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Abstract. The early detection of Alzheimer’s disease (AD) is a key
step to accelerate the development of new therapies and to diminish the
associated socio-economic burden. To address this challenging problem,
several biomarkers based on MRI have been proposed. Although numer-
ous efforts have been devoted to improve MRI-based feature quality or
to increase machine learning methods accuracy, the current AD prog-
nosis accuracy remains limited. In this paper, we propose to combine
both high quality biomarkers and advanced learning method. Our ap-
proach is based on a robust ensemble learning strategy using gray matter
grading. The estimated weak classifiers are then fused into high infor-
mative anatomical sub-ensembles. Through a sparse logistic regression,
the most relevant anatomical sub-ensembles are selected, weighted and
used as input to a global classifier. Validation on the full ADNI1 dataset
demonstrates that the proposed method obtains competitive results of
prediction of conversion to AD in the Mild Cognitive Impairment group
with an accuracy of 75.6%.

Keywords: Ensemble learning, Weak classifier, Sparse logistic regres-
sion

1 Introduction

Alzheimer’s disease (AD) and its prodromal phase, Mild Cognitive Impairment
(MCI), are the most common neurodegenerative diseases affecting elderly peo-
ple. In the early stage of the disease, neural degeneration is subtle making it
difficult to predict which MCI subjects will progress to AD (pMCI) and which

?
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). Hence, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data, but did
not participate in analysis or writing of this report. ADNI investigators include (complete listing
available at www.loni.ucla.edu/ADNI/Collaboration/ADNI Author ship list.pdf).
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MCI subjects will remain stable (sMCI) during the follow up. Hereon, AD pre-
diction, i.e., AD early detection will address the classification of MCI subjects
into pMCI and sMCI subjects.

Several biomarkers have been proposed to achieve early AD diagnosis [1].
Among them, it has been established that measurements of brain atrophy ex-
tracted from structural MRI are valid markers of early stages of AD [2]. There-
fore, automatic frameworks using MRI-based features have been developed to
achieve computer-aided prognosis [3–5]. One part of these works focused on ad-
vanced machine learning techniques [6] while another part aimed to enhance
the biomarker quality [4, 7]. Among them, patch-based methods [8, 9] demon-
strated competitive AD prediction results. Despite these efforts, the current AD
prognosis accuracy remains around 70%, that suggests the limitation of using (i)
traditional features with advanced learning processes or (ii) high quality features
with basic machine learning methods. In this paper, we propose to combine high
quality biomarkers with advanced learning method to improve AD prediction
accuracy.

To this end, we first propose to extend the patch-based scoring method pro-
posed in [8]. In this approach, the anatomical pattern similarity is estimated
between the MCI test subject and two training populations (i.e., Cognitively
Normal (CN) and AD) using a non-local patch-based scoring method. For each
voxel, a score (i.e., a grade) that measures the proximity to both training pop-
ulations is computed. In [8], the a priori ROI-based strategy focused mainly on
hippocampus and may discard other possible informative anatomical regions.
To overcome this limitation, we propose to score the whole gray matter (GM).
Moreover, to be more robust to intensity normalization discrepancies between
MRI, probabilities are used in place of intensities during patch comparison. Fi-
nally, while a local patch-based strategy is used in [9], a non-local approach is
privileged to better handle inter-subject variability and registration error [8].

Afterwards, an ensemble learning method [10] is considered to efficiently use
the estimated advanced biomarkers. Since the scoring value, assigned to each
voxel of the GM, estimates the proximity to AD and CN, it can be viewed as
the posterior probability of a weak classifier. Combined together, these weak
classifiers form an ensemble that can be used to classify subjects [11]. As noticed
in [2], it appears that AD-related brain alterations are mainly a region-by-region
process. Hence, we propose to further use this clinical knowledge to create atlas-
based anatomical sub-ensembles of weak classifiers before fusing them into in-
termediate classifiers. Finally, to discard brain areas that may not be related to
AD, we propose to select the most relevant anatomical sub-ensembles using a
Sparse Logistic Regression (SLR).

In this work, the contributions are threefold: (i) unlike ROI-based approach,
non-local scoring values are estimated over the whole GM and considered as
weak classifiers; (ii) an advanced ensemble learning technique is used to fuse
these weak classifiers into anatomical sub-ensembles; and (iii) a sparse approx-
imation is used to efficiently select and weight the most relevant anatomical
sub-ensembles.
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Table 1. Demographic information about the considered study subjects.

Pathological group Size Gender (% Female) Age ± SD MMSE± SD

AD 192 48% 75.7±7.6 22.9±3.0
CN 220 49% 76.1±4.9 29.1±0.9
pMCI 166 39% 74.5±7.2 26.4±2.0
sMCI 236 33% 74.9±7.8 27.2±2.5

2 Materials and Methods

2.1 The ADNI Dataset and Image Processing

To evaluate the performance of the proposed method, all the subjects with an
available baseline ADNI preprocessed 1.5T MRI scan are used. The considered
dataset is composed of 814 subjects divided into 4 groups AD, CN, pMCI and
sMCI. AD and CN groups are used exclusively as training population during GM
grading step (see 2.3). The size, the genders, the average ages and the average
MMSE (Minimal Mental State Examination) are summarized in Table 1. These
groups are similar to the ones used in [4,7–9]. All 814 MRI were first segmented,
normalized, modulated (correction of volume changes due to the normalization),
and registered into a common space. These processing steps were performed
with the VBM8 toolbox5 added to the SPM8 software6. The resulting images
correspond to tissue-class probability maps in the MNI space. The obtained GM
probability maps are then used as inputs of our GM grading process.

2.2 Method Overview

The framework of the proposed method is summarized here and in Fig. 1. First,
the grading method is applied to all the MCI subjects GM maps using the AD
and CN populations. Second, the grading values obtained over the whole GM
are fused into anatomical sub-ensembles to form intermediate classifiers. Third,
the age-effect is corrected using a control population. Afterwards, SLR feature
selection is applied to select and weight the most relevant intermediate classifiers.
Finally, the selected intermediate classifiers are used to train a global linear SVM
classifier. The methods are detailed in the following sections.

2.3 Weak Classifier Estimation via Whole GM Grading

This work is based on the Scoring by Non-local Image Patch Estimator (SNIPE)
method [8] where a non-local patch-based estimator is used to perform anatom-
ical structure grading. The patch surrounding each voxel of a test subject is
involved to estimate the anatomical pattern similarity between the considered
patch and the most similar patches extracted from AD and CN training pop-
ulations. This pattern similarity is quantified with L2-norm between the patch

5 http://dbm.neuro.uni-jena.de/vbm.html
6 http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Overview of the proposed method.

intensities. The resulting grading value indicates if the considered anatomical
pattern is typical of AD (AD-like) or CN (CN-like) populations. Such values
can be viewed as the posterior probabilities of a weak classifier. In the proposed
method, the grade of each GM voxel is calculated using probability of GM tis-
sue instead of voxel intensities. By using GM tissue probability, our method is
more robust to multi-site MR image acquisition. In addition, in our approach
the grading is performed on the whole GM, and not only in the hippocampal
area. This prevents discarding any relevant information that could be found in
other brain regions.

2.4 Weak Classifier Fusion into Anatomical Sub-ensembles

After the grading step, the dimensionality of the weak classifiers space is too
high to be directly used for classification. A straightforward solution is to fuse
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the weak classifiers into a global classifier [11]. However, this may lead to a sub-
optimal result since local relevant information may be lost in a high level global
fusion. Additionally, as noticed in [2], AD affects specific regions of the brain in
a typical progressive manner. Therefore, we propose to group the weak classi-
fiers into anatomical sub-ensembles using an atlas-based strategy. An ensemble
learning principle fuses them into intermediate classifiers [10]. The intermediate
classifiers, ci = 1

K

∑
k cw(k), are constructed by an un-weighted vote of the K

weak classifiers cw included in each anatomical sub-ensemble. In this work, the
whole GM is divided into the 116 segmented anatomical regions corresponding
to the Automatic Anatomical Labeling (AAL) atlas [12]. Thus, the grades are
averaged within each anatomical structure and their mean values considered as
predictor values of the 116 ci intermediate classifiers. Since the grades estimate
the AD-related brain anatomical changes, it could be interesting to remove the
normal aging effect from the features used. Moreover, it has been shown that
SNIPE grades are correlated to age [8]. Therefore, as in [13], we used the CN pop-
ulation to correct the age effect on the MCI populations. For each intermediate
classifier, we estimated the age-related effect on the CN population using linear
regression. Intermediate classifiers in the MCI populations were then corrected
using the estimated linear regression coefficients (see [14]).

2.5 Anatomical Sub-ensemble Selection and Weighting

As shown in [1], anatomical regions may not be similarly impacted by the pro-
gression from MCI stage to the moderate stage of AD. Therefore, using all
the intermediate classifiers could be suboptimal. Moreover, beyond classifica-
tion efficiency reasons and for clinical considerations, it could also be interesting
to know the most impacted brain regions. In this work, we selected the most
relevant anatomical sub-ensembles by using SLR with L1/L2-norm regulariza-
tion [15, 16]. It has been established that combining the two norms take into
account possible inter-feature correlation while imposing sparsity [17]. Addition-
ally, SLR provides a coefficient for each intermediate classifier that represents
its relative importance in the sparse approximation. In our method, these coeffi-
cients are used to weight each corresponding intermediate classifier before global
classification. We used the SLEP package7 to solve SLR. The selected weighted
intermediate classifiers are then used to train a linear SVM as implemented in
LIBSVM8.

2.6 Validation Framework

As is done in [7–9], the classification process is performed using a leave-one-out
cross-validation procedure to avoid bias. To validate the efficiency of our frame-
work, we conducted several experiments. First, to highlight the relevance of using

7 http://www.public.asu.edu/~jye02/Software/SLEP/
8 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 2. Methods comparison. The used features were corrected for age-effect.

Methods Accuracy (%) Sensitivity (%) Specificity (%)

GM Volume 59.7 47.6 68.2
GM Volume + SLR 70.1 56.0 80.0
GM Grading 67.7 57.8 74.8
GM Grading + SLR 75.6 61.5 85.6

high quality features, we compared the efficiency of our framework using volume-
based and grading-based features. For the volume-based approach, we computed
the volumes of each AAL region performing the sum of its corresponding GM
probability values. Second, to measure the contribution of SLR sub-ensemble se-
lection, we tested our framework while removing this step for both volume-based
and grading-based approaches. For the grading step, we used the default param-
eters proposed in [8]. In each experiment, the L1/L2 regularization parameters
for solving SLR were set by searching their optimal values while the penalization
parameter of the SVM was estimated by a grid search and a nested 10-fold cross
validation over the training set.

3 Results and Discussion

The results are summarized in Table 2. First, we notice that using grading-
based features improves the result of the classification compared to volume-based
features with an increase of about 5pp (percentage points). This confirms the
relevance of using high quality features in our method. Second, we observe an
improved accuracy of at least 8pp when performing an SLR feature selection with
both volume and grading. Moreover, compared to hippocampal scoring [8], we
improve the accuracy of 4.6pp using our framework (see Table 3). It is interesting
to note that directly using all the anatomical sub-ensembles (i.e., without SLR)
provided worst results than using only hippocampal grading. However, when
selecting the most relevant anatomical sub-ensembles an important increase is
observed. This indicates that areas other than hippocampus seem to be impacted
at MCI stage. Thus, automatic a posteriori selection of these areas instead of
using predefined ROIs leads to higher accuracy.

As shown in Table 3, our method achieves better accuracy than other state-
of-the-art methods validated on the same ADNI database and with the same
unbiased leave-one-out cross-validation process [7–9]. This establishes the ro-
bustness and the efficiency of the proposed framework that combines high qual-
ity features with an advanced learning method, i.e., sub-ensemble learning based
on constrained weak-classifier-fusion combined with SLR. Additionally, it should
also be noted that even using usual GM volumes as features in our framework
leads to similar or even competitive accuracy as compared to other methods.

Finally, we can note that even though our method is based on one imaging
modality it performs similarly or even better than recent multi-modality methods
[6, 18, 19]. Furthermore, for clinical reasons, it could be interesting to analyze
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Table 3. Comparison with recently published methods using similar dataset.

Method Acc. (%) Sen. (%) Spe. (%)

GM Grading + SLR 75.6 61.5 85.6
GM Volume + SLR 70.1 56.0 80.0
ROI-based SNIPE (hippocampal grading) [8] 71 70 71
Multi-instance learning [9] 70.4 66.5 73.1
Multi-methods [4] 68 67 69
Cortical thickness [7] 67.8 64.6 70.0

Table 4. 10 first AAL regions selected by SLR and ordered by decreasing weight.

AAL-based gyrus:

1. Right middle temporal 6. Left cerebelum
2. Left hippocampus 7. Right inferior frontal
3. Left superior frontal 8. Left medial orbital frontal
4. Right middle cingulum 9. Right hippocampus
5. Left posterior cingulum 10. Left para-hippocampal

the anatomical regions selected via SLR. Table 4 presents, on average, the first
selected AAL regions at each run of the leave-one-out cross-validation process. It
appears that some anatomical regions like middle temporal gyrus, hippocampus
and parahippocampal gyrus are included in the presented list. Such structures
are known to be impacted by AD [20]. They are also among the most selected
regions in [7] using cortical thickness features.

4 Conclusion

In this study, we proposed an anatomically constrained weak classifier fusion
classification procedure extending the grading technique presented by [8]. This
work aimed to combine high quality biomarkers with advanced learning method
to improve AD detection at its prodromal stage. We demonstrated through our
experiments that the contributions made to the method proposed by [8] lead to
high classification accuracy for the early detection of AD. Compared to recently
proposed MRI-based prediction techniques, we obtained a very competitive ac-
curacy result of 75.6% for the prediction of AD.

Acknowledgments

This study has been carried out with financial support from the French State,
managed by the French National Research Agency (ANR) in the frame of the
Investments for the future Programme IdEx Bordeaux (ANR-10-IDEX-03-02),
Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). We also ac-
knowledge funding from the Fonds de Recherche Québec - Santé (FRQS-Pfizer).
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