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Abstract

One of the key tools in physics-based vision has been
color histogram analysis. But to date histograms have only
been used for pixel grouping, color analysis, and material
type labeling. In this paper we present a new, quantitative
model of histograms that yields a more complete descrip-
tion of scene properties.

In the mid-1980s it was recognized that the color varia-
tion for inhomogeneous surfaces may be modeled as a reg-
ular physical process with a planar distribution in color
space. However, the colors do not fall randomly in a plane,
but form clusters at specific points in color space. The loca-
tion, dimensions, and orientation of these clusters directly
relate to many scene properties. A full analysis of the histo-
gram leads to a description of surface roughness and imag-
ing geometry, as well as an improved estimate of
illumination color and object color.

1. Introduction

Color histograms have long been used by the machine
vision community in image understanding. Color is usually
thought of as an important property of objects, and is often
used for segmentation and classification. Unfortunately
color is not uniform for all objects of a given class, nor
even across a single object. Color variation has come to be
expected in images, and vision researchers have been work-
ing on modeling this variation.

The earliest uses of color histograms modeled the histo-
gram as a Gaussian cluster in color space [3]. For example,
pixels that correspond to grass could be modeled as having
a characteristic color of green with some possible deviation
from this color. The color variation was modeled as a prob-
ability distribution, so that the further from the characteris-
tic color, the less likely it was that a pixel was grass.

In 1984 Shafer showed that for dielectric materials with
highlights, the color histogram associated with a single
object forms a plane [8]. This plane is defined by two color
vectors: a body reflection vector and a surface reflection
vector. At the time the histogram was described as filling a
parallelogram. The paper did not describe how to determine
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the two characteristic vectors out of the infinite set of vec-
tors that could define the plane.

However, in 1987 Klinker and Gershon independently
observed that the color histogram does not uniformly fill a
parallelogram, but instead forms a T-shape or dog-leg in
color space [7],[2]. They showed that it is composed of two
linear clusters, one corresponding to pixels that exhibit
mostly body reflection and one corresponding to pixels that
exhibit mostly surface reflection. This T-shape made it pos-
sible to identify characteristic body reflection and illumina-
tion colors. In 1988, Healey showed that the number of
dimensions occupied by the histogram may be used to dis-
tinguish metals from dielectrics 4].

In this paper, we show that the color histogram has an
even closer relationship to scene properties than has been
previously described. Color histograms have identifiable
features that relate in a precise mathematical way to scene
properties. Object color and illumination color are the most
obvious properties that are related to color distribution, and
their extraction has already been described [71,[5],12]. We
show that the histogram of color variation may be further
exploited to relate its shape to surface roughness and imag-
ing geometry. Furthermore, an understanding of these fea-
tures allows us to make an improved estimate of
illumination color and object color.

2. Color Histogram for a Single Object

When we talk about the color histogram, we mean a dis-
wribution of colors in the three-dimensional RGB space. For
a typical imaging system with 8 bits for each color band,
there are 256° “bins” into which a pixel may fall. In this
paper, we only consider whether a bin is full or empty. We
do not use a fourth dimension to display the number of pix-
els which have a particular RGB value. A fourth dimension
would be difficult to visualize and also would be dependent
on such things as object size and shape.

The histograms that we use in this paper were obtained
either from synthetic images or by hand segmentation of
real images. Obviously the end goal is to have a fully auto-
mated system that can perform its own segmentation, but



that is beyond the scope of this paper. Klinker has shown
that an automatic segmentation can be achieved for dielec-
tric surfaces [6]; the analysis that we describe here could be
performed on images automatically segmented in this way.

Figure 1 contains a sketch of a typical color histogram
for a dielectric surface illuminated by a single light source.
As labeled, the histogram has two linear clusters of pixels:
the body reflection cluster and the highlight cluster. The
first of these clusters extends from the black comer of the
cube (point a) to the point of maximum body reflection
(point b). The other cluster starts somewhere along the
body reflection cluster (point ¢) and extends to the high-
light maximum (point d).

Highlight Cluster

a
C
Body Reflection Cluster
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~— indicates shading of
body reflection

Figure 1: Histogram of single object

If the body reflection color is the same hue as the surface
reflection color, the body reflection cluster and highlight
cluster will be collinear. This is the case for white and gray
objects since neither their body color nor surface color
imparts any hue to reflected light. Therefore, objects of
these colors cannot be analyzed by this type of method.

2.1. The Body Reflection Cluster

The linear cluster that we call the body reflection cluster
corresponds to pixels that exhibit mostly body reflection
with very little surface reflection. If there is no ambient
illumination in the scene, this cluster begins at the black
point of the color cube (point a), corresponding to points
on the surface whose normal is 90 degrees or more away
from the direction of the illumination. Such points fall
beyond the self-shadow line and so are completely dark.
The point at the other extreme of the body reflection cluster
(point b), corresponds to the largest amount of body reflec-
tion seen anywhere on the object. If we assume that the
body reflection component is Lambertian, pixels at this
point in the histogram correspond to points on the surface
with normals pointing directly at the light source. The body
reflection m, will obey the relation
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the body reflection color. Thus pixels located half-way
along the body reflection cluster would correspond to sur-
face points with normals cos(1/2) or 60 degrees away
from the illumination direction.

If the object exhibits all possible surface normals, the
body reflection cluster will be full length and densely
filled. If the object is composed of a small number of flat
surfaces, there will be gaps in the body reflection cluster.
For this paper we will assume that objects we are looking
at have a broad, continuous distribution of surface normals.

The sketch shows that the body reflection cluster is long
and narrow. This agrees with our simulations and also with
real, high-quality images of clean surfaces. A vector fitted
to this cluster (from point a to b) will point in the direction
of the body reflection color which is the product of the
object color and the illumination color. Automatic fitting of
this vector has been successfully demonstrated [6]. Once
the illumination color has been determined from analysis
of the highlight, the object color alone may be calculated
by dividing out the influence of the illumination, as pro-
posed in some color constancy methods [1],[5],[9].

2.2. The Highlight Cluster

The cluster of pixels we refer to as the highlight cluster
corresponds to pixels that show a non-negligible amount of
surface reflection. This corresponds exactly to the area of
the image that we would call the highlight. In the histo-
gram, the highlight cluster starts where it intersects with
the body reflection cluster (point ¢) and extends upwards
from there to the brightest point of the highlight (point d).
For many shiny objects, the highlight is so bright that the
highlight cluster is clipped at the white point of the color
cube where the highlight has saturated the camera [6].

In this presentation we use the Torrance-Sparrow model
of scattering [10]. This models a surface as a collection of
tiny facets, each of which may have a local surface normal
that is different from the global surface normal. For shiny
surfaces, most of the facets have an orientation very close
to the global surface normal. Rougher surfaces have a
greater number of facets that are tilted with respect to the
global normal. The distribution of facet normals is mod-
eled as Gaussian, with ¢ describing the standard deviation.
The distribution is also assumed to be isotropic, with rota-
tional symmetry about the surface normal. The facets are
larger than the wavelength of visible light, but too small to
be seen as texture. We will assume that the facet size is a
constant for the surfaces we are interested in.

The equation that we use for scattering gives the amount
of surface reflection mg as
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where 0 is the off-specular angle and 6, is the angle of
reflectance. The surface reflection color is given as c;
B is a constant that includes the facet size (a variable in
the original Torrance-Sparrow model). F is the Fresnel
coefficient that describes what percentage of the light is
reflected at the interface; it is a function of geometry,
wavelength, polarization state, and index of refraction
of the material in question. G is an attenuation factor
that depends upon geometry and which comes into play
at grazing angles. (G is a complex function of incidence
angle, reflectance angle, and off-specular angle and we
will not reproduce it here; see [10] for details).

2.2.1. Direction of Highlight Cluster

Surface reflection occurs at the interface, so it is not
affected by the body color of inhomogeneous objects.
The Fresnel coefficient F is very weakly dependent
upon incidence angle and wavelength of illumination
[8]. Thus it is often assumed to be a constant for a given
type of material. If we follow this assumption, the only
term in equation (2) that relates to hue is the illumina-
tion color ¢,. All other terms relate to the magnitude of
surface reflection. Thus the direction of the surface
reflection component is equal to the illumination color.

The highlight cluster is usually long and narrow in
shape and a vector can be fitted to it (from point ¢ to d).
Klinker argued that this vector will usually correspond
closely to the surface reflection color [6]. This is true for
smooth objects where the highlight has a small area, and
for imaging geometries where the body reflection
changes slowly over that area. In this case, the amount
of body reflection at the base of the highlight cluster and
the amount at the tip varies by a small amount.

On the other hand, if the object is optically rough and
the highlight occurs on a part of the object where the
cosine of the incidence angle changes more rapidly, then
the amount of body reflection at the base of the highlight
cluster may vary significantly from the amount at the
tip. This has the effect of skewing the highlight cluster
away from the direction of the illumination color. The
estimate of the illumination color made from fitting a
vector to this cluster will be somewhat inaccurate.

We can visualize this phenomena by projecting the
histogram into the plane defined by the body reflection
color and surface reflection color. We simulated dichro-
matic reflection for objects with the same body color but
with different roughness values. Figure 2 shows a cross
section of the histograms that result. The horizontal
direction is the direction of increasing amounts of body
reflection; all three histograms fall right on this line for
pixels where there is no surface reflection. The vertical
direction is defined by increasing amounts of surface
reflection. For roughness values of 4 (or less), a vector
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fitted to the highlight cluster will point exactly in this
direction. A vector fitted to the highlight cluster when 6
equals 8 will deviate slightly from the vertical direction.
In the extreme case, where ¢ equals 16, the vector will
deviate dramatically.
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Figure 2: Dependence of highlight cluster
direction on object roughness

Figure 3 shows an enlargement of the histogram of the
roughest surface, with key points labeled. An estimate
of illumination color from this highlight cluster will
give the direction of the light color as cd, whereas the
correct illumination color is defined by the direction
c'd.
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Figure 3: A skewed highlight

In the color histogram, the vectors describing the body
reflection color and the illumination color are not gener-
ally perpendicular. The angle between them depends
upon the hue difference between the two colors, which
is not known in advance. If the vector fitted to the high-
light cluster does not point exactly in the direction of
increasing amounts of surface reflection, the estimate of
illumination color will be off by some amount. This in
turn will bias the estimate of the object color which is
obtained by dividing the body reflection color by the
illumination color.

Automatic fitting of a vector to highlight clusters to
estimate illumination color was demonstrated in [6].
The vector fitted to the highlight cluster (from point ¢ to
point d) is a good first estimate of the illumination color,
but we now know that it may be skewed. If we know the
surface roughness and the imaging geometry, we can
calculate the amount of skewing and compensate for it.



In the next few sections we will show how these factors
may be estimated directly from the histogram itself.

2.2.2. Length of Highlight Cluster

‘When looking at highlights on a variety of surfaces, we
quickly observe that highlights are brighter and sharper on
some surfaces, while they are dimmer and more diffused
on other surfaces. Very shiny surfaces exhibit only a tiny
amount of scattering of the surface reflection, whereas very
matte surfaces have a great deal of scattering. This scatter-
ing of surface reflection is a result of the optical roughness
of the surface.

We see from equation (2) that the sharpness of the peak is
determined by the standard deviation G, and that the height
of the peak is inversely proportional to ¢. Intuitively this
makes sense, since surface reflection scattered over a very
small area will be more “concentrated.” A smooth object
will have a small standard deviation of facet slopes, o,
resulting in a long highlight cluster. A rough object will
have a large o, and so will exhibit a shorter cluster.
Figure 4 shows a plot of the length of the highlight cluster
vs. the object’s roughness for simulated images where all
other factors have been held constant.
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Figure 4: Highlight cluster length vs. roughness

Suppose that we want to estimate roughness values for a
variety of different color objects. The body reflection will
be different for each of the surfaces, but the amounts of
surface reflection are not affected by this. The length of the
highlight cluster (the distance from ¢ to d) indicates the
degree of roughness, regardless of body color.

According to equation (2), we need to know the Fresnel
coefficient for the material we are looking at in order to
relate roughness to highlight cluster length. However, it
turns out that for a wide range of plastics and paints, the
indices of refraction are very nearly identical. Henceforth
we will assume that materials have an index of refraction
of 1.5, corresponding to 4.0% Fresnel reflectance.

Figure 2 showed that if the surface is very rough
(o =16), the highlight cluster will be skewed from the
direction of the illumination color. This makes the cluster
longer than it would otherwise be. The amount of surface
reflection at the brightest point is the vertical displacement
in the graph (the distance from point ¢” to point d in
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Figure 3) rather than the distance along the highlight clus-
ter (distance from point ¢ to point d). For the smoother sur-
faces shown in the graph, the length of the highlight cluster
is virtually identical to the amount of surface reflection.
For very rough surfaces, we need to be aware of the effect
of highlight skewing.

The graph in Figure 4 was calculated for the imaging
geometry where the light source and camera are separated
by zero degrees. However, equation (2) predicts that the
imaging geometry will have an effect upon highlight mag-
nitude, as indicated by the cos (9’) term in the denomina-
tor and the attenuation term G in the numerator. G corrects
for masking or shadowing of facets at grazing angles. As
6, increases to 90 degrees, the attenuation term G goes to
zero, so the equation does not make the improbable predic-
tion of surface reflection becoming infinite at reflectance
angles equal to 90 degrees. Figure 5 shows how the length
of the highlight cluster changes as the camera and light
source are separated by different angles with respect to the
object. It demonstrates that the length changes slowly as
the imaging geometry changes. If we do not know the
imaging geometry, it would be impossible to make fine dis-
tinctions of roughness, although it would still be possible
to tell a very smooth object from a fairly rough one. Fur-
thermore, in section 2.2.4. we will show how the imaging
geometry may be estimated.
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Figure 5: Cluster length vs. imaging geometry

The result of this section is that the roughness of surfaces
made from similar materials can be directly compared by
examining their color histograms. The method does not
require us to fit surface orientations to image data. It can be
done from a single color image of the object. At worst
(when the materials are different or the imaging geometry
is not held constant) we can make a crude estimate of
roughness. At best, we can make a fairly accurate estimate.

Once we have the length of the highlight cluster, we can
make a good estimate of surface roughness. Unfortunately,
we cannot always obtain the true length. In many real
images the highlight is so shiny that it saturates the camera.
This means that the highlight cluster is clipped, so that its
true length is unknown. We will be able to distinguish
rough objects from smooth ones, but we would be unable
to distinguish fairly smooth surfaces from very smooth



ones by this method. Fortunately, the histogram encodes
roughness in another feature.

2.2.3. Width of Highlight Cluster

Another difference between histograms for smooth and
rough surfaces is the width of the highlight cluster where it
meets the body reflection cluster (the distance from
point ¢; to point ¢, in Figure 1). The highlight cluster will
be wider for rougher surfaces, and narrower for smoother
surfaces. We see from equation (2) that for rougher objects
with a larger standard deviation of facet angles &, the sur-
face reflection is scattered more widely, over a larger num-
ber of reflectance angles.

In the color histogram, a noticeable amount of surface
reflection results in pixels that are displaced from the body
cluster in the direction of the illumination color. If we take
any highlight pixel and project along the surface color vec-
tor onto the body reflection vector, we can tell how much
body reflection is present in that pixel. If we consider all
the pixels in the highlight area of the image and look at
how much body reflection is in each of them, we will
obtain some range of body reflection magnitudes. If the
surface is very smooth with a sharp, bright highlight, that
range will be small. However if we consider a rougher
object with a more diffused highlight, the range of body
reflection magnitudes will be larger since the highlight is
spread over a larger number of surface normals.

This property is independent of object size or shape. It
simply shows the variation in surface normals over the area
of the highlight. We do not have to fit a surface shape to the
image to know how much scattering the object exhibits. It
is encoded right there in the histogram.

We simulated objects with different roughness values and
identified those pixels that showed surface reflection. We
calculated the body reflection for each of these points and
computed the variation. This variation was divided by the
overall length of the body reflection vector to yield a frac-
tion (the length of c¢,c, divided by the length of ab in
Figure 1). A fraction of 0.5 would mean that the highlight
cluster’s base extended across half the length of the body
reflection cluster. Figure 6 shows how the highlight cluster
width varies with the surface roughness.
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Figure 6: Highlight cluster width vs. roughness
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Moreover this measurement is not hampered by camera
saturation. It does not depend on how much surface reflec-
tion is at any given point, only whether there is any at all.
Camera saturation is an inherent property of any real cam-
era, since the dynamic range is limited. Since highlights are
very often clipped in real images, it is very useful to have a
feature that is not affected by saturation.

In the case of very rough surfaces, the highlight cluster
may be skewed from the direction of the illumination color,
as shown in Figure 3. The width of this cluster where it
meets the body reflection cluster underestimates the varia-
tion of body reflectance values. The amount of body reflec-
tance is correctly determined by projecting all pixels along
the illumination color vector (straight down for this graph).
The correct measure of highlight width is the variation in
body reflectance (the distance from ¢; to ¢, “rather than the
distance from ¢; to c,). However, the highlight and body
reflection colors are not generally perpendicular in most
histograms, so we cannot just measure the horizontal
extent of the highlight cluster. For the smoother surfaces
shown in Figure 2 (when o < 8), the highlight cluster is
centered above its base, so the width of the base and the
horizontal extent of the cluster are virtually identical. For
these types of surfaces, the width at the base is a very good
approximation of the overall width. However, for very
rough surfaces, the width may be significantly affected by
highlight skewing.

Although the width of the highlight cluster at its base
does not depend upon the object’s size and shape, it does
depend upon the imaging geometry. To see why this is so,
imagine a highlight that spreads 15 degrees in every direc-
tion from its maximum. If the camera and light source are
separated by 30 degrees, the perfect specular angle will be
at 15 degrees with respect to the illumination direction.
The highlight will spread over points with surface normals
ranging from 0 degrees to 30 degrees. (For ease of explana-
tion, we will ignore the influence of the 1/cos(8,) term.)
The amount of body reflection at these points will vary
from cos(0) = 1.0 to cos(30) = .87. If the camera and light
source are separated by 90 degrees, the perfect specular
angle will be at 45 degrees with the highlight spreading
from 30 degrees to 60 degrees. Then the amount of body
reflection will vary from cos(30) = .87 to cos(60) = .50.

Figure 7 shows how the width of the highlight cluster
varies with roughness for a variety of imaging geometries.
The angle label is a measure of the angle (in degrees) that
separates the light source and camera (with respect to the
object). We assume that the object is small enough and far
away enough from the camera that this angle is the same
for all points on the surface.

For the case of highlight cluster width, the measurement
is very sensitive to different viewing geometries, sO the
angular separation of the camera and light source must be
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Figure 7: Width vs. roughness (with geometry)
known or estimated somehow. Thus it is particularly fortu-
itous that such an estimate can be made right from the his-
togram itself, as we will now describe.

2.2.4. Intersection of Clusters

When we first introduced the diagram in Figure 1, we
described the highlight cluster as beginning “somewhere”
along the body reflection cluster. Klinker derived the “50%
heuristic” which stated that for a large range of viewing
geometries, the highlight cluster would start somewhere in
the upper 50% of the body reflection cluster [6]. Now we
will show how to pinpoint the location.

The distance along the body reflection cluster where the
two clusters meet (the length of ac divided by the length of
ab) shows the amount of body reflectance at those points
on the surface that are highlighted. Assuming that body
reflection is Lambertian, we know from equation (1) that
the amount of body reflection is proportional to the cosine
of the incidence angle 6. If the two clusters meet at the
maximum point on the body reflection cluster, it means the
highlight occurs at those points that have the maximum
amount of body reflection, which is precisely those points
with surface normals pointing directly at the light source. If
the two clusters meet halfway along the body reflection
cluster, the highlight must occur at points with surface nor-
mal pointing cos™(1/2) or 60 degrees away from the illumi-
nation direction.

Assuming that the body reflection is Lambertian, it does
not depend in any way upon the angle from which it is
viewed. Thus the body reflection does not tell us anything
about the camera direction. However, the surface reflection
is dependent upon both the illumination and camera direc-
tions. If we ignore for the moment the 1/cos(8,) term in
equation (2), we see that the maximum amount of surface
reflection will occur at those points on the surface where
the angle of incidence equals the angle of reflection. Thus
if the highlight occurs at a point where the surface normal
faces 10 degrees away from the light source direction, the
light source and camera must be 20 degrees apart with
respect to that point on the surface.

Figure 8 graphically illustrates this phenomenon. Once
again the histograms have been projected into the plane
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defined by the body reflection and surface reflection colors.
This time, the amount of roughness has been held constant
at o = 1 while the angular separation of the light source
and camera has been varied from O to 80 degrees. This
graph shows how the meeting point decreases as the angle
separating the camera and light source increases. Inciden-
tally it also shows how the length and width of the cluster
is affected by imaging geometry as described in sections
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Figure 8: lllustration of how highlight cluster
varies with changing imaging geometry

It does not matter whether the object has one highlight or
many. The highlight or highlights will always occur at
points with the same surface normal for a given imaging
geometry, and that is what determines the meeting point of
the clusters. Figure 9 shows what happens when we graph
meeting point vs. imaging geometry. The horizontal axis
shows the angular separation of the light source and the
camera with respect to the object. A negative number
means that the light source is to the left of the camera,
whereas a positive number means the light source is to the
right of the camera, The vertical axis is the ratio |ac| /|ab] .
As can be seen from the graph, the meeting point is never
less than 1/2 of the way along the body reflection vector,
showing that the 50% heuristic is a sound one.
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Figure 9: Meeting point vs. imaging geometry

We have indicated that the intersection point of the two
clusters shows the amount of body reflectance at the bright-
est point in the highlight. This is true for cases where the
highlight cluster extends in approximately the same direc-
tion as the illumination color. However if the highlight
cluster is significantly skewed away from the direction of
the illumination color, the intersection point will give an
incorrect estimate of the imaging geometry. This is the case



for the roughest surface (¢ = 16) shown in Figure 2. All
three histograms correspond to an angular separation of 20
degrees, and indeed the highest point of each highlight
cluster occurs at the same horizontal coordinate (which
indicates the amount of body reflection). However, for the
rough surface shown in Figure 3, the correct intersection
ratio is given by |ac'|/[ab| rather than |ac|/|abl. This
skewing of the highlight cluster means that the meeting
point may be significantly altered for very rough surfaces.

The 1/cos(6,) term in equation (2) means that the maxi-
mum amount of surface reflection will not always occur
precisely at the perfect specular angle. This is particularly
true of rougher surfaces where the highlight is spread over
a wide range of reflectance angles so that 1/cos(6,) varies
significantly. This causes the “off-specular peaks”
described in [10]. The result is that the meeting point is
very slightly dependent upon the surface roughness.

In Figure 9 we see that there is an ambiguity about 0
degrees. We cannot tell from the histogram whether a light
source is 45 degrees to the left or to the right of the camera.
More generally, the light source could be anywhere on a
45° circle around the camera position. This method for
determining the angle separating the light and camera by
examining the cluster meeting point relies implicitly on the
amount of body reflection at certain points. However, it
does not require us to fit surface orientations to image data,
nor does it require knowledge of the albedo of the surface.
Moreover, it is done from a single image.

In sections 2.2.2. and 2.2.3. we claimed that we could
determine the roughness of the object from the length and
width of the highlight cluster, but that there was some
dependence on imaging geometry. Now we are claiming
that we can determine the imaging geometry from the
meeting point of the two clusters, but that there is some
dependence upon roughness. Furthermore, in section 2.2.1.
we noted that the direction of the highlight cluster could be
skewed away from the direction of the illumination color,
depending upon the amount of roughness and the imaging
geometry. Now we see that the estimates of cluster length,
width, and intersection point depend to a certain extent
upon knowing the true direction of the illumination color.

Obviously these factors are all interdependent. Moreover
because of possible highlight skewing, our initial estimates
of cluster length, width, and intersection point may be
slightly or even significantly affected. Therefore we pro-
pose to solve for the amount of roughness and angular sep-
aration of the light and camera simultaneously, based on
the initial estimates. Such a solution could be obtained by
generating a lookup table for a large range of roughness
values and imaging geometry.
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3. Conclusions

The color histogram of an image is a rich source of infor-
mation, but it has not been fully exploited in the past. The
variation of color was once modeled as a random process
with a Gaussian distribution. More recently, the model has
become more structured, showing that the distribution of
colors on an inhomogeneous object will form a plane in
RGB space, and that the pixels fall within a parallelogram
defined by the body color and illumination color. Experi-
ments then showed that the parallelogram is not uniformly
filled; rather, the color histogram will show two distinct
clusters that meet in RGB space.

We have gone further to show that the direction, length,
width, and intersection of these two clusters may by char-
acterized by numerical measurements. The resulting mea-
surements are not just of academic interest, but relate
directly to scene properties, including both object color and
roughness, as well as illumination color and position.
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