. The full mass matrix is

given by
0 Mp
< ME Mg ) ’ (19)

8



such that the full Majorana-type mass matrix is symmetric. It is assumed that
there is a large hierarchy between the eigenvalues of Mp to those of Mg. The mass
matrix among the heavy (dominantly right-handed) neutrino states is just Mg up
to corrections of the order of M2 /M%, while that among the light (dominantly left-
handed) neutrino states is given by

MpMg* M}, (20)

again up to corrections of the order of M3 /M%. This is the famous seesaw formula.
Hereafter we discuss only the complex case. By diagonalizing both Mp = U, DpUx*
with Dp = diag(my, mo, m3) and Mgr = Uy Dy UL, with Dy, = diag(My, My, Ms),
we find the linear measure to be

dMpdMp =
dUrdUg
2 9N2. 2 9N20 2 9N2 dmdimed
(mi —m3)°(m3 —m3)*(m35 — m7) mymamgdmidms mgidcpldapgdcpg
(M} — M3)(M5 — Mg)(M5 — M;) My My Myd My dMyd My dUny. (21)

However, the light neutrino mass matrix is then given by Uy DpUg Uy D3 UL U DpUT
and hence Ui and Uy, are not separately physical but only the combination U, =

U glU v- Therefore one can simplify the measure dUrdU,, to just dU,,. Note that
one still needs to diagonalize the matrix

my Mt my
mo Urel M2_1 e mo (22)

1 rel
ms Mg_ ms

to find the mass eigenvalues of the light neutrinos. On the other hand, the measure
dUy, can be replaced by dUy,ns as discussed earlier.

In each of the cases, we find that the distributions in the MNS mixing angles are
determined solely by the Haar measure.

3.4 Distributions in Angles

Now that we have learned that the distributions in the MNS mixing angles are
distributed according to the Haar measure, we would like to see how they look. The
distributions are different for the SO(3) case (real mass matrices) and the U(3) case
(complex mass matrices).

First for the case of real matrices, the distributions in the MNS mixing angles are
given in terms of the SO(3) Haar measure (see Appendix [A.9)

dO = cos ‘913d912d¢913d923. (23)

It is straightforward to plot the distributions against sin®26;;. In Fig. [, we show
distributions in (a) sin® 26,5 or sin® 26,3, and (b) sin®26;3. The solid lines show the

9
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Figure 1: Distributions in (a) sin®26;5 or sin?26;3 and (b) sin? 26,3 for the case of
real mass matrices.
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Figure 2: Distributions in (a) sin®26;, or sin® 2603 or sin? 20,3 and (b) siné for the
case of complex mass matrices.

differential distributions and the histograms the integrated probabilities with the bin
size of 0.05.

Second for the realistic case of complex matrices, the distributions in the MNS
mixing angles are given in terms of the U(3) Haar measure (see Appendix [A.2)

dU = dsi,ydcidss,dddndgidgadydxs. (24)

Since the angles 7, ¢12 are unphysical while the angles x;2 are Majorana phases
relevant only to lepton-number violating processes, we focus only on sin? 20;; as well as
the CP-violating parameter sin ¢ which is the dependence on ¢ in neutrino oscillations.
It turns out that the distributions in sin®26;; are all the same. In Fig. B, we show
distributions in sin? 20;; and sind. The solid lines show the differential distributions
and the histograms are integrated probabilities with the bin size of 0.1.

The distributions shown in Ref. [l used different parameterization of the angles
and are consistent with what we show for the case of real matrices except for the
following small correction. There, the elements of the mass matrices were scanned
from —1 to 1 independently, which forms a hypercube. But such a scan unfortunately
breaks the basis-independence as the orientation of the hypercube changes as the

10



basis rotates. This resulted in a small distortion of the distributions, which made
them different for Dirac, Majorana, and seesaw cases. We redid the scan with the
same programs used in Ref. [[] with a basis-independent boundary TrMTM < 1,
which forms a hypersphere instead, and verified that the distributions obtained from
the analytic arguments result from numerical scans.

3.5 Typical Mass Spectrum

The mass spectrum from random mass matrices depends in general on the particular
choice of the measure, unlike the distributions in the angles. This is because one can
introduce an additional weight factor which depends only on the mass eigenvalues on
top of the linear measure as discussed earlier. In this subsection, we use the linear
measure throughout, and show what mass spectrum results from this choice. In order
to keep basis-independence of the measure, we use the scanning region TrMTM < 1.
This translates to the condition m? + m3 + m3 < 1, i.e., to the region inside a
three-dimensional sphere.

The first distribution we show is the mass spectrum in the complex Majorana
case, with the measure Eq. ([7). The distributions in Dirac and real cases are similar
and we focus on this case. We take the convention 0 < m; < mq < ms without a loss
of generality. Fig. B, we show distributions in three mass eigenvalues. We can see
that there is a sharp cutoff at m3 = 1 because of the condition m} +m32 +m32 < 1.
An interesting point is that the other eigenvalues are often much smaller than O(1),
almost a half (one) order of magnitude for my (my). The mass spectrum is somewhat
hierarchical. This is rather counter-intuitive as we have only O(1) numbers in the
mass matrix. One can qualitatively understand this point as a consequence of two
simple facts. The first is that one can regard (mj, ms,m3) as a randomly oriented
vector inside the sphere. Consider only the octant where all components are positive.
Then it is easy to see that it does not happen very often to have the vector pointing
toward the center of the octant where all eigenvalues are O(1). It often fluctuates to
be close to one of the planes, where one of the eigenvalues becomes small compared
to others. But having two eigenvalues small requires the vector to point close to
one of the axes, which is less likely. The second fact is that the measure has the
factor (m? — m3)(m3 — m2)(m3 — m?) which further pulls three eigenvalues apart
from each other. As discussed in more detail in the Appendix, this factor reflects
the fact that the diagonalization matrix becomes undetermined when two of the
eigenvalues become degenerate, and therefore it must be there for any choice of the
measure. Unless the unknown weight factor which may be present on top of the
linear measure has singularities when some of the eigenvalues coincide, the effect of
this factor remains. Therefore, obtaining small hierarchy among three eigenvalues is
a rather general consequence of random matrices.

The second distribution we show is the mass spectrum in the complex seesaw
case, with the measure Eq. (B]). Recall that one needs to diagonalize the seesaw

11
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Figure 3: The distributions of mass eigenvalues for the complex Majorana case with
the linear measure.
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Figure 4: The distributions of mass eigenvalues for the complex seesaw case with the
linear measure.

mass matrix Eq. (BJ) to obtain mass eigenvalues of light (dominantly left-handed)
neutrino states. In Fig. [, we show distributions in three mass eigenvalues. The
hierarchy among the eigenvalues is larger than that in the complex Majorana case.
First of all, there is no cutoff at m3 = 1 because the seesaw formula involves the inverse
of the mass matrix, whose eigenvalue can be larger than 1. The smaller hierarchies
in the right-handed Majorana mass matrix and the Dirac mass matrix work together
to produce a larger hierarchy in the seesaw mass matrix.

Since the anarchy does not specify the overall scale of the neutrino mass matrix
elements, the useful quantity is the ratio of two Am? to compare the consequence
of the anarchy and the phenomenology of neutrino oscillation. The Fig. f| shows the
ratio of two Am?: R = (m2 — m?)/(m% — m3) for most of the time (~ 90%), but
when R > 1, we switch two Am? and define R = (m3 — m3)/(m3 — m3). We will
compare this ratio to the observed hierarchy between two Am? relevant to the solar
and atmospheric neutrino oscillations. For both real and complex mass matrices, the
Dirac and Majorana cases prefer two Am? to be close to each other, while the seesaw
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Figure 5: The distribution of the ratio R of two Am? for real and complex mass
matrices.

cases prefer a hierarchy between two Am? of about a factor of 20. This behavior
could be expected from the distribution of mass eigenvalues Figs. Bl and [

4 Neutrino Phenomenology

Now we are in the position to compare the consequences of the anarchy to the
phenomenology of neutrino oscillation.

4.1 Is The Near-Maximal Mixing Special?

One of the initial reaction to the apparent maximal mixing in the atmospheric data is
why the nature prefers to be at the boundary of the physical region: 0 < sin?20 < 1.
This observation led to the wide-spread notion that the neutrino mass matrix must
have a very particular structure. We point out in this section that this reaction
is based on the use of the incorrect parameter space. As we have seen above, the
“correct” parameter to use is @ for real matrices or sin? @ for complex matrices rather
than sin?20. Once the correct parameter is used, the current atmospheric data do
not seem to require any particular structure.

First we point out that the apparent maximal mixing is not at the boundary of
the physical region, but rather at the center of the parameter space. Traditionally,
the neutrino oscillation data had been plotted against sin®26, but this covers only
a half of the parameter space 0 < 0 < I (the light side). There is another half
T <6 < F (the dark side) which is physically distinct from the light side as we will
briefly explain below.

Neutrino oscillations occur if neutrino mass eigenstates are different from neutrino
weak eigenstates. Assuming that only two neutrino states mix, the relation between
mass eigenstates (14 and v») and flavor eigenstates (for example v, and v,,) is simply

13



given by

1) = cosB|v.) —sinb|v,),
o) = sinf|v.) + cosf|v,), (25)

where 6 is the vacuum mixing angle. The mass-squared difference is defined as

Am? = m3 — m2. We are interested in the range of parameters that encompasses

all physically different situations. First, observe that Eq. (PJ) is invariant under

0 — 0+, |[ve) — —|ve), V) — —|vu), and hence the ranges [—%, 2] and [Z, 2] are

physically equivalent. Next, note that it is also invariant under § — —6, |v,) — —|v,,),
|v2) — —|12), hence it is sufficient to only consider 6 € [0, 7]. Finally, it can also be

made invariant under ¢ — 7 — 6, |v,) — —[v,) by relabeling the mass eigenstates

1) < |w), i.e. Am? — —Am?. Thus, we can take (Am? > 0) without a loss of
generality. All physically different situations are obtained by allowing 0 < 6 < 7.
This very simple yet often forgotten point, that maximal mixing § = 7/4 is not at
the boundary of the parameter space but rather at the center of the continuum, has
important implications on the perception. This has already been emphasized in the
context of model building [J{].

For the case of oscillations in the vacuum, the survival probability is given by

2
Py, — 1) = 1 — sin? 20 sin? (1.27Ag L) . (26)

Here, Am? is given in eV?/c!, E in GeV, and L in km. In this case the oscillation
phenomenon can be parameterized by Am? and sin®26, since 6 and 5 — 0 yield
identical survival probabilities. Therefore we can restrict ourselves to 0 < 6 <
7, and use the parameter space (Am?, sin® 20) without any ambiguity. This is
indeed an adequate parameterization for reactor antineutrino oscillation experiments,
short-baseline accelerator neutrino oscillation experiments, and v, < v, atmospheric
neutrino oscillation experiments.

On the other hand, the effect of matter in neutrino propagation clearly distin-
guishes the light side from the dark side. One such case is the so-called MSW
(Mikheyev—Smirnov—Wolfenstein) effect on the neutrino propagation in the Sun. The
survival probability of the electron-neutrino is given by [

P, —v,) = Picos’0+(1— P)sin*6

Am?

—/ P.(1 — P.) cos 20, sin 26 cos (2.54 L+ 5) : (27)
where P, is the hopping probability, 6, is the mixing angle at the production point,
Py = P.sin?0y; + (1 — P.)cos? 0y, and § is a phase induced by the matter effects,
which is not important for our purposes. See Ref. [, [] for notation. One can write
down an analytic formula for the electron-neutrino survival probability if the electron
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number density profile in the Sun is approximated by an exponential n, o e~"/70:

6—'ysin2€ — e
P.= = (28)
where v = 21rgAm?/2FE. 1t is easy to check that the survival probability is invariant
under the simultaneous change Am? — —Am? and § — 5 — 6, but not individually.
Therefore the matter effect distinguishes the light and the dark sides.

It cannot be overemphasized that physics is different between the light and the
dark side even if the neutrino propagates in the vacuum. It is just that the vacuum
oscillation probability comes out the same in both sides. In the case of v,~v, mixing,
for instance, one can ask the question if the mass eigenstate closer to the v, state is
heavier or lighter. If one can literally weigh them, this question has a clear physical
meaning. The fact that the vacuum oscillation does not distinguish both sides is
simply due to the focus on one particular physical quantity.

4.2 Atmospheric Neutrino Data

Given the fact that the light and the dark sides are physically distinct, it is useful to
plot the preferred parameter range from the SuperKamiokande experiment continu-
ously from 0° to 90°. In Fig. [}, we show plots on sin? 26 and sin? § axes. Even though
the preferred region appears very close to the maximal angle with the sin? 26 plot, it
does not on the other plots. In fact, we argued in the previous section that the plot
should be shown on the sin? @ (rather than sin? 26) parameter.

The plots clearly show that the region preferred by the SuperKamiokande atmo-
spheric neutrino data is a somewhat large “blob” at the center of the parameter space,
and is not necessarily special. At this point, we can say that a random mass matrix
can well produce the apparent “near-maximal” angle. In this sense, we have been
fooled by the plots on sin? 20 because it shrinks the large angle region.

The atmospheric neutrino data sets the scale for the larger of two Am? to be at
1-6x1073 eV2.

4.3 Solar Neutrino Data

As for the solar neutrino problem, the small hierarchy among Am? in the seesaw
case (see Fig. fl) strongly favor the Large Mixing Angle (LMA) MSW solution which
requires Am? = 107°-107? eV?, especially its upper end (Fig. [). Recall that Am? for
the atmospheric neutrino oscillation is at 10731072 eV? as discussed in the previous
section (Fig. ). Since we know that 6,3 has to be somewhat small (we will come back
to this in the next subsection), two-flavor analysis of the solar neutrino oscillation is
basically valid even when three flavors are considered. For the LMA solution, the
mixing angle is sin?20 = 0.5-1. Recent analysis including the dark side suggest
tan? @ = 0.15-2 [[]. This is the region where the distribution in 65 is indeed peaked.
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Figure 6: The preferred region from the fit to the atmospheric neutrino data from
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the SuperKamiokande experiment at 90% and 99% C.L. (a) As it is presented by the
collaboration. (b) The dark side is added. (c) Replotted on sin”f. The angle 6 is

approximately o3 if 613 is small enough.



Therefore, it is fair to say that the LMA solution is “right on the mark” for the
anarchy with no physical distinction among three generations of left-handed lepton
doublets.

4.4 Reactor Neutrino Data

The only quantity where the distribution tends to go against the experimental data is
the angle 8;3. The lack of 7, disappearance in the reactor neutrino experiments such as
CHOOZ and Palo Verde had placed a limit on |U,3| = sin 6;3 (in case Am3, > Am3,, it
is on |Ue|). In Fig. B, we replot the constraint from the CHOOZ experiment [[] against
cos? 013 which is the variable that makes the distribution flat according to the U(3)
Haar measure. Depending on the precise value of Am? for the atmospheric neutrino
oscillation, one obtains cos?f;3 > 0.7-0.95. The experimentally allowed window is
hence 5-30%. We, however, do not see this as a fatal problem for the anarchy. Three
out of four physical quantities, sin? 203, sin? 2615, and (Am?)e /(Am?)aum worked out
right on, and the last one needs a little bit of fluctuation. What this means instead
is that U.3 may well be just below the current limit.

5 Hierarchy

In the previous subsections, we have shown that we expect large mixing angles, quite
often “maximal,” and only a small hierarchy among mass eigenvalues when there is
no fundamental distinction among three generations. The next obvious question then
is what generates small angles and large hierarchy for quarks. The charged leptons
also have a large hierarchy in their mass eigenvalues.

The most promising approach to this questions is probably an approximate flavor
symmetry. The idea is that there is a new symmetry (and hence a new conservation
law) which forbids all Yukawa couplings but for the top quark. The symmetry is
assumed to be broken by a small parameter, and other Yukawa couplings are generated
only at certain powers of the small symmetry breaking parameter. As emphasized
in the Introduction, the top Yukawa coupling (and possibly bottom and tau Yukawa
couplings if tan 5 ~ 60 in two-doublet Higgs models including the MSSM) is regarded
as of natural size O(1), and all other Yukawa couplings are small and hence require
explanations. The virtue of the approximate flavor symmetry is that it explains the
hierarchical mass eigenvalues as well as the small mixings at the same time.

Then our view of the fermion masses and mixings are simple: there is no distinction
among three left-handed lepton doublets L;, while there is for right-handed lepton
singlets e; as well as quarks. The lack of distinction among L; would appear “anar-
chical” leading to large mixing angles and small hierarchies in the neutrino sector.
However the distinction among three e; as well as quarks due to their different flavor
quantum numbers lead to hierarchical masses and small quark mixing angles. This
was the simple model presented in [].
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Figure 7: The preferred regions from the fit to the solar neutrino rates
SuperKamiokande, Gallium experiments, and Homestake, taken from Ref. [H].

Overlaid is the 95% CL exclusion from the SuperKamiokande day/night energy
spectra [§]. The angle 6 is approximately 65 if 613 is small enough.
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Figure 8 The limit on 63 from the CHOOZ reactor anti-neutrino oscillation
experiment. It is plotted against cos* 6;3.

The most simple extension of such model to the whole fermion masses is based on
the following U(1) flavor symmetry. The charge assignment is SU(5)-like:[]

10,(+2) 10,(+1) 104(0)
57(0)  53(0)  53(0) (29)
1,(0) 1,(0)  15(0)

where the subscripts are generation indices and the U(1) flavor charges are given
in bold face. The SU(5)-like multiplets contain 10 = (@, u¢,e°), 5 = (L,d), and
1 = N¢ where N = vp is the right-handed neutrino state. The idea here is that the
hierarchy in the fermion masses and mixings are solely due to the 10’s. Assuming
that the U(1) flavor symmetry is broken by a single parameter ¢(—1) ~ 0.04 ~ A%
the Yukawa matrices read

A e 2 & e e 1 1 11
Yo~ | & & € |,Y;~ e € € |, Y~ el |, Y~ 111/,
e e 1 1 1 1 e e 1 1 11

where the left-handed (right-handed) fields couple to them from the left (right) of the
matrices. There are “random” O(1) coefficients in each of the matrix elements. The

$This charge assignments would prefer a large tan 3. Another possibility is to assign charge + 1
for all 5’s which would prefer a small tan 3.
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property that Yy ~ YT is true in many SU(5)-like models. Finally, the Majorana
mass matrix of right-handed neutrinos is

111
Mp~My |11 1], (31)
111

where M, ~ 10% GeV is the mass scale of lepton-number violation.

Interestingly, these mass matrices had been already discussed in the literature [[[T],
but there has been a perception that the O(1) coefficients as well as texture zeros
have to be chosen very carefully. Similar mass matrices had been obtained in the
context of composite models [[[T], [[J], extra dimensions [[J], and anomalous U(1) [[4].
We certainly do not claim that the above mass matrices are new. However, before
the analysis in [[], these mass matrices had not been taken seriously as they were not
believed to explain the atmospheric and solar neutrino oscillations simultaneously
unless careful adjustments and/or more flavor symmetries are imposed in the above-
cited papers. Our proposal is that this simple flavor U(1) symmetry is enough to
understand the observed pattern of quark, lepton masses, quark mixings and neutrino
oscillations based on the simple assumption that the O(1) coefficients would appear
pseudo-random from the low-energy point of view.

The above mass matrices would naturally explain (1) the “double” hierarchy in up
quarks relative to the hierarchy in down quarks and charged leptons, (2) Vy, ~ O(€) ~
O(\?), (3) the similarity between the down quark and charged lepton masses. Some
“concerns” with the above mass matrices would be that the following points may be
difficult to understand: (a) mg ~ m,,/3, (b) m. ~ mg/3, (c) Vis ~ €*/2 rather than e.
However, in view of the fact that the O(1) coefficients would seem “anarchical” from
the low-energy point of view, a factor of 1/3 is quite likely to appear. And once mg
is fluctuated downwards by a factor of ~ 1/3, Vs would fluctuate upwards to ~ 3e
which is enough to understand the observed pattern of masses and mixings.

What if the SU(5)-GUT is true? One can still understand the pseudo-randomness
of the O(1) coefficients in the down and lepton masses in the following fashion.
Suppose there are many vector-like multiplets at the GUT-scale which do not survive
below the GUT-scale simply because of their vector-like nature ( “survival hypothesis”
[[3]). However, they can mix significantly with our quarks and leptons as long as they
share the same flavor quantum numbers. The mixing is likely to pick up the SU(5)-
breaking order parameter, such as the vacuum expectation value of the SU(5)-adjoint
Higgs boson. Then the resulting low-energy Yukawa couplings would not respect
SU(5) invariance and hence would appear random independently between the down
quarks and charged leptons. It is simply that the complexity of physics at the GUT-
scale leads to a pseudo-random nature of the O(1) coefficients from the low-energy
point of view.

Note that we could have assigned non-trivial charges to right-handed neutrino
states, and would obtain exactly the same phenomenologies for quarks, charged
leptons and neutrino oscillations.

20



6 Conclusions

We have advocated a new approach to build models of fermion masses and mixings,
namely anarchy. The approach relies only on the approximate flavor symmetries, and
scan the O(1) coefficients randomly. The randomness in O(1) coupling constants is
indeed what one expects in models which are sufficiently complicated or which have
a large number of fields mixed with each other.

This approach is particularly useful for neutrinos. Assuming there is no physical
distinction among three generations of neutrinos, we have shown that the probability
distributions in MNS mixing angles could be predicted independent of the choice of
the measure. This is because the mixing angles are distributed to the Haar measure
of the Lie groups whose elements diagonalize the mass matrices. The near-maximal
mixings, as observed in the atmospheric neutrino data and is required in the LMA
solution to the solar neutrino problem, are highly probable. Even though somewhat
more dependent on the particular choice of the measure, the distributions in the
mass spectrum can also be worked out. A small hierarchy between the Am? for the
atmospheric and the solar neutrinos is obtained very easily; the complex seesaw case
gives a hierarchy of a factor of 20 as the most probable one. Therefore, these three
observables are nicely consistent with the current experimental data. On the other
hand, the U.3 angle must lie in the 10% tail of the distribution. It is not surprising,
however, that three out of four observables are “right on the mark,” while the fourth
one is off at the 10% level. In other words, we expect U3 to be just below the current
limit from the CHOOZ experiment. This is an ideal situation for the future long-
baseline neutrino oscillation experiments. Moreover, CP-violating parameter sind is
preferred to be maximal.

The anarchy can be easily extended to the charged lepton and quark sectors. We
presented a simple SU(5)-like flavor charge assignment which works well phenomeno-
logically.

A Measures

A.1 Decomposition of the Measures

The measure over the mass matrix elements can be studied analytically. We consider
Majorana and Dirac cases with both real and complex matrix elements. The aim
here is to decompose the measure into that over the diagonalization matrix and other
over the mass eigenvalues.

First of all, it is important to note that the linear measure over the mass matrix
elements is invariant under change of basis. This is because a N x N real Majorana
mass matrix transforms as a symmetric rank-two tensor under the O(N) rotation of
the basis M — OMO?, and hence a linear representation. The naive N(N + 1)/2-
dimensional measure dM is hence invariant under this O(NV) rotation. Similarly, a
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complex Majorana mass matrix transforms as a symmetric rank-two tensor under the
U(N) rotation M — UMUT, areal Dirac mass matrix as (N, N) under O(N) x O(N)
as M — O MO%, and a complex Dirac mass matrix as (N, N) under U(N) x U(N)
as M — U,MUE.

This observation allows us to separate the measure over the mass matrix elements
in terms of eigenvalues and group transformations. Starting with the real Majorana
case, any mass matrix can be written as

M = 0DOT, (32)

where O € SO(N) and D = diag(my, ma, - -+, my) is a real diagonal matrix. Because
of the invariance of the measure dM under the change of basis M — O;MOT, the
measure dM should contain the measure over the group dO which is invariant under
the left transformation O — O;0. Since SO(N) is a compact Lie group, a left-
invariant measure is also right-invariant. Therefore, dO should be the invariant Haar
measure over the group SO(N). Then the measure dM can be written as

N
dM = f(mq,---,my) [] dm;dO. (33)

i=1
Here the yet-undetermined function f is symmetric under the interchange of eigen-
values. However, when two of the eigenvalues coincide, an SO(2) subgroup of the
SO(N) becomes ill-defined and we expect zeros in the function f. Therefore, f
N ;(m;—my). This factor already saturates the dimension of the measure, and hence

N

i<j i=1
up to a constant normalization factor. As we will see below, this simple expression
allows us to study the distributions in the mixing angles and eigenvalues very easily.

A similar consideration for the real Dirac case leads to the following measure:

N
dM = T[(mi —m?) [[ dm:dOLdOg. (35)

i<j i=1
Here, the mass matrix is parameterized as M = OpDO%, and dOp p are Haar

measures of both O(N) factors. If we restrict O p matrices to SO(N), we must
allow both positive and negative eigenvalues. However, in the vicinity of Op r = 1,
one can change the basis by an O(N) rotation diag(1,---,1,—1,1,---,1) to flip sign
of one of the eigenvalues, and hence m; = —m; should give a singularity as well as
m; = my;. Therefore, the prefactor should be I];_;(m; — m3) which saturates the
dimension and hence is unique up to a normalization constant.

The complex Majorana case is given by

N
dM = [[(m7 —m3) [] msdm;dU. (36)

i<j i=1
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The mass matrix is parameterized as M = UDU? where U € U(N). The prefactor
can be determined by the same argument as in the real Dirac case, because the sign of
an eigenvalue can be flipped by an U(N) rotation diag(1,---,1,4,1,---,1). However
this does not saturate the dimension of the measure, leaving additional N powers
of the eigenvalues. Only such an additional factor which is symmetric under the
interchange and also invariant under the change of the sign of an eigenvalue up to
an overall sign is the product of all eigenvalues, [ = i¥m;. Therefore the above
parameterization is unique.

Finally the complex Dirac case gives

N dULdUg

i<j i=1

(37)

The parameterization is M = U, LDU}TB. The prefactor is based on the same argument
as the real Dirac and complex Majorana cases, and the reason why (m; —m?) factor
is squared is because U(2) subgroups of U;, and Ug rotations are not independent
when m; = m;. We verified this for NV = 2, and this conjecture appears to be the
unique generalization to arbitrary N. The group measure is modded out by the
following transformation Uy, p — TUp g, where T' = diag(e!, ¢'2, - .- €'®N) because
this simultaneous change of Uy, and Ur does not change the mass matrix M.

Note that we do not quite know on what measure we should regard the mass
matrix elements to be “random.” The measure we discussed above, namely the linear
measure over the mass matrix elements may not necessarily be the correct measure.
However, the requirement of the basis independence implies that the invariant Haar
measure is certainly a part of it. The only possible modification of the linear measure
discussed above is a weight function which depends on the symmetric polynomials of
the eigenvalues. Therefore, the distributions on the mass eigenvalues can change from
the linear measure to the “correct” one, but the distributions on the mixing angles
cannot.

A.2 Haar Measures

The invariant Haar measures of SO(3) and U(3) groups relevant to our study can be
obtained once their parameterization is fixed.
First define the (right) Maurer—Cartan forms on the group manifold G

w* = —iTeT*U~tdU (38)

where U € G. Here, T® are hermitian generators. It is easy to check that these forms
are trivially invariant under the left-translation of the group U — UyU. Under the
right-translations U — UU,, however, they transform among each other:

w® — 0w’ (39)
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where

U T°Uy ' = OT". (40)

Note that Oy is an orthogonal matrix, which is easily checked by doing a successive
left-translation by U; . Because the Maurer—Cartan forms transform homogeneously
by an orthogonal matrix, the following combination

dU = €a1a2mana1 AWR A AW (41)

is invariant under the right-translations. Here, €;,4,..a5 is the totally anti-symmetric
tensor. This measure is invariant because of the orthogonal nature of the transfor-
mation, and N = dimG.

For SO(3), take the conventional parameterization

1 0 0 C13 0 513 C12 S12 0
0O = 0 Co3 S93 0 1 0 —S12 C12 0
0 —S8923 (23 —S13 0 C13 0 0 1
C12C13 S$12C13 S13
= —S812C23 — C12523513  C12C23 — S12523513  S23C13 |, (42)
512823 — C12€23513  —C12523 — S12€23513  C23C13

where c¢19 = cos o etc. Then the Haar measure is given by
dO = cos 913d912d913d923 (43)

up to an overall normalization factor. Note that the measure is flat in 615 and 693
similarly to the two-generation Majorana case discussed earlier. Therefore these
distributions are peaked in sin®26;5 and sin® 26,3 both at 0 and 1. The measure
is different for 6,3 being in the middle among three rotations. The reason why the
measure is degenerate when 613 — 7/2 is that 015 and 6,3 are not independent at this
point.

For U(3), take a similar parameterization

o ' 1 0 0 C13 0 8136_i5 cio2 S12 0 ' '
U = eMei®1Astid2ds | ) Co3  So3 0 1 0 —819 12 0 61X1>\3+1X2>\8’
0 —S923 (a3 —8136Z5 0 C13 0 0 1

(44)
where \3 = diag(1, —1,0) and \g = diag(1, 1, —2)/v/3 are Gell-Mann matrices. This
parameterization is designed to make the angles 7, ¢12, X1,2 unphysical except for
the Majorana phases in possible lepton-number violating processes. Then the Haar
measure is given by

dU = ds?ydctyds2,dddnddydpadxdys (45)

up to an overall normalization factor. For the Dirac mass matrices, we need to mod
out linear combinations of 1, x1, x2 from Uy and Ug, but this does not affect the
measure for physical angles, 615, 03, 023, 9.
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