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ABSTRACT 
 

Purpose: This study investigates the robustness of quantitative radiomic features derived from 

computed tomography (CT) images of a novel patient informed 3-D printed phantom, which captures the 

morphological heterogeneity of tumors and normal tissue observed on CT scans.  

Methods: Using a novel voxel-based multi-material three-dimensional (3D) printer, an anthropomorphic 

phantom that was modeled after diseased tissue seen on 6 patient CT scans was manufactured. Four 

patients presented with pancreatic adenocarcinoma tumors (PDAC), 1 with non-small cell lung 

carcinoma (NSCLC) and 1 with advanced stage hepatic cirrhosis. The 5 tumors were segmented, 

extracted and then imbedded into CT images of the heterogenous portion of the cirrhotic liver. The 

composite scan of the implanted tumor within the background cirrhotic liver was then 3D printed. The 

resultant phantom was scanned sequentially, 30 times with a clinical CT scanner using a reference CT 

protocol. One hundred and four quantitative radiomic features were then extracted from images of each 

lesion to determine their repeatability. Repeatability of each radiomic feature was evaluated using the 

within subject coefficient of variation (wCV, %). A feature with a wCV (%) > 10% was considered as 

being unrepeatable. A subset of the repeatable features that were also found to be prognostic for lung 

and pancreatic cancers were then assessed for their percent deviation (pDV, %) from reference values. 

The reference values were those derived from the repeatability portion of this study. The assessment 

was conducted by re-scanning the phantom with 11 different clinically relevant sets of scanning 

parameters. Deviation of radiomic features derived from images of each tumor across all sets of 

scanning parameters was assessed using the percent deviation relative to the reference values.  

Results: Twenty nine of the 104 features presented with wCV (%) > 10%. The lack of repeatability was 

found to depend on tumor type. The only class of radiomic features with a wCV (%) < 10% were those 

calculated using the neighboring grey level dependence-based matrices (NGLDM). Notably, skewness, 
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first information correlation, cluster shade, Haralick correlation, autocorrelation, busyness, complexity, 

high gray level zone emphasis, small area high gray level emphasis, large area low gray level 

emphasis, large area high gray level emphasis, short run high grey level emphasis, and valley radiomic 

features had wCV (%) values > 10% for select tumors within the phantom. Two radiomic features 

prognostic for NSCLC, energy and grey level non-uniformity, had pDV’s (%) that exceeded 30% across 

all scanning techniques. The pDV (%) for the 4 radiomic features prognostic for PDAC tumors 

depended on tumor type and selected scanning parameter. Application of the lung kernel caused the 

largest pDV’s (%). Scans acquired with the reduced tube current of 100 mA and reconstructed with the 

bone kernel yielded pDV’s (%) within ± 10%.  

Conclusion: We demonstrated the feasibility with which patient informed 3D printed phantoms can be 

manufactured directly from lesions seen on CT scans, and demonstrate their potential use for the 

assessment of robust quantitative radiomic features.  

 

Introduction 

Quantitative radiomic features have emerged as an objective means to characterize the degree 

of inter and intratumor heterogeneity seen on medical imaging exams, such as those from 

computed tomography (CT) scans [1]. There are several ways in which radiomic analysis may 

be useful in diagnostic medical imagine. For example, establishing a link between radiomic 

features and gene expression patterns may provide imaging biomarkers that can be 

incorporated into precision medicine models for patients who undergo imaging with CT [2, 3]. 

The ability to quantitatively analyze tumors with the same histological subtype using CT scans 

could enhance diagnostic imaging, potentially assisting with the development of targeted 

therapies[4-6].  

However, the sensitivity of quantitative radiomic features depend on the attributes of each 

CT system [7-9].  Previous attempts to characterize the uncertainty resulting from different CT 

acquisition parameters have largely involved uniform, homogenously textured or unrealistically 

shaped tumors embedded into phantoms. These unrealistic representations of human tissue 

may over or understate the uncertainty of quantitative radiomic features extracted from tumors 

seen on CT scans[10]. For example, the heterogeneity of tissue surrounding a lesion is known to 

influence the local noise and resolution properties of the identified structures observed on CT 

scans, especially when iterative reconstruction algorithms are used [11-13]. Uniform phantoms 

are incapable of capturing the degree to which the unique attributes of each CT scanner 

influence quantitative radiomic features [7, 10, 14-16]. Hence, the acceptable range of 

variation and the reporting of repeatability and reproducibility may be falsely stated  [8, 17-19]. 
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In contrast to the approaches summarized above, we develop a novel three-dimensional 

(3D) printed radiomic phantom that replicates the morphology and reproduces the contrast 

differences of diseased human tissue seen on CT exams. With the use of a multi-material 3D 

printer, we propose a method to generate realistic patient informed phantoms that can be used 

to quantify the robustness of radiomic features derived from patient CT scans.  

Our specific aims are to use a novel voxel-based multi-material 3-D printing technology to i) 

design, fabricate and develop the first iteration of an anatomically relevant 3-D printed phantom 

for radiomic robustness analysis, and ii) test the radiomic features derived thereafter for 

repeatability and reproducibility relative to reference values.  

 

 
 

Fig. 1. Generation workflow of an informed radiologic phantom. (a) A cross sectional slice from a patient CT scan 
shows a non-small cell lung carcinoma (NSCLC) lesion within the right upper lobe. (b) The volumetric 

representation of the segmented lung and (c) extracted tumor. The dimensions of these volumes defined the overall 
size of the final print. (d) The lung and tumor volumes were resliced into the resolution of the 3D printer and 
stacked into layers as shown. (e) Each layer from (d) was then dithered using the Floyd Steinberg dithering 

algorithm into binary raster files. Three sets of raster files were needed, one for each resin material. These files 
define the spatial location of each resin material. (f) The resulting 3D print of the lung volume. This print was 

designed to be a physical visualization of the entire patient lung with tumor. (g) The actual phantom used in this 
study. The arrow is pointing to the location of the NSCLC lung tumor. 

 

Methods 

The specific aspects of this study included the manufacturing process of the patient informed 

3D printed phantom. Second, the similarity between the 3D printed phantom with the human 

tissue seen in the DICOM CT scans it was modeled after was assessed. Third, quantitative 

radiomic features derived from the 3D printed phantom were tested for repeatability. Lastly, the 

deviation of a subset of radiomic features found to be repeatable and prognostic were assessed 
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relative to reference values from the repeatability part of the study.  

 

1.1 3D Printed Phantom Fabrication 

The multi-material 3D printer and associated software, Voxel Print, (PolyJet Objet 260 

Connex 3, Stratasys, Eden Prairie, Minnesota) allows for the deposition of droplets of 

ultraviolet-curable photopolymer resins in a layer by layer inkjet like printing process [14]. 

The droplet resolution is 600 and 300 dots per inch (DPI), with a slice thickness of 30 𝜇m. This exceeds the resolution of a typical C iT scanner (0.625 x 0.625 x 0.625 mm) [14]. 

As a result, the morphological detail of tumors seen on CT scans may be preserved, 

while the heterogenous contrast differences of tumors may be reproduced with some 

degree of precision[11, 20, 21]. Similar to Bader et al. [20], a graphical overview of the 

methods used are shown in Figure 1. Displayed in Figure 1a is a cross-sectional CT 

scan of a single patient, with non-small cell lung carcinoma (NSCLC), from the publicly available 

test-retest CT scans of the Reference Image Database to Evaluate Therapy Response 

(RIDER) collection hosted by the Cancer Imaging Archive (TCIA) dataset [22-24]. The lung 

volume (Figure 1b) with the associated tumor (Figure 1c) were used to design the first 3D 

print (Figure 1f), whose purpose was to physically visualize the potential of voxel-based 

3D printing to be mapped and converted to resin material gradients.  

The second 3D print included 4 pancreatic adenocarcinoma (PDAC) tumors. These 

tumors were manually segmented by experienced radiologists. These patients received 

contrast enhanced abdominal CT scans on a single 64 slice CT scanner (HD750, General 

Electric, Madison Wisconsin). The 5th tumor was the NSCLC mass seen in Figure 1c. All 

segmented tumors were embedded into a heterogenous background that was modeled 

after a 6th patient who presented with advanced stage hepatic cirrhosis on an abdominal 

contrast enhanced CT scan. The area and number of slices of the cirrhotic liver was dictated 

by the dimensions of each tumor. Placement of the tumors within the background cirrhotic liver 

was arbitrary.  

To prepare the volumes for 3D printing, the voxel Hounsfield unit (HU) values were 

normalized to range from 0 to 1. The new fractional intensity values were used to dictate the 

proportion of resin material that would be deposited in any given voxel [11]. To obtain the 

gray scale intensity gradients seen in CT scans, interpolation of each volume was necessary. 

This was achieved by using the Whittaker–Shannon (SINC) interpolation method, where each 

voxel was super-sampled to the resolution of the 3D printer (Figure 1d).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773879doi: bioRxiv preprint 

https://doi.org/10.1101/773879


6/10 

6 

 

 

Lastly, the layers were dithered using the Floyd-Steinberg dithering algorithm (Figure 1e) 

into binary raster files and each volume was then embedded into the cirrhotic liver 

background. These bitmap files defined the spatial allocation of each material to be used for 

3D printing. The multi-material printer has available 3 different resin materials for printing. As a 

result, three sets of bitmap files were generated, one set for each resin material. Within any 

bitmap, a value of 1 indicates deposition of material A and a value of 0 indicates no material 

will be deposited. The first set of bitmaps encoded the deposition location of the resin material 

A (Figure 1e). Then, the material A bitmaps were inverted so that a value of 0 now had a value 

of 1. These inverted bitmaps encoded the allocation of resin material B (Figure 1e). The 3rd 

set of bitmaps consisted of all zeros since two materials with opposing densities were enough 

to generate the desired contrast differences. The resulting 3D print is displayed in Figure 2a. 

Shown in Figure 2b, c are cross sectional CT images of the proposed phantom.  

The two-resin material used in this study were VeroWhite (material A) and TangoPlus 

(material B). They were selected based on their attenuation properties observed within CT 

scans. The scanning parameters used were: tube potential of 120 kVp, tube current of 280 

mA, filtered back projection (FBP) reconstruction algorithm with a standard kernel, 1.25 mm 

slice thickness with an interval of 1.25 mm. Multiple ROIs were drawn along the samples of 

each resin. The HU values were measured to range from 125 ± 5 HU for material A and 65 ± 5 

HU for material B. 

 

 
(a) (b) (c) 

 

Fig. 2. The first iteration of the 3D printed phantom used in this study. (a) The circular phantom consists of tumors 
embedded within a heterogenous background derived from a patient’s liver scan. (b) Axial slice generated from a 

computed tomography (CT) scan shows the embedded tumors within the background tissue. (c) Contours that 
were generated from an experienced radiologist. The tumor labels identified the tumor type: 1- non-small cell lung 

carcinoma (NSCLC); 2-5 are pancreatic tumors. 
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1.2 Repeatability and Reproducibility Scanning Parameters 

A 64 slice CT scanner (HD750, General Electric, Madison Wisconsin) scanner was used 

to acquire 30 repeat scans of the 3D printed radiomic phantom (Figure 2a). All scans were 

completed without repositioning of the phantom. The scanning parameters were: 120 kVp, 280 

mA, 0.7 second, pitch of 0.984, filtered back projection algorithm with a standard kernel, total 

collimation of 40 mm, display field of view (DFOV) 25 cm, reconstructed slice thickness and 

interval of 5 mm. According to  Nerwell, J.D. et al. [25] , during the development of quantitative 

CT metrics of lung disease, multiple CT vendors agreed to provide neutral reconstruction 

kernels that could provide comparable CT attenuation values. For the CT vendor used in this 

study, the neutral scanning protocols consisted of those that used filtered back projection 

algorithms with the standard kernel. Consequently, radiomic features extracted from this 

protocol were considered as reference values.  

Since CT scanners come equipped with several user adjustable scan options, additional 

images were acquired using 7 different reconstruction algorithms, three different kernels, a 

larger voxel size, a reduced tube potential (kVp) and reduced tube current (mA), as listed in 

Table 1. Radiomic features extracted from tumors scanned with each option listed in Table 1 

were compared against the reference values.  

 

Table 1: Overview of the additional scan options included in this study. These options were 
chosen due to their common application in the clinic. *This is the kernel for the reference 
protocol. 

Additional Scanning Techniques 

Convolution Kernel *Standard, Lung & Bone Kernels 
Adaptive Statistical Iterative 
Reconstruction (ASiR) & ASiR-V 

10, 20, and 30% ASiR and 10, 20, 
30% ASiR-V 

Tube Potential (kVp) 100 kVP 
Tube Current (mA) 100 mA 

 

 

1.3 Radiomic feature extraction 

 

The scanned tumors were contoured by an experienced radiologist using ImageJ software 

[26], as seen in Figure 2c. The contours were then propagated to all additional scans. Prior to 

radiomic feature extraction, the scans were re-sampled to an isotropic resolution of 1.0 mm. 

The computational environment for radiobiological research (CERR)[27] was used to extract 7 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773879doi: bioRxiv preprint 

https://doi.org/10.1101/773879


8/10 

8 

 

 

groups of radiomic features from each tumor: 22 first order (intensity) statistical measures[2, 

28], 25 Grey-level co-occurrence matrix (GLCM)[2, 29], 16 gray-level run-length matrix 

(GLRLM), 5 neighborhood gray tone difference matrix (NGTDM)[28], 22 neighborhood gray 

level difference matrix (NGLDM), 16 Grey level size zone based features (GLSZM), and 2 peak 

and valley features were extracted from each tumor. These features are further described in the 

reference Zwanenburg, A, et al. [28]. The average value of each texture feature was 

computed over all 13 directions to obtain rotationally invariant features. For first order 

statistical features, a bin width of 25 was used. The GLCM features were extracted using a 

bin width of 10 and patch wise volume of 2 x 2 x 2.  

For the second part of the study, the phantom was re-scanned, 3 times, without 

movement between scans, using the options listed in Table 1. The reference protocol 

scanning parameters were adjusted as needed. The reduced tube potential (100 kVp) and 

reduced tube current (100 mA) were acquired at reduced doses. Figure 5 shows scans of the 

radiomic phantom with each additional scan setting.  

From CT scans of the phantom with each setting described above, a subset of radiomic 

features that  have been found to be repeatable and prognostic for NSCLC (energy, grey level 

nonuniformity) and PDAC [2, 30] (entropy, energy, contrast and dissimilarity) were computed 

from each tumor. These features were then evaluated for their deviation from reference 

values, which were determined in the first part of this study.   

 

1.4 Statistical Methods 

Shown in Figure 3 is a slice of the cirrhotic liver (Figure 3a,b) that the background of the 3D print 

was modeled after. The structural similarity index (SSIM) [31] was used to calculate the similarity 

between the original patient image and the resulting 3D print. Prior to the comparison, the 

patient DICOM images were converted into png’s. A detailed derivation and explanation of SSIM 

can be found by Wang, Z, et al. [31].  

 

Repeatability (i.e. precision) of radiomic features was evaluated [7] using the within-subject 

coefficient of variation (wCV, %). 

 𝑤𝐶𝑉% =  𝜎𝑤𝜇𝑥  𝑥 100 

 

1 
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where 𝜎𝑤 is the within-subject standard deviation and 𝜇 is the mean of individual radiomic 

features. A 𝑤𝐶𝑉% less than 10% was considered as being repeatable. The 95% confidence 

interval (CI) for the 𝑤𝐶𝑉 was calculated using chi squared (𝑥2) as the pivotal statistic as follows: 

𝐶𝐼(95%) =  √𝑁𝑥𝑤(𝑤𝐶𝑉2)𝑥𝑛,∝2  

where N is the number of tumors, 𝑥𝑛,∝2   is the percentile of the distribution with n degrees of 

freedom. The lower bound, α is 0.975 and the upper bound α is 0.025.  

 

To determine the deviation of select radiomic features from reference values, the percent 

deviation (pDV, %) was calculated as follows: 

  𝑝𝐷𝑉 (%) = (𝑓𝑛 −  𝑓�̂� 𝑓�̂�  ±  𝛿𝑝𝐷𝑉 ) 𝑥 100 

where 𝑓𝑛 is the average value of the radiomic feature extracted from images of each tumor 

across the different scanning parameters, and 𝑓�̂� is the average of the reference value as 

described above.  

 

 
Fig. 3. Comparison CT scan of segmented liver used as the background of the phantom with the resulting 3D print. 
(a) An axial slice from the patient CT showing the region of interest (ROI) around the heterogenous hepatic tissue. 
(b) The portion of the patient liver that the 3D print was modeled after. (c) A CT scan of the 3D print. 
 
 

Results 
 

1.6. Repeatability 
 

The SSIM between the real patient image (Figure 3b) and the 3D print (Figure 3c) was found 

to be SSIM = 0.71. A SSIM value closer to 1 suggests more similarity. Figure 4 is a heat map 

showing the wCV’s (%) for the 104 radiomic features computed from the 30 repeat scans of the 

2 

3 
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phantom. Within the heatmap, the darker the color, the lower the wCV.  Out of the 104 radiomic 

features, 87 were found to have a wCV < 10%.  Group 5 radiomic features, the neighboring gray 

level dependence matrix (NGLDM), which are characterized as being rotationally invariant, and 

those that capture the coarseness of overall texture within an image were the only feature class 

with wCV < 10% across all tumors included in the phantom.   

Table 2 summarizes those radiomic features with wCV (%) values that exceeded 10%.. As 

shown in Table 2, the repeatability of some features with wCV (%) > 10% depended on tumor 

type. For example, when extracted from images of the 2nd and 5th tumor, FO8: skewness had a 

wCV = 33.09 % (CI: 26.01 to 42.42%) and wCV = 23.57% (CI: 18.70 to 26.01%), but wCV < 

10% when it was calculated from tumors 1 (NSCLC), 3, and 4 (PDAC). GLCM 25: first 

information correlation also had a wCV > 20% only for the 1st tumor. Two of the 17 radiomic 

features, FO9: kurtosis and NG4: complexity were found to have wCV > 10% for all tumors. The 

non-repeatable features were excluded from any further analysis.  

 

Table 2: Radiomic features with the within-subject coefficient of variation (% wCV) > 10% and groups with wCV (%) 
< 10%.  

  wCV < 10 % wCV > 10% 
Group 1 14 out of 22:  

FO 2 to 7, & 10 to 22 

FO1: Min  T1 

FO8: Skewness  T2, T5 

FO9: Kurtosis  T1-T5 

Group 2 22 out of 26 features:  

GLCM 1 to 20, 22, & 26 

GLCM21: Cluster Shade  T1, T2, T4, T5 

GLCM23: Haralick Correlation  T3, T4 

GLCM24: Auto Correlation  T3 

GLCM25: First Information Correlation  T1, T3 

Group 3 13 out of 16 radiomic 

features:GLRLM1: 1 to 6; 

GLRLM 8 to 14, & 16.  

GLRLM14: High gray level run emphasis  T3 

GLRLM17: Long run high gray level 

emphasis  

T3 

GLRLM15: Short run high gray level 

emphasis  

T3 

Group 4 3 out of 5: 

NGTDM: 1, 2 & 5 

NGTDM3: Busyness  T3 

NGTDM4: Complexity  T3 

Group 6 12 out of 16: 

 GLSZM: 1 to 8, 10, & 14 to 

16 

GLSZM9: High gray Level zone emphasis  T3 

GLSZM11: Small area high gray level 

emphasis  

T3 

GLSZM12: Large area low gray level 

emphasis  

T3 

GLSZM13: Large area high  T3 

Group 7 1 out of 2: Peak PV2: Valley  T3 
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Fig. 4. Within-subject coefficient of variation (%wCV) heat map of radiomic features for each tumor. The wCV was 

computed from the 32 repeat CT scans acquired with the reference protocol. The color map intensity is displayed 

on a logarithmic scale. The lighter the color, the lower the % wCV.  
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1.7 Deviation from Baseline QIB values 

 

For subjective comparisons, Figure 5 shows representative cross-sectional slices of the 

phantom for each parameter in Table 1. The pDVs (%) for energy and grey level nonuniformity 

(GLNU), which are prognostic for NSCLC, are shown in Figure 6. Both features had pDV (%) 

values that were negative. For ease of viewing, the plot was inverted. Except for a larger pixel 

size (PS, i.e. DFOV) of 0.684 mm, the pDV (%) was < -30% across all other scan parameters. 

The negative pDV (%) implies that the radiomic features were less than the reference values.  

The boxplots in Figure 7 show the total deviation of prognostic PDAC radiomic features 

across all scan settings. Except for the 5th PDAC tumor, the pDV (%) distribution for energy 

remained within pDV (%) ± 20% across most scan parameters. The interquartile range for 

entropy, contrast, and dissimilarity were found to depend on tumor type.  

 

 
Fig. 5. Cross-sectional CT images of the heterogenous and anatomical replicate tumors immersed within the radiomic phantom. 

It is displayed for each of the 11 different scan parameters that were used in this study. A window width of 40 and window level 

of 100 was used for all images. ASiR: Adaptive Statistical Iterative Reconstruction.  
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Fig. 6. The percent deviation (pDV, %) of prognostic radiomic features for Non-Small Cell Lung Carcinoma 

(NSCLC).  Left: Energy, and Right: Grey level nonuniformity texture features. The darker colors indicate lower pDV 

(%).  

Figure 8 show a more granular assessment of radiomic feature deviation from the 

reference value as a function of scanning technique. The pDV(%) for each radiomic feature 

value was found to depend on tumor type and the imaging condition. Contrast, which assesses 

the variations in grey levels within an ROI [28], had pDV’s (%) that exceeded ± 20 % for most 

scanning parameters across each of the tumors. When a reduced tube current of 100 mA was 

used, the pDV (%) for contrast was < 20% when measured from the 5th tumor. In addition, 

across all tumors contrast was calculated to have a pDV (%) of 100% with application of the lung 

kernel. However, only for the 2nd and 3rd tumor, contrast had a pDV(%) = 100% when ASiR 20% 

was used to reconstruct images.  Dissimilarity is similar to contrast in that it sums the difference 

of discretized grey level intensity values from the GLCM, whereas contrast sums the squared 

difference of discretized intensity values[28]. Except for the lung kernel where pDV (%) = 100%, 

the trends in pDV (%) for other scanning parameters were similar to contrast, but less 

pronounced.  

With a reduced tube current of 100 mA and tube potential of 100 kVp, the pDV (%) for 

energy, which is a measure of the overall tumor volume density, was slightly within ± 20% when 
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derived from the 5th tumor. Only for the 4th tumor, the pDV (%) for energy was > 60% when the 

PS = 0.684 mm.  For the remaining tumors, the energy remained within ± 20% across sanning 

parameters. Across tumors 3, 4, and 5, the pDV (%) for entropy remained within ± 3% when the 

a reduced tube current and the bone kernel were used.  

 

 

Fig. 7. Box plots showing the deviation of prognostic PDAC radiomic feature values: contrast, dissimilarity, 
energy and entropy (compared with the reference values) as a function of tumors imaged across all scanning 
techniques. Displayed is the median, interquartile range (25th, 75th), maximum, minimum and outliers.  
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Fig. 8. Dot plots that show the percent deviation (pDV, %) of quantitative radiomic feature values as a function 

of each scanning technique and tumor type. Lower, red values indicate a negative pDV (%). Darker points 

indicate larger positive pDV (%). The blue points are pDV (%) values close to zero. The vertical dotted lines 

indicate the ± 0%, 20% and 100% pDV’s (%).  

Discussion 

Here we describe a process to manufacture anatomically realistic 3-D printed tumors 

embedded in heterogenous backgrounds for identifying and evaluating robust quantitative radiomic 

features. Capturing the anatomical structure and reproducing perceptually similar attenuation 

patterns of tumors seen on CT scans will allow us to extract radiomic features that can serve as 

“ground truth” and as a result, piece together and reduce sources of variability between 

scanners, and acquisition protocols/parameters. Furthermore, computing the acceptable range 

of variation from patient studies consists of unquantifiable errors or sources of uncertainty. From 

the kinetic behavior of contrast media to the limitation of using only one scanner at a single 

institution[7, 10, 28], using patients for determining the acceptable range of variation is not 

practical. Similarly, homogenous phantoms that are vastly different from abnormal and normal 

human tissue seen on CT scans, will not be able to assess how the background of a lesion can 

affect radiomic features calculated from tumors [7, 10, 28]. This 3D printed phantom affords the 
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opportunity to filter out quantitative radiomic features that are sensitive to CT scanning 

parameters and potentially allows one to establish reference ranges for the robust quantitative 

radiomic features [21].  

An important finding from this experiment is that radiomic features were dependent on the 

location and/or type of tumor. This finding is essential to take into consideration when using 

quantitative radiomic features to characterize metastases lesions. A feature that can robustly 

describe the primary tumor site may not hold the same meaning for distant metastatic disease. 

This finding is conceptually similar to the understanding that metastasized lesions may not 

respond to treatment used for the primary tumor site [32].   

 Prior studies that used homogenous nodules or homogenously textured phantoms that 

found radiomic features to be repeatable might under or overestimate findings. In addition, 

several research efforts have generated prognostic radiomic signatures for a variety of disease 

types [9, 17].  Without established reference ranges for invariant quantitative radiomic features 

that establish thresholds below or above which disease is present, false correlations may ensue. 

For example, from Group 3, GLRLM feature long run high gray level emphasis (LRHGLE) was 

found to be a good discriminator of renal cell carcinomas (RCC) from other RCC subtypes [33]. 

We find that the repeatability of LRHGLE depends on tumor type, where the wCV exceeded 

10% for the 3rd tumor (wCV (%) = 14.27% (95% confidence interval (CI): 11.40% to 19.10%), but 

was < 1% for tumors 1, 2 and 5, and 7.30% (CI: 5.86% to 9.83%) for the 4th tumor. In another 

study[9, 16], first order (FO9) kurtosis, from the group 1 radiomic feature, was found to be a 

prognostic measure of disease free survival after the end of radiation therapy for NSCLC [9, 16]. 

Based on our repeatability results, kurtosis presented with wCV (%) > 10% for all tumors in the 

phantom. However, a wCV (%) exceeding 10% was arbitrarily chosen to indicate a variable 

quantitative radiomic feature. Within this context, anatomically realistic 3D printed phantoms are 

a promising alternative to patients when trying to determine acceptable ranges of variation 

and the uniform reporting of repeatability and reproducibility of quantitative radiomic features.  

Sensitivity to varying CT scan parameters can lead to false positives or negatives and 

must be quantified prior to the clinical implementation of radiomic metrics [17, 19, 23, 34]. The 

drive towards automation has resulted in CT scanning parameters that automatically adjust for a 

patient’s body habitus and attenuation characteristics. Using clinically relevant scanning 

parameters to acquired additional scans of the phantom, we again find that the deviation of 

previously discovered prognostic radiomic features depend on tumor type and the applied 

scanning method.  
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 There are several limitations to this work. The material used for 3D printing is limited in its 

HU value range. It cannot recreate all HU values seen in patient CT exams. As such, the change 

in intensity values with changes in the X-ray beam spectrum resulting from use of different 

bowtie filters, patient off centered positioning, different tube potential’s, etc. may exacerbate the 

amount of deviation or variation of a radiomic feature. However, with this 3D printed phantom, 

the end goal is to eliminate those radiomic features that would be sensitive to such changes, 

even if the lack of repeatability or reproducibility would be overstated. Even though the lesions 

and background of the phantom were modeled after real tumors seen on CT scans, the lack of 

surrounding tissue and bony structure typically found within the abdomen reduces the degree to 

which a one to one correlation can be made. Future works will aim to include the fat content and 

bony structure seen on patient CT scans. Since the phantom was a static object, we did not 

incorporate motion into this study, which is an essential element to consider. Published methods 

that use motorized devices could be considered in future studies. Since the purpose of this study 

was to demonstrate the feasibility and potential role of a patient informed 3D printed phantom, 

statistical significance was not evaluated in this study. In addition, the spectral characteristics of 

CT scanners, calibration, electronic noise unique to CT scanner were not assessed. These 

sources of uncertainty could be the culprits that bias results and without accounting for their 

influence on quantitative radiomic metrics, results might be falsely discrepant from ground truth 

values.  

A final critical element of this phantom is its unique ability to determine the influence of 

manual, semi-automated and automated segmentation methods on radiomic feature stability. 

Due to the amount of data collected, evaluation of segmentation methods was left to future 

works.  

Conclusion: 

A first step in any quantitative radiomic feature discovery pipeline will need to be 

robustness studies that are conducted with anatomically realistic phantom. The reproduction of 

diseased tissue morphology and contrast differences in a patient informed phantom with 

background cirrhotic liver was demonstrated using the novel voxel-based 3D printing method. 

These realistic phantoms can be used to delineate invariant radiomic features. These robust 

features can then be investigated for their potential clinical application.  
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