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Abstract—BLIS is a new framework for rapid instantiation
of the BLAS. We describe how BLIS extends the “GotoBLAS
approach” to implementing matrix multiplication (GEMM). While
GEMM was previously implemented as three loops around an
inner kernel, BLIS exposes two additional loops within that inner
kernel, casting the computation in terms of the BLIS micro-
kernel so that porting GEMM becomes a matter of customizing
this micro-kernel for a given architecture. We discuss how this
facilitates a finer level of parallelism that greatly simplifies the
multithreading of GEMM as well as additional opportunities for
parallelizing multiple loops. Specifically, we show that with the
advent of many-core architectures such as the IBM PowerPC
A2 processor (used by Blue Gene/Q) and the Intel Xeon Phi
processor, parallelizing both within and around the inner kernel,
as the BLIS approach supports, is not only convenient, but also
necessary for scalability. The resulting implementations deliver
what we believe to be the best open source performance for
these architectures, achieving both impressive performance and
excellent scalability.

Index Terms—linear algebra, libraries, high-performance, ma-
trix, BLAS, multicore

I. INTRODUCTION

High-performance implementation of matrix-matrix multi-

plication (GEMM) is both of great practical importance, since

many computations in scientific computing can be cast in

terms of this operation, and of pedagogical importance, since

it is often used to illustrate how to attain high performance

on a novel architecture. A few of the many noteworthy

papers from the past include Agarwal et al. [1] (an early

paper that showed how an implementation in a high level

language—Fortran—can attain high performance), Bilmer et

al. [2] (which introduced auto-tuning and code generation

using the C programming language), Whaley and Dongarra [3]

(which productized the ideas behind PHiPAC), Kågstöm et

al. [4] (which showed that the level-3 BLAS operations can

be implemented in terms of the general rank-k update (GEMM

)), and Goto and van de Geijn [5] (which described what

is currently accepted to be the most effective approach to

implementation, which we will call the GotoBLAS approach).

Very recently, we introduced the BLAS-like Library In-

stantiation Software (BLIS) [6] which can be viewed as a

systematic reimplementation of the GotoBLAS, but with a

number of key insights that greatly reduce the effort for the

library developer. The primary innovation is the insight that

the inner kernel—the smallest unit of computation within the

GotoBLAS GEMM implementation—can be further simplified

into two loops around a micro-kernel. This means that the li-

brary developer needs only implement and optimize a routine1

that implements the computation of C := AB+C where C is a

small submatrix that fits in the registers of a target architecture.

In a second paper [7], we reported experiences regarding

portability and performance on a large number of current

processors. Most of that paper is dedicated to implementation

and performance on a single core. A brief demonstration of

how BLIS also supports parallelism was included in that paper,

but with few details.

The present paper describes in detail the opportunities for

parallelism exposed by the BLIS implementation of GEMM. It

focuses specifically on how this supports high performance and

scalability when targeting many-core architectures that require

more threads than cores if near-peak performance is to be

attained. Two architectures are examined: the PowerPC A2

processor with 16 cores that underlies IBM’s Blue Gene/Q

supercomputer, which supports four-way hyperthreading for a

total of 64 threads; and the Intel Xeon Phi processor with 60

cores2 and also supports four-way hyperthreading for a total of

240 threads. It is demonstrated that excellent performance and

scalability can be achieved specifically because of the extra

parallelism that is exposed by the BLIS approach within the

inner kernel employed by the GotoBLAS approach.

It is also shown that when many threads are employed

it is necessary to parallelize in multiple dimensions. This

builds upon Marker et al. [8], which we believe was the

first paper to look at 2D work decomposition for GEMM

on multithreaded architectures. The paper additionally builds

upon work that describe the vendor implementations for the

1This micro-kernel routine is usually written in assembly code, but may
also be expressed in C with vector intrinsics.

2In theory, 61 cores can be used for computation. In practice, 60 cores are
usually employed.



Main Memory 

L3 cache 

L2 cache 

+= 

L1 cache 

registers 

jc jc 

ic ic 

pc 

pc 

jr 

jr 

ir 

ir 

Fig. 1. Illustration of which parts of the memory hierarchy each block of A and B reside in during the execution of the micro-kernel.

PowerPC A2 [9] and the Xeon Phi [10]. BLIS wraps many of

those insights up in a cleaner framework so that exploration of

the algorithmic design space is, in our experience, simplified.

We show performance to be competitive relative to that of

Intel’s Math Kernel Library (MKL) and IBM’s Engineering

and Scientific Subroutine Library (ESSL)3.

II. BLIS

In our discussions in this paper, we focus on the special

case C := AB + C, where A, B, and C are m × k, k × n,

and m × n, respectively.4 It helps to be familiar with the

GotoBLAS approach to implementing GEMM, as described

in [5]. We will briefly review the BLIS approach for a single

core implementation in this section, with the aid of Figure 1.

Our description starts with the outer-most loop, indexed by

jc. This loop partitions C and B into (wide) column panels.

Next, A and the current column panel of B are partitioned into

column panels and row panels, respectively, so that the current

column panel of C (of width nc) is updated as a sequence of

rank-k updates (with k = kc), indexed by pc. At this point, the

GotoBLAS approach packs the current row panel of B into a

3We do not compare to OpenBLAS [11] as there is no implementation for
either the PowerPC A2 or the Xeon Phi, to our knowledge. ATLAS does not
support either architecture under consideration in this paper so no comparison
can be made.

4We will also write this operation as C += AB.

contiguous buffer, B̃. If there is an L3 cache, the computation

is arranged to try to keep B̃ in the L3 cache. The primary

reason for the outer-most loop, indexed by jc, is to limit the

amount of workspace required for B̃, with a secondary reason

to allow B̃ to remain in the L3 cache.5

Now, the current panel of A is partitioned into blocks,

indexed by ic, that are packed into a contiguous buffer, Ã.

The block is sized to occupy a substantial part of the L2

cache, leaving enough space to ensure that other data does not

evict the block. The GotoBLAS approach then implements the

“block-panel” multiplication of ÃB̃ as its inner kernel, making

this the basic unit of computation. It is here that the BLIS

approach continues to mimic the GotoBLAS approach, except

that it explicitly exposes two additional loops. In BLIS, these

loops are coded portably in C, whereas in GotoBLAS they are

hidden within the implementation of the inner kernel (which

is oftentimes assembly-coded).

At this point, we have Ã in the L2 cache and B̃ in the L3

cache (or main memory). The next loop, indexed by jr, now

partitions B̃ into column “slivers” (micro-panels) of width nr.

At a typical point of the computation, one such sliver is in

the L1 cache, being multiplied by Ã. Panel B̃ was packed in

such a way that this sliver is stored contiguously, one row (of

5The primary advantage of constraining B̃ to the L3 cache is that it is
cheaper to access memory in terms of energy efficiency in the L3 cache
rather than main memory.
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Fig. 2. Illustration of the three inner-most loops. The loops idexed by ir and jr are the loops that were hidden inside the GotoBLAS inner kernel.

width nr) at a time. Finally, the inner-most loop, indexed by

ir, partitions Ã into row slivers of height mr. Block Ã was

packed in such a way that this sliver is stored contiguously,

one column (of height mr) at a time. The BLIS micro-kernel

then multiplies the current sliver of Ã by the current sliver

of B̃ to update the corresponding mr × nr block of C. This

micro-kernel performs a sequence of rank-1 updates (outer

products) with columns from the sliver of Ã and rows from

the sliver of B̃.

A typical point in the compution is now captured by

Figure 1. A mr ×nr block of C is in the registers. A kc×nr

sliver of B̃ is in the L1 cache. The mr × kc sliver of Ã is

streamed from the L2 cache. And so forth. The key takeaway

here is that the layering described in this section can be

captured by the five nested loops around the micro-kernel in

Figure 2.

III. OPPORTUNITIES FOR PARALLELISM

We have now set the stage to discuss opportunities for

parallelism and when those opportunites may be advantageous.

There are two key insights in this section:

• In GotoBLAS, the inner kernel is the basic unit of

computation and no parallelization is incorporated within

that inner kernel6. The BLIS framework exposes two

6It is, of course, possible that more recent implementations by Goto deviate
from this. However, these implementations are proprietary.



loops within that inner kernel, thus exposing two extra

opportunities for parallelism, for a total of five.

• It is important to use a given memory layer wisely. This

gives guidance as to which loop should be parallelized.

A. Parallelism within the micro-kernel

The micro-kernel is typically implemented as a sequence of

rank-1 updates of the mr×nr block of C that is accumulated

in the registers. Introducing parallelism over the loop around

these rank-1 updates is ill-advised for three reasons: (1) the

unit of computation is small, making the overhead consider-

able, (2) the different threads would accumulate contributions

to the block of C, requiring a reduction across threads that is

typically costly, and (3) each thread does less computation for

each update of the mr × nr block of C, so the amortization

of the cost of the update is reduced.

This merely means that parallelizing the loop around the

rank-1 updates is not advisable. One could envision carefully

parallezing the micro-kernel in other ways for a core that re-

quires hyperthreading in order to attain peak performance. But

that kind of parallelism can be described as some combination

of parallelizing the first and second loop around the micro-

kernel. We will revisit this topic later on.

The key for this paper is that the micro-kernel is a basic unit

of computation for BLIS. We focus on how to get parallelism

without having to touch that basic unit of computation.

B. Parallelizing the first loop around the micro-kernel (in-

dexed by ir).
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Fig. 3. Left: the micro-kernel. Right: the first loop around the micro-kernel.

Let us consider the first of the three loops in Figure 2. If

one parallelizes the first loop around the micro-kernel (indexed

by ir), different instances of the micro-kernel are assigned to

different theads. Our objective is to optimally use fast memory

resources. In this case, the different threads share the same

sliver of B̃, which resides in the L1 cache.

Notice that regardless of the size of the matrices on which

we operate, this loop has a fixed number of iterations, ⌈mc

mr

⌉,

since it loops over mc in steps of mr. Thus, the amount of

parallelism that can be extracted from this loop is quite limited.

Additionally, a sliver of B̃ is brought from the L3 cache into

the L1 cache and then used during each iteration of this loop.

When parallelized, less time is spent in this loop and thus the

cost of bringing that sliver of B̃ into the L1 cache is amortized

over less computation. Notice that the cost of bringing B̃ into

the L1 cache may be overlapped by computation, so it may be

completely or partially hidden. In this case, there is a minimum

amount of computation required to hide the cost of bringing B̃

into the L1 cache. Thus, parallelizing is acceptable only when

this loop has a large number of iterations. These two factors

mean that this loop should be parallelized only when the ratio

of mc to mr is large. Unfortunately, this is not usually the case,

as mc is usually on the order of a few hundred elements.

C. Parallelizing the second loop around the micro-kernel

(indexed by jr).
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Fig. 4. The second loop around the micro-kernel.

Now consider the second of the loops in Figure 2. If one

parallelizes the second loop around the micro-kernel (indexed

by jr), each thread will be assigned a different sliver of B̃,

which resides in the L1 cache, and they will all share the same

block of Ã, which resides in the L2 cache. Then, each thread

will multiply the block of Ã with its own sliver of B̃.

Similar to the first loop around the micro-kernel, this loop

has a fixed number of iterations, as it iterates over nc in steps

of nr. The time spent in this loop amortizes the cost of packing

the block of Ã from main memory into the L2 cache. Thus,

for similar reasons as the first loop around the micro-kernel,

this loop should be parallelized only if the ratio of nc to nr

is large. Fortunately, this is almost always the case, as nc is

typically on the order of several thousand elements.

Consider the case where this loop is parallelized and each

thread shares a single L2 cache. Here, one block Ã will be

moved into the L2 cache, and there will be several slivers of

B̃ which also require space in the cache. Thus, it is possible

that either Ã or the slivers of B̃ will have to be resized so

that all fit into the cache simultaneously. However, slivers of

B̃ are small compared to the size of the L2 cache, so this will

likely not be an issue.

Now consider the case where the L2 cache is not shared, and

this loop over nc is parallelized. Each thread will pack part of

Ã, and then use the entire block of Ã for its local computation.

In the serial case of GEMM, the process of packing of Ã

moves it into a single L2 cache. In contrast, parallelizing this

loop results in various parts of Ã being placed into different

L2 caches. This is due to the fact that the packing of Ã

is parallelized. Within the parallelized packing routine, each

thread will pack a different part of Ã, and so that part of

Ã will end up in that thread’s private L2 cache. A cache

coherency protocol must then be relied upon to guarantee that

the pieces of Ã are duplicated across the L2 caches, as needed.

This occurs during the execution of the microkernel and may

be overlapped with computation. Because this results in extra

memory movements and relies on cache coherency, this may

or may not be desireable depending on the cost of duplication

among the caches. Notice that if the architecture does not

provide cache coherency, the duplication of the pieces of Ã

must be done manually.



D. Parallelizing the third loop around the inner-kernel (in-

dexed by ic).
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Fig. 5. The third loop around the micro-kernel (first loop around Goto’s
inner kernel).

Next, consider the third loop around the micro-kernel at the

bottom of Figure 2. If one parallelizes this first loop around

what we call the macro-kernel (indexed by ic), which corre-

sponds to Goto’s inner kernel, each thread will be assigned

a different block of Ã, which resides in the L2 cache, and

they will all share the same row panel of B̃, which resides in

the L3 cache or main memory. Subsequently, each thread will

multiply its own block of Ã with the shared row panel of B̃.

Unlike the inner-most two loops around the micro-kernel,

the number of iterations of this loop is not limited by the

blocking sizes; rather, the number of iterations of this loop

depends on the size of m. Notice that when m is less than the

product of mc and the degree of parallelization of the loop,

blocks of Ã will be smaller than optimal and performance will

suffer.

Now consider the case where there is a single, shared L2

cache. If this loop is parallelized, there must be multiple blocks

of Ã in this cache. Thus, the size of each Ã must be reduced

in size by a factor equal to the degree of parallelization of

this loop. The size of Ã is mc × kc, so either or both of

these may be reduced. Notice that if we choose to reduce mc,

parallelizing this loop is equivalent to parallelizing the first

loop around the micro-kernel. If instead each thread has its

own L2 cache, each block of Ã resides in its own cache, and

thus it would not need to be resized.

Now consider the case where there are multiple L3 caches.

If this loop is parallelized, each thread will pack a different

part of the row panel of B̃ into its own L3 cache. Then a cache

coherency protocol must be relied upon to place every portion

of B̃ in each L3 cache. As before, if the architecture does not

provide cache coherency, this duplication of the pieces of B̃

must be done manually.

E. Parallelizing the fourth loop around the inner-kernel (in-

dexed by pc).

Consider the fourth loop around the micro-kernel. If one

parallelizes this second loop around the macro-kernel (indexed

by pc), each thread will be assigned a different block of Ã

and a different block of B̃. Unlike in the previously discussed

opportunities for parallelism, each thread will update the

same block of C, potentially creating race conditions. Thus,

parallelizing this loop either requires some sort of locking

mechanism or the creation of copies of the block of C

+= 

pc 

pc 

+ 

+ 

Fig. 6. Parallelization of the pc loop requires local copies of the block of
C to be made, which are summed upon completion of the loop.

(initialized to zero) so that all threads can update their own

copy, which is then followed by a reduction of these partial

results, as illustrated in Figure 6. This loop should only be

parallelized under very special circumstances. An example

would be when C is small so that (1) only by parallelizing

this loop can a satisfactory level of parallelism be achieved

and (2) reducing (summing) the results is cheap relative to

the other costs of computation. It is for these reasons that

so-called 3D (sometimes called 2.5D) distributed memory

matrix multiplication algorithms [12], [13] choose this loop

for parallelization (in addition to parallelizing one or more of

the other loops).

F. Parallelizing the outer-most loop (indexed by jc).
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Fig. 7. The fifth (outer) loop around the micro-kernel.

Finally, consider the fifth loop around the micro-kernel (the

third loop around the macro-kernel, and the outer-most loop).

If one parallelizes this loop, each thread will be assigned a

different row panel of B̃, and each thread will share the whole

matrix A which resides in main memory.

Consider the case where there is a single L3 cache. Then

the size of a panel of B̃ must be reduced so that multiple of B̃

will fit in the L3 cache. If nc is reduced, then this is equivalent

to parallelizing the 2nd loop around the micro-kernel, in terms

of how the data is partitioned among threads. If instead each

thread has its own L3 cache, then the size of B̃ will not have

to be altered, as each panel of B̃ will reside in its own cache.

Parallelizing this loop thus may be a good idea on multi-

socket systems where each CPU has a separate L3 cache.

Additionally, such systems often have a non-uniform memory

access (NUMA) design, and thus it is important to have a

separate panel of B̃ for each NUMA node, with each panel

residing in that node’s local memory.

Notice that since threads parallelizing this loop do not share

any packed buffers of Ã or B̃, parallelizing this loop is, from



a data-sharing perspective, equivalent to gaining parallelism

outside of BLIS.

IV. INTEL XEON PHI

We now discuss how BLIS supports high performance and

scalability on the Xeon Phi architecture.

A. Architectural Details

The Xeon Phi has 60 cores, each of which has its own 512

KB L2 cache and 32 KB L1 data cache. Each core has four

hardware threads, all of which share the same L1 cache. A

core is capable of dispatching two instructions per clock cycle,

utilizing the core’s two pipelines. One of these may be used

to execute vector floating point instructions or vector memory

instructions. The other may only be used to execute scalar

instructions or prefetch instructions. If peak performance is

to be achieved, the instruction pipeline that is capable of

executing floating point operations should be executing a fused

multiply accumulate instruction (FMA) as often as possible.

One thread may only issue one instruction to each pipeline

every other clock cycle. Thus, utilizing two hardware threads

is the minimum necessary to fully occupy the floating point

unit. Using four hardware threads further alleviates instruction

latency and bandwidth issues [14].

Although these hardware threads may seem similar to the

hyper-threading found on more conventional CPUs, the fact

is that hyper-threading is not often used for high-performance

computing applications, and these hardware threads must be

used for peak performance.

B. The BLIS implementation on the Intel Xeon Phi

Because of the highly parallel nature of the Intel Xeon

Phi, the micro-kernel must be designed while keeping the

parallelism gained from the core-sharing hardware threads in

mind. On conventional architectures, slivers of Ã and B̃ are

sized such that B̃ resides in the L1 cache, and B̃ is streamed

from memory. However, this regime is not appropriate for the

Xeon Phi. This is due to the fact that with four threads sharing

an L1 cache, parallelizing in the m and n dimensions means

that there must be room for at least two slivers of Ã and

two slivers of B̃ in the L1 cache. On the Xeon Phi, to fit

so much data into the L1 cache would mean reducing kc
to a point where the cost of updating the mr × nr block

of C is not amortized by enough computation. The solution

is to instead only block for the L2 cache. In order for the

GotoBLAS approach to be applied to this case, we can think

of the region of the L2 cache that contains the slivers of Ã

and B̃ as a virtual L1 cache, where the cost of accessing its

elements is the same as accessing elements in the L2 cache.

We now discuss the register and cache blocksizes for the

BLIS implementation of Xeon Phi, as they affect how much

parallelism can be gained from each loop. Various pipeline

restrictions for the Xeon Phi mean that its micro-kernel must

either update a 30×8 or 8×30 block of C. For this paper, we

have choosen 30 × 8. Next, the block of Ã must fit into the

512 KB L2 cache. mc is chosen to be 120, and kc is chosen to

be 240. There is no L3 cache, so nc is only bounded by main

memory, and by the amount of memory we want to use for

the temporary buffer holding the panel of B̃. For this reason

we choose nc to be 14400, which is the largest n dimension

for any matrix we use for our experiments.7

C. Which loops to parallelize

The sheer number of threads and the fact that hardware

threads are organized in a hierarchical manner suggests that

we will want to consider parallelizing multiple loops. We

use the fork-join model to parallelize multiple loops. When

a thread encounters a loop with P -way parallelism, it will

spawn P children, and those P threads parallelize that loop

instance. The total number of threads is the product of the

number of threads parallelizing each loop. We will now take

the insights from the last section to determine which loops

would be appropriate to parallelize, and to what degree. In

this section we will use the name of the index variable to

identify each loop.

• The ir loop: With an mc of 120 and mr of 30, this

loop only has four iterations, thus it does not present a

favorable opportunity for parallelization.

• The jr loop: Since nc is 14400, and nr is only 8, this

loop provides an excellent opportunity for parallelism.

This is especially true among the hardware threads. The

four hardware threads share an L2 cache, and if this loop

is parallelized among those threads, they will also share

a block of Ã.

• The ic loop: Since this loop has steps of 120, and

it iterates over all of m, this loop provides a good

opportunity when m is large. Additionally, since each

core of the Xeon Phi has its own L2 cache, parallelizing

this loop is beneficial because the size of Ã will not have

to be changed as long as the loop is not parallelized by

threads within a core. Notice that if the cores share an

L2 cache, parallelizing this loop would result in multiple

blocks of Ã, each of which would have to be reduced in

size since they would all have to fit into one L2 cache.

• The pc loop: We do not consider this loop for reasons

explained in Section III-E above.

• The jc loop: Since the Xeon Phi lacks an L3 cache,

this loop provides no advantage over the jr loop for

parallelizing in the n dimension. It also offers worse

spatial locality than the jr loop, since there would be

different buffers of B̃.

We have now identified two loops as opportunities for

parallelism on the Xeon Phi, the jr and ic loops.

D. Parallelism within cores

It is advantageous for hardware threads on a single core

to parallelize the jr loop. If this is done, then each hardware

thread is assigned a sliver of B̃, and the four threads share the

same block of Ã. If the four hardware threads are synchro-

nized, they will access the same sliver of Ã concurrently. Not

7If we instead choose nc to be 7200, performance drops by approximately
2 percent of the peak of the machine.



only that, if all four threads operate on the same region of Ã

at the same time, one of the threads will load an element of

Ã into the L1 cache, and all four threads will use it before it

is evicted. Thus, parallelizing the jr loop and synchronizing

the four hardware threads will reduce bandwidth requirements

of the micro-kernel. The synchronization of the four hardware

threads is accomplished by periodically executing a barrier.

Synchronizing threads may be important even when threads

are located on different cores. For example, multiple cores

conceptually will share a sliver of B̃, which is read into their

private L2 caches. If they access the B̃ sliver at the same

time, the sliver will be read just once out of L3 (or memory)

and replicated using the cache coherence protocol. However,

if cores fall out of synch, a sliver of B̃ may be read from

main memory multiple times. This may penalize performance

or energy.

For our Xeon Phi experiments, the four threads on a core

parallelize the jr loop, and a barrier is executed every 8

instances of the micro-kernel. However, we do not enforce

any synchronization between cores.

E. Parallelism between cores

As noted, it is particularly advantageous to parallelize the

ic loop between cores as each core has its own L2 cache.

However, if parallelism between cores is only attained by this

loop, performance will be poor when m is small. Also, all

cores will only work with an integer number of full blocks of

Ã (where the size of the Ã is mc × kc) when m is a multiple

of 7200. For this reason, we seek to gain parallelism in both

the m and n dimensions. Thus, we parallelize the jr loop

in addition to the ic loop to gain parallelism between cores,

even though this incurs the extra cost of the cache-coherency

protocol to duplicate all of Ã to each L2 cache.

F. Performance results

Given that (1) each core can issue one floating point

multiply-accumulate instruction per clock cycle, and (2) the

SIMD vector length for double-precision real elements is 8,

each core is capable of executing 16 floating point operations

per cycle, where a floating point operation is either a floating

point multiply or addition. At 1.1 GHz, this corresponds to a

peak of 17.6 GFLOPS per core, or 1056 GFLOPS for 60 cores.

In the performance results presented in this paper, the top of

each graph represents the theoretical peak of that machine.

Figure 8 compares the performance of different paralleliza-

tion schemes within BLIS on the Xeon Phi. There are four

parallelization schemes presented. They are labeled with how

much parallelism was gained from the ic and jr loops. In all

cases, parallelization within a core is done by parallelizing the

jr loop. Single-thread results are not presented, as such results

would be meaningless on the Xeon Phi.

The case labeled ‘jr: 240 way’, where all parallelism is

gained from the jr loop, yields very poor performance. Even

when n = 14400, which is the maximum tested (and a

rather large problem size), each thread is only multiplying

each Ã with seven or eight slivers of B̃. In this case, not
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Fig. 8. Different parallelization schemes of BLIS on the Intel Xeon Phi.
‘ic:n way’ indicates n-way parallelization of the third loop (indexed by ic)
around the micro-kernel, and ‘jr :n way’ indicates n-way parallelization of
the second loop (indexed by jr) around the micro-kernel.

enough time is spent in computation to amortize the packing

of Ã. Additionally, Ã is packed by all threads and then the

cache coherency protocol duplicates all slivers of Ã among

the threads (albeit at some cost due to extra memory traffic).

Finally, Ã is rather small compared to the number of threads,

since it is only 240×120. A relatively small block of Ã means

that there is less opportunity for parallelism in the packing

routine. This makes load balancing more difficult, as some

threads will finish packing before others and then sit idle.

Next consider the case labeled ‘ic:60 way; jr:4 way’. This is

the case where parallelism between cores is gained from the ic
loop, and it has good performance when m is large. However,
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Fig. 9. Performance comparision of BLIS with MKL on the Intel Xeon Phi.

load balancing issues arise when mr multiplied by the number

of threads parallelizing the ic loop does not divide m (that is,

when m is not divisible by 1800). This is rooted in the mr×nr

micro-kernel’s status as the basic unit of computation. Now

consider the case labeled ‘ic: 15; jr:16’. This case ramps up

more smoothly, especially when m and n are small.

In Figure 9, we compare the best BLIS implementation

against Intel’s Math Kernel Library (MKL), which is a highly-

tuned implementation of the BLAS. For the top graph, we

compare the ‘ic:15 way; jr:16 way’ scheme against MKL

when m and n vary. For the bottom graph, we use the ‘ic:60

way; jr:4 way’ scheme, since it performs slightly better when

m is large. Notice that this case is particularly favorable for

this parallelization scheme because each thread is given an

integer number of blocks of Ã. This only happens when m is

divisible by 7200.

In the bottom graph of Figure 9, when both m and n

are fixed to 14400, notice that there are ‘divots’ that occur

when k is very slightly larger than kc, which is 240 in the

BLIS implementation of GEMM, and evidently in the MKL

implementation of GEMM as well. When k is just slightly

larger than a multiple of 240, an integer number of rank-k

updates will be performed with the optimal blocksize kc, and

one rank-k update will be performed with a smaller rank. The

rank-k update with a small value of k is expensive because in

each micro-kernel call, an mr × nr block of C must be both

read from and written to main memory. When k is small, this

update of the mr × nr submatrix of C is not amortized by

enough computation. It is more efficient to perform a single

rank-k update with a k that is larger than the optimal kc than

to perform a rank-k update with the optimal kc followed by a

rank-k update with a very small value of k. This optimization

is shown in the curve in Figure 9 labeled “BLIS Divotless”.

Figure 9 shows BLIS attaining very similar performance

to that of Intel’s highly-tuned MKL, falling short by only

one or two percentage points from the achieved performance

of the Xeon Phi. We also demonstrate great scaling results

when using all 60 cores of the machine. Additionally, we

demonstrate that the performance ‘divots’ that occur in both

MKL and BLIS when k is slightly larger than some multiple

of 240 can be eliminated.

V. IBM BLUE GENE/Q

We now discuss how BLIS supports high performance and

scalability on the IBM Blue Gene/Q PowerPC A2 architec-

ture [15].

A. Architectural Details

The Blue Gene/Q PowerPC A2 processor has 16 cores

available for use by applications. Much like the Intel Xeon Phi,

each core is capable of using up to four hardware threads, each

with its own register file. The PowerPC A2 supports the QPX

instruction set, which supports SIMD vectors of length four for

double-precision real elements. QPX allows fused multiply-

accumulate instructions, operating on SIMD vectors of length

four. This lets the A2 execute 8 flops per cycle.

The 16 cores of Blue Gene/Q that can be used for GEMM

share a single 32 MB L2 cache. This cache is divided into 2

MB slices. When multiple threads are simultaneously reading

from the same slice, there is some contention between the

threads. Thus there is a cost to having multiple threads access

the same part of Ã at the same time. The L2 cache has a

latency of 82 clock cycles and 128 byte cache lines.

Each core has its own L1 prefetch, L1 instruction, and L1

data cache. The L1 prefetch cache contains the data prefetched

by the stream prefetcher and has a capacity of 4 KB [16]. It

has a latency of 24 clock cycles and a cache line size of 128

byes. The L1 data cache has a capacity of 16 KB, and a cache

line size of 64 bytes. It has a latency of 6 clock cycles [17].



The PowerPC A2 has two pipelines. The AXU pipeline

is used to execute QPX floating point operations. The XU

pipeline can be used to execute memory and scalar operations.

Each clock cycle, a hardware thread is allowed to dispatch one

instruction to one of these pipelines. In order for the A2 to

be dispatching a floating point instruction each clock cycle,

every instruction must either execute on the XU pipeline,

or it must be a floating point instruction. Additionally, since

there are inevitably some instructions that are executed on the

XU pipeline, we use four hardware threads so that there will

usually be an AXU instruction available to dispatch alongside

each XU instruction.

B. The BLIS implementation on the IBM PowerPC A2

As on the Intel Xeon Phi, Ã and the sliver of B̃ reside in

the L2 cache and no data resides in the L1 cache. (Notice that

the amount of L1 cache per thread on the A2 is half that of

the Xeon Phi.)

For the BLIS PowerPC A2 implementation, we have cho-

sen mr and nr to both be 8. The block of Ã takes up

approximately half of the 32 MB L2 cache, and in the BLIS

implementation, mc is 1024 and kc is 2048. The PowerPC A2

does not have an L3 cache and thus nc is limited by the size

of memory; therefore, we have choosen a rather large value

of nc = 10240.

C. Which loop to parallelize

While there are fewer threads to use on the PowerPC A2

than on the Xeon Phi, 64 hardware threads is still enough to

require the parallelization of multiple loops. Again, we refer

to each loop by the name of its indexing variable.

• The ir loop: With an mc of 1024 and mr of 8, this loop

has many iterations. Thus, unlike the Intel Xeon Phi, the

first loop around the micro-kernel presents an excellent

opportunity for parallelism.

• The jr loop: Since nc is large and nr is only 8, this loop

also provides an excellent opportunity for parallelism.

However when threads parallelize this loop, they share

the same Ã, and may access the same portions of Ã

concurrently. This poses problems when it causes too

many threads to access the same 2 MB portion of the

L2 cache simultaneously.

• The ic loop: Since all threads share the same L2 cache,

this loop has similar advantages as the ir loop. If multiple

threads parallelize this loop, Ã will have to be reduced

in size. This reduction in size reduces the computation

that amortizes the movement of each sliver of B̃ into

the virtual L1 cache. Notice that if we reduce mc, then

parallelizing the ic loop reduces this cost by the same

amount as parallelizing ir.

• The pc loop: Once again, we do not consider this loop

for parallelization.

• The jc loop: This loop has the same advantages and

disadvantages as the jr loop, except that this loop should

not be parallelized among threads that share a core, since

they will not then share a block of Ã.

Since the L2 cache is shared, and there is no L3 cache, our

choices for the PowerPC A2 is between parallelizing either the

ic or ir loops, and either the jc or jr loops. In both of these

cases, we prefer the inner loops to the outer loops. The reason

for this is two-fold. Firstly, it is convenient to not change any

of the cache blocking sizes from the serial implementation of

BLIS when parallelizing. But more importantly, parallelizing

the inner loops instead of the outer loops engenders better

spatial locality, as there will be one contiguous block of

memory, instead of several blocks of memory that may not

be contiguous.

D. Performance results

Like the Xeon Phi, each core of the PowerPC A2 can is-

sue one double-precision fused multiply-accumulate instrucion

each clock cycle. The SIMD vector length for double-precision

arithmetic is 4, so each core can execute 8 floating point

operations per cycle. At 1.6 GHz, a single core has a double-

precision peak performance of 12.8 GFLOPS. This becomes

the top line in Figures 10 and 11. The theoretical peak with

all 16 cores is 204.8 GFLOPS.

Figure 10 compares the performance of different paralleliza-

tion schemes within BLIS on the PowerPC A2. It is labeled

similarly to Figure 8, described in the previous section. Notice

that all parallelization schemes have good performance when

m and n are large, but the schemes that only parallelize

in either the m or the n dimensions have performance that

varies according to the amount of load balancing. Proper load

balancing for the ‘ir:64 way’ case is only achieved when m

is divisible by 512, and similarly, proper load balancing for

the ‘jr:64 way’ case is only achieved when n is divisible by

512.

The performance of BLIS is compared with that of ESSL

in Figure 11. The parallelization scheme used for this com-

parision is the one labeled ‘jr:8 way; ir:8 way’. Notice that

parallel performance scales perfectly to 16 cores for large m

and n.

VI. CONCLUDING REMARKS

In this paper, we exposed the five loops around a micro-

kernel that underly matrix-matrix multiplication within the

BLIS framework. We discussed where, at a prototypical point

in the computation, data resides and used this to motivate

insights about opportunities for parallelizing the various loops.

We discussed how parallelizing the different loops affects the

sharing of data and amortization of data movement. These

insights were then applied to the parallelization of this opera-

tion on two architectures that require many threads to achieve

peak performance: The IBM PowerPC A2 that underlies the

Blue Gene/Q supercomputer and the Intel Xeon Phi. It was

shown how parallelizing multiple loops is the key to high

performance and scalability. On the Xeon Phi the resulting

performance matched that of Intel’s highly tuned MKL. For

the PowerPC A2, the parallelization yielded a considerable

performance boost over IBM’s ESSL, largely due to better

scalability. Thus, adding parallelism to the BLIS framework
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for matrix multiplication appears to support high performance

on these architectures. This will soon give the community

another open source solution for multithreaded BLAS.

A curiosity is that on both of these architectures the L1

cache is too small to support the multiple hardware threads that

are required to attain near-peak performance. This is overcome

by using a small part of the L2 cache for data that on more

conventional architectures resides in the L1 cache. It will be

interesting to see whether this will become a recurring theme

in future many-core architectures.
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