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The rodent whisker system is widely used as a model system for investigating sensori-

motor integration, neural mechanisms of complex cognitive tasks, neural development,

and robotics. The whisker pathways to the barrel cortex have received considerable atten-

tion. However, many subcortical structures are paramount to the whisker system. They

contribute to important processes, like filtering out salient features, integration with other

senses, and adaptation of the whisker system to the general behavioral state of the animal.

We present here an overview of the brain regions and their connections involved in the

whisker system. We do not only describe the anatomy and functional roles of the cerebral

cortex, but also those of subcortical structures like the striatum, superior colliculus, cere-

bellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as

well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and

noradrenergic pathways. We conclude by discussing how these brain regions may affect

each other and how they together may control the precise timing of whisker movements

and coordinate whisker perception.

Keywords: vibrissa, follicle–sinus complex, barrel cortex, basal ganglia, cerebellum, sensorimotor integration,

rhythmic movements, anatomy

INTRODUCTION

Rodents have highly mobile whiskers, with which they can rapidly
locate and discriminate objects in their environment. The rodent
whisker system has become a popular model system for brain
development, experience-dependent plasticity, perceptual learn-
ing, repetitive, timed motor responses, sensorimotor integra-
tion, and robotics. Of the many brain regions involved in the
whisker system, the trigeminal brainstem, thalamus and primary
somatosensory cortex (S1),and to a lesser extent the whisker motor
cortex (wM1), have attracted most attention (for reviews see Klein-
feld et al., 1999; Deschênes et al., 2005; Brecht, 2007; Petersen, 2007;
Alloway, 2008; Diamond et al., 2008). Other brain regions and the
structures of the whisker pad itself have received less attention.
Here we aim to integrate the current knowledge on subcortical
structures into the well-known whisker pathways, thus presenting
an overview of the most important structures of the whisker sys-
tem and their interconnections as a whole. In addition, we discuss
how these structures may cooperate to generate and sense whisker
movements.

Tactile hairs are specialized hairs that, due to the presence
of sensitive mechanoreceptors at their follicles, provide accu-
rate somatosensory input. Tactile hairs which grow from a
follicle–sinus complex (FSC) are called “vibrissae” or “whiskers.”
Almost all mammals, except humans and egg-laying mam-
mals (monotremes), have vibrissae (Chernova, 2006; Muchlinski,
2010). Vibrissae can grow from all body parts, but are mainly
located on the face (Sarko et al., 2011). Most likely, all vibrissae can

be moved, but there is a large variability in movement mechanics.
Some vibrissae, like the genal vibrissae in the hamster, lack mus-
culature and are moved solely by vascular and connective tissue
dynamics (Wineski, 1985). Other vibrissae can be moved by mus-
cles involved in the erection of hairs (m. arrector pili; Hyvärinen
et al., 2009), while mystacial vibrissae can be moved by a group of
specialized muscles (Brecht et al., 1997; Haidarliu et al., 2010; Sarko
et al., 2011). In some species, including shrews (Munz et al., 2010)
and rodents such as rats, mice, gerbils, hamsters, chinchillas, and
porcupines (Woolsey et al., 1975), the mystacial vibrissae can move
fast and rhythmically (Figure 1A). This behavior is called “whisk-
ing,” and in accordance we reserve the term “whiskers” here for
those vibrissae that can be whisked. Whisking behavior is absent
in most species, including well-studied species like rabbits, cats,
and seals (Woolsey et al., 1975; Dehnhardt and Kaminski, 1995).
The main function of vibrissae is to complement or replace near-
vision (Welker, 1964; Gogan et al., 1981; Ahl, 1986). In addition,
marine mammals use their vibrissae for long-distance sensing. For
instance, a seal may “feel” prey fish at more than 180 m distance
(Dehnhardt et al., 2001). Vibrissae also help to locate, identify,
and capture prey (Anjum et al., 2006; Munz et al., 2010; Favaro
et al., 2011). In addition, vibrissae inform about body posture,
especially in water (Ahl, 1982), and play a central role in social
behavior (Miller, 1975; Blanchard et al., 1977).

Well-timed, rhythmic whisker movements are instrumental in
exploring the environment (Carvell and Simons, 1990; Grant et al.,
2009; Hartmann, 2011). When doing so, rats make large whisker
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movements at a relatively low frequency (5–15 Hz). Once their
interest has been caught, they can thrust their whiskers forward
and make smaller movements at higher frequencies (15–25 Hz) to
identify objects and textures (Carvell and Simons, 1995; Harvey
et al., 2001; Berg and Kleinfeld, 2003a). Small variations in surface
texture may halt the whisker tip for a short while, after which it
slips past the fine obstruction (Figure 1B; Neimark et al., 2003;
Ritt et al., 2008; Wolfe et al., 2008). Such “slip-stick” movements
can trigger stereotypical neuronal responses allowing the animal
to sense subtle features of surfaces (Figure 1C; Jadhav et al., 2009).
The combination of rhythmic movements and precisely timed
sensory input thus greatly increases the acuity of whisker input.

WHISKERS

THE WHISKER PAD

The organization of the whiskers on the mystacial pad varies
greatly between different species, but is relatively similar between
rats and mice (Woolsey et al., 1975; Brecht et al., 1997). Rats
and mice have five rows of whiskers. The upper two rows (A–
B) have four whiskers each, while the lower three rows (C–E)
each contain about seven whiskers. In addition, there are four

FIGURE 1 | Whisker movements. (A) Whiskers move rhythmically

back-and-forth during exploratory whisking in the rat. The deflection along

the rostro-caudal axis is much larger than that on the dorso-ventral axis. The

left panel is a schematic drawing of the space in which a whisker can be

moved, based on Bermejo et al. (2002). The right panels are reproduced

with permission from Hill et al. (2008). (B) Position, velocity, and

acceleration of a rat D3 whisker during one whisking cycle on P150

sandpaper. Irregularities in the sandpaper surface cause “slip-stick”

movements. Reproduced with permission from Wolfe et al. (2008). (C) Slips

can trigger neuronal responses in rat wS1, as shown by a peri-stimulus

time histogram of the spike times of a single neuron aligned on the first

slips of whisker movements. Reproduced with permission from Jadhav

et al. (2009).

particularly large whiskers (“straddlers”), labeled α–δ, at the cau-
dal edge of the mystacial pad (Figure 2A). The muscles of the
mystacial pad are divided into extrinsic and intrinsic muscles, all
of which are innervated by specific branches of the facial nerve
(Figure 2A; Dörfl, 1985). The intrinsic muscles are completely sit-
uated within the mystacial pad, while the extrinsic muscles have
their origins outside the mystacial region (Dörfl, 1982; Jin et al.,
2004; Haidarliu et al., 2010). During a normal, exploratory whisk-
ing cycle, the whiskers first protract and then retract. Whisker
protraction is initiated by contraction of the medial inferior and
medial superior parts of the extrinsic muscle m. nasolabialis pro-
fundus and completed by contraction of the intrinsic capsular
muscles. Subsequent whisker retraction is under control of two
extrinsic muscles, the m. nasolabialis and the m. maxillolabialis
(Figures 2A,B; Berg and Kleinfeld, 2003a; Hill et al., 2008; Simony
et al., 2010). Whisker retraction during foveal whisking is a rela-
tively passive process, involving virtually no muscle activity; during
foveal whisking the vibrissae are thrust forward and palpate objects
with low-amplitude movements at high frequency (Berg and Kle-
infeld, 2003a). Rodents can also move the whole mystacial pad. Pad
movements may contribute to the normal whisking cycle (Bermejo
et al., 2005), but can also involve rotation or resizing of the whisker
pad to optimize object contact (Haidarliu et al., 2010; Towal et al.,
2011). For instance, contraction of m. nasolabialis superficialis
moves the A and B rows dorsally, and contraction of m. buc-
cinatorius pars orbicularis oris moves the C–E rows ventrally,
thereby adjusting the mystacial field size (Haidarliu et al., 2010).
Although the general structure of the mystacial pad is similar in
mice (Dörfl, 1982), hamsters (Wineski, 1985), and rats (Haidarliu
et al., 2010), minor differences between species do occur, mainly
in the organization of the m. nasolabialis profundus (cf Haidarliu
et al., 2010).

FOLLICLE–SINUS COMPLEXES

Vibrissae differ from other (pelagic) hairs in that each of their (epi-
dermal) follicles is surrounded by a (dermal) blood sinus, which
in most species is composed of a distal ring sinus and a prox-
imal cavernous sinus (Figures 2B,C; Szymonowicz, 1895; Ebara
et al., 2002; Kim et al., 2011). It has been suggested that animals
can modulate the dynamic range of the vibrissal mechanorecep-
tors by changing the blood pressure in the blood sinus (Vincent,
1913; Nilsson, 1969; Gottschaldt et al., 1973). In addition, the size
of the FSC seems to be adapted for the behavior and environ-
ment of the animals. In general, the largest FSCs are found in
marine mammals, intermediate FSCs in semi-aquatic species, like
otters and water rats, and the smallest FSCs in purely terrestrial
mammals (Dehnhardt et al., 1999; Hyvärinen et al., 2009). Larger
FSCs make the vibrissal movements more resistant to water, which
has a much higher density than air, and allows better thermal
insulation of mechanoreceptors to cold or warm water (Dehn-
hardt et al., 1998, 1999). The larger size of the FSCs of marine
mammals is due to the presence of a second, external cavernous
sinus (Figure 2C; Sarko et al., 2007; Hyvärinen et al., 2009). In
species where the vibrissal system is relatively unimportant, such
as marsupials and primates, the FSCs lack a ring sinus (Van Horn,
1970; Hollis and Lyne, 1974; Marotte et al., 1992). Thus, the adap-
tations in the FSC-anatomy are in line with specific behavioral
requirements.
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FIGURE 2 | Location and structure of the whiskers. (A) The whiskers are

organized in rows on the mystacial pad. Mice and rats have five rows of

whiskers, as well as four “straddlers” caudal to these rows. Each whisker

is associated with an intrinsic capsular muscle [see also (B)]. Extrinsic

muscles connect to multiple whiskers. The m. nasolabialis profundis (MNP)

consists of two parts, the mediosuperior (PMS) and the medioinferior (PMI)

parts, both of which are involved in whisker protraction. The m. nasolabialis

and m. maxillolabialis are involved in whisker retraction. The other extrinsic

whiskers, including the m. nasolabialis superficialis and the m.

buccinatorius, are involved in resizing the entire mystacial pad. The

mystacial muscles are almost exclusively innervated by the facial nerve,

which leaves the skull via the stylomastoid foramen (SMF). After leaving the

SMF, the facial nerve splits up in two streams. The lower stream consists of

the rami buccolabialis superior (RBS) and inferior (RBI), which anastomose

in the buccal plexus (BP). From the BP all extrinsic and intrinsic whisker

muscles are innervated, with the exception of m. nasolabialis, which is

innervated by the upper stream, which includes the ramus

zygomatico-orbitalis (RZO). (B) Schematic drawing of the follicle–sinus

complex (FSC) of the rat. The vibrissa (V) lies within a follicle that is derived

from the epidermis and that is surrounded by the glassy membrane (GM).

Around the follicle is a blood sinus derived from the dermis, and which is

FIGURE 2 | Continued

composed of two sinuses: the cavernous sinus (CS), which has numerous

collagenous trabeculae, and the ring sinus (RS), which is an open structure.

At the bottom of the ring sinus, there is an asymmetric structure of

connective tissue: the ringwulst (RW). At the distal end of the ring sinus,

the inner conical body (ICB) links the follicle strongly to the capsule (C).

Distal to the ICB is the outer conical body (OCB) that contains the

sebaceous gland (SG). Intrinsic capsular muscles connect pairs of FSCs.

Extrinsic muscles are located just below the skin (m. nasolabialis, MNL and

m. maxillolabialis, MML), or at the lower end of the FSC (m. nasolabialis

profundus, MNP). The arrows indicate whether contraction of the muscle

causes pro- or retraction of the vibrissae. The vibrissae are surrounded by

three different types of mechanoreceptors: Merkel cells (MC), lanceolate

endings (LE), and free nerve endings (FNE). Mechanoreceptors in the upper

part of the FSC are innervated by superficial vibrissal nerves (SVN) and

those in the lower part by the deep vibrissal nerve (DVN). In addition, there

are some small-caliber fibers at the bottom. The sensory fibers come

together with fibers from other parts of the face to form the infraorbital

branch of the trigeminal nerve (TN). Blood supply to the FSCs is organized

via row arteries (RA) located between the whisker rows, with superficial

vibrissal arteries (SVA) supplying the upper parts and deep vibrissal arteries

(DVA) the lower parts of the FSCs. The DVA does not directly branch from a

RA, but from the anastomozing intervibrissal trunks (IVT). In between the

FSCs are intervibrissal arteries (IVA) that supply the skin and hair follicles.

The capsular muscles receive their blood from arterioles (PMA) branching

from the IVA and directly from the IVT. Venal drainage is organized by

intervibrissal veins (IVV) that empty in row veins (RV). (C) Schematic

drawings of the follicle of a typical mammalian body hair (left) and of the

structure of the blood sinuses of FSCs in different species. A hair follicle

lacks a blood sinus and can be moved by contraction of the m. arrector pili.

In marsupials and primates, the blood sinus is composed of a single

compartment (the cavernous sinus), as illustrated for the tammar wallaby

(Macropus eugenii ; Marotte et al., 1992) and the rhesus monkey (Van Horn,

1970). Most species, however, have two sinuses: the ring sinus and the

cavernous sinus, as illustrated for the rat (Rattus sp.; Ebara et al., 2002) and

the Australian water rat (Hydromys chrysogaster ; Dehnhardt et al., 1999).

Pinnipeds have tricompartite blood sinuses, including an outer cavernous

sinus, as illustrated for a sea cow, the Florida manatee (Trichechus manatus

latirostris; Reep et al., 2001), and the ringed seal (Phoca hispida; Hyvärinen

et al., 2009). Non-whisking species can generally move their vibrissae using

m. arrector pili muscles, as indicated for the FSC of the sea cow.

Cavernous sinuses contain trabeculae of connective tissue, with
the spaces in between filled with blood and nerve fibers (Rice, 1993;
Hyvärinen et al., 2009; Kim et al., 2011). The ring sinus is an open
structure, lacking trabeculae. At the bottom of the ring sinus, most
species have an asymmetric, collagenous appendix: the ringwulst.
Most likely, the rigid ringwulst transmits vibrations to the soft ring
sinus with which it is associated (Stephens et al., 1973), while the
ring sinus probably acts to dampen these vibrations (Yohro, 1977).
This would imply that the anatomy of the blood sinus, including
that of the ringwulst, determines the sensitivity range, which can
be fine-tuned by modulating the pressure of the blood sinus. In
conclusion, specific adaptations to environmental conditions and
behavioral requirements,may have led to variations in the anatomy
of the FSC. Such diversity can also be observed between FSCs at
various body regions of a single animal. In the Florida mana-
tee, for instance, the facial FSCs are substantially larger and more
complex than those at other body regions (Sarko et al., 2007), con-
sistent with the prominent role of facial vibrissae during feeding
(Reep et al., 2001).
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TRANSDUCTION OF SENSORY INPUT

TRIGEMINAL NERVE

Mechanoreceptors

Vibrissal vibrations are detected by several types of mechanorecep-
tors with different functional properties. Each FSC is innervated
by several small superficial vibrissal nerves (SVN), a single, large
deep vibrissal nerve (DVN) containing 100–200 fibers (Rice et al.,
1986), as well as a number of unmyelinated fibers at the base of the
FSC (Figure 2B). The SVN and the DVN contain mainly Aβ and
Aδ fibers. Thickly myelinated Aβ fibers have Merkel cell endings,
which are slowly adapting (SA) mechanoreceptors, or lanceolate
endings, which are rapidly adapting (RA). Hence, Merkel cell
endings will primarily signal ongoing movements, while lance-
olate endings will predominantly detect unexpected movements
(Gottschaldt et al., 1973; Halata et al., 2010; Lumpkin et al., 2010).
Merkel cells are located within the epidermis at two regions: at
the rete ridge collar and at the level of the ring sinus (Ebara et al.,
2002). Remarkably, in the mystacial FSCs of rats, the Merkel cells
at the rete ridge collar are almost exclusively found at the cau-
dal site of the FSC, implying that they predominantly transmit
backward deflections (Fundin et al., 1994; Ebara et al., 2002). Cir-
cumferentially oriented lanceolate endings are mainly located at
the level of the inner conical body, while longitudinally oriented
lanceolate endings are mostly restricted to the level of the ring
sinus (Ebara et al., 2002). The thinly myelinated Aδ fibers supply a
highly heterogeneous group of other endings, including spindle-
like, club-like, reticular, spiny, and encapsulated endings. These
endings are dispersed through the epidermal sheet of the FSC, but
enriched at the level of the cavernous sinus (Ebara et al., 2002;
Sarko et al., 2007). The specific functions of these mechanorecep-
tors are presently unclear. At the base of the FSC are unmyelinated
C fibers (Ebara et al., 2002). Since C fibers predominantly conduct
nociceptive stimuli, they could signal pulling of the vibrissae.

Trigeminal ganglion

The cell bodies of the trigeminal nerve fibers are located either
in the trigeminal ganglion or in the mesencephalic nucleus (see
Trigeminal Mesencephalic Nucleus). As a rule, each neuron in
the trigeminal ganglion receives input only from a single vibrissa
(Kerr and Lysak, 1964; Zucker and Welker, 1969; Lichtenstein et al.,
1990). However, neurons receiving input from very small vibris-
sae may be connected to two or three individual vibrissae (Kerr
and Lysak, 1964). In addition, very large deflections of a single
vibrissa can cause deformation of the skin, and in that way also
activate mechanoreceptors of adjacent FSCs (Simons, 1985). The
receptive fields of the trigeminal ganglion are loosely arranged in
a somatotopic fashion, with the caudal part of the face project-
ing to the dorsal part of the ganglion, and the rostral part of the
face to the ventral part of the ganglion. The whisker projections
follow this general pattern (Erzurumlu and Killackey, 1983; Leiser
and Moxon, 2006). Originally, it was reported that dorsal vibris-
sae are represented medially and ventral vibrissae laterally within
the trigeminal ganglion (Zucker and Welker, 1969), but Leiser and
Moxon (2006) could not reproduce this medio-lateral patterning.

During rest, when the vibrissae are neither moving nor being
touched, the neurons of the trigeminal ganglion are silent (Gib-
son and Welker, 1983; Lichtenstein et al., 1990; Leiser and Moxon,

2007). Based on their response pattern to vibrissal movement, the
majority of trigeminal ganglion neurons are classified as SA, while
the others are RA (Fitzgerald, 1940; Kerr and Lysak, 1964; Lichten-
stein et al., 1990; Leiser and Moxon, 2007). During whisking in air,
SA neurons fire about three times as often as RA neurons (Leiser
and Moxon, 2007). Upon touching an object, both SA and RA neu-
rons increase their firing rate. Both types of neurons reach similar
firing rates upon whisker touching (Jones et al., 2004; Leiser and
Moxon, 2007). Overall, trigeminal ganglion neurons have a broad
range of activation thresholds that vary mainly in amplitude and
speed, but also in direction of whisker movement (Arabzadeh et al.,
2005; Leiser and Moxon, 2007; Khatri et al., 2009; Gerdjikov et al.,
2010). Most trigeminal ganglion neurons receive whisker sensory
input via the DVN rather than the SVN, but the information con-
tent of both types of fibers seems to be very similar (Waite and
Jacquin, 1992).

Trigeminal mesencephalic nucleus

A subset of trigeminal nerve fibers does not have their somata
in the trigeminal ganglion, but in the trigeminal mesencephalic
nucleus (MeV). Thus, MeV houses primary sensory neurons
within the CNS, which makes it a unique structure. MeV neurons
mainly innervate muscle spindles in the masticatory and extraoc-
ular muscles and are thus involved in proprioception. In addition,
several other types of receptors in the dental, oral, and peri-oral
domain are innervated by MeV neurons (Lazarov, 2002). Although
whisker muscles lack spindles, MeV contains neurons that inner-
vate the mystacial pad and that respond to spontaneous whisker
movements (Mameli et al., 2010). MeV projects to, among others,
the dorsomedial part of the principal trigeminal nucleus, the pon-
tomedullary reticular formation (RF), and the superior colliculus
(SC; Matesz, 1981; Ndiaye et al., 2000).

SENSORY TRIGEMINAL NUCLEI

The sensory trigeminal nuclei form the main entrance to the brain
for whisker input. The principal trigeminal nucleus (PrV) lies
anterior to the spinal trigeminal nucleus (SpV), which consists
of an oral (SpVo), an interpolar (SpVi), and a caudal part (SpVc;
Figure 3A). Afferent fibers of the trigeminal root bifurcate to form
a rostral branch ascending to PrV and a caudal branch descend-
ing to SpV (Hayashi, 1980). Of the individual fibers, some target
only PrV or SpV, while others bifurcate and innervate both. Affer-
ents to SpV can terminate in all three subregions (Hayashi, 1980).
All compartments, except SpVo and the rostral part of SpVi, have
barrelettes, discrete groups of neurons that receive input from the
same vibrissa and that can be visualized by cytochrome oxidase
staining (Figure 3B; Belford and Killackey, 1979; Ma, 1991; Li
et al., 1994; Erzurumlu et al., 2010). Neurons in the barrelettes are
relatively small and their dendritic trees are confined within the
borders of the barrelette (Veinante and Deschênes, 1999). Roughly
one-third of the neurons dedicated to whisker input are located
between the barrelettes. These interbarrelette cells have widespread
dendritic trees and receive input from multiple vibrissae, mainly
located within a single row on the mystacial pad (Veinante and
Deschênes, 1999). The barrelettes are organized according to an
inverted somatotopy, with dorsal whiskers having a ventral repre-
sentation and rostral whiskers a medial one (Ma, 1991; Erzurumlu

Frontiers in Integrative Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 53 | 4

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Bosman et al. Anatomy of the whisker system

FIGURE 3 |The trigeminal nuclei. (A) The sensory trigeminal nuclei

consist of two nuclei, oriented along the antero-posterior axis. The principal

nucleus (PrV) is located at the anterior end and the spinal nucleus (SpV) at

the posterior site. The SpV can be subdivided into an oral (SpVo), interpolar

(SpVi), and caudal part (SpVc). The facial vibrissae project to the ventral part

of the trigeminal nuclei. In PrV, SpVc, and the caudal part of SpVi, each

vibrissa has its own projection field: a barrelette. The orientation of the

barrelettes of the facial macro-vibrissae is indicated schematically. (B)

Coronal section of a neonatal mouse brain, showing the location of the

barrelettes of the facial macro-vibrissae in the ventral part of SpVi. Following

cytochrome oxidase staining, barrelettes appear as dark patches. Note the

inverted somatotopy: dorsal vibrissae project to ventral barrelettes. The

smaller patches dorsal to the barrelettes of the E-row are the receptive

fields of the facial micro-vibrissae. The photomicrograph was kindly

provided by Dr. R. S. Erzurumlu.

et al., 2010). In addition to the large barrelettes representing the
whiskers, smaller barrelettes can be seen that mainly represent the
facial micro-vibrissae (Figure 3B). We will restrict ourselves to the
description of the neuronal circuitry of the whiskers, rather than
that of the other vibrissae.

In PrV, output neurons can be found both within and between
barrelettes (Veinante and Deschênes, 1999). In SpVi, however,
single-whisker neurons project mainly within the trigeminal
nuclei, while multi-whisker neurons project to other brain regions
(Woolston et al., 1983; Jacquin et al., 1989a,b). The small single-
whisker neurons of SpVi are part of an extensive, inter-trigeminal
network. GABAergic and glycinergic neurons of SpVc project to
SpVi, and GABAergic and glycinergic neurons of SpVi project to
PrV (Furuta et al., 2008). In addition, glutamatergic interneurons
of SpVc project to both SpVi and PrV (Furuta et al., 2008). In this
way, SpV can modulate the sensitivity of PrV to whisker inputs
(Timofeeva et al., 2005; Furuta et al., 2008; Lee et al., 2008a). This
SpV-mediated modulation of PrV in turn is subject to modulation
by the somatosensory cortex (Furuta et al., 2010). This allows for
central control of the whisker sensitivity. Most likely, this pathway
is being used during active whisking, when the whisker-induced
output of PrV is suppressed (Lee et al., 2008a). Since there is
no strong, direct pathway from wM1 to SpV, this effect is most
likely mediated by the whisker area of S1 (wS1). Thus, activity in
wM1 activates wS1, which in turn activates the inhibitory pro-
jection from SpVi to PrV, reducing the output of PrV (Lee et al.,
2008a). This could help the trigeminal nuclei to filter out irrelevant
inputs, which may be particularly prominent during movement.
Another way to reduce irrelevant input is selective adaptation. PrV
responses triggered by weak sensory inputs rapidly desensitize, but
are relatively unaffected by repeated strong inputs (Ganmor et al.,
2010). Finally, the activity of the sensory trigeminal nuclei can be
modulated by several inputs that mainly reflect the general state of
alertness, including a cholinergic projection from the pedunculo-
pontine tegmental nuclei (PPTg; Timofeeva et al., 2005; Beak et al.,
2010), a serotonergic projection from the raphe nuclei (Lee et al.,
2008c) and a noradrenergic projection from the locus coeruleus
(Moore and Bloom, 1979). Taken together, the level of detail of
the sensory information forwarded to the rest of the brain by the
trigeminal nuclei depends on the behavioral state of the animal.

Apart from the contralateral projections to the thalamus
described in detail below, there are also contralateral projections
from the trigeminal nuclei to the pontine nuclei (see The Pon-
tine Nucleus and the Nucleus Reticularis Tegmenti Pontis), the
inferior olive (IO; see Cerebellum and Inferior Olive), the SC (see
Superior Colliculus), and the zona incerta (ZI; see Zona Incerta).
In addition, there are predominantly ipsilateral connections to
the cerebellum (see Cerebellum and Inferior Olive), the pon-
tomedullary RF (see Pontomedullary Reticular Formation), and
the lateral facial nucleus. The trigemino-facial connections orig-
inate from all four subnuclei, but mainly from SpVc (Erzurumlu
and Killackey, 1979; Pinganaud et al., 1999; Hattox et al., 2002).
Since the lateral facial nucleus houses whisker motor neurons
(Klein and Rhoades, 1985; Herfst and Brecht, 2008), this connec-
tion forms a direct feedback loop (Nguyen and Kleinfeld, 2005). It
has been suggested that SpV also receives motor input from wS1,
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the information of which might be forwarded to the lateral facial
nucleus via the direct connection (Matyas et al., 2010).

THALAMUS AND TRIGEMINO-THALAMO-CORTICAL PATHWAYS

The thalamus is the main gateway to the cerebral cortex. It is
composed of several nuclei, two of which are critically involved
in the transmission of whisker stimuli to wS1: the ventral pos-
terior medial nucleus (VPM) and the medial posterior nucleus
(Pom). There are at least six pathways conveying whisker input
from the trigeminal nuclei to the cerebral cortex (Figure 4E). To
some extent, these pathways convey different aspects of whisker

sensation (Yu et al., 2006). The pathways that make synapses in
VPM convey whisker input with short latencies, while those via
Pom have considerably longer latencies. VPM receives both single-
and multiple-whisker input, Pom only multi-whisker input. An
anatomical difference between VPM and Pom is that VPM, in
contrast to Pom, contains barreloids, analogous to the barrelettes
in the trigeminal nuclei, and the barrels in wS1. The barreloids
are prominent in the dorsomedial part of VPM (VPMdm), but
fade away toward the ventrolateral part (VPMvl; Van der Loos,
1976; Land et al., 1995; Haidarliu and Ahissar, 2001). As a con-
sequence, VPMdm processes mainly single-whisker input and

FIGURE 4 |The trigemino-thalamo-cortical pathways. Schematic drawing

of the organization of the barrels in layer 4 of a tangential slice of an adult rat

(A), mouse (B), and rabbit (C). Note that the septa are prominent in rats but

very small in mice. In adult rabbits, barrels are absent. Instead, the

somatotopic representation of the vibrissae is more gradual. (D1) Schematic

drawing of a rat brain. The dotted line indicates the recording area for the

panels (D2,D3). The red dots indicate the representations of the C2 whisker,

and the blue dots those of the E2 whisker in wS1 and wM1. wS2 is partially

visible on the extreme left of the recording area. (D2) Voltage-sensitive dye

images in urethane-anesthetized mice showing that stimulation of the

contralateral C2 whisker initially evokes a very local signal in the C2 barrel of

wS1. Consecutively, the signal spreads over the rest of wS1, and also to

wM1, and to a lesser extent also to wS2. The time points indicate the time

since the onset of whisker deflection, the scale bar the fluorescent signal

(blue = weak, white = high). (D3) Idem, but for the E2 whisker. Note that the

early responses to the C2 and E2 whiskers are at different locations, but this

difference is less obvious during later phases of the response. Panel D is

reproduced with permission from Aronoff et al. (2010). (E) Schematic

representation of the trigemino-thalamo-cortical pathways discussed in the

main text. The arrowheads indicate the termination areas of the axons. Note

that (in the cerebral cortex) the postsynaptic cells may have their somata in

other layers. The line thickness indicates the relative importance of the

pathways. The barreloids in VPM are indicated in an oblique coronal slice, the

barrelettes of the trigeminal nuclei in coronal slices. D = dorsal; L, lateral; LD,

laterodorsal nucleus of the thalamus; Pom, medial posterior nucleus of the

thalamus; PrV, primary trigeminal nucleus; R, rostral; SpVic, caudal part of

spinal trigeminal nucleus pars interpolaris; SpVio, oral part of SpVi; SpVo,

spinal trigeminal nucleus pars oralis; VPMdm, dorsomedial part of the

ventroposterior medial nucleus of the thalamus; VPMh, “head” area of VPM;

VPMvl, ventrolateral part of VPM; wM1, whisker motor cortex; wS1, whisker

part of primary sensorimotor cortex; wS2, whisker part of secondary

sensorimotor cortex.
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VPMvl multi-whisker input. Within a barreloid, the neurons are
ordered according to their angular preference (Timofeeva et al.,
2003).

Of all trigemino-thalamo-cortical pathways, the lemniscal
pathway is the only one that predominantly conveys single-whisker
input. This disynaptic pathway links the barrelettes of PrV to the
barrels of wS1 via the barreloids of VPMdm (Erzurumlu et al.,
1980; Williams et al., 1994; Veinante and Deschênes, 1999). The
main targets are the barrels of layer 4 in wS1, but there are also
terminals in layers 5/6 of wS1 (Killackey, 1973; Koralek et al., 1988;
Chmielowska et al., 1989; Lu and Lin, 1993; Bureau et al., 2006;
Petreanu et al., 2009; Meyer et al., 2010a). The thalamic relay cells
in the barreloids of VPMdm respond with precisely timed sin-
gle action potentials to deflections of a single principle whisker
at short latencies (4–8 ms; Ito, 1988; Simons and Carvell, 1989;
Armstrong-James and Callahan, 1991; Diamond et al., 1992b;
Brecht and Sakmann, 2002b).

A second pathway synapsing in VPM is the extralemniscal
pathway. In contrast to the lemniscal pathway, the extralemnis-
cal pathway passes through VPMvl, where the barreloids are not
as distinct as in VPMdm. The input of the extralemniscal pathway
originates from the multi-whisker, interbarrelette cells of the cau-
dal part of SpVi, and the output is targeted to layers 4 and 6 of
wS2, as well as the septal columns of wS1 (Pierret et al., 2000).

The third pathway, the paralemniscal pathway, arises from the
multi-whisker cells in the rostral part of SpVi (Erzurumlu and Kil-
lackey, 1980; Peschanski, 1984; Williams et al., 1994; Veinante et al.,
2000a), contacts relay cells in Pom and targets wS1, wS2, and wM1.
Pom axons terminate mainly throughout layers 5a and 1 of wS1 as
well as in layer 4 of the septa (Koralek et al., 1988; Chmielowska
et al., 1989; Lu and Lin, 1993; Bureau et al., 2006; Petreanu et al.,
2009; Wimmer et al., 2010), where they also provide synaptic input
to pyramidal neurons in layers 3 and 5a (Bureau et al., 2006; Petre-
anu et al., 2009; Meyer et al., 2010a). In addition, Pom terminals
are found in wS2 and wM1 (Carvell and Simons, 1987). From Pom,
there are also projections to the striatum (Alloway et al., 2006), the
perirhinal cortex and the insular cortex (Deschênes et al., 1998).
Responses of relay cells in Pom to single-whisker deflections dif-
fer from those in VPM: in Pom, the receptive fields are larger, the
latencies longer and more variable and the activity is under con-
trol of a strong cortical feedback (Diamond et al., 1992b; Ahissar
et al., 2000). The variable and relatively long response latencies
(19– 27 ms) of Pom cells are likely caused by inhibitory inputs from
ZI gating peripheral inputs to Pom (Trageser and Keller, 2004).

In addition, there are at least three other trigemino-thalamo-
cortical pathways. All of these convey multi-whisker information.
The first arises from the interbarrelette cells of PrV, projects to Pom
and to multi-whisker relay cells in the “heads” of the barreloids at
the dorsomedial margin of VPM (VPMh; Veinante and Deschênes,
1999; Urbain and Deschênes, 2007b). The head barreloid cells
send axons to the septal columns of wS1 (Furuta et al., 2009). A
second multi-whisker pathway involves projections from SpVi to
the thalamic laterodorsal nucleus (LD), which projects mainly to
the cingulate and retrosplenial cortex, and only sparsely to wS1
(Bezdudnaya and Keller, 2008). And finally, there is a relatively
sparse and poorly characterized pathway originating from multi-
whisker neurons in SpVo and projecting to caudal thalamic regions

including the most posterior parts of VPM and Pom (Jacquin and
Rhoades, 1990; Veinante et al., 2000a). These thalamic regions
receive inputs from different sensory modalities and project to
the perirhinal cortex, striatum, and amygdala (Groenewegen and
Witter, 2004).

Apart from being the relay station between the trigeminal nuclei
and the cerebral cortex, the thalamus also contains intra-thalamic
projections. As such the reticular nucleus (RT) is involved in
several negative feedback loops that modulate the flow of infor-
mation through trigemino-thalamo-cortical pathways discussed
above. RT forms a sheet of GABAergic neurons surrounding the
thalamus and it contains a somatotopic body map with a large
representation of the whiskers (Shosaku et al., 1984; Guillery
and Harting, 2003; Pinault, 2004). Axons of VPM and Pom cells
give off collaterals in RT (Crabtree et al., 1998; Lam and Sher-
man, 2011), while RT in turn provides strong inhibitory input
to VPM and Pom (Pinault et al., 1995; Cox et al., 1997; Brecht
and Sakmann, 2002b). The VPM-projections from RT cells are
whisker-specific: they target the barreloid of their own princi-
ple whisker (Desilets-Roy et al., 2002). Since RT neurons adapt
stronger to repeated, high-frequency stimulation than VPM neu-
rons, strong whisker stimulation can lead to disinhibition of VPM
neurons (Hartings et al., 2003; Ganmor et al., 2010). Furthermore,
VPM cells can influence activity in Pom through intra-thalamic
pathways involving RT (Crabtree et al., 1998). Additional indirect
inhibitory feedback loops to Pom involve ZI (see Other Structures
Projecting to the Facial Nucleus), which receives both peripheral
and cortico-thalamic input and provides a significant portion of
GABAergic synaptic terminals in Pom (Barthó et al., 2002; Bokor
et al., 2005).

PRIMARY SOMATOSENSORY CORTEX (S1)

The whisker part of S1 (wS1) is of crucial importance for percep-
tion and processing of whisker input. For instance, wS1 is required
for whisker-based object localization (O’Connor et al., 2010a),
gap-crossing (Hutson and Masterton, 1986), and aperture width
discrimination (Krupa et al., 2001). Direct stimulation of wS1 in
rabbits can substitute for peripheral vibrissa stimulation (Leal-
Campanario et al., 2006). This suggests that wS1 can form sensory
percepts, but does not differentiate between peripheral and central
stimulation (see also Huber et al., 2008). Recent evidence indicates
that wS1 also has a previously unanticipated role in motor control
of whisker retraction (Matyas et al., 2010).

As all cortical areas, wS1 is composed of layers. Layer 4 is the
main input layer, and in mice it is organized in patches (“bar-
rels”) of neurons primarily receiving input from a single whisker
(Figure 4B; Woolsey and Van der Loos, 1970). Within a mouse
barrel, most neurons are found at the borders, leaving the barrel
center relatively empty. In rats, a similar organization is found
(Figure 4A), but the barrel diameters are larger (∼400 µm) than
in mice (∼280 µm), and the cells are equally distributed within
the barrels (Welker and Woolsey, 1974). In mice, a single barrel
column contains, distributed over all layers, ∼6,500 neurons (C2
barrel; Lefort et al., 2009), while the rat C2 barrel contains ∼19,000
neurons (Meyer et al., 2010b). The barrels are strictly organized in
a somatotopic pattern (Welker, 1971). In between the barrels are
the septa, which mainly receive multi-whisker input (Brumberg
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et al., 1999; Furuta et al., 2009). The septa are larger in rats than
in mice (Welker, 1971; Woolsey et al., 1975). Within the class of
mammals, rats and mice are quite exceptional in having barrels
in wS1. Barrels are only present in some rodents, as well as a few
other species (Woolsey et al., 1975; Rice, 1985). In adult rabbits,
for instance, barrels cannot be identified. Yet, also rabbits probably
have a somatotopic representation of their vibrissae in S1, but the
borders between the whisker receptive fields are fuzzier than in
animals with barrels (Figure 4C; Woolsey et al., 1975; McMullen
et al., 1994).

Throughout wS1, sensory-evoked responses are sparse and
near-simultaneous, but the response probabilities are layer- and
cell type-specific (Brecht and Sakmann, 2002a; Brecht et al., 2003;
Manns et al., 2004; De Kock et al., 2007). In the barrel columns,
spiking responses in excitatory neurons across all layers are largely
restricted to deflections of the principle whisker, except for thick-
tufted layer 5 pyramidal neurons (Welker, 1971; Simons, 1978;
Manns et al., 2004; De Kock et al., 2007). Subthreshold synap-
tic responses, however, can also be triggered by the movement of
several whiskers surrounding the principle whisker (Brecht and
Sakmann, 2002a). Sensory-evoked responses in layer 4 cells are
brief due to the recruitment of powerful thalamo-cortical feed-
forward inhibition (Swadlow, 2002; Gabernet et al., 2005; Sun
et al., 2006; Cruikshank et al., 2007). Angular tuning domains
have been observed within layers 4 (Bruno et al., 2003) and 2/3
in adult rats (Andermann and Moore, 2006; Kremer et al., 2011).
During free whisking, neurons across all layers respond to active
touch (Curtis and Kleinfeld, 2009; O’Connor et al., 2010b; Crochet
et al., 2011) and to slip-stick motion events (Figure 1C; Jadhav
et al., 2009). Sensory-evoked activity patterns in wS1 correlate
well with psychophysical performance in whisker-dependent tac-
tile discrimination tasks (Krupa et al., 2004; von Heimendahl et al.,
2007; Stüttgen and Schwarz, 2008; O’Connor et al., 2010b). The
activity of wS1 neurons encodes the spatial location of the whiskers
over time (Fee et al., 1997; Crochet and Petersen, 2006; De Kock
and Sakmann, 2009). This is also true for GABAergic interneurons
(Gentet et al., 2010). Such a reference signal is required for decod-
ing horizontal object position (Diamond et al., 2008), for example
by neurons in wS1 for which phase in the whisk cycle gates the
response to touch (Curtis and Kleinfeld, 2009).

In comparison to responses in the barrel columns, those in
the septal columns are less whisker-specific. The barrel and septal
columns have been proposed to represent two partially segregated
circuits that process different aspects of whisker movements (Kim
and Ebner, 1999; Shepherd and Svoboda, 2005; Alloway, 2008).
However, the segregation between barrels and septa, while promi-
nent in rats, is not so clear in other species, like mice which have
only very thin septa (cf Bureau et al., 2006).

The microcircuit of wS1 has been extensively characterized,
yielding increasingly detailed connectivity schemes (Lübke and
Feldmeyer, 2007; Schubert et al., 2007; Lefort et al., 2009; Petreanu
et al., 2009). Layer 4 barrel neurons, which are the main recipients
of the lemniscal pathway, project to all layers within their own
barrel column, but most prominently to other layer 4 cells as well
as layer 2/3 pyramidal cells (Kim and Ebner, 1999; Lübke et al.,
2000; Petersen and Sakmann, 2000; Schubert et al., 2001; Feld-
meyer et al., 2002, 2005; Shepherd and Svoboda, 2005; Lefort et al.,

2009). Layer 2/3 pyramidal cells project both within their own
barrel column as well as over long distances across barrel columns
(Lübke and Feldmeyer, 2007). They contact cells within all lay-
ers except layer 4, with a particularly strong connection to other
layer 2/3 pyramidal neurons and to thick-tufted layer 5b pyrami-
dal cells (Reyes and Sakmann, 1999; Schubert et al., 2001; Lefort
et al., 2009; Petreanu et al., 2009). Layer 5a neurons, which are
the main recipients of the paralemniscal pathway, project strongly
within their own barrel column to other pyramidal cells across
layer 5 (Lefort et al., 2009), and to layer 2 cells distributed across
multiple columns and preferentially located above the septa (in
rats, but not in mice; Shepherd and Svoboda, 2005; Bureau et al.,
2006). Layer 2 neurons receive additional inputs from layer 3 neu-
rons located above barrels (Bureau et al., 2006), providing one of
several possible points of convergence for the lemniscal and para-
lemniscal pathways (Lübke and Feldmeyer, 2007). Inhibitory input
to excitatory neurons is derived from cells within the same cortical
layer as well as from cells from other cortical layers (Helmstaedter
et al., 2009; Kätzel et al., 2011). In addition to the aforementioned
intracolumnar connections within wS1, intracortical projections
extend throughout much of wS1 and its dysgranular zone (Chapin
et al., 1987; Hoeflinger et al., 1995; Kim and Ebner, 1999; Aronoff
et al., 2010).

The whisker area of S1 forms reciprocal connections with
several other cortical areas, including the whisker part of the sec-
ondary somatosensory cortex (wS2), wM1, insular cortex, and
perirhinal cortex (White and DeAmicis, 1977; Welker et al., 1988;
Fabri and Burton, 1991; Cauller et al., 1998; Aronoff et al., 2010).
The contralateral wS1 is targeted via callosal projections (Larsen
et al., 2007; Petreanu et al., 2007). Axonal projections to wS2 orig-
inate from the infragranular and supragranular layers of wS1 and
arborize across all layers in wS2 (Welker et al., 1988; Fabri and
Burton, 1991; Cauller et al., 1998; Chakrabarti and Alloway, 2006;
Aronoff et al., 2010). The wS1 to wM1 projection is somatotopi-
cally arranged such that a column in wS1 connects to a column
of the same whisker in wM1 (Izraeli and Porter, 1995; Hoffer
et al., 2003; Ferezou et al., 2007). Layer 2/3 pyramidal cells of wS1
densely innervate layers 5/6 of wM1, while those of layers 5/6 pref-
erentially innervate layers 1 and 2/3 in wM1 (Porter and White,
1983; Miyashita et al., 1994; Aronoff et al., 2010). The major-
ity of connections to wM1 arises from neurons located in septal
columns (Crandall et al., 1986; Alloway et al., 2004; Chakrabarti
et al., 2008). The reciprocal projection, from wM1 to wS1, inner-
vates mainly layers 5/6 and 1 (Cauller et al., 1998; Veinante and
Deschênes, 2003; Matyas et al., 2010).

Cortico-thalamic projections originate in layer 5/6 and target
relay cells in VPM and Pom, as well as GABAergic neurons in RT
(Hoogland et al., 1987; Welker et al., 1988; Chmielowska et al.,
1989; Bourassa et al., 1995; Deschênes et al., 1998; Veinante et al.,
2000b; Killackey and Sherman, 2003). The projections to VPM
originate from layer 6a pyramidal neurons (located below both
the barrels and the septa) and target the barreloid of the corre-
sponding principal whisker as well as those of several whiskers
located within the same arc (Hoogland et al., 1987; Bourassa et al.,
1995). VPMvl, which is the thalamic relay station for the extralem-
niscal pathway, receives cortical input from layer 6 pyramidal cells,
both from wS1 and from wS2 (Bokor et al., 2008). The heads of
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the barreloids in VPM, which participate in a multi-whisker lem-
niscal pathway, receive collaterals from layer 6b pyramidal cells
projecting to Pom (Bourassa et al., 1995; Deschênes et al., 1998).
The relay cells of Pom also receive input from layer 6a pyramidal
cells (located below the septa) and layer 5b tall-tufted pyramidal
cells (located below both the barrels and the septa), whose axons
form large and powerful synapses that can drive Pom neurons
(Hoogland et al., 1991; Killackey and Sherman, 2003; Larsen et al.,
2007; Groh et al., 2008). These relay cells project to wS2, form-
ing a cortico-thalamo-cortical pathway (Theyel et al., 2010). Layer
5b neurons also project to ZI (Bourassa et al., 1995; Mitrofanis
and Mikuletic, 1999; Veinante et al., 2000b; Barthó et al., 2007),
which is involved in state-dependent suppression of whisker sen-
sory responses in Pom (see Zona Incerta). RT cells are innervated
by collaterals of cortico-thalamic axons from layer 6 cells, but not
layer 5 cells (Bourassa et al., 1995), which strongly activate RT
cells and evoke disynaptic inhibition in thalamo-cortical relay cells
(Cruikshank et al., 2010; Lam and Sherman, 2010). Other projec-
tions of wS1 include projections from layer 5a pyramidal cells to
the striatum (see Basal Ganglia) and from layer 5b pyramidal cells
to the anterior pretectal (APT) nucleus (Aronoff et al., 2010), SC
(see Superior Colliculus), the red nucleus (see Anterior Pretectal
Nucleus), the pontine nuclei (see The Pontine Nucleus and the
Nucleus Reticularis Tegmenti Pontis), and the sensory trigeminal
nuclei (see Sensory Trigeminal Nuclei).

SECONDARY SOMATOSENSORY CORTEX (S2)

S2 contains a highly organized somatotopic representation of the
whiskers (wS2) that occupies around 14% of the total area of S2
and that is located in the parietal cortex, lateral to wS1 (Carvell and
Simons, 1986; Koralek et al., 1990; Fabri and Burton, 1991; Hoffer
et al., 2003; Benison et al., 2007). The whisker receptive fields in
wS2 are larger than in wS1; wS2 neurons generally respond equally
well to several adjacent whiskers (Welker and Sinha, 1972; Carvell
and Simons, 1986; Kwegyir-Afful and Keller, 2004). Responses in
wS2 to single-whisker deflections are weaker than those in wS1, but
they display stronger direction selectivity, while the onset latencies
are comparable (Kwegyir-Afful and Keller, 2004). The local con-
nections within wS2 are similar to those within wS1. However,
in contrast to wS1, the projections from layer 2/3 to layer 5 are
stronger than those from layer 4 to layer 3 (Hooks et al., 2011).
Furthermore, the reciprocal connections between layers 5 and 6,
which are weak in wS1, are more pronounced in wS2 (Hooks et al.,
2011). Whisker input reaches wS2 via the extralemniscal pathway
through VPMvl (Pierret et al., 2000; Bokor et al., 2008), but also
via Pom (Carvell and Simons, 1987; Spreafico et al., 1987; Alloway
et al., 2000; Theyel et al., 2010) and from both the barrel and
septal columns of wS1 (Kim and Ebner, 1999; Chakrabarti and
Alloway, 2006). The connections between wS1 and wS2 are recip-
rocal (Carvell and Simons, 1987; Aronoff et al., 2010). In addition,
there are reciprocal connections between wS2 and wM1 (Porter
and White, 1983; Miyashita et al., 1994). There are also projections
to the striatum (see Basal Ganglia), the pontine nuclei (see The
Pontine Nucleus and the Nucleus Reticularis Tegmenti Pontis),
and to several thalamic nuclei, including VPM, Pom, and RT (Liao
et al., 2010). wS2 also receives cholinergic input from the nucleus
basalis magnocellularis (Deurveilher and Semba, 2011).

WHISKER MOTOR CONTROL

Rhythmic whisker movements increase the acuity of the whisker
system (Szwed et al., 2003; Knutsen et al., 2006). Whisker move-
ments are generated in the facial nucleus, whose activity is affected
by a large number of brain regions. It has been proposed that
higher-order areas can initiate movement, but that the rhythmicity
of the whiskers is caused by a brainstem central pattern generator
(CPG; see Serotonin).

FACIAL NUCLEUS

The motor neurons of both the intrinsic and the extrinsic muscles
of the whisker pad are located in the lateral facial nucleus (Ash-
well, 1982; Klein and Rhoades, 1985; Herfst and Brecht, 2008). Of
the lateral facial nucleus neurons that evoke whisker movements,
about 80% induce the protraction of a single whisker and about
20% the retraction of multiple whiskers (Herfst and Brecht, 2008).
Each intrinsic capsular muscle has about 25–50 motoneurons in
the lateral facial nucleus (Klein and Rhoades, 1985). The motor
commands are forwarded to the whisker muscles via the facial
nerve (Figure 2A; Dörfl, 1985; Haidarliu et al., 2010). In addi-
tion, there is sparse innervation of the extrinsic muscles by the
hypoglossal nucleus via the infraorbital branch of the trigeminal
nerve (Mameli et al., 2008).

Single motor neurons in the lateral facial nucleus evoke fast,
short, and stereotypic whisker movements, whereas single neurons
in wM1 evoke slow, small, and long-lasting rhythmic movements
(Brecht et al., 2004b; Herfst and Brecht, 2008). This discrepancy
makes it unlikely that wM1 directly commands activity of the
lateral facial nucleus, despite the possible existence of a sparse
monosynaptic projection from wM1 to the contralateral lateral
facial nucleus (Grinevich et al., 2005). Instead, wM1 may induce
rhythmic whisker movements via oligosynaptic pathways to the
lateral facial nucleus. Remarkably, rhythmic whisker movements
persist in the absence of wM1 (Welker, 1964; Semba and Komis-
aruk, 1984; Gao et al., 2003). Hence, it has been proposed that
wM1 projects to a CPG in the brainstem, possibly the dorsal raphe
nucleus, that in turn activates the lateral facial nucleus (Hattox
et al., 2003; see Serotonin). In addition, the lateral facial nucleus
receives input from several other subcortical structures, all of
which are directly or indirectly innervated by wM1. These afferent
regions include the ipsilateral sensory trigeminal nuclei (Nguyen
and Kleinfeld, 2005), the ipsilateral pontomedullary RF (Zerari-
Mailly et al., 2001), and the contralateral SC (Miyashita and Mori,
1995; Hattox et al., 2002). In addition, the lateral facial nucleus
is targeted by cholinergic, histaminergic, and noradrenergic con-
nections, which may set the overall activity level of the whisker
movements (see Arousal, Alertness, and Attention). Altogether,
there is a strong convergence of inputs at the level of the lateral
facial nucleus, allowing the integration of whisker movements and
other forms of behavior.

CEREBRAL CORTEX

Primary motor cortex (M1)

The primary motor cortex (M1) is a large area in the frontal
cortex involved in movement. M1 has an agranular appear-
ance, low stimulation thresholds for evoking movements, and a
topographic and complete representation of the body muscles
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(Gioanni and Lamarche, 1985; Brecht et al., 2004a). M1 can be
divided into the agranular medial field (AGm), the agranular lat-
eral field (AGl), and the cingulate area (Cg1). The topographic
representation of whiskers is almost exclusively located in AGm
(Brecht et al., 2004a). Sensory input from the whiskers to whisker
M1 (wM1) comes predominantly via wS1 (Armstrong-James and
Fox, 1987), but also directly from Pom (Deschênes et al., 1998).
The latencies to whisker stimulation are 10–20 ms longer in wM1
than in wS1 (Figure 4D; Ferezou et al., 2007). Microstimulation of
wM1 can generate whisker motion that strongly resembles natural
exploratory whisking (Berg and Kleinfeld, 2003b; Brecht et al.,
2004b; Haiss and Schwarz, 2005; Matyas et al., 2010). During
a training paradigm, mice can learn to protract their whiskers
following an auditory conditioned stimulus (CS; Troncoso et al.,
2004). Such associative learning probably involves synaptic plas-
ticity of layer 5 pyramidal cells in wM1 (Troncoso et al., 2007).
This suggests that whisker movements are subject to change fol-
lowing long-term synaptic plasticity in wM1. Although complete
ablation of wM1 does not abolish whisking, it does disrupt whisk-
ing kinematics, coordination, and temporal organization such as
whisking synchrony (Gao et al., 2003). There are several indi-
rect routes from wM1 to the lateral facial nucleus, for example
via SC (see Superior Colliculus) or the pontomedullary RF (see
Pontomedullary Reticular Formation) and wS1 (see Somatosen-
sory Cortex as a Premotor Area). In addition, wM1 is involved
in several feedback loops, including reciprocal connections with
wS1 (Aronoff et al., 2010), thalamus (Cicirata et al., 1986; Cole-
chio and Alloway, 2009), and loops involving the basal ganglia
(see Basal Ganglia), the cerebellum (see The Cerebellar System),
and the claustrum (see Bilateral Coordination of Whisker Move-
ments). Finally, wM1 projects to the deep mesencephalic nucleus,
the periaqueductal gray, and the red nucleus (Alloway et al., 2010).
This network of inputs and outputs enables wM1 to adjust whisker
movements both to sensory input and to the general behavior.

The output of wM1 is not uniform. Layer 5 pyramidal cells
project to cells around the facial nucleus while those of layer 6
project to the thalamus. Evidence for strong myelinization and an
expanded layer 5 in AGm points to the possible contribution to
high speed whisking (Brecht et al., 2004b). Layer 5 output may
correspond with timing of individual whisking movements and
may be able to reset these rhythms, while layer 6 output may cor-
respond with grouping of multiple whisking movement bursts
where action potential frequency determines movement direction
and amplitude (Brecht et al., 2004b).

Somatosensory cortex as a premotor area

Microstimulation of wM1 can induce both whisker protraction
and retraction depending on the location of stimulation in wM1
(Gioanni and Lamarche, 1985; Haiss and Schwarz, 2005; Matyas
et al., 2010). A recent study found that stimulation of wS1 induces
whisker retraction at shorter latencies than wM1 stimulation.
In fact, the wM1-induced whisker retraction can be mediated
by synaptic activation in wS1 (Matyas et al., 2010). Contrary to
stimulation of wM1, stimulation of wS1 does not evoke whisker
protraction (Matyas et al., 2010). In the same study, the authors
suggest that wS1 exerts its effect on whisker movement by a disy-
naptic pathway via SpV to the facial nucleus. Thus, wM1 and wS1

could together form an additional source of rhythmic whisker
movements, alongside the putative brainstem pattern generators
(see Serotonin). Such an organization is in line with the idea that
wM1 specifies motor programs rather than simple muscle activity
(Brecht et al., 2004b).

BASAL GANGLIA

The first somatosensory feedback system to be discussed involves
the basal ganglia, which are important for a wide variety of
(sensori-)motor functions. In the oculomotor system, the basal
ganglia have been associated with orienting saccadic eye move-
ments based on reward expectancy (Hikosaka et al., 2006). A
similar function for the whisker system could very well be possi-
ble. The basal ganglia are a heterogeneous group of brain regions,
whose main components are the striatum, the globus pallidus
(GP), the substantia nigra (SN), and the subthalamic nucleus
(STN). The GP consists of two parts: an external (GPe) and an
internal part (GPi). In rodents, GPi is commonly referred to as the
entopeduncular nucleus (EPN; Nambu, 2007). SN is composed
of a pars compacta (SNc) and a pars reticulata (SNr). In gen-
eral, the information from the cerebral cortex enters the striatum,
is forwarded to other parts of the basal ganglia and the output
to the thalamus and SC is eventually generated by EPN and SNr
(Figure 5A).

The striatum, or “neostriatum,” is a single area in rodents, but
in higher mammals it is composed of two nuclei: the caudate and
the putamen (Tepper et al., 2007). Based on function and con-
nectivity, the striatum can be divided into a dorsolateral and a
ventromedial part (Voorn et al., 2004). The striatum is involved
in the acquisition of habits, goal-directed behaviors and in the
motivation to perform. The whisker receptive fields of the dorso-
lateral striatum are organized in a loosely somatotopic manner:
dorsal whiskers project laterally and caudal whiskers project dor-
sally (Figure 5B; Alloway et al., 1999; Wright et al., 1999). There
is much overlap between the projection areas of whiskers from a
single row, but hardly any from whiskers in different rows. There
is also a weaker whisker representation in the ventromedial stria-
tum (Alloway et al., 1999; Wright et al., 1999). The cortico-striatal
projections are predominantly ipsilateral and originate from layer
5 pyramidal cells in both barrels and septa (Alloway et al., 2006).
Thus, cortico-striatal projections serve to integrate rather than
segregate input from different whiskers. In addition, the striatum
receives input from wS2, wM1, and other cortical areas, includ-
ing motor, cognitive, and other sensory areas (Wright et al., 2001;
Alloway et al., 2006; Tepper et al., 2007). Hence, the striatum can
integrate the whiskers and general behavior.

Apart from the extensive input from the cerebral cortex,
the striatum also receives direct input from the thalamus. The
thalamo-striatal connections originate mainly in the intralaminar
nuclei of the thalamus (Smith et al., 2004; Tepper et al., 2007)
and in Pom (Alloway et al., 2006). During whisker stimulation
at low frequencies, the responses of the medium-spiny neurons
in the dorsolateral striatum are approximately 5 ms later than in
wS1 (Mowery et al., 2011; Pidoux et al., 2011; Syed et al., 2011).
However, during repeated whisker stimulation at 5–8 Hz, striatal
responses actually preceded those in wS1 (Mowery et al., 2011). In
addition, the striatal responses showed less adaptation to repeated
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FIGURE 5 |The basal ganglia. (A) The major connections between the

components of the basal ganglia. Most of the input comes from the

cerebral cortex (in this case: wS1, wS2, and wM1), and is directed to the

striatum. GABAergic medium-spiny neurons of the striatum project to the

external part of the globus pallidus (GPe), the entopeduncular nucleus

(EPN), and the reticular (SNr) and compact (SNc) parts of the substantia

nigra. SNc provides dopaminergic input to the striatum, and the

subthalamic nucleus (STN) glutamatergic input to GPe, EPN, and SNr. The

main output of the basal ganglia is directed to the thalamus, via GPe and

SNr, and the superior colliculus, via SNr. The line thickness indicates the

relative importance for the whisker system. (B) Whisker responses in the

dorsolateral (dl) striatum follow a loose somatotopy, which is mainly

organized according to whisker rows. The black dots indicate schematically

the projections of the layer 5 pyramidal cells in the B2 barrel of left wS1. The

projection is mainly, but not exclusively, ipsilateral, and largely within the “B

row” area in the striatum. There is considerable overlap, however, with the

projection areas of other B row whiskers. “Rostral” and “caudal” refer to

the positions of the whiskers on the mystacial pad. A smaller and less

characterized projection area is also present in the ventromedial (vm)

striatum.

whisker stimulation as responses in wS1 (Mowery et al., 2011). The
latter findings support an important role for the direct thalamo-
striatal pathway, in addition to the well-established thalamo-
cortico-striatal route. The thalamo-striatal pathway conveying

whisker information originates mainly in Pom (Alloway et al.,
2006). Relay cells in Pom are inhibited during rest and become
disinhibited during periods of activity (see Zona Incerta and Ante-
rior Pretectal Nucleus). Although the disinhibition of Pom has
been predominantly linked to active whisking (Bokor et al., 2005;
Lavallée et al., 2005; Urbain and Deschênes, 2007a), it might also
be evoked by repeated, passive whisker input. Other inputs to the
striatum come from the amygdala (Kelley et al., 1982; Popescu
et al., 2009), the dorsal raphe nuclei (Di Matteo et al., 2008), GP
and SN (Tepper et al., 2007). The main output of the striatum is
composed of GABAergic projections to GP and SN.

The GABAergic output of the striatum is the dominant input
to SNc, but SNc also receives GABAergic input from SNr and glu-
tamatergic input from the amygdala, and to a lesser extent also
from STN (Kita and Kitai, 1987; Gonzales and Chesselet, 1990;
Misgeld, 2004). SNc also receives histaminergic input from the
tuberomammillary nuclei (Lee et al., 2008b). SNc forms dopamin-
ergic connections to the striatum and is implicated in the reward
system (Hikosaka et al., 2006; Redgrave et al., 2008). Its degenera-
tion is an important cause of the motor problems associated with
Parkinson’s disease (Gibb and Lees, 1988; Esposito et al., 2007).
SNr receives GABAergic input from the striatum and, to a lesser
extent also glutamatergic input from STN and the cerebral cortex
(Kita and Kitai, 1987; Naito and Kita, 1994; Tepper et al., 2007).
SNr sends GABAergic projections to the ventromedial thalamus
and the SC (Beckstead et al., 1979; Di Chiara et al., 1979; Grofova
et al., 1982). Activation of the nociceptin/orphanin FQ (N/OFQ)
receptors in SNr modulates whisker motor output (Marti et al.,
2009).

The external globus pallidus receives GABAergic input from
the striatum and glutamatergic input from STN. Sparse inner-
vation comes from the cerebral cortex, the intralaminar nuclei
of the thalamus, SNc, the dorsal raphe nuclei, and PPTg (Kita,
2007). The main output areas of GPe are EPN, STN, and the
striatum (Kita, 2007). EPN receives GABAergic input from GPe
and the striatum, and glutamatergic input from STN (Nambu,
2007). In turn, EPN projects to the ventrolateral thalamic nucleus
(VL; Nambu, 2007). To our knowledge, no systematic study of
the role of GP in the rodent whisker system has been undertaken.
However, GP neurons in cats show responses to vibrissal stimula-
tion, whereby the response depends on the direction of vibrissal
movement (Schneider et al., 1982).

The lateral half of STN shows responses to contralateral whisker
stimulation. Interestingly, each neuron that responds to contralat-
eral whisker stimulation, also responds to somatosensory stimula-
tion of another area, e.g., forepaw or ipsilateral whisker stimulation
(Hammond et al., 1978). This is in line with the putative role of
the basal ganglia in bringing different behavioral aspects together.
STN receives input from the cerebral cortex, predominantly wM1,
and GPe, and projects to GPe, EPN, and SNr (Kita and Kitai, 1987;
Joel and Weiner, 1997).

SUPERIOR COLLICULUS

The second sensorimotor feedback system involves SC, which is
also known as the“tectum.”The upper layers of SC process sensory
information, the intermediate layers sensorimotor information,
and the lower layers motor information. SC receives sensory input
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via direct connections from all four parts of the sensory trigem-
inal nuclei (Steindler, 1985; Cohen et al., 2008), and provides a
direct output to the facial nucleus. However, the SC neurons that
receive trigeminal input are not the same as those that innervate
the facial nucleus (Hemelt and Keller, 2008). Hence, SC does not
function as a simple, “reflexive” relay station between the trigem-
inal nuclei and the facial nucleus. Similarly, the input to SC from
wM1 is also not directly relayed to the facial nucleus, since micros-
timulation of wM1 and SC show qualitatively and quantitatively
different whisker responses (Hemelt and Keller, 2008). Instead,
the main function of SC for the whisker system may be closely
related to its best known function, which is to control saccadic
eye movements and direct the gaze direction toward an interest-
ing visual cue (Boehnke and Munoz, 2008; Gandhi and Katnani,
2011). SC can direct all mobile senses toward an object of inter-
est. Microstimulation at a single spot in the intermediate or deep
layers of SC can induce coherent movements of the eyes, the
auricles, and the whiskers together (McHaffie and Stein, 1982).
While microstimulation within wM1 induces rhythmic whisker
movements (Brecht et al., 2004b; Matyas et al., 2010), microstim-
ulation in SC causes sustained whisker protraction (Hemelt and
Keller, 2008), which is in accordance with its putative function
in the direction of the whiskers. In addition, SC also responds
to whisker input. Passive touch (air puff) as well as whisking in
air and active touch (surface contact during whisking) evoked SC
neuronal responses which were subject to strong adaptation. Pas-
sive and active touch evoked stronger responses than whisking in
air. As a consequence, whisking in air at 10 Hz hardly evokes any
response in SC, but active touch does (Bezdudnaya and Castro-
Alamancos, 2011). SC responses can have different latencies. Fast
responses (<10 ms) are probably due to the direct trigemino-tectal
input and slow responses are likely mediated by wS1 (Bezdudnaya
and Castro-Alamancos, 2011).

The superior colliculus receives strong input from ipsilateral
wM1 (Miyashita et al., 1994; Alloway et al., 2010), wS1 (Wise and
Jones, 1977; Cohen et al., 2008; Aronoff et al., 2010) and the cere-
bellar nuclei, mainly the dentate and interpositus nucleus, and to a
lesser extent also from the fastigial nucleus (May, 2006). Other
inputs come, as mentioned before, from the trigeminal nuclei
(Steindler, 1985; Cohen et al., 2008), and also from ZI, which
supplies both glutamatergic and GABAergic efferents (Beitz, 1989;
Kim et al., 1992), from SNr (Beckstead et al., 1979; Kaneda et al.,
2008) as well as from the visual cortex (Boehnke and Munoz,
2008). There is also input from the thalamus, but this seems to
relate more to the visual than to the whisker system (Cosenza
and Moore, 1984; Taylor and Lieberman, 1987). SC projects to
the lateral facial nucleus. This connection is mainly ipsilateral, but
there are distinct patches of neurons within SC that project to
the contralateral lateral facial nucleus (Hemelt and Keller, 2008).
SC also projects to the contralateral nucleus reticularis tegmenti
pontis (NRTP; Westby et al., 1993; May, 2006), which provides
mossy fiber input to the cerebellar cortex and cerebellar nuclei
(Mihailoff, 1993). There is also a projection from SC to the con-
tralateral medial accessory olive (MAO; Huerta et al., 1983; May,
2006), which is a source of climbing fibers to the cerebellar cortex.
Thus, there are two disynaptic pathways from SC to the cerebellar
cortex, which projects back to SC via the cerebellar nuclei.

THE CEREBELLAR SYSTEM

The third somatosensory feedback system is that of the cerebel-
lum, which receives most of its mossy fiber afferents from the pons
and all its climbing fiber afferents from IO (Figure 6).

The pontine nucleus and the nucleus reticularis tegmenti pontis

The pontine nucleus (or “basal pons”) forms the main gateway
to the cerebellum for efferents from the cerebral cortex. The
main input to the pontine nucleus comes from layer 5 neurons

FIGURE 6 |The cerebellum. (A) Tactile stimulation of the upper lip evokes

a bi-phasic response in the cerebellar cortex, as measured with field

potential recordings in the granule cell layer in crus 2 of adult rats.

Complete midcollicular decerebration abolished the late phase response,

indicating that the late phase response (arrow) is induced by the cerebral

cortex, while the early phase is not. Schematic drawing based on Morisette

and Bower (1996). (B) Peri-stimulus time histograms of complex spike

(blue) and simple spike (red) responses to ipsilateral air puff stimulation of

the whiskers in a Purkinje cell in crus 1 of an awake mouse. The complex

spike response is uni-phasic, while clear early and late phase simple spike

responses can be observed. Reproduced with permission from Bosman

et al. (2010). (C) Cross section of the cerebellar cortex, showing the

locations where Purkinje cell responses to ipsilateral stimulation of whisker

from the C row were observed in crus 1 and crus 2. COP, copula pyramidis;

PFL, paraflocculus; PML, paramedian lobule; SL, simple lobule. Modified

with permission from Bosman et al. (2010).
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throughout the entire ipsilateral cerebral cortex, and the efferents
all go to the cerebellum (Legg et al., 1989; Brodal and Bjaalie,
1992). Cerebral cortical inputs are mapped multiply and in dif-
ferent combinations to the pontine nucleus (Schwarz and Möck,
2001; Leergaard et al., 2004, 2006). In general, cortico-pontine pro-
jections from different cortical regions do not overlap. This seems
to hold true also for the barrels of wS1, implying that the pon-
tine nucleus may receive single-whisker input (Schwarz and Möck,
2001). Nevertheless, the whisker-related parts of wS1, wS2, and
wM1, sometimes project to adjacent, or even partially overlapping
regions (Leergaard et al., 2004). Thus, the somatotopy in the pon-
tine nucleus is somewhat intermediate between the continuous
somatotopy of the cerebral cortex and the fractured somatotopy
of the cerebellum.

The pontine nucleus sends bilateral (but mainly contralateral)
mossy fiber connections to the cerebellar cortex, which give off
collaterals to the cerebellar nuclei (Eller and Chan-Palay, 1976;
Parenti et al., 2002; Leergaard et al., 2006). The cerebellar cortex
also projects to the cerebellar nuclei. This feedback loop is com-
pleted by afferents from the cerebellar nuclei back to the pontine
nucleus (De Zeeuw et al., 2011; Ruigrok, 2011). In addition to the
input from the cerebral cortex, which is the dominant input, and of
the cerebellar nuclei, the pontine nucleus also receives inputs from
dozens of other brain regions (Mihailoff et al., 1989). The func-
tional relevance of these other inputs is not very clear, and their
specific functions for the whisker system are currently unknown.
The inputs that could be of importance for the whisker system
include projections from the sensory trigeminal nuclei (mainly
SpVi; Swenson et al., 1984; Mihailoff et al., 1989), SC (Burne et al.,
1981; Mihailoff et al., 1989), ZI (Ricardo, 1981; Mihailoff, 1995),
the dorsal raphe nuclei (Mihailoff et al., 1989), PPTg (Mihailoff
et al., 1989), and the tuberomammillary nuclei (Pillot et al., 2002).
Recently, a direct connection from STN to the pontine nuclei
has been described in cebus monkeys (Bostan et al., 2010). This
could underlie a direct coupling between the basal ganglia and the
cerebellar system.

Immediately dorsal of the pontine nucleus is the NRTP. The
main input to NRTP comes from the cerebellar nuclei (Torigoe
et al., 1986b; Brodal and Bjaalie, 1992). Other inputs come from
SC and the pontomedullary RF (Torigoe et al., 1986b). NRTP also
receives input from layer 5 pyramidal cells of the cerebral cortex,
mainly bilaterally from the cingulate cortex and to a lesser extent
also ipsilaterally from motor areas (Brodal, 1980; Torigoe et al.,
1986a). NRTP projects, amongst others, ipsilaterally to the cere-
bellar cortex and the cerebellar nuclei (Mihailoff, 1993; Parenti
et al., 2002) and bilaterally to the lateral facial nucleus (Isokawa-
Akesson and Komisaruk, 1987; Hattox et al., 2002). Hence, NRTP
may be a relay station between the cerebellar nuclei and the lateral
facial nucleus, but whether it has a role in the whisker system is
not clear yet.

Cerebellum and inferior olive

The cerebellum has a central role in sensorimotor integration and
motor learning (Ito, 2000; De Zeeuw and Yeo, 2005; Krakauer
and Shadmehr, 2006). It receives sensory input from the whiskers
(Figure 6B; Axelrad and Crepel, 1977; Brown and Bower, 2001;
Loewenstein et al., 2005; Bosman et al., 2010; Chu et al., 2011) and

its activity can affect whisker movements (Esakov and Pronichev,
2001; Lang et al., 2006). The cerebellar cortex has two afferent
pathways, the climbing fiber and mossy fiber/parallel fiber path-
way, that converge on the cerebellar Purkinje cells, which form the
sole efferent projection to the cerebellar and vestibular nuclei (De
Zeeuw et al., 2011).

Each adult Purkinje cell is innervated by a single climbing
fiber only, with the climbing fiber-to-Purkinje cell synapse being
extraordinarily strong (Eccles et al., 1964; Bosman et al., 2008;
Davie et al., 2008). Thus, climbing fiber activity reliably evokes
postsynaptic spikes, which are, due to their complex waveforms,
called “complex spikes” (Davie et al., 2008; De Zeeuw et al., 2011).
Climbing fibers originate exclusively from the contralateral IO.
IO comprises three main nuclei, all of which receive input from
SpV, but not from PrV (Molinari et al., 1996; Yatim et al., 1996).
Trigemino-olivary connections originate from all three compart-
ments of SpV and target mainly the contralateral rostromedial
part of the dorsal accessory olive (DAO) and the adjacent dor-
sal leaf of the principal olive (PO), and to a lesser extent the
ventral leaf of the PO and the caudal part of the MAO (Huerta
et al., 1983; Molinari et al., 1996; Yatim et al., 1996). Ipsilateral
trigemino-olivary projections mirror the contralateral ones, but
are relatively sparse (Molinari et al., 1996; Yatim et al., 1996). Alto-
gether, most IO neurons react to somatosensory input (Gellman
et al., 1985; Gibson et al., 2004). IO also receives input from many
other regions. These include direct and indirect spinal projections
(Miskolczy, 1931; Swenson and Castro, 1983), as well as projec-
tions from SC (Akaike, 1992), ZI (Brown et al., 1977), the raphe
nuclei (Brown et al., 1977), and the ipsilateral cerebral cortex, both
from somatosensory and motor areas (Swenson et al., 1989). As
a consequence, Purkinje cells fire complex spikes in response to
stimulation of wM1 (Lang, 2002; Lang et al., 2006).

The subnuclei of IO project to specific parasagittal zones of the
cerebellar cortex (Voogd and Glickstein, 1998; Apps and Hawkes,
2009). The IO area with the strongest trigeminal input, the rostro-
medial DAO and dorsal PO, projects to the C3 and D zones, while
the other areas project mainly to the A zones (Yatim et al., 1996;
Apps and Hawkes, 2009). Indeed, most Purkinje cells showing
complex spike responses to whisker stimulation were found in the
C3 and D zones in lobule crus 1, and to a lesser extent also in crus
2 (Figure 6C; Bosman et al., 2010). Climbing fiber responses have
also been found in the A zones of lobuleVII (Thomson et al., 1989).
In lobule IX, mossy fiber whisker responses have been reported,
but climbing fiber responses were not evaluated (Joseph et al.,
1978).

Climbing fiber input to the cerebellar cortex does not fol-
low a somatotopic organization on single-whisker level. For most
Purkinje cells, the receptive field of the climbing fiber input is
restricted to a single whisker, where nearby Purkinje cells may
receive inputs from totally unrelated whiskers (Axelrad and Cre-
pel, 1977; Bosman et al., 2010). In the rare cases where a Purkinje
cell received input from multiple whiskers, these whiskers were
located within the same row (Bosman et al., 2010). Complex spike
responses to whisker stimulation are relatively sparse, encoding
typically about 10% of the stimuli in responsive Purkinje cells,
show a large jitter in the latencies and depend on the direction of
whisker movement (Thomson et al., 1989; Bosman et al., 2010).
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Mossy fibers terminate at the cerebellar granule cells, whose
axons form the parallel fibers, that run transversely over a long
distance, innervating numerous Purkinje cells on their way, but
with each parallel fiber-to-Purkinje cell synapse being only very
weak (De Zeeuw et al., 2011). There are two main mossy fiber
routes via which whisker sensory information reaches the cerebel-
lar cortex. First, there is a direct mossy fiber projection from the
trigeminal nuclei to the cerebellar cortex. The trigemino-cerebellar
mossy fibers originate from ipsilateral PrV, SpVo, and SpVi, and
to a lesser extent from SpVc (Yatim et al., 1996). This direct
pathway can evoke Purkinje cell simple spike responses with a
short latency. The second main mossy fiber input originates in the
pontine nucleus, which in turn is activated by wS1. This cerebro-
cerebellar pathway evokes Purkinje cell simple spike responses with
a long latency. Lesioning of the cerebral cortex abolishes the long-
latency response, while leaving the short-latency responses in tact
(Figure 6A; Kennedy et al., 1966; Morisette and Bower, 1996).
There is also a direct, trigemino-pontine connection from SpVi,
but its relevance for the whisker system is not clear (Swenson et al.,
1984; Mihailoff et al., 1989).

Whisker input can also inhibit Purkinje cell simple spike fir-
ing, with the inhibitory response having a longer latency than the
excitatory response (Figure 6B; Bosman et al., 2010; Chu et al.,
2011). This reflects most likely the feedforward inhibition by mol-
ecular layer interneurons within the cerebellar cortex (Chu et al.,
2011; De Zeeuw et al., 2011). The complex spike and simple spike
responses of an individual Purkinje cell are largely uncorrelated,
both at the level of the receptive field and on the level of individual
trials (Bosman et al., 2010). Simple spikes receptive fields usu-
ally involve multiple whiskers, without any obvious somatotopic
ordering. And, also in contrast to complex spike responses, simple
spike responses are not affected by the direction of whisker stimu-
lation (Bosman et al., 2010). Mossy fiber-mediated whisker input
seems to be strongest in crus 1, strong in crus 2 and lobules VII
and IX in the vermis, and sparse in the simplex and paramedian
lobules (Joseph et al., 1978; Shambes et al., 1978; Thomson et al.,
1989; Bosman et al., 2010).

Thus, large parts of the cerebellar cortex receive whisker input.
The output of the GABAergic Purkinje cells in the whisker-
sensitive regions is fully directed to the cerebellar nuclei. From
there, the cerebellar output to the whisker system mainly follows
three pathways: (i) to IO, where it closes the olivo-cortico-nuclear
feedback loop (Voogd and Glickstein, 1998; De Zeeuw et al., 2011);
(ii) to the VL nucleus of the thalamus (Aumann et al., 1994) to
provide feedback to the cerebral cortex (Aumann et al., 1994), and
possibly also to the basal ganglia (Hoshi et al., 2005); and (iii) to
regions that directly project to the lateral facial nucleus, such as SC
(Westby et al., 1993) and NRTP (Torigoe et al., 1986b). So these
latter routes may allow the cerebellum to directly affect motor
output.

Both the striatum and the pontine nuclei receive input from
the cerebral cortex. Interestingly, the cortico-pontine pathway has
a stronger convergence of inputs from related regions in wS1 and
wS2 than the cortico-striatal pathway (Leergaard et al., 2004). This
could imply that the cerebellar system is especially suited for the
processing of sensory data. Recent findings in primates link the
cerebellar system and the basal ganglia via reciprocal disynaptic

pathways. The dentate nucleus projects via the thalamus to the
striatum (Hoshi et al., 2005) and STN projects via the pontine
nuclei to the cerebellar cortex (Bostan et al., 2010).

VENTROLATERAL NUCLEUS OF THE THALAMUS

Both the basal ganglia and the cerebellum have an ascending pro-
jection to wM1 via the ventrolateral nucleus (VL) of the thalamus.
VL incorporates input from EPN (Nambu, 2007), the cerebellar
nuclei (Aumann et al., 1994), and wM1 (Miyashita et al., 1994;
Alloway et al., 2008). VL itself has a somatotopic representation,
including a separate area related to the whiskers (Tlamsa and
Brumberg, 2010). Thus, VL is a crucial part of the central motor
control system.

OTHER STRUCTURES PROJECTING TO THE FACIAL NUCLEUS

Pontomedullary reticular formation

The pontomedullary RF is a premotor area, whose activation can
cause widespread movements (Quessy and Freedman, 2004; Sta-
pley and Drew, 2009). Within RF, several distinct regions can be
discriminated. Of these, the dorsal medullary reticular field and
the parvocellular reticular nucleus receive strong input from SpVi
and SpVc, while the gigantocellular reticular nucleus receives mod-
erate input from SpVo (Zerari-Mailly et al., 2001). Relatively weak
inputs from SpV to the other parts of RF can also be found, as
well as a few connections between PrV and RF (Zerari-Mailly
et al., 2001). The dorsal reticular nucleus (DRN) is probably a pain
modulating area (Villanueva et al., 1988; Bouhassira et al., 1992).
DRN forms, as other parts of RF, strong bilateral connections to
the facial nucleus (Hattox et al., 2002; Leite-Almeida et al., 2006).
Indeed, mice move their whiskers, as well as other parts of the
face, in response to pain (Langford et al., 2010). In addition, DRN
projects to dozens of other brain structures, including other parts
of RF, the ipsilateral amygdala, periaqueductal gray, red nucleus,
and SpV, as well as the contralateral IO, SC, ZI, and several nuclei
of the thalamus, including Pom and to a lesser extent VPM (Leite-
Almeida et al., 2006). Apart from a role in pain transmission, RF is
also involved in “normal” whisker movements. RF neurons receiv-
ing trigeminal input project to the lateral facial and hypoglossal
nuclei (Dauvergne et al., 2001). In addition, RF receives direct
input from wM1, and RF stimulation causes whisker retraction
(Matyas et al., 2010). RF also receives cholinergic input from the
pedunculopontine tegmental nuclei (Jones, 1990) and noradren-
ergic input from the locus coeruleus (Jones, 1991), indicating that
RF activity is strongly modulated by the general state of alertness.

Zona incerta

The zona incerta can be functionally divided into rostral (ZIr),
dorsal (ZId), ventral (ZIv), and caudal (ZIc) sectors (Kim et al.,
1992; Ma et al., 1992; Nicolelis et al., 1992, 1995b) and contributes
to the whisker paralemniscal somatosensory pathway (Urbain and
Deschênes, 2007a). It has been said to have connections with
almost every center in the neuraxis (Mitrofanis, 2005). Multiple
whisker receptive fields have been found in both ZId and ZIv. A
somatotopic map was found to be partial in ZId and complete
in ZIv. The ZId somatotopic map was characterized by large facial
receptive fields including the whiskers (Nicolelis et al., 1992; Simp-
son et al., 2008). Direct whisker input reaches ZI mainly from both
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PrV and SpVi (Lin et al., 1990; Kolmac et al., 1998; Lavallée et al.,
2005), but also via wS1 (Lin et al., 1990; Aronoff et al., 2010).
Most likely, the main impact of ZI on the whisker system is by
its GABAergic output to Pom. The thalamus can be divided into
first order and higher-order nuclei where the latter can be defined
by different coding strategies, receptive field properties and cor-
tical layer 5 input (Diamond et al., 1992a; Ojima, 1994; Ahissar
et al., 2000). ZI forms GABAergic projections that terminate on
such higher-order thalamic nuclei (Barthó et al., 2002). During
rest, ZIv inhibits whisker sensory transmission via Pom (Lavallée
et al., 2005). However, wM1 input to the motor subsector of ZI
can induce GABAergic interneurons that inhibit the whisker sen-
sory subsector of ZI, which in turn disinhibits the relay cells of
Pom, providing a mechanism of lateral inhibition in ZI (Urbain
and Deschênes, 2007b). Thus, during active whisker movements,
wM1 activity releases the inhibition on sensory gating in Pom. This
implies that Pom transmits more details on whisker input during
active movement than during periods of rest. Apart from wM1,
also cholinergic input from PPTg and the laterodorsal tegmen-
tal nucleus (LDTg) can reduce the inhibitory output of ZIv to
Pom (Trageser et al., 2006). Since the cholinergic input to ZI is
highest during active states (Trageser et al., 2006), this is a pos-
sible second form of gating of the whisker input to wS1 under
control of ZI. ZI forms also GABAergic projections to the inter-
mediate and deep layers of SC, that in turn project back to ZI
(Roger and Cadusseau, 1985; May, 2006). In addition, ZId has glu-
tamatergic projections to the basal ganglia (Heise and Mitrofanis,
2004).

Anterior pretectal nucleus

Like ZI, the APT nucleus provides strong GABAergic inhibition
in Pom. The morphology of the projections to Pom from ZI and
APT are similar, forming multiple synapses on the thick dendrites
of relay cells, and different from RT projections that form single
synapses on the thin, distal dendrites of relay cells (Bokor et al.,
2005; Wanaverbecq et al., 2008). Input from APT strongly sup-
presses whisker responses in Pom (Murray et al., 2010). In view
of the heterogeneity in firing patterns of APT neurons observed
in vivo, it has been suggested that APT, like ZI, controls the
thalamo-cortical output in a state-dependent manner (Bokor et al.,
2005). ZI and APT are reciprocally connected. There is a strong
projection of both GABAergic and non-GABAergic APT neurons
to ZIv, from where the thalamic projections originate (May et al.,
1997). The reciprocal connection from ZIv to APT is relatively
sparse (May et al., 1997; Giber et al., 2008). Thus, ZI and APT may
cooperate in controlling the flow of information from Pom to the
cerebral cortex in a state-dependent manner.

Apart from ZI and Pom, APT also targets a large number of
brain regions. The functional relevance of these other outputs for
the whisker system is still unclear, but potentially relevant target
areas are SC, the pontomedullary RF, the pontine nucleus, red
nucleus, and (dorsal) IO (Cadusseau and Roger, 1991; Terenzi
et al., 1995; Zagon et al., 1995). In turn, APT receives strong input
from amongst others wS1, SC, the deep mesencephalic nucleus,
and PPTg, as well as sparse input from the locus coeruleus and
the periaqueductal gray (Foster et al., 1989; Cadusseau and Roger,
1991).

Red nucleus

The red nucleus is closely associated with limb movements (Mas-
sion, 1988; Muir and Whishaw, 2000) and is composed of two
parts. The magnocellular part receives input from the cerebral
cortex, including wS1 and wM1 (Alloway et al., 2010), as well as
from the cerebellar interposed nucleus (Teune et al., 2000), and
sends its output to the contralateral limbs via the rubrospinal tract
(ten Donkelaar, 1988; Paul and Gould, 2010). The parvocellular
part receives its input from the cerebellar dentate nucleus (Teune
et al., 2000) and sends its output to the contralateral facial nucleus
(Hattox et al., 2002). Thus, from an anatomical point of view, the
red nucleus is strongly implicated in the whisker system. However,
electrical stimulation of the red nucleus did not evoke whisker
movements in a consistent way (Isokawa-Akesson and Komisaruk,
1987).

Pontine respiratory group

The parabrachial complex and the Kölliker-Fuse nucleus, both
part of the pontine respiratory group, provide strong, ipsilat-
eral projections to the lateral facial nucleus (Isokawa-Akesson
and Komisaruk, 1987; Hattox et al., 2002). The pontine respi-
ratory group projects to several areas of the medullar respiratory
group, and may therefore affect the respiratory rhythm (Smith
et al., 2009). Thus, the connection between the pontine respiratory
group and the lateral facial nucleus may facilitate the synchroniza-
tion of sniffing and whisking. Such coupling is prominent during
exploratory whisking (Welker, 1964).

Ambiguus nucleus

The ambiguus nucleus has a dense projection to the ipsilateral lat-
eral facial nucleus (Isokawa-Akesson and Komisaruk, 1987; Hattox
et al., 2002). Electrical stimulation of the ambiguus nucleus could
evoke ipsilateral, rhythmic whisker movements with a remark-
ably low stimulation threshold (Isokawa-Akesson and Komis-
aruk, 1987). Since the ambiguus nucleus is mainly involved in
respiration (Delgado-García et al., 1983) and swallowing (Brous-
sard and Altschuler, 2000), it could serve to synchronize whisker
movements to respiration and swallowing.

Other brain regions

This list of brain regions is incomplete since we lack sufficient
knowledge of other brain regions which might be involved in the
whisker system. Potentially important areas include the deep mes-
encephalic nucleus and the periaqueductal gray. The deep mesen-
cephalic nucleus receives a strong, ipsilateral input from wM1, and
forms dense projections to the lateral facial nucleus (Hattox et al.,
2002; Alloway et al., 2010). Yet, its function for the whisker system
is not clear. The periaqueductal gray is, amongst others, important
for pain transmission and integrating defensive behavior (Behbe-
hani, 1995; Graeff, 2004). Stimulating the periaqueductal gray
results in whisker twitches (Verberne and Struyker Boudier, 1991).
The periaqueductal gray receives serotonergic input from the dor-
sal raphe nucleus (Graeff, 2004), strong input from ipsilateral wM1
(Alloway et al., 2010), and forms relatively sparse, bilateral connec-
tions to the lateral facial nucleus (Hattox et al., 2002). For further
connections of the periaqueductal gray, see Vianna and Brandão
(2003).
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BILATERAL COORDINATION OF WHISKER MOVEMENTS

In the absence of object contact and head movements, whisker
movements on both sides of the head tend to be symmetric.
However, during active exploration, in particular involving head
movements, whisker movements are often asymmetric (Towal and
Hartmann, 2006, 2008; Mitchinson et al., 2007). This implies that
both hemispheres are interconnected, but can be decoupled if
the actual behavior requires to do so. In line with this, many, if
not most, of the connections discussed in this review are actually
bilateral, although the strengths of the ipsi- and contralateral pro-
jections are often quite different (see also Alloway et al., 2010).
Putative candidates for the modification of interhemispheric con-
nections, especially involving wM1, are the feedback loops with
the thalamus, the basal ganglia, and the claustrum (Alloway et al.,
2008, 2009, 2010). Particularly the claustrum has been proposed to
facilitate interhemispheric communication of wM1 (Alloway et al.,
2009; Smith and Alloway,2010). wM1 targets the claustrum mainly
contralaterally, and the claustrum projects mainly ipsilaterally to
wM1. These projections are highly specific: the cortico-claustro-
cortical projections connect the same whisker fields in wM1 of
both hemispheres (Smith and Alloway, 2010).

AROUSAL, ALERTNESS, AND ATTENTION

Whisker movements and the processing of whisker input depend
on the general state of alertness. For instance, stimulation of wM1
leads to larger whisker movements in aroused rather than in awake,
but sessile rats (Berg et al., 2005). Furthermore, whisker stimuli
evoke smaller responses in wS1 showing less spreading during
whisking than during rest (Ferezou et al., 2007). The neural sys-
tems that control the general state of alertness affect many brain
regions and are not specific for the whisker system. We discuss
here those systems of which clear effects on the whisker system
have been documented or can be expected based on anatomical
connections.

ACETYLCHOLINE

Central cholinergic projections, mainly originating from the basal
forebrain and the tegmentum, affect the whisker system at differ-
ent levels (Woolf, 1991; Dani and Bertrand, 2007). Roughly, the
basal forebrain targets wS1 and wM1, while the tegmentum targets
several subcortical areas. The basal forebrain is composed of sev-
eral areas that provide cholinergic output, including the nucleus
basalis magnocellularis (NBM; known as the Meynert nucleus
in primates) of the substantia innominata. NBM is active dur-
ing waking and REM sleep, but not during slow-wave sleep (Lee
et al., 2005). The main projection areas of the cholinergic neu-
rons of NBM are the entire cerebral cortex and the amygdala
(Wenk, 1997; Deurveilher and Semba, 2011). Electrical stimula-
tion of the cholinergic neurons of the NBM leads to an increased
effect of wM1 stimulation on whisker movements. This effect of
NBM stimulation is only observed in sessile, but less so in aroused
rats (Berg et al., 2005). This could indicate that NBM is already
endogenously active in aroused rats.

In addition to enhancing motor performance, cholinergic affer-
ents also increase the sensitivity to sensory stimuli. The response
to whisker stimulation in wS1 is increased due to acetylcholine
(ACh; Oldford and Castro-Alamancos, 2003; Constantinople and

Bruno, 2011). This effect is partly due to stimulation of the
basal forebrain, which enhances especially the responses to non-
dominant whiskers (Kuo et al., 2009). In addition, cholinergic pro-
jections from PPTg and LDTg, increase the responses to whisker
stimulation in VPM, and consequently also in wS1 (Hirata and
Castro-Alamancos, 2010, 2011). Furthermore, the responsiveness
to whisker input of Pom is increased by cholinergic input from
PPTg as well as from LDTg, due to both direct connections to
Pom, where the cholinergic fibers suppress the release of GABA
from projections originating in ZI (Masri et al., 2006), as well as
indirectly by decreasing the neuronal activity of GABAergic pro-
jection neurons in ZI (Trageser et al., 2006). In SpVi, a similar
phenomenon occurs as in wS1: activity of the cholinergic input
from PPTg increases the responsivity of sensory neurons to inputs
from adjacent whiskers (Timofeeva et al., 2005). Finally, there are
also cholinergic projections from PPTg and LDTg to SC, PrV, and
the lateral facial nucleus (Satoh and Fibiger,1986; Beak et al., 2010),
but their specific functions for the whisker system are currently
unknown.

The nucleus basalis magnocellularis receives strong input from
the amygdala, the hypothalamus, and the thalamus, as well as
from specific areas of the cerebral cortex, probably including the
prefrontal and motor cortex (Haring and Wang, 1986; Irle and
Markowitsch, 1986). In addition, there are weaker inputs from
many other (subcortical) regions (Haring and Wang, 1986; Irle
and Markowitsch, 1986). Inputs to PPTg and LDTg come from
a wide range of brain regions, including the medial prefrontal
and cingulate cortex (but not wS1, wS2, and wM1), the thal-
amus, the hypothalamus, ZI, the periaqueductal gray, SC, the
pontomedullary RF, the dorsal raphe nuclei as well as from many
other regions not directly involved in the whisker system (Semba
and Fibiger, 1992). The input from the trigeminal and cerebellar
nuclei is relatively weak (Semba and Fibiger, 1992).

In conclusion, when the cholinergic system is quiet, as during
slow-wave sleep (Lee et al., 2005), whisker sensitivity is reduced,
and primarily focused on the dominant whiskers. During more
attentive states, input from non-dominant whiskers is processed,
yielding a more detailed impression of the environment. At the
same time, the cholinergic system facilitates whisker movements
during arousal, which increases the sensitivity of the whisker
system even further.

NORADRENALINE

Noradrenergic projections have similar effects on the sensitivity to
whisker stimulation as cholinergic projections. The origin of nora-
drenaline is the locus coeruleus and adjacent brainstem regions
(Aston-Jones and Cohen, 2005). Noradrenaline suppresses spon-
taneous activity of VPM via RT. As a consequence, sensory input is
passed on to wS1 with a higher signal-to-noise ratio (Hirata et al.,
2006; Hirata and Castro-Alamancos, 2011). In addition, the locus
coeruleus can directly modulate the network dynamics of wS1
(Constantinople and Bruno, 2011). Activity of the locus coeruleus
is closely related to awakeness and alertness (Aston-Jones and
Cohen, 2005). Indeed, a novel environment can stimulate activity
of the locus coeruleus and the anterior cingulate cortex, and thus
keep the animal fully awake (Gompf et al., 2010). The main inputs
to the locus coeruleus come from RF and the hypoglossal nucleus
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(Jones, 1991). Other relevant outputs are directed to RF, the facial
nucleus, ZI, and NBM (Jones, 1991). Thus, although noradrena-
line works via different mechanisms than ACh, both increase the
level of arousal as well as the sensitivity toward whisker input.

HISTAMINE

Histamine is also only released during wakefulness (Takahashi
et al., 2006). It promotes, amongst others, vigilance (Anaclet et al.,
2009; Thakkar, 2011) and the coordination of goal-directed behav-
iors (Valdés et al., 2010). The sole source of histamine in the brain is
the hypothalamus, most notably the tuberomammillary nuclei and
perhaps also the surrounding tissue (Wouterlood et al., 1986; Pas-
sani and Blandina, 2011). The tuberomammillary nuclei project
to almost all brain regions, including cerebral cortex, thalamus,
brainstem, and cerebellum (Pillot et al., 2002). Histaminergic con-
nections of particular importance for the whisker system include
ipsilateral projections from the ventrolateral tuberomammillary
nucleus to wS1 and wM1 (Hong et al., 2010). The dorsomedial
tuberomammillary nucleus projects bilaterally to PrV and the lat-
eral facial nucleus (Hong et al., 2010). In addition, all layers of
SC, but mainly the superficial ones, receive histaminergic input
(Manning et al., 1996). Thus, there are histaminergic connec-
tions to many of the important whisker regions, and although the
specific functions of these connections are currently unknown,
it seems likely that histamine has a general, stimulating effect
on the whisker system, comparable to that of acetylcholine and
noradrenaline.

SEROTONIN

The activity of most serotonergic neurons of the dorsal raphe
nucleus is strongly affected by the sleep/wake rhythm. In the
awake state, they fire at very regular intervals (McGinty and
Harper, 1976; Kocsis et al., 2006; Urbain et al., 2006). The dorsal
raphe nucleus projects to the lateral facial nucleus (Hattox et al.,
2003; Cramer and Keller, 2006; Lee et al., 2008c), where sero-
tonin facilitates a persistent inward current (PIC) in the whisker
motor neurons. This lowers their activation thresholds (Cramer
et al., 2007). Indeed, spontaneous as well as wM1-induced whisker
movements are largely abolished following block of serotonin
receptors (Figure 7B; Hattox et al., 2003; Cramer and Keller, 2006).
Thus, serotonin is both required and sufficient to generate a rhyth-
mic whisker movement pattern, and it also modulates inputs from
wM1. That makes the serotonergic system a fourth system that
modulates the whisker system according to the state of alertness
of the animal, together with the cholinergic, noradrenergic, and
histaminergic systems.

The dorsal raphe nucleus receives inputs from wM1, but also
from a wide range of cortical and subcortical areas. Particularly
strong inputs come from regions with an emotional and/or cog-
nitive function, such as the medial prefrontal cortex and the
amygdala (Lee et al., 2003; Hale and Lowry, 2011). The regular
spiking patterns of the dorsal raphe nucleus are in line with its
putative function as CPG for rhythmic whisker movements (Hat-
tox et al., 2003). The spiking pattern of the dorsal raphe nucleus
can be perturbed by, amongst others, whisker touch and, to a
lesser extent, free whisking in air (Waterhouse et al., 2004). The
dorsal raphe nucleus projects to the prefrontal cortex and many

FIGURE 7 |The dorsal raphe nuclei as central pattern generator. (A)

Schematic overview of the main serotonergic connections from the dorsal

raphe nuclei to the brain regions of the whisker system. DR DM,

dorsomedial dorsal raphe nucleus; DR LW, lateral wing division of the dorsal

raphe nucleus; DR VM, ventromedial dorsal raphe nucleus; FN, facial

nucleus; PrV, principal trigeminal nucleus; VPM, medial ventroposterior

nucleus; wM1, whisker motor cortex; wS1, barrel cortex. (B) During

exploratory whisking, rhythmic whisker movements occur, as shown here

by EMG recordings of rat whisker muscles. Application of metergoline, an

antagonist for the serotonin receptors 5-HT1 and 5-HT2, in the facial nucleus

abolishes the rhythmicity of whisker movements unilaterally at the side of

injection. Most likely, the dorsal raphe nuclei are the source of serotonin.

This indicates that the dorsal raphe nuclei may act as central pattern

generator for whisker movements. Reproduced with permission from

Hattox et al. (2003).

regions directly involved in the whisker system. The midline region
projects to ipsilateral wS1 and wM1, and the lateral wing divi-
sion to ipsilateral VPMvl, PrV, and facial nucleus (Figure 7A;
Kirifides et al., 2001; Sheibani and Farazifard, 2006; Lee et al.,
2008c). Thus, next to being a CPG for rhythmic whisker move-
ments via its direct connection to the lateral facial nucleus, the
dorsal raphe nucleus affects several other regions of the whisker
system.

TIMING IN THE WHISKER SYSTEM

Timing is essential for the whisker system. During active touch, rats
move their whiskers rhythmically over an object. Irregularities in
the surface texture cause small disruptions in the whisker move-
ments, which evoke neuronal responses (Figures 1B,C; Szwed
et al., 2003; Hartmann, 2009; Jadhav and Feldman, 2010). Active
touch can be instrumental for several forms of behavior. For
instance, Etruscan shrews use their whiskers to locate prey. On
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FIGURE 8 | Neuronal connections in the whisker system. Many brain

regions are involved in controlling the whiskers. Schematic

representation of the connections discussed in the main text. Thickness

of the arrows corresponds to the robustness of the connection involved

(divided among three different levels). Some local connections are

indicated, but for the connections between the nuclei of the basal

ganglia, see Figure 5A. Amb, ambiguus nucleus; Amg, amygdala; APT,

anterior pretectal nucleus; Clau, claustrum; DMN, deep mesencephalic

nucleus; DR, dorsal raphe nucleus; EPN, entopeduncular nucleus; GP,

globus pallidus; IO, inferior olive; KF–PC, Kölliker-Fuse nucleus and

parabrachial complex; LC, locus coeruleus; LD, laterodorsal nucleus;

MeV, mesencephalic trigeminal nucleus; NBM, nucleus basalis

magnocellularis; NRTP, nucleus reticularis tegmenti pontis; NXII,

hypoglossal nucleus; PAG, periaqueductal gray; PN, pontine nucleus;

Pom, medial posterior nucleus; PPTg, pedunculopontine tegmental

nucleus and the laterodorsal tegmental nucleus; PrV, principal trigeminal

nucleus; RF, pontomedullar reticular formation; RN, red nucleus; RT,

reticular nucleus; SNc, substantia nigra pars compacta; SNr, substantia

nigra pars reticulata; SpVc, spinal trigeminal nucleus pars caudalis; SpVi,

spinal trigeminal nucleus pars interpolaris; SpVo, spinal trigeminal

nucleus pars oralis; STN, subthalamic nucleus; TG, trigeminal ganglion;

TMN, tuberomammillary nucleus; VPM, medial venteroposterior nucleus;

wM1, whisker motor cortex; wS1, barrel cortex; wS2, whisker part of

the secondary somatosensory cortex; ZI, zona incerta.

Frontiers in Integrative Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 53 | 18

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Bosman et al. Anatomy of the whisker system

average, they initiate an attack on average 179 ms after the first
whisker contact, but this interval can be as short as 53 ms (Munz
et al., 2010). Indeed, the vibrissae can be used experimentally to
explore interval timing. Stimulation of the vibrissae can act as a
CS in eyeblink conditioning (Das et al., 2001; Leal-Campanario
et al., 2006; Galvez et al., 2009). The reverse is also possible: to
evoke vibrissal movements as an unconditioned response (UR;
Troncoso et al., 2004).

Whisker responses are rapidly distributed over the brain. Many
brain regions receive direct input from the trigeminal nuclei, often
in addition to input from wS1 (Figure 8). As a consequence, the
whisker responses in the cerebellum (Bosman et al., 2010) and
SC (Bezdudnaya and Castro-Alamancos, 2011) are bi-phasic. Fast,
direct whisker responses are followed by wS1-mediated responses
with longer latencies. This allows for fast, multi-center processing
of whisker data.

Although wM1 is able to evoke, on a cycle-by-cycle base, rhyth-
mic whisker movements under experimental conditions involv-
ing artificial disinhibition (Castro-Alamancos, 2006), under more
physiological conditions, the frequency of microstimulation in
wM1 does not necessarily correspond to the frequency of the
evoked whisker movements (Berg and Kleinfeld, 2003b; Haiss
and Schwarz, 2005). However, widespread rhythmic activity (at
7–12 Hz) involving cerebral cortex, thalamus, and brainstem often
precedes the onset of rhythmic whisker movements, which is then
phase-locked to the brain oscillations (Nicolelis et al., 1995a). Nev-
ertheless, it is likely that subcortical structures critically participate
in the generation of rhythmicity of the whisker movements. The
serotonergic projection from the dorsal raphe nuclei to the facial
nucleus has especially been found to be effective in generating
rhythmic whisker movements (Hattox et al., 2003). However also
the cerebellum and IO may be involved. After blocking IO phar-
macologically, as well as following cerebellectomy, the frequency-
dependence of whisker movements following wM1 stimulation
was altered (Lang et al., 2006). In contrast, SC does not seem
to be involved in the generation of rhythmic movements, as its
activity causes prolonged whisker protractions (Hemelt and Keller,
2008).

CONCLUSION

Whiskers play a central role in the lives and loves of rodents.
Accordingly, many brain regions can affect whisker movements.
Whisker movements depend on the general state of arousal, they
are coupled to the movements of other mobile senses, like the
eyes and the auricles, and integrated with other forms of behav-
ior, like sniffing, swallowing, and locomotion. Animals orient their
whiskers based on reward expectancy, for instance when search-
ing for food. With respect to whisker input, the level of detail
that is transmitted to higher brain areas depends on the general
state of arousal as well as on the activity of the whisker motor
cortex, and the context of the animal’s environment. The sen-
sory and motor systems of the whiskers are coupled by a number
of sensorimotor feedback loops, allowing the animals to adjust
whisker movements to sensory input. Unfortunately, many of the
brain regions involved in these feedback loops have received rel-
atively little attention with respect to the whisker system. Hence,
our knowledge on the relative importance of these areas and their
connections is incomplete. Yet, based on the current data available
to us, we present a scheme of the relevant anatomical connections
in Figure 8. Although these brain structures have many more con-
nections, we have attempted to highlight the most prominent ones.
However, the complexity of the whisker system seems to depend
on the behavioral state; the more active an animal is, the more
complex its whisker movements are and therefore a greater level
of detail results during sensory and motor information processing.
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