ANARCHY AND ITS BREAKDOWN
by
Jack Hirshleifer

University of California, Los Angeles

UCLA Dept. of Economics
Working Paper #674
September, 1992



Jack Hirshleifer September 1992
ANARCHY AND ITS BREAKDOWN
Abstract

Anarchy is not mere chaos, and can constitute a stable system.
However, not all environments can sustain an anarchic order. Each
contestant in the model here balances optimally between producing out
of current resources versus fighting to seize or defend a resource
base. Anarchy is viable only when there are strongly diminishing
returns to fighting effort (the ’decisiveness parameter’ m must be
sufficiently low), else any contender with an initial advantage would
always gain total control. Under Cournot conditions, assuming
viability, as m rises fighting levels increase and achieved incomes
decrease. Also, larger numbers of contenders N imply higher per-
capita fighting efforts and lower per-capita incomes, even if the
resource base expands proportionately with N. Under Stackelberg
conditions all sides benefit from reduced levels of fighting, but
followers do better than the leader -- a.consideration that tends to

stabilize anarchy by reducing the motivation to seek leadership.



Jack Hirshleifer September 1992
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Anarchy is not chaos. It is, rather, a pattern of relationships
that constitutes, at least potentially, a stable system. However, not
all environments can sustain an anarchic order. Anarchy can break
down, to be replaced by another structure of relationships.
Whereas law and other socially ordered constraints define a

'political economy’, anarchy is a ’'natural economy’ .}

The biological
realm, with its varied and subtle social regularities,2 illustrates
how there can be order even under anarchy. As another instance, while
all nation-states govern by some form of law, relations among these
states remain anarchic. And yet, this international system also has
its regularities and systematic analyzable patterns.?

Biologists recognize two main forms of competition in Nature.
Fish in the open sea, living as they do mainly on resources that are
fugitive in space and time, can only engage in what is termed
‘scramble’ competition. 'Interference’ competition, in contrast,
occurs in environments where organisms can capture and deny others
access to valuable resources such as territories or mating partners.*
The latter more closely approximates the most important forms of human
rivalry and struggle.

Whenever it is possible to sequester resources, competitors have
to divide their efforts between two main types of activities: (1)
productive exploitation of the resources currently controlled, versus

(2) seizing and defending a resource base. There are two

corresponding technologies: a technology of production and a

S

technology of appropriation. conflict, and struggle.” There are ways




2
of tilling the land, and quite a different set of ways of capturing
land and securing it against intruders.

The analysis of anarchy as a system is directly applicable, as
already indicated, to lawless arenas such as the biological struggle
for survival and the competition among nation-states for territory and
influence. More generally, however, no civil order is ever perfect.
Institutions of political economy can only attenuate, rather than
completely eliminate, anarchic competition for control of resources.

In earlier papers I analyzed the choice between productive and
conflictual activities in environments characterized by an element of
jointness in production, for example the struggle between capital and

8  When each side’s productive inputs help

labor within the firm.
generate income for all parties, their interests are not totally
opposed and a degree of de facto cooperation typically emerges. Also,
in those papers the underlying resource base on each side was assumed
safe from capture, the issue being only how to divide up the jointly
generated income. Here we are concerned with a starker environment,
where the productive opportunities are entirely disjoint and the
fighting is over the resources themselves.

The analytical key distinguishing the theory of conflict is
recognition that (i) competitors are each trying to balance optimally
between productive effort versus conflictual effort, and (ii) their
separate decisions will jointly determine an equilibrium involving
levels of production and extent of fighting activity on each side,

together with a final distribution of product among the claimants.

While there are precursors, notably Schelling {1960], Boulding (1962],
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and Tullock {1974], the modern type of analysis can be said to begin
with Bush and Mayer [1974]. Recent contributions, apart from my own
papers cited elsewhere, include Skogh and Stuart [1982], Wolfson
[1985], Usher [1989], Garfinkel [1990], Grossman {1991] and Skaperdas
[1992].7

Among the issues to be considered here are:

1. When is there a stable anarchic solution?: Under what conditions

can unorganized contestants all retain a viable share of the social
resources in equilibrium? Or put the other way, in what circumstances
does the anarchic system ’'break down’ in favor of tyranny or some
other form of social control?

2. Equilibrium allocations of effort: Assuming a stable anarchic
equilibrium, what fractions of resources will be devoted to fighting?
What levels of incomes will be attained?

3. Numbers: If the number of contenders N 1is exogenously given, how
are the equilibrium fighting efforts and attained incomes levels of
income affected as N changes? Alternatively, if N is endogenous,
how many contenders can survive?

4. Technology and comparative advantage: How do the outcomes respond
to parametric variations, one-sided or two-sided, in the technology of
production or in the technology of struggle?

5. Strategic position: How do the outcomes respond to positional

asymmetries, for example where one side is a Stackelberg leader?
For the simplest case of two competitors (N = 2), Section I
below describes the conditions for a stable interior equilibrium under

Nash-Cournot behavior, while Section II analyzes the optimizing
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decision and final outcomes. Section III generalizes to any number of
contenders, where N may be either exogenous or endogenous. Section
IV examines the consequences of asymmetrical capacities (absolute or
comparative advantage in production or in conflict), while Section V
covers positional asymmetries. Section VI concludes with a discussion

of the results obtained.

I. CONDITIONS FOR EQUILIBRIUM IN THE STRUGGLE FOR RESOURCES (N = 2)

Each of two rival claimants aims solely to maximize own income.
Neither benevolent nor malevolent preferences play a role, nor is
there any taste for leisure or other non-incomé-generating activity.

At any moment of time each contender i will be dividing his or
her current resource availability R; between productive effort E;
(aimed at extracting income from resources or territory currently
controlled) and fighting effort F; (aimed at enlarging territory at
the expense of competitors, or repelling them as they attempt to do
the same):

(1-1 R, = a; E; + b; F;

Here the a; and b; are unit conversion costs (assumed
constant) of transforming resources into productive effort or into
fighting effort, respectively. Making use of a military metaphor, b;
is a logistics cost coefficient that indicates the resource burden per
fighting unit supported. Similarly a;, the production cost
coefficient, measures the resources expended to maintain a worker or
machine in civilian production. In the decades preceding the American

Civil War, inventions like the steamboat and railroad sharply reduced
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a; (since workers could be fed and machines built more cheaply) and
also b; (since supplies could more easily be delivered to fighting
troops). In consequence, vastly larger armies were able to take the
field in the Civil War as compared with the Revolutionary War or the
War of 1812.

It will sometimes be more convenient to deal with the
corresponding "intensities" e; -and f;:
(1-2) e; = E;/R; and £, = F;/R;
In what follows, the e; and f; will be the crucial decision
variables on each side, subject of course to:®
(1-3) a; e; +b; £, =1
As a crucial simplification, I assume each side makes an optimal once-
and-for-all fractional choice of e; and f;.

Symbolizing income to side 1 as Y;, let the production
function take the simple form:
(1-4) Y, = EP = (e;R))D Production Function
As pictured in Figure 1, there will be increasing, constant, or
decreasing returns to productive effort depending upon whether the

productive scale parameter h exceeds, equals, or falls short of

unity
[Figure 1]
The outcome of the struggle for resource control is measured by

the success fractions p; and p,, where of course p; + p; =1. In

equilibrium, the success ratio p;/p, determines the division of
aggregate resources R into the respective shares R, and Rj:

(1-5) Ri/R; = pi/P2 Resource Equilibrium Condition
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What I will call the Contest Success Function (CSF) determines

the success ratio p,/p, as a function of the ratio of the fighting

efforts F,/F, and a decisiveness parameter m > 0:°
(1-6a) pi/p2 = (Fy/F)" Contest Success Function
Or equivalently:
(1-6b) p. = F{"/(F{™ + F,™) and p, = F,°/(F™ + F;™)
Figure 2 illustrates how (with F, held fixed) the success fraction
p; responds to changes in fighting effort F,. Evidently, the
sensitivity of p; to F; grows as the decisiveness parameter m
increases.!?
[Figure 2]
Putting equations (1-5) and (1-6) together:
Ri/R; = (Fi/Fp)™ = (£,R,)"/(£,R,)™
which reduces to:
(1-7a) £," R™! = £,@ R,™!
Or, equivalently:
(1-7b) p1/Py = (/)™ ™ Equilibrium Success Ratio
Equations (1-7a) or (1l-7b) describe the logically required
steady-state relationships between the parties’ chosen fighting
intensities f£; and the equilibrium success ratio p;/p, or resource
ratio R;/R,. Figure 3 is a plot for different values of m. Note
that, as m -> 1, the curve approaches a limiting step function such

that p,/p, = 0 when f; < f, and py/p; =« when f; > f,. It

follows, therefore, that for a stable steady-state equilibrium, the

decisiveness parameter must lie in the range 0 < m < 1.

[Figure 3]}



NUMERICAL EXAMPLE 1:
Suppose m = 2/3. Then (l-7a) and (1-7b) simplify to:

P1/P2 = Ry/R; = (£1/£5)?
If the total resources available are R = 100 and the fighting
intensities on each side have been chosen (not necessarily
optimally) to be f;, = .1 and £, = .2, respectively, then:

p1/P2 = (.1/.2)% = 1/4
implying that, in equilibrium, R; = 20 and R, = 80.

To illustrate that this is dynamically stable (and unique),
start with any arbitrary initial distribution of resources --
say, R; = R, = 50. The parties having chosen f; = .1 and £, =
.2, by equation (1-7b) the conflict outcome in the first period
is py/p, = (30/60)%/3 = . 630. Since this ratio diverges from
R,/R, = 1, we are not yet in equilibrium. The ratio py/p; =
.630 implies p; = .386 and p, = .6l4; redistributing the
initially equal resource endowments accordingly, at the end of
the first period the revised resource distribution becomes R; =
.386x100 = 38.6 and R, = .614x100 = 61.4. Repeating the
process in successive periods, the equilibrium resource
distribution (R,,Rp;) = (20,80) is approached asymptotically.
What happens when the conditions for equilibrium are not met?

Then, we can say, the anarchic system breaks down. The preceding
discussion has brought out one source of breakdown: dynamic
instability. Another possible source of breakdown is non-viability.
Supposing that some minimum income y 1is required to sustain life,

anarchy cannot be stable if the equilibrium of the dynamic process



implies per-capita incomes Y; < y. Summarizing:
eRESULT #1: The conditions for non-breakdown of a 2-party anarchic
system are:

m=<1 Condition for dynamic stability

(1-8)
Y, 2y (i=1,2) Condition for viability

II. OPTIMIZATION AND EQUILIBRIUM
Figure 3 does not illustrate the solution of the system, but
only the relations that must hold in equilibrium among the dependent
variables R, and R, and the decision variables f; and £,. The
actual solution involves optimizing behavior on each side. As in the
traditional duopoly model of classical economic theory, there is a
problem of defining the optimum when what is best for each side
depends upon the other’s action. Without further apology, at this
point I will use the traditional Cournot assumption -- that contender
i chooses an f; on the assumption that the opponent’'s f; will
remain unchanged.!!? The individual chooses between e; and f; so
as to maximize Y;. A larger f; captures more territory, but a
larger e; generates more income from the territory currently
controlled.
The maximand for individual #l, given the opponent’s £,, is:
(2-1) Max Y, = (e;R))P = (epiR)P = {e,REM/(£,ME,))0,
subject to ase; + byf; =1
and defining for compactness M = m/(l-m)
Forming the Lagrangian and solving, straightforward steps lead to his

Reaction Curve RC;.!? A corresponding analysis of course leads the
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opponent to her Reaction Curve RC,:
(2-2a) £M/EM = M/ (b)) - (M + 1) Reaction Curve RC,
(2-2b) £EM/EM = M/(byf,) - (M + 1) Reaction Curve RC,
The Reaction Curves show how each side’s fighting intensity f;
responds to the fighting intensity chosen by the opponent. RC;, the
Reaction Curve for player i, depends on the decisiveness parameter m
and upon his or her own logistics cost coefficient b;; it is
independent of the productive scale parameter h, his or her own
production cost coefficient a;, and the opponent’'s cost coefficients.
It is evident from the analytical form of the equations that the
Reaction Curves both have positive slopes throﬁghout, as illustrated
in Figure 4. (This feature will prove important in interpreting the
Stackelberg solutions later on.)
[Figure 4]

Equations (2-2a) and (2-2b) may be solved for f; and f;,
determining the equilibrium of the entire system. Unfortunately,
there is no convenient general analytic solution. However, consider
the special case of gymmetrical conflict, i.e., where b; = b, =b. In
that case it must be that f; = f, at equilibrium, so (2-2a) and (2-
2b) reduce to:
(2-3) £; = £, = M/[b(M + 2)] = m/[b(2 - m)]

Symmetrical conflict equilibrium

Symmetrical solutions for b = 1 are illustrated by the
intersections of the paired RC,,RC, curves in Figure 4. If m = 1/2,
the inner pair of curves apply and the solution is f; = f; = .333. At

the larger decisiveness parameter m = 2/3, the intersection occurs at
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f, = £, = .5. Fighting effort being more decisive, each side is forced
to "try harder" -- to choose a higher fighting intensity and a
correspondingly larger fighting effort F;. The net result of is
reduced incomes for both sides.

Furthermore, from the form of equation (2-3) it is evident that
a symmetrical reduction in the logistics cost coefficients will have
consequences entirely parallel to what happens when the decisiveness
parameter m increases. Thus:
eRESULT #2: Assuming that the conditions for dynamic stability and
viability both hold, in the symmetrical conflict situation (equal
logistics cost coefficients b; = b, = b) larger values of the
decisiveness parameter m imply higher equilibrium fighting
intensities f; and f£,, and thus higher fighting effort levels F;
and F,. And similarly, the lower is the common value b of the
logistics cost coefficient, the greater will be the f; and F;.

Since p; = p; = 1/2 in the symmetrical conflict situation,
direct substitutions lead to the equilibrium per-capita incomes:

1 -m
(2-4) Y, = (e;p;R)? = [——— R]P
a;(2 - m)

provided of course that m <1 and Y; 2 y. The form of equation (2-
4) leads directly to:
eRESULT #3: In the symmetrical conflict situation, assuming once
again that the conditions for dynamic stability and viability both
hold, the incomes achieved (i) are independent of the level of the
logistics cost coefficient b, (ii) increase as aggregate resource

availability R or the productive scale parameter h rise, but (iii)
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decrease as the decisiveness parameter m 1increases. Also, (iv) for
either player, income also decreases as his/her production cost
coefficient a; rises.

NUMERICAL EXAMPLE 2:

In the previous Numerical Example, with R = 100 and m =

2/3, the contenders were arbitrarily assumed to have chosen

fighting intensities f, = .1 and f, = .2, leading to the

equilibrium resource distribution R; = 20 and R, = 80.

Suppose now that the parties choose optimally under the Nash-

Cournot assumption, holding to the parameter values R = 100

and m = 2/3, and now explicitly assuming symmetrical logistics

cost coefficients b; = b, = b = 1. From equation (2-3) the
equilibrium choices are £f; = f;, = .5, implying an equal
equilibrium resource division R; = R, = 50. From (2-4), and

assuming production cost coefficients a; = a, =1 and a

productive scale parameter h = 1, the associated incomes are Y;

=Y, = 25. (In contrast, had no conflict occurred -- i.e, if the

choices had been f; = f, = 0 -- the per-capita incomes would
have been 50 each.)

Apart from m, the decisiveness parameter, none of the
parameters in (2-4) affect the Reaction Curve on either side or
consequently the £,,f, solution. However, since these other
parameters do affect Y;, the level of income achieved, they have a
bearing upon whether or not the viability condition is met.

NUMERICAL EXAMPLE 3:

In Numerical Example 2 the equilibrium choices were £; = f; =
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.5, implying an equal resource division R; = R, = 50 and
. associated incomes Y, = Y, = 25. Maintaining all the previous

assumptions except for reducing the value of the productive

scale parameter from h = 1 (constant returns) to h = .95

(diminishing returns), the per-capita incomes fall from Y; = 25

to Y; = 19.5. So if the viability threshold were, say, y = 20,

for h = .95 anarchy would break down.

To summarize: Of the two conditions for non-breakdown of
anarchy, the dynamic stability condition depends solely upon the
decisiveness parameter, to wit, m < 1. Only if m is sufficiently
low, i.e., if the success ratio is sufficiently insensitive to the
fighting effort ratio F,/F,, can there be a stable interior
equilibrium. In the special case of symmetrical conflict (equal
logistics cost coefficients b, = b, = b), the equilibrium levels of
the fighting intensities f; increase as the decisiveness parameter m
rises and as the logistics cost parameter b falls. But whether the
viability condition Y; 2 y is met will depend also upon the aggregate
resource availability R, the productive scale parameter h, and the

party’s productive cost coefficient a; -- since all these enter also

1

into the determination of the absolute income levels Y;.

III. VARYING NUMBERS -- EXOGENOUS VERSUS ENDOGENOUS N
Exogenous N

Suppose now that there are now a fixed number of competitors N,
where N > 2. Assume that the contest is a melee, a Hobbesian

struggle of each against all, and that R, the aggregate of resources
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available, is constant. Using the Cournot solution concept again,
each contender 1 chooses an f; (fraction of resources devoted to
fighting) on the assumption that every opponent j will be holding

his or her £,

j fixed. Generalizing equations (l-7a):

(3-1la) £, R™! = £,° R,™ = .. = £ Ry"!?
Or, equivalently:
(3-1b) py:ipy:...:py = (£1:fy:.. . :fpY,
For dynamic stability, once again it is necessary to have m=<1. 1In
addition, as before the viability condition Y; = y must also hold.

For simplicity, in this section conflict symmetry (equal
logistics cost coefficients b, = b,) and productive symmetry (equal
production cost coefficients a; = a,) are assumed to hold, and as a
numerical convenience all these parameters can be set at unity. Then
f, = f, = ... = fy at equilibrium. For any contender i, the maximand
is:
(3-2) Max Y; = e;R; = e;p;R = e;REM/(£,MEM. . +£),

subject to e;+f;=1

Proceeding by straightforward steps, the Reaction Curve for competitor
i, the analog of equation (2-2a), is:
(3-3) £MEM+ L+ § =M/, - M+ 1) Reaction Curve RC;

Using the fact that in symmetrical equilibrium all the £; are
equal, the solution for the fighting intensities is:

M m(N - 1)

(3'4) f1=fz="‘...=fN= =
M+ 1+ 1/(N-1) N -m

It is evident that the fraction of resources devoted to fighting rises

as the number of contestants increases. The equilibrium incomes are:
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1 -m

(3-5) Yi = (eiPiR)h = ( R)h

N -m

provided of course that m <1 and Y; 2y
eRESULT #4A: Assuming productive and fighting symmetry (the production
cost coefficients a; are equal and so are the logistics cost
coefficients b;), and if aggregate resources remain fixed (that is, if
;R; = R, a constant), then as the number of contestants increases the
average competitor is impoverished in two ways: first, because the
equilibrium pro-rata resource share p; = 1/N must fall as N grows,
and second, because the equilibrium f£; rises. That is, each
contender has to waste proportionately more effort in fighting even to
obtain this reduced share.!®

Now consider a more friendly environment such that the aggregate
resource base is not fixed but grows in proportion to the number of
claimants. We can imagine that each entrant brings into the economy a
resource quantum r, so that R = Nr. Evidently, the expanding
resource base would exactly cancel out the adverse effect upon per-
capita incomes of the fall in p; = 1/N. But the effect of the larger
commitments to fighting efforts remains. Under this more optimistic
assumption the equilibrium incomes are:

1 -m
Nr)h

(3-6) Yi = (eiPiR)h - (
N -m

eRESULT #4B: Even if aggregate resource availability increases in
proportion to numbers N, the average level of income still falls as
N rises, owing to the higher equilibrium fighting intensities £;.

Figure 5 illustrates how fighting intensity f; rises with
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numbers N, and the implications of that fact for per-capita income Y;
= (e;p;R)? under the more and less favorable assumptions about the
relation of aggregate resources to the number of contenders. (The
parameter values for the diagram are as stated in Numerical Example 4
below.)
[Figure 5]

Once again, of course, these results are valid only if the
stability condition (m < 1) and the viability condition (Y; = y) both
hold.

NUMERICAL EXAMPLE 4: In Numerical Example 2 with parameters m

= 2/3 and a; =b; =h =1, for N =2 and aggregate resources

R = 100 the equilibrium fighting intensities were f; = f, = .5

while the associated per-capita incomes were Y; = Y, = 25. For

N = 3, with aggregate resources still fixed at 100, from (3-4)

the equilibrium fighting efforts rise to f; = f, = .571, while

from (3-5) the per-capita incomes fall to Y; = 14.3,

approximately. If on the other hand resources rise in

proportion to numbers -- specifically here, if R = Nr, where r

= 50 -- equation (3-6) implies Y; = 21.4, approximately. Thus,

even when the resource base expands in proportion to N, there is

a per-capita income loss owing to the larger optimal f;.
Endogenous N

If the economy is not closed but is instead subject to
immigration or emigration, the equilibrium number of competitors N
will be determined by the viability limit -- a kind of "zero-profit"

condition:



16
(3-7) Y, (N) =y Condition for equilibrium N
Once again, the actual viable population will depend upon whether
aggregate resources R are fixed or alternatively grow in proportion
to numbers N.

NUMERICAL EXAMPLE 5: With the same parameter values as in the

previous Example, for the case where aggregate resources are

fixed at R = 100 suppose the viability threshold is y = 4.

It can be verified from (3-5) that the equilibrium incomes are

Y, =4 at N =9. So this fixed resource magnitude will support

a population of N = 9 competitors.

If instead resources expand with population in such a way
that R = 50N, the situation is much more favorable. In such an
environment, equation (3-7) indicates that N = 9 would be the
equilibrium population for a viability threshold as high as y =
18.

Summarizing, larger N implies lower per-capita incomes Y;
even if each added player brings in a pro-rata increment of resources.
The reason is that with larger N each contestant has to fight harder
just to maintain his or her proportionate share. If N is
endogenously determined, a "zero-profit" condition will establish the

viable number of contestants.

IV. ASYMMETRICAL CAPACITIES: PRODUCTIVE ADVANTAGE vs. FIGHTING
ADVANTAGE
The emphasis to this point has been upon symmetrical solutions.

This section examines the implications of asymmetrical capacities as
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between the players. The section following will address asymmetries

Asymmetrical conversion cost coefficients

One type of asymmetry has already been mentioned: differences
between competitors in their abilities to convert resources into
productive effort E; or fighting effort F;, as reflected in the
magnitudes of a; and b; respectively. As previously noted, apart
from the special case of equal logistics cost coefficients (b; = bj)
there is no convenient analytical solution for equations (2-2a) and
(2-2b) -- that is, for the intersection of the Reaction Curves that
determines the equilibrium of the system as a whole. Nevertheless,
the implications of divergences in the conversion cost coefficients ay
and b; can be illustrated by the numerical simulations pictured in
Figures 6 and 7.

[Figures 6 and 7]

All the simulations maintain the parameter values of Numerical
Example 2, apart from the asymmetries introduced by the indicated
changes in a; (Figure 6) and b; (Figure 7). Without going over the
details, we can summarize:
eRESULT #5: As a; rises relative to a,, other things equal Y; must
fall while Y, and all the other variables remain unaffected. Thus,
an absolute disadvantage in production (a, > b;) impacts only upon own
income. But an absolute disadvantage in fighting (b, > b;) affects the
fighting intensities as well (f; < f;), implying both lower own income

Y, and higher opponent income Y.

Other asymmetries



18

Other types of asymmetries may also be important. In the
production function equation (1-4), for example, it might be that the
respective production processes do not reflect the same degree of
returns to scale. Instead of a common exponent h there might be
distinct exponents h; and h,. Owing once again to the maintained
assumption that the production processes on the two sides are entirely
disjoint, any such changes will impact only upon the parties’ own
incomes.

On the fighting side, instead of a common decisiveness parameter
m in equation (1-6a) there might be distinct exponents m; and m;.
If m > m,, the implication is that a higher degree of fighting effort
on the part of contender #l (F; > F,) is more decisive with respect to
the outcome than the reversed disparity (F, > F;) would be. This
might be a way of modelling a situation in which player 1 'takes the
offensive’ (aims for a decisive outcome) while player 2 'stands on the

defensive’ (hoping to reduce the chances of a decisive outcome).

V. POSITIONAL ASYMMETRIES: STACKELBERG SOLUTIONS

Just as capacities may differ in several ways, there are several
kinds of asymmetries of position. Only the Stackelberg situation is
considered here, in which one of the rivals is a "leader" who moves
first in choosing his fighting intensity -- to which the opponent then
responds with her optimal reaction.!* Ability to move first is often
an advantage, for example 'taking the high ground’ in a military
context. But the second-mover, being able to optimize in the light of

the opponent’s known choice, has an informational advantage. So it is
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not immediately clear whether, in the present context, a Stackelberg
leader can be expected to come out ahead.

If contender #1 is the Stackelberg leader, he can choose his
fighting intensity f; in the knowledge that the opponent's f, reply
will be governed by her known Reaction Curve RC,. To isolate the
effect of positional asymmetries, in this section fully symmetrical
capacities are assumed -- and specifically, all the conversion cost
parameters are set at a; = b; = 1. Also, nothing is lost by setting
the scale parameter h = 1. Then, player l's analytical problem is:

£
(5-1) Max Y; = e;pp;R = R(1 - £;) ———-
£M + £
subject to £M/£M = M/E, - (M + 1)
where the constraint is RC, as given by equation (2-2b).

The question is, given the opportunity to do so, would the
Stackelberg leader choose an f; that diverges from his Cournot
solution, and if so in which direction? The actual maximization is
analytically somewhat intractable. But recall now that both Reaction
Curves necessarily have positive slope throughout. Thus, if player 1
were to choose a larger-than-Cournot f;, player 2 would respond with a
somewhat larger f, -- implying a lower aggregate income for the two

sides together. It has been shown by Esther Gal-Or [1985] that,

whenever the Reaction Curves are positively sloped, the relative

advantage is always to the second-mover. An example: in duopoly

equilibrium, when quantity is the decision variable the Reaction
Curves are negatively sloped and it is advantageous to move first;

when price is the decision variable, the curves are positively sloped
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and the advantage is to the last-mover.

That the relative advantage is to the second-mover is confirmed
by the numerical simulation pictured in Figure 8. With player #l as
leader, the diagram shows the respective fighting intensities f; and
f, and the incomes Y; and Y,, as a function of his choice of £f;
(using once again the quantitative assumptions of Numerical Example
2). The Cournot equilibrium is represented as before by £, = £, = .5
and Y, = Y, = 25. As can be seen, under the assumptions here the
leader does best by choosing a somewhat lower £, = .41, approximately,
his income rising slightly to about 25.7. The second-mover optimally
responds by cutting back her fighting intensity only to about .466,
reaping a considerably higher income of around 30.1.

[Figure 8]
eRESULT #6: In shifting from the Cournot to the Stackelberg
equilibrium, both parties gain. But the follower does better than the

leader!

VI. CONCLUDING REMARKS
It will be convenient to summarize by responding briefly to the
specific questions raised in the Introddction.

1. When is there a stable anarchic solution? The conditions for non-

breakdown of anarchy are:

(i) Dynamic stability: to preclude the situation in which an initially
more powerful contender captures more and more resources and
eventually eliminates all opposition, it must be that the sensitivity

of the conflict outcome to force disparities must be sufficiently low.
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Specifically, the decisiveness parameter m in the Contest Success
Function (CSF) must lie in the range m < 1.

(ii) Viability: Per-capita incomes under anarchy must meet or exceed
the minimum survivable income level (Y; = y). The attained Y; will
depend upon many parameters including the aggregate resources R, the
conversion cost coefficients a; and b;, and the returns-to-scale
coefficient h.

2. Equilibrium allocations of effort: In the Cournot solution with N

= 2 contestants, the equilibrium fighting intensities on each side
are determined by the intersection of the parties’ Reaction Curves
RC;. A closed solution was obtained for the symmetrical conflict case
with equal logistics cost coefficients b; = b, = b. The crucial
result is that, as the decisiveness coefficient m rises, each side
is forced to fight harder -- leading to increased mutual loss of
potentially achievable income. In the symmetrical conflict model, the
incomes achieved Y; are independent of the actual level of b but
vary in the expected way with R, h, and the production cost
coefficients a;.

3. Numbers: The key result is that, as N grows, the equilibrium
fighting intensities f; rise. Consequently, if aggregate resources

R are fixed, per-capita income Y; falls for two reasons: first,

because each party’s pro-rata share p; = 1/N is less, but second,
because f; 1is rising. (A contestant has to fight harder just to
retain the pro-rata share.) And even in a more generous environment
where resources grow in proportion to N, there will still be lower

per-capita incomes owing to f; being greater. If the number of
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contenders N is endogenous, the equilibrium N will be determined
by the viability condition Y; = y -- that is, entry occurs up to the
point of "zero profit.”

4. Technology and comparative advantage: 1In the model here, an
asymmetrical productive improvement in, say, contestant #l's
production cost coefficient a; increases own income Y; but does not
otherwise affect any of the results. Asymmetrical improvements on the
conflict side, however -- say, a reduction in the logistics cost
coefficient b; -- not only increases own income but also reduces the
opponent’s income Y,.

5. Strategic position: As compared with Cournot equilibrium, the
Stackelberg solution involves reduced fighting effort on both sides --
but the reduction is greater for the leader than the follower. So,
although both sides end up absolutely better off as compared with the
Cournot outcome, the leader is relatively worse off. This evidently
tends to stabilize the anarchic system. Although all parties could
gain by shifting to a Stackelberg leadership pattern, each participant

is motivated to hold back and let the opponent take the lead.

As a general qualification, all the results here depend upon a
particular way of modelling anarchy that omits many possibly important
aspects of the anarchic situation. To mention only a few: (1) Full
information was assumed throughout, so that factors like deception

5 (2) Apart from opportunity costs in the form

have been set aside.!
of foregone production, fighting was assumed non-destructive.® (3)

The effects of distance and other geographical factors were not been
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considered. (4) The steady-state assumption rules out issues
involving timing, such as arms races, economic growth, or (on a
smaller time-scale) signalling resolve through successive escalation.
(5) In the postulated ratio form of the Contest Success Function,
‘peace’ -- i.e., where it is optimal on both sides to engage in zero
fighting effort -- is impossible. 1If the outcome of conflict
depended, possibly more reasonably, upon the difference between the
fighting commitments, a peaceful equilibrium would be possible.?’

The justification for these omissions is that one must begin
somewhere. The model illustrates a method of analysis. In some
particular context, it might be unacceptable to omit the element of
collateral damage (qualification #2 above), for example. Still, that
effect could be incorporated by means of an adjustment that
nevertheless preserves the general analytical framework developed
here.

As a final question, supposing that anarchy does break down,
what happens next? Such a query moves outside the range of the model,
but nevertheless there are some suggestive indications.

Anarchic breakdown, the analysis has indicated, could be due
either to dynamic instability or to non-viability. In the former
case, owing to the decisiveness parameter m being too great,
whichever side has a sufficient initial advantage would capture more
and more resources and ultimately become all-powerful. So any
momentary advantage will lead to total extinction of opponents.18
Or, it might be that m is not too high, but the incomes Y; achieved

under anarchy are too low for viability.
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In either case, on the social level what is needed is to reduce
the wastage of potential income due to excessive fighting. One way
out might be a Hobbesian social contract in which parties facing
extinction accept subordination as the price of survival. Or
alternatively, a Lockian social contract that replaces anarchic
defense of resources with secure property rights. Either solution
promises to increase aggregate output via new modes of production and
exchange that can take advantage of the combined efforts of the
parties. Still, neither of these solutions is costless. 1In a
Hobbesian world the struggle to achieve alpha rank also consumes
resources, while Lockian property rights have.to be defended against
coercion and fraud. But even if there were a clear social profit to
be gained, the questions of who might be motivated to bring about the
transition from anarchy and how he or she could achieve it remain to

be modelled.?!®
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ENDNOTES

1.Natural economy and political economy are compared in Ghiselin
[1978] and Hirshleifer [1978].

2.See, for example, Wilson [1975], Trivers [1985].

3.Cf Waltz [1954], Snyder and Diesing [1977], Bernholz [1985].

4.A convenient survey is McNaughton and Wolf [1973], Ch. 11-12.

5.0n these two technologies see Hirshleifer [1991a].

6.Hirshleifer [1988, 1991b].

7.The somewhat parallel literature on rent-seeking, starting with
Tullock [1967], differs in two main respects. First, rent-seeking is
typically concerned only with a rather innocuous process of bidding
for resource control, rather than fighting for it. Second, the rent-
seeking literature typically postulates prizes that are exogenously
given rather than determined endogenously through the interaction of
production and struggle.

8.While e; and f; are necessarily non-negative, either or both may
exceed unity (since E; and F; need not be scaled in the same units
as R;). In the special case where a; = b; = 1, however, e; and f;
are each bounded by 0 and 1.

9 .This form of the CSF, in which the success fractions are determined

by the ratio of the fighting efforts, was proposed in Tullock {1980].

1f instead the outcome depends upon the difference between the
fighting efforts, the CSF takes the form of a ’'logistic’ curve (see
Hirshleifer [1988]. Both forms are instances of the more general

logit functions described in Dixit [1987]).



26

10.When m < 1, diminishing returns to fighting effort hold
throughout. For m > 1, however, there are increasing returns to
fighting effort over an initial range.

11.1 assume that fixed one-time choices of f; and £, are made on
each side. More generally, the decision for contender i would
involve choosing an optimizing curve £;(R;) as a function of £;(R;).
I do not address this more difficult problem.

12.For player #l the first-order conditions, where X 1is the

Lagrangian multiplier, are:

aL Rf,M

—— = h(e;pR)P! ———— ~ Xa; = 0

de, £ MHEM

aL e, RMf," £,

— = h(epR)P ———— = b, = 0
af, (£,"%+£,%)2

Routine steps then lead to equation (2-2a), the Reaction Curve for
player 1.

13.However, the wastage fractions £; do not approach unity in the
limit. Instead, as is evident from equation (3-4), as N grows
indefinitely large we have: lim £, = M/(M + 1) = m.

14.The Stackelberg type of positional asymmetry may arguably be taking
us outside the domain of anarchy, properly speaking. Definitely
diverging from anarchy (and therefore not considered here) is
'hierarchial’ asymmetry -- where, in order to influence the follower’s
behavior, the leader is able to issue a prior threat and/or promise
while guaranteeing to execute it ex-post (Hirshleifer [1988]). The
relation between Stackelberg and hierarchial positions has also been

explored in unpublished work by Raymond E. Franck, Jr., and see also
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Thompson and Faith [1981].

15.0n this see, for example, Tullock [1974, Ch. 10] and Brams [1977].
16.In Becker [1983], for instance, incidental damage to the economy
(called 'deadweight cost’) plays a crucial role in limiting the extent
of conflict.

17.As emphasized in Hirshleifer [1988] and Skaperdas [1992].

18 .A rather drastic version of such an assumption appears in Niou and
Ordeshook [1986], for example. In their model, if at any moment of
time a state controls more than half the global aggregate of
resources, it can always costlessly gobble up the remainder!

19.So far as I know, this question has been systematically addressed
only in the biological literature. Specifically, biologists have
analyzed the conditions leading to various forms of social structures,
notably territoriality (anarchy with sequestered resources) or
dominance (hierarchy). One general concern has been whether species
or group advantage (for example, in reducing the resource loss due to
fighting) can of itself effectuate social change or, alternatively,
whether such change only occur to the extent that individuals
responding to their private genetic advantages are motivated to bring
it about. The modern consensus favors the latter interpretation --
the ’'selfish gene’ hypothesis (Dawkins [1976]). As an example of a
more specific question, biologists have asked whether impoverishment
of the environment, other things equal, tends to favor territorial
(anarchic) or>hierarchia1 systems. See, for example, Morse [1980, pp.

246-251] and especially Vehrencamp [1983].
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Figure 3
FIGHTING INTENSITIES AND SUCCESS RATIO
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Figure 4
REACTION CURVES (m = 1/2and m = 2/3)
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Figure 5
EFFECT OF RISING NUMBERS (N)
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Figure 7

EFFECT OF LOGISTICS COST ASYMMETRY
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Figure 8
STACKELBERG OPTIMUM
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