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Although the non-Bloch band theory is a milestone in elaborating bulk energy bands of non-
Hermitian systems under the open-boundary condition (OBC), vital issues related to multivalued
functions of non-Hermitian energy bands remain unsolved. In this paper, we anatomize the bulk
properties of one-dimensional multiband non-Hermitian systems under OBC. We put forward the
energy-band branches (EBBs) to settle the multivalued functions of non-Hermitian energy bands,
which become gapped or gapless corresponding to disconnected or connected EBBs in the complex
energy plane, where the branch points and branch cuts play a crucial role. We clarify the precise
significance of the non-Hermitian skin effect, which illustrates the asymptotic behavior of EBB
eigenstates (bulk eigenstates) in the deep bulk and compensates previous non-Bloch band theory.
We also obtain a general expression of open-boundary Green’s functions based on such EBBs and
generalized Brillouin zones, useful for studies on non-Hermitian dynamical evolution.

I. INTRODUCTION

The latest developments of the fundamental theo-
ries of non-Hermitian systems [1, 2], including the en-
ergy band theory [3–16], the recast of bulk-boundary
correspondence [4–6, 16–19], the exceptional points of
non-Hermitian systems [20–36], and the non-Hermitian
higher-order topological phases [37–51], have received
much research attention in condensed matter physics.
Recently, research on dynamical evolution phenom-
ena [52–57], many-body properties [58–63], non-Bloch
band theory in both one and higher dimensions [64–
67], etc., has further broadened our scope and avenue
on non-Hermitian systems. However, there remain sev-
eral key issues in the foundation of non-Bloch band the-
ory [5, 10] when it comes to one-dimensional (1D) multi-
band non-Hermitian systems under the open-boundary
condition (OBC), where energy bands take the form of
multivalued functions [68–70]. Even with the concept of
sub-generalized Brillouin zones (sub-GBZs) [16], an un-
ambiguous bridge between non-Hermitian energy bands
and multivalued functions is still lacking due to the lat-
ter’s branch points and branch cuts. In addition, it is al-
ways the default that the part of the GBZ inside (outside)
the unit circle indicates the left (right) localized energy-
band branch (EBB) eigenstates in the terminology of
the non-Hermitian skin effect (NHSE), which needs to
be more precisely elaborated.

Many functions show multivalued properties with vari-
ables lying in the complex plane, such as radical func-
tions, logarithmic functions, inverse trigonometric func-
tions, etc. Let us take the square-root function w(z) =√
z − a as a simple example, where z ∈ C is the variable

and a is a complex constant. The phase increment of
z − a along a closed, counterclockwise loop C is 2π (0)
with a inside (outside) C, indicating the multivalued na-
ture of z − a. The special point z = a is a branch
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point in the multivalued function w(z), while the other
branch point is implicit z = ∞. In polar coordinates,
w(z) = ρeiθ/2, ρ =

√
|z − a|, and different settings of

single-valued branches are determined by the different
choices of θ ranges, such as θ ∈ [0, 2π) and θ ∈ [2π, 4π)
corresponding to the two branches with the argument of
w(z) in the range [0, π) and [π, 2π), respectively. The
two single-valued branches of w(z) are divided by the so-
called branch cut, which is constructed by connecting a
and ∞ through a proper path (such as a straight line);
that is, a path crossing the branch cut brings w(z) from
one single-valued branch to the other in the Riemann
surface and is prohibited in a single-valued branch [68–
70]. In a non-Bloch band theory, the energy bands E(β),
β ∈ C, of non-Hermitian systems under OBC are usu-
ally multivalued functions mathematically [71–76], and
the branch points and branch cuts of E(β) thus play im-
portant and inevitable roles in non-Hermitian systems.

In this paper, we aim to address these remaining is-
sues on 1D multiband non-Hermitian systems. We fo-
cus on the properties of non-Hermitian systems in the
deep bulk and assume that the non-Hermitian 1D chains
are sufficiently long. In Sec. II, based on single-valued
branches of multivalued functions, we put forward the
concept of EBBs as exact manifestations of the energy
bands in non-Hermitian systems under OBC. The multi-
valued functions’ branch points and branch cuts play cru-
cial roles: they are responsible for the transition between
gapped and gapless bands and the stability of localized
edge states in multiband non-Hermitian systems. Follow-
ing the GBZs, we discover the precise significance of the
NHSE, which provides a description of EBB eigenstates
in the deep bulk in Sec. III, and obtain a general expres-
sion of open-boundary Green’s functions in the presence
of NHSE useful for non-Hermitian dynamical evolution
in Sec. IV. Finally, the conclusion is given in Sec. V.
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II. ENERGY-BAND BRANCHES WITH
BRANCH POINTS AND BRANCH CUTS

A. Energy-band branches

The tight-binding Hamiltonian of a 1D noninteracting
non-Hermitian chain of length L reads

Ĥ =
∑
x

∑
n∈D

c†xtncx+n, (1)

with the matrix elements representing the internal de-
grees of freedoms µ ∈ (1,M), and the hopping ampli-
tude matrices tn range D = {−P,−P + 1, . . . ,Q− 1,Q}.
The non-Hermiticity is induced by tn 6= t†−n for some
non-negative n. The energy bands Eµ(k) are obtain-
able via the Bloch Hamiltonian H(k) under the peri-
odic boundary condition (PBC). When it comes to non-
Hermitian systems under OBC, the bulk energy bands
are obtainable from the non-Bloch Hamiltonian H(β) =∑
n∈D tnβ

n with β lying on the GBZ in the complex
β plane [5, 10, 16]. On the other hand, due to the
complex-valued nature of eigenvalues of non-Hermitian
matrices, multiple energy bands arise from the single-
valued branches Eµ(β), which are the roots of the char-
acteristics equation

ch(β,E) ≡ det [E −H(β)] = 0, (2)

constituting a multivalued function with respect to β.
Each branch Eµ(β) is a single-valued function of β ∈ C,
occupying a continuous region (open set) Cµ in the com-
plex E plane. After ordering the solutions of the char-
acteristic Eq. (2) as |β1(E)| ≤ |β2(E)| ≤ . . . ≤ |βp+q(E)|
with p = MP, q = MQ in general cases, the bulk
spectra under OBC are given by those E ∈ C satisfying
|βp(E)| = |βp+1(E)|; the corresponding β values outline
the GBZ in the complex β plane. In general, the bulk
spectra are composed of distinct EBBs corresponding to
their respective GBZs, which are dubbed sub-GBZs de-
noted as GBZµ [16]. The EBBs are exactly the sub-
GBZ spectra Eµ[GBZµ] ≡ {Eµ(β), β ∈ GBZµ} located
in Cµ (Appendix A). Moreover, each GBZµ is a closed
curve, which encloses p zeros of ch(β,E) for E ∈ Cµ
and E /∈ Eµ[GBZµ], thus leading to the vanishing of
the winding number of ch(β,E) surrounding GBZµ (see
Appendix A for details).

Consider an arbitrary point E0 on an EBB Eµ[GBZµ];
the solutions of Eq. (2) with respect to E0 are |β1| ≤
. . . ≤ |βp| = |βp+1| ≤ . . . ≤ |βp+q|, and βp, βp+1 lie on
GBZ [5, 10, 16]. We expect that βp, βp+1 both belong to
GBZµ, and to address this vital property, we observe the
connectedness between two arbitrary EBBs Eµ[GBZµ]
and Eν [GBZν ]. Intuitively, the two EBBs are either
completely disconnected or overlapping at some points
in the complex E plane. The former corresponds to two
gapped EBBs, which implies E0 = Eµ(βp) = Eµ(βp+1);
i.e., βp, βp+1 both lie on GBZµ only, and vice versa for
GBZν . The latter is more subtle, of which we consider

(a) (b)

FIG. 1. We label several examples of 1-, 2-, and 3-bifurcation
states in the schematic illustrations of GBZµ (upper panels)
and Eµ[GBZµ] (lower panels): (a) a case with only 1- and 2-
bifurcation states, and (b) a case with 1-, 2-, and 3-bifurcation
states. The black arrows denote the moving directions in
GBZµ and Eµ[GBZµ] as we circle counterclockwise around
the GBZs.

two situations assuming that E0 is an overlapping point
between two EBBs. First, βp, βp+1 lie on both GBZµ and
GBZν (therefore their intersections), which makes the
two EBBs degenerate at the points, i.e., gapless with the
possible emergence of exceptional points under OBC [36].
Second, E0 = Eµ(βp) = Eν(βp+1); however, we can al-
ways avoid such a situation through suitable settings of
the single-valued branches and keeping each EBB and its
sub-GBZ continuous. To see this, we note that, in gen-
eral, the points on the GBZ with n equal norms of β′s
corresponding to an eigenenergy are called n-bifurcation
states [65]. Most of the points on the GBZ with only two
equal norms |βp| = |βp+1| are 2-bifurcation states [65],
while the points βp = βp+1 corresponding to the end
points of EBBs are 1-bifurcation states; see illustrations
in Fig. 1. As we circle counterclockwise around GBZµ
and pass through those 1-, 2-, and 3-bifurcation points,
the corresponding eigenenergies are visited 1, 2, and
3 times, respectively, during the continuous movement
along Eµ[GBZµ]. Without loss of generality, we can al-
ways set the single-valued branches to include the contin-
uous EBBs Eµ[GBZµ], which consequently ensures that
all points associated with the n-bifurcation states with
respect to E ∈ Eµ[GBZµ], including the aforementioned
2-bifurcation points βp, βp+1, lie on the same GBZµ.

B. Roles of branch points and branch cuts

The branch points and branch cuts are crucial in set-
ting single-valued branches of a multivalued function,
thus depicting the connectedness (gap and gaplessness)
of EBBs. For example, we consider the well-known
non-Hermitian Su-Schrieffer-Heeger (NH-SSH) model [5],
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(a) (b)

(c) (d)

FIG. 2. Schematic illustrations of the GBZs [(a), (c)] and
EBBs [(b), (d)] for the NH-SSH model in the gapped case
[(a), (b)] and gapless case [(c), (d)]: (a) The GBZ± in the
upper and lower panels are independent, and (b) the EBBs
E±[GBZ] are disconnected and gapped, each within its single-
valued branch C±; (c) GBZ+ switches to GBZ− after cross-
ing the branch cut, and vice versa, and (d) the correspond-
ing EBBs E±[GBZ] are connected and gapless. The blue
dots and red lines are branch points and branch cuts, re-
spectively. The cyan and orange regions in the complex E
plane are the two corresponding single-valued branches C±,
respectively. There exists a continuous curve C(β) (blue line)
connecting two arbitrary points βi, βf (green stars) in each
single-valued branch.

whose non-Bloch Hamiltonian is given by

H(β) =

(
0 t1 + γ/2 + t2β

−1

t1 − γ/2 + t2β 0

)
. (3)

Let us take its parity-time (PT) symmetric EBBs as
an example: the two EBBs correspond to the single-
valued branches of the multivalued square-root function
E(β) = Q(β)1/2, Q(β) = (t1+γ/2+t2β

−1)(t1−γ/2+t2β)
with four branch points: 0, β1 = −(t1 − γ/2)/t2,
β2 = −t2/(t1 + γ/2), and ∞ [shown as the blue dots in
Fig. 2(a)]. Here, we set the single-valued branches E+(β)
and E−(β) as the right and left half-planes C± [cyan
and orange regions in Fig. 2(a)] separated by the imag-
inary axis, and introduce branch cuts by connecting 0
and β1, β2, and ∞, in each single-valued branch E±(β),
respectively [upper and lower panels in Fig. 2(a)]. In
each branch, two arbitrary points βi and βf [green stars
in Fig. 2(a)] can be connected by a continuous curve
C(β) [blue curves in Fig. 2(a)] without crossing the
branch cuts.

In the NH-SSH model, the GBZ± corresponding to the
two EBBs are identical [purple loops in Fig. 2(a)]. Since
the number of branch points inside each GBZ± is two in
Fig. 2(a), we can always avoid the crossing of the branch

cuts by the GBZ±, thus keeping GBZ± independent
from each other and the EBBs E±[GBZ] disconnected
and gapped [purple lines in Fig. 2(b)], lying within their
respective single-valued branches C±. In comparison,
when there exists only one branch point inside GBZ±,
GBZ± must cross the branch cuts [Fig. 2(c)]. Conse-
quently, as we circle counterclockwise around GBZ+, it
switches to GBZ− at the branch cut, and vice versa.
Simultaneously, the corresponding EBB also switches
to its partner within the pair, resulting in gapless PT-
symmetric EBBs [Fig. 2(d)].

Further, we numerically verify these schematic proper-
ties of the NH-SSH model and summarize key results in
Fig. 3. Without loss of generality, we assume t1 > 0.
When t1 < (t22 + γ2/4)1/2 [Figs. 3(a)(b)], the branch
points 0 and β1 (β2 and∞) are inside (outside) the GBZ,
and the resulting EBBs are gapped with two degenerate
edge states at zero energy [Figs. 3(e)(f)]. Noteworthily,
0 and β1 coalesce at t1 = γ/2, an infernal point which is
the critical point between PT-symmetry preserving and
spontaneous breaking, and the theory of GBZ and EBB
is invalid [36]. When t1 > (t22 + γ2/4)1/2 [Fig. 3(d)],
the branch points 0 and β2 (β1 and ∞) are inside (out-
side) the GBZ, and the EBBs are also gapped yet with-
out the edge states [Fig. 3(h)], corresponding to a topo-
logically trivial phase [5]. At the point of the topologi-
cal phase transition t1 = (t22 + γ2/4)1/2 [5], the branch
points β1 and β2 coalesce and annihilate [Fig. 3(c)] [77].
There remains a single branch point inside the GBZ,
which inevitably crosses the branch cut, leading to gap-
less EBBs [Fig. 3(g)].

As demonstrated above, branch points and branch cuts
play crucial roles in our theory of EBBs. In general, a
sub-GBZ enclosing an odd number of branch points in
the complex β plane will inevitably cross the branch cuts
irrespective of the choices of single-valued branches; cir-
cling such a sub-GBZ switches an EBB to another, lead-
ing to the emergence of connected EBBs (gapless bands)
under OBC. On the other hand, the presence of discon-
nected EBBs (gapped bands) under OBC requires that
all sub-GBZs enclose an even number of branch points
and no branch point on the sub-GBZs. The transition
between gapped and gapless bands must accompany the
change in the number of branch points inside the GBZs;
simultaneously, degenerate points between the two EBBs
appear on the GBZ and at the branch cuts. These are
one of the main conclusions of the paper.

Such analysis generalizes straightforwardly. Next, we
consider a non-Hermitian two-band model with the fol-
lowing non-Bloch Hamiltonian (see Ref. [36] and Ap-
pendix A for details),

HFW (β) =

(
t3β

2 t1 + γ + t2β
−1

t1 − γ + t2β t3β
−2

)
, (4)

which possesses two bands with distinct sub-GBZs. The
multivalued function concerning EBBs can be expressed
as
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FIG. 3. Results on the GBZs [purple circles in (a)-(d)] and EBBs of the NH-SSH model [Eq. (3)], as well as the branch points
(0, β1, and β2 as black, cyan, and orange dots) and branch cuts (red lines), demonstrate the occurrence of distinctive phases
and the in-between phase transition. We set t2 = 1, γ = 4/3 and vary the value of t1. The black lines and red dots in (e)-(h)
are the bulk spectra and edge states, respectively.

E(β) =
1

2

[
t3
(
β2 + β−2

)
+

√
(t3(β2 + β−2))

2 − 4 (t23 − (t1 + γ + t2β−1)(t1 − γ + t2β))

]
, (5)

which induces two single-valued branches C± following
the square-root function and eight branch points. With
the variation of t1 (t1 > 0 without loss of generality)
and other fixed parameters, there are always four branch
points inside both sub-GBZs GBZ± [Figs. 4(a)-(c)], and
the other four branch points outside GBZ±. Thus, we
can always arrange the branch cuts to avoid crossing with
the sub-GBZs GBZ±, indicating the existence of a ro-
bust trivial phase with two gapped EBBs. There are also
emergent edge states in the gap between the two EBBs
with varying parameters [Figs. 4(d)(e)]. As t1 increases
from 0, these two edge states merge into the bulk sequen-
tially [Figs. 4(d)(e)], and eventually leave a fully gapped
energy spectrum without an edge state [Fig. 4(f)]. Since
the EBBs remain gapped during this process without a
(topological) phase transition, we determine that these
edge states should not be the consequence of a topologi-
cal phase or guaranteed to remain stable, in contrast to
the stable zero-energy edge states of the NH-SSH model.
In other words, if these edge states were topologically
nontrivial, their emergence and disappearance must have
been accompanied by an EBB gap closure, a change in
the number of branch points, and a topological phase
transition.

III. PRECISE SIGNIFICANCE OF
NON-HERMITIAN SKIN EFFECT

An essential phenomenon of 1D non-Hermitian systems
is the NHSE, which supports the existence of localized
bulk eigenstates [5, 10]. Intuitively, the part of the GBZ
inside (outside) the unit circle in the complex β plane in-
dicates the presence of left (right) localized eigenstates,
providing an alternative definition of the NHSE from the
perspective of the non-Bloch band theory. Such terminol-
ogy, however, lacks rigor, especially for scenarios where
the EBB eigenstates may possess more than one β solu-
tion of the characteristic equation in Eq. (2).

To complement the previous pictures, we clarify the
precise significance of NHSE as the asymptotic behavior
of EBB eigenstates in the deep bulk P,Q � x � L −
Q+ 1 under OBC in the thermodynamics limit L→∞.
More specifically, the asymptotic behavior of an EBB
eigenstate concerning Eµ(β0) is depicted by β0 ∈ GBZµ,
with its wave function approaching ΨR(x) ∼ βx0 and
Ψ∗L(x) ∼ β−x0 (see Appendix B for details) in the deep
bulk for a right and a left EBB eigenstate, respectively.

We illustrate such NHSE’s precise significance in Fig. 5
for the two-band model in Eq. (4). With parameters t1 =
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FIG. 4. (a)-(c): The branch points (black dots) and GBZ± (cyan and orange loops, respectively) of the two-band model in
Eq. (4) with selected t1 = 0.7, 1.1, 1.5, respectively, show that there are always four branch points inside GBZ±. There are also
three branch points outside the displayed region. (d)-(f): The energy spectra under OBC corresponding to (a)-(c), respectively,
show unstable edge states that emerge from and disappear into the bulk without topological protection. γ = 2/3, t2 = 1, and
t3 = 1/5.

1, γ = 2/3, t2 = 1, t3 = 1/5, both GBZ± are inside the
unit circle [Fig. 5(a)], leading to left-localized asymptotic
behaviors in the deep bulk for all right EBB-eigenstates.
For any particular right EBB eigenstate ΨR(x), its weight
distribution in the deep bulk compares consistently with
the expected asymptotic behavior βx0 , where β0 is the
solution of characteristic equation det [E0 −HFW (β)] =
0 with the second smallest norm [Fig. 5(b)-(g)]. The
deviations between log |ΨR(x)| and log |βx0 | near the left
and right boundaries arise from the contributions of the
right eigenstates with characteristic equation solutions
away from GBZs [Fig. 5(c)-(g)]. These eigenstates fade
away, tending to the deep bulk, and are challenging to
track analytically. In addition, stable or not, isolated
edge states may present at the boundaries, together with
the EBBs under OBC.

IV. OPEN-BOUNDARY GREEN’S FUNCTIONS

Dynamical evolution, usually encoded in single-
particle Green’s functions, is indispensable for a com-
prehensive study of noninteracting non-Hermitian sys-
tems. Due to the breakdown of the Bloch band theory
under OBC, open-boundary Green’s functions for non-
Hermitian systems are no longer accessible through their
usual expressions in the Brillouin zone (BZ) and require
scrutiny in the GBZ for proper generalization. Motivated

by the pioneer study of GBZ-based Green’s functions for
single-band non-Hermitian systems [54, 57], we derive a
general expression of open-boundary Green’s functions
for multiband non-Hermitian systems.

Instead of starting from the biorthogonal eigenstates of
non-Hermitian tight-binding Hamiltonians, we construct
a set of minimally biorthogonal basis (MBB), a natural
non-Hermitian generalization of the Bloch orthogonal ba-
sis under PBC (Appendix C),

|β〉R =
1√
L

L∑
x=1

βx |x〉 ,

L 〈β| =
1√
L

L∑
x=1

β−x 〈x| , (6)

where β = Reiθ with the a real, positive modulus R
and a phase θ = 2π

L m, m = 0, 1, 2, . . . , L − 1. |x〉 con-
tains internal degrees of freedom. The MBB follows the
biorthogonality and completeness conditions in the ther-
modynamics limit (Appendix C),

L 〈β|β′〉R = δββ′ ,

L

2π

∫ 2π

0

dθ |β〉RL 〈β| = 1. (7)

After some algebra, we obtain the single-particle retarded

Green’s function G(x, y; t) = −i 〈x| e−iĤt |y〉 (t > 0) un-
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FIG. 5. We illustrate the precise significance of NHSE with the two-band model in Eq. (4): (a) GBZ± (cyan and orange loops)
and the unit circle (black), (b) the weight distribution of the right eigenstate ΨR(x) throughout the system with eigenenergy
E0 = 2.0393, and (c)-(g) the logarithm of the right eigenstate ΨR(x) (red lines) and βx0 (black lines) from close to the left
boundary to deep bulk, fitted through |ΨR(x0)| = |βx00 | with x0 = 5, 10, 20, 40, 60, respectively. t1 = 1, γ = 2/3, t2 = 1, and
t3 = 1/5.

der OBC,

G(x, y; t) = −i
∮
|β|=R

dβ

2πiβ
βx−ye−iH(β)t, (8)

where we have eliminated the contributions that vanish
in the deep bulk (Appendix D). Transforming into the
frequency space, we arrive at (Appendix E)

G(x, y;ω) =

∮
|β|=R

dβ

2πiβ

βx−y

ω −H(β)
. (9)

When it comes to the case with sub-GBZs and EBBs,
we can obtain that the physical integral contour |β| = R
is equivalent to GBZµ for any given ω ∈ Cµ and ω 6∈
Eµ[GBZµ], denoted as ωµ (Appendix F). Thus, the open-
boundary Green’s function is given by (Appendix F)

G(x, y;ωµ) =

∮
GBZµ

dβ

2πiβ

βx−y

ωµ −H(β)
. (10)

The GBZ-based Green’s function in Refs. [54, 57] is a
reduction of Eq. (10) into single-particle non-Hermitian
systems. Noteworthily, all sub-GBZs with respect to
EBBs Eµ(β) become degenerate for Hermitian systems
or non-Hermitian systems without NHSE. Consequently,
Eq. (10) reduces to Green’s functions’ conventional form
under PBC.

V. CONCLUSION

In this paper, we have anatomized the bulk properties
of 1D multiband non-Hermitian systems under OBC and
addressed crucial issues complementing the non-Bloch
band theory. We have introduced the concept of EBBs
to settle the multivalued functions of energy bands aris-
ing from the complex-valued nature of multiband non-
Hermitian systems, and endowed the gapped and gapless
energy bands with more rigorous terminology of discon-
nected and connected EBBs in the complex energy plane.
We have also considered the roles of branch points and
branch cuts, which depict the transition between gapped
and gapless bands. Moreover, we have clarified the pre-
cise significance of NHSE, which predicts the asymptotic
behavior of EBB eigenstates in the deep bulk. Based on
the EBBs and sub-GBZs, we have derived a general form
of open-boundary Green’s functions in the deep bulk. We
leave the connection between open-boundary multiband
non-Hermitian systems and various symmetries for future
studies.
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Appendix A: Energy-band branches and sub-generalized Brillouin zones of multiband non-Hermitian systems

The non-Bloch band theory with GBZs is a well-established theory to expound bulk bands of 1D non-Hermitian
systems under OBC [5, 10]. Subsequently, the terminology of GBZs is generalized to the emergence of sub-generalized
Brillouin zones (sub-GBZs) for general multiband systems [16]. The bulk spectra are gestated in the non-Bloch

Hamiltonian H(β) =
∑Q
n=−P tnβ

n, β ∈ C through solving the characteristic equation ch(β,E) ≡ det [E −H(β)] =∑q
j=−p aj(E)βj =

∏M
µ=1 [E − Eµ(β)] = 0, where Eµ(β) is an energy band of H(β), or more strictly, a single-valued

branch of a multivalued radical function. We number the solutions of the characteristic equation as |β1(E)| ≤ |β2(E)| ≤
. . . ≤ |βp+q(E)|. The bulk spectra are given by E ∈ C satisfying |βp(E)| = |βp+1(E)|, and these β values outline
the GBZs in the complex β plane. Furthermore, the branches Eµ(β) correspond to different GBZs, thus resulting
in the sub-GBZ concerning each branch, denoted as GBZµ. According to the theory of multivalued functions, as β
runs through the complex plane, each branch Eµ(β) occupies a continuous region (open set) Cµ of the complex plane,
being a single-valued function of β. The set of these regions is a covering of the whole complex plane. Therefore, the
sub-GBZ spectrum (bulk energy band) Eµ[GBZµ] ≡ {Eµ(β), β ∈ GBZµ} corresponding to GBZµ is located in Cµ,
which we dub the energy-band branch (EBB) in the main text.

In general, the number of EBBs and sub-GBZs must be equal, which contains the cases that two or more EBBs
correspond to one sub-GBZ. For example, we only obtain one GBZ in the well-known non-Hermitian Su-Schrieffer-
Heeger (NH-SSH) model [5, 10], a circle with radius unequal to 1, to which two branches E±(β) correspond. Note-
worthily, the single-valued branches concerning the two EBBs are single-valued functions of β located on the two com-
plex half-planes C± divided by the imaginary axis, respectively. More specially, for a single-band model, there exists
one branch H(β), i.e., the whole complex plane, which is a single-valued function of β. It has been shown that the GBZ
corresponding to the single-band H(β) must be a closed curve and encloses p zeros of E−H(β) =

∑q
j=−p aj(E)βj [13],

where E is not the point on GBZ spectrum H[GBZ]. According to the argument principle, the winding number of
E −H(β) around GBZ vanishes due to the equal number of zeros and poles.

Making slight modifications, we identify H(β) in single-band models with each single-valued branch Eµ(β) in
multiband models, respectively. We immediately obtain that each sub-GBZ GBZµ is a closed curve, and GBZµ
encloses p zeros of ch(β,E) for E ∈ Cµ and E /∈ Eµ[GBZµ], thus leading to the vanishing of the winding number
of ch(β,E) surrounding GBZµ. We illustrate a typical non-Hermitian two-band model with two distinct sub-GBZs,
which is a generalization of the NH-SSH model by adding the next nearest neighbor hopping matrix [36]. The
Hamiltonian of this model in real space reads (Fig. 6)

ĤFW =
∑
x

(
c†xMcx + c†xT1cx+1 + c†x+1T−1cx + c†xT2cx+2 + c†x+2T−2cx

)
, (A1)

where

M =

(
0 t1 + γ

t1 − γ 0

)
, T1 =

(
0 0
t2 0

)
, T−1 =

(
0 t2
0 0

)
, T2 =

(
t3 0
0 0

)
, T−2 =

(
0 0
0 t3

)
.

The non-Bloch Hamiltonian is

HFW (β) =

(
t3β

2 t1 + γ + t2β
−1

t1 − γ + t2β t3β
−2

)
, (A2)

and the multivalued function concerning EBBs can be expressed as

E(β) =
1

2

[
t3
(
β2 + β−2

)
+

√
(t3(β2 + β−2))

2 − 4 (t23 − (t1 + γ + t2β−1)(t1 − γ + t2β))

]
, (A3)
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FIG. 6. The two-band model Eq. (A1). The blue and red solid circles denote sublattices A and B, respectively.
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FIG. 7. The sub-GBZs GBZ± (cyan and orange loops, respectively) of the two-band model Eq. (A1) and zeros (black dots) of
ch[β,E] for selected E ∈ C±. (a)-(e): E = 1 − 0.4i, 1 − 0.2i, 1, 1 + 0.2i, 1 + 0.4i for E ∈ C+; (f)-(j): E = −1.4 − 0.4i,−1.4 −
0.2i,−1.4,−1.4 + 0.2i,−1.4 + 0.4i for E ∈ C−. Three zeros corresponding to E = 1 and E = −1.4 with E ∈ E±[GBZ±] are
located on GBZ±, respectively. The fourth root is not shown for being outside this region. The parameters are t1 = 1, γ =
2
3
, t2 = 1, t3 = 1

5
.

which induces two single-valued branches C± according to the square-root function. We take parameters as t1 =
1, γ = 2

3 , t2 = 1, t3 = 1
5 , and C± are numerically the two half complex planes divided by the imaginary axis. We plot

the sub-GBZs GBZ± (cyan and orange loops, respectively) corresponding to E±[GBZ±] and zeros (black dots) of
ch[β,E] for selected E ∈ C± in Fig. 7. The sub-GBZ loops indeed enclose p = 2 zeros with the selected E ∈ C± and
E 6∈ E±[GBZ±], respectively, and at least two zeros lie on GBZ± when E ∈ E±[GBZ±]. Besides, GBZ± may not
enclose 2 zeros of ch[β,E] for selected E ∈ C∓, respectively (Fig. 8).

Appendix B: Exact relation between biorthogonal EBB-eigenstates and non-Hermitian skin effect

As a posterior, there existM sub-GBZ spectra (EBBs) and isolated edge modes with the arbitrary possible number
ne. We denote the eigenenergies and right (left) eigenstates of the isolated edge modes as Ee and |Ψe〉R (L 〈Ψe|),
e = 1, 2, . . . , ne, respectively. Consider an arbitrary eigenenergy of the µth EBB Eµ(β0) with β0 ∈ GBZµ; the
corresponding characteristic equation det [Eµ(β0)−H(β)] = 0 produces p + q solutions of β ordered as |β1| ≤ . . . ≤
|βp| = |βp+1| ≤ . . . ≤ |βp+q|, where we assume the absence of zero and multiple solutions of β and β0 = βp without
loss of generality [36]. The right eigenstate with respect to the bulk band energy Eµ(β0) formally reads

|Ψµ(β0)〉R =

p+q∑
j=1

αµj |ψ
µ
j 〉R , (B1)
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FIG. 8. The sub-GBZs GBZ± (cyan and orange loops, respectively) of the two-band model Eq. (A1) and zeros (black dots) of
ch[β,E] for selected (a) E = 2.02 ∈ C+ and (b) E = −1.42 ∈ C−, respectively. The fourth root is not shown for being outside
this region. The parameters are the same as Fig. 7.

where |ψµj 〉R =
∑L
x=1 β

x
j |u

µ
j 〉R |x〉 and H(βj) |uµj 〉R = Eµ(β0) |uµj 〉R. The coefficients αµj must satisfy boundary

equations induced by OBC, i.e.,



fµ1 (β1, Eµ(β0)) . . . fµ1 (βp, Eµ(β0)) fµ1 (βp+1, Eµ(β0)) . . . fµ1 (βp+q, Eµ(β0))
...

...
...

...
...

...
fµp (β1, Eµ(β0)) . . . fµp (βp, Eµ(β0)) fµp (βp+1, Eµ(β0)) . . . fµp (βp+q, Eµ(β0))
gµ1 (β1, Eµ(β0))βL1 . . . gµ1 (βp, Eµ(β0))βLp gµ1 (βp+1, Eµ(β0))βLp+1 . . . gµ1 (βp+q, Eµ(β0))βLp+q

...
...

...
...

...
...

gµq (β1, Eµ(β0))βL1 . . . gµq (βp, Eµ(β0))βLp gµq (βp+1, Eµ(β0))βLp+1 . . . gµq (βp+q, Eµ(β0))βLp+q





αµ1
...
αµp
αµp+1

...
αµp+q


= 0,

(B2)

where fµn (βj , Eµ(β0)) and gµn (βj , Eµ(β0)) are polynomials of βj with finite values deduced by the boundary condi-
tions [10, 36]. We observe that the first p equations and the last q equations of Eq. (B2) take the forms

fµn (β1)αµ1 + . . .+ fµn (βp)α
µ
p + fµn (βp+1)αµp+1 + . . .+ fµn (βp+q)α

µ
p+q = 0

gµn (β1)βL1 α
µ
1 + . . .+ gµn (βp)β

L
p α

µ
p + gµn (βp+1)βLp+1α

µ
p+1 + . . .+ gµn (βp+q)β

L
p+qα

µ
p+q = 0, (B3)

respectively, where we have omitted the variable Eµ(β0) of functions fµn and gµn for simplicity. Due to |βp| = |βp+1|
generating GBZµ, we compare the asymptotic behavior of the terms concerning coefficients αµj , j 6= p, p + 1 with

that concerning coefficients αµp , α
µ
p+1 in Eq. (B1) in the deep bulk. Here, we specify that x is in the deep bulk if

P,Q � x � L − Q + 1 in the thermodynamics limit. We assume that αµp , α
µ
p+1 are not toward infinite without

loss of generality, that is, nonzero finite values. Due to the different orders of βLj , the terms concerning coefficients

αµj , j 6= p, p + 1 in the second set of equations in Eq. (B3) are either asymptotic toward to zero or the same order

with the terms concerning coefficients αµp , α
µ
p+1 such that these equations hold. We discuss according to the following

two cases. First, we consider the case |βp| = |βp+1| = |β0| < 1. If |βj | < |β0| < 1, that is, j = 1, 2, . . . , p − 1, the
corresponding coefficients αµj must be finite (|αµj βLj | → 0) or |αµ1 | � |α

µ
2 | � . . . � |αµp−1| � 1 to make the second

set of equations in Eq. (B3) hold. However, the first set of equations in Eq. (B3) prevents the result of |αµj | � 1;

thus we obtain |αµj βxj | � |αµpβxp | in the deep bulk. If |β0| < |βj | < 1, that is, j > p+ 1, O(αµj β
L
j ) ∼ O(αµpβ

L
p ) makes

the second set of equations in Eq. (B3) hold, leading to |αµj | ∼ O(βLp /β
L
j ) → 0 and |αµj βxj | � |αµpβxp | in the deep

bulk. Note that αµj being a nonzero value, the exceptional situation, does not influence the left-localized asymptotic

behavior of the corresponding bulk right eigenstate. If |βp| < 1 < |βj |, the second set of equations in Eq. (B3) requires
αµj ≤ O(βLp /β

L
j ), leading to |αµj βxj | � |αµpβxp | in the deep bulk. Second, we consider the case |β0| > 1. If |βj | < 1 < |β0|

or 1 < |βj | < |β0|, the second set of equations in Eq. (B3) requires αµj must be finite, leading to |αµj βxj | � |αµpβxp |
in the deep bulk. If 1 < |βp| < |βj |, the second set of equations in Eq. (B3) requires αµj ≤ O(βLp /β

L
j ), leading to
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|αµj βxj | � |αµpβxp | in the deep bulk. In conclusion, the right EBB eigenstates Eq. (B1) are approximately

〈x|Ψµ(β0)〉R ∼ α
µ
pβ

x
p |uµp 〉R + αµp+1β

x
p+1 |u

µ
p+1〉R

= βxp

(
αµp |uµp 〉R + αµp+1e

iθx |uµp+1〉R
)

≡ βx0 |Nµ(β0)〉R , (B4)

where x is in the deep bulk and βp+1 = βpe
iθ. Noteworthily, the asymptotic behaviors in the deep bulk of the right

EBB eigenstates Eq. (B1) are dominated by the points on GBZµ, which is the precise significance of the non-Hermitian
skin effect (NHSE). As we approach the boundaries, the contributions in the right EBB eigenstates induced by the
terms corresponding to the solutions β of the characteristic equation away from GBZ emerge.

We turn to observe the left EBB eigenstates for completing the biorthogonal EBB eigenstates. The left eigenstate
corresponding to the bulk band energy Eµ(β0) of GBZµ formally reads

|Ψµ(β0)〉L =

p+q∑
j=1

α′µj |ψ
µ
j 〉L , (B5)

satisfying the eigenequation

Ĥ† |Ψµ(β0)〉L = E∗µ(β0) |Ψµ(β0)〉L , (B6)

where |ψµj 〉L =
∑L
x=1

(
β∗j
)−x |uµj 〉L |x〉, H†(βj) |uµj 〉L = E∗µ(β0) |uµj 〉L, and H†(βj) =

∑Q
n=−P t

†
n(β∗j )n. Following the

discussion for right EBB eigenstates, we immediately conclude that the left EBB eigenstates Eq. (B5) are approxi-
mately

〈x|Ψµ(β0)〉L ∼ α
′µ
p (β∗p)−x |uµp 〉L + α′µp+1(β∗p+1)−x |uµp+1〉L

= (β∗p)−x
(
α′µp |uµp 〉L + α′µp+1e

iθx |uµp+1〉L
)

≡ (β∗0)−x |Nµ(β0)〉L , (B7)

where x is in the deep bulk in the thermodynamics limit and β−1p+1 = β−1p e−iθ. Similarly, the asymptotic behaviors

in the deep bulk of the left EBB eigenstates Eq. (B5) are dominated by the inverse of the points on GBZµ, and the
contributions induced by the terms corresponding to the solutions β of the characteristic equation away from GBZµ
emerge as we approach the boundaries. Note that the conjugation of Eq. (B7) should read

L 〈Ψµ(β0)|x〉 ∼L 〈uµp |β−xp α′µ∗p +L 〈uµp+1|β
−x
p+1α

′µ∗
p+1

=
(
L 〈uµp |α′µ∗p +L 〈uµp+1| e−iθxα

′µ∗
p+1

)
β−xp

≡
(
L 〈uµp | α̃µp +L 〈uµp+1| e−iθxα̃

µ
p+1

)
β−xp

≡L 〈Nµ(β0)|β−x0 . (B8)

Combining the biorthogonal edge and EBB eigenstates, the unit in Hilbert space is given by (assume the Hamiltonian
is nondefective)

M∑
µ=1

∑
β∈[GBZµ]

|Ψµ(β)〉RL 〈Ψµ(β)|+
ne∑
e=1

|Ψe〉RL 〈Ψe| = 1. (B9)

We call [GBZµ] the reduced sub-GBZ of energy band Eµ(β), which contains only one typically selected point βp for
each so-called n-bifuration state |Ψµ(βp)〉 [65], with the solutions β of characteristic equation concerning eigenenergy
Eµ(βp) satisfying |β1| ≤ . . . = |βp| = |βp+1| = . . . ≤ |βp+q| (n equal norms). Note that it is a discrete summation
on [GBZµ]; thus we cannot transform it to integral in the thermodynamics limit. Consequently, the non-defective
Hamiltonian can be exactly diagonalized as

Ĥ =

M∑
µ=1

∑
β∈[GBZµ]

Eµ(β) |Ψµ(β)〉RL 〈Ψµ(β)|+
ne∑
e=1

Ee |Ψe〉RL 〈Ψe| , (B10)

with Ĥ |Ψµ(β)〉R = Eµ(β) |Ψµ(β)〉R. As usual, the edge states only contribute to the boundaries, which we will ignore
in the deep bulk with L→ +∞.
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Appendix C: The completely biorthogonal basis of non-Hermitian systems

The single-particle retarded Green’s function of 1D noninteracting non-Hermitian systems at zero temperature is
defined as

G(x, y; t) = −i 〈0| ĉx(t)ĉ†y(0) |0〉 = −i 〈x| e−iĤt |y〉 , (C1)

where ĉx(t) = eiĤtcxe
−iĤt (t > 0) is the annihilated operator in the Heisenberg picture, and |y〉 = c†y |0〉. As usual,

we utilize the Bloch representation to handle the Green’s function under the PBC,

G(x, y; t) = −i
∫ 2π

0

dk

∫ 2π

0

dk′ 〈x|k〉 〈k| e−iĤt |k′〉 〈k′|y〉

= −i
∫ 2π

0

dk

2π
e−iH(k)teik(x−y), (C2)

where |k〉 = 1√
L

∑L
x=1 e

ikx |x〉 is the Bloch wave function, expanding the single-particle Hilbert space and∫ 2π

0
dk |k〉 〈k| = 1. Noteworthily, the integral of the wave vector k is carried out through the continuous 1D first

Brillouin zone (BZ), which is valid in the thermodynamics limit L→∞, and reduces to the summation 1
L

∑
k∈BZ with

k = 2π
L α, α = 0, 1, 2, . . . , L−1 when L is finite. Actually, |x〉 = (|x, 1〉 , . . . , |x,M〉) is a row vector of the Wannier func-

tions at each internal degree of freedom, which reads 〈r|x, µ〉 = wµ(x− r) = 1√
2π

∫ 2π

0
dkφµ(k, r)e−ikx, µ = 1, 2, . . . ,M

representing in the coordinate space {r ∈ R}. Here, the Bloch wave function represented in R, 〈r|k, µ〉 = φµ(k, r),
is expressed independently for each internal degree of freedom, which means we just choose a simple “plane-wave”
basis mathematically. We need to diagonalize the Bloch Hamiltonian H(k) to obtain the Bloch eigen-wave-functions.
However, the “plane-wave” basis is convenient to calculate periodic-boundary Green’s functions all the time.

When we refer to the OBC in non-Hermitian systems, the conventional BZ fails to produce Green’s functions,
since the open-boundary spectra correspond to the generalized Brillouin zone (GBZ). The “plane-wave” basis is not
always valid in non-Hermitian systems with OBC, and we need to find a new basis to express Green’s functions in
general. Motivated by the biorthogonality of the eigenvectors of non-Hermitian matrices, we construct a minimally
biorthogonal basis (MBB) for the current non-Hermitian system [Eq. (1)],

|β〉R =
1√
L

L∑
x=1

βx |x〉 ,

L 〈β| =
1√
L

L∑
x=1

β−x 〈x| , (C3)

where β = Reiθ, θ = 2π
L m,m = 0, 1, 2, . . . , L−1, with R being an arbitrary positive real number. The biorthogonality

of the MBB is given by

L 〈β, µ|β′, ν〉R = δββ′δµν , (C4)

where

|β, µ〉R =
1√
L

L∑
x=1

βx |x, µ〉 ,

L 〈β, µ| =
1√
L

L∑
x=1

β−x 〈x, µ| . (C5)

More explicitly,

L 〈β, µ|β′, ν〉R =
1

L

L∑
x=1

L∑
x′=1

β−xβ′x
′
〈x, µ|x′, ν〉 =

1

L

L∑
x=1

β−xβ′xδµν =
1

L

L∑
x=1

ei
2π
L (−m+m′)xδµν .

If m 6= m′ and −m+m′ ≡ a ∈ {1, 2, . . . , L− 1},
L∑
x=1

ei
2π
L (−m+m′)x = ei

2π
L a + ei2

2π
L a + . . .+ eiL

2π
L a =

ei
2π
L a − ei(L+1) 2π

L a

1− ei 2πL a
= 0;
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if m = m′,
∑L
x=1 e

i 2πL (−m+m′)x = L, thus 1
L

∑L
x=1 e

i 2πL (−m+m′)x = δmm′ = δββ′ . The completeness of MBB is given
by ∑

β

|β〉RL 〈β| = 1. (C6)

More explicitly,

∑
β

|β〉RL 〈β| =
1

L

L−1∑
m=0

L∑
x=1

L∑
x′=1

Rx−x′ei
2π
L m(x−x′) |x〉 〈x′| =

L∑
x=1

|x〉 〈x| = 1,

where we have used 1
L

∑L−1
m=0 e

i 2πL m(x−x′) = δxx′ . In the thermodynamics limit, the completeness Eq. (C6) becomes

L

2π

∫ 2π

0

dθ |β〉RL 〈β| = 1, (C7)

where
{
β = Reiθ, θ ∈ [0, 2π)

}
forms a circle of radius R.

Appendix D: General form of open-boundary Green’s functions

To obtain the general form of open-boundary Green’s functions, we insert Eq. (C7) into Eq. (C1),

G(x, y; t) = −i
(
L

2π

)∫ 2π

0

dθ 〈x|e−iĤt|β〉RL 〈β|y〉 , (D1)

where β = Reiθ. Next, we concentrate on the term 〈x|e−iĤt|β〉R, which is expanded as
∑+∞
α=0

(−it)α
α! 〈x|Ĥ

α|β〉R. First,
we derive that

Ĥ |β〉R =
1√
L

∑
x′

∑
n∈D

c†x′tncx′+n

L∑
x=1

βx |x〉

=
1√
L

[
β

Q∑
n=0

|1〉 tnβn + . . .+ βP
Q∑

n=−P+1

|P〉 tnβn +

L−Q∑
x=P+1

βx
Q∑

n=−P
|x〉 tnβn

+ βL−Q+1
Q−1∑
n=−P

|L−Q+ 1〉 tnβn + . . .+ βL
0∑

n=−P
|L〉 tnβn

]

=
1√
L

[
|1〉

(
H(β)β −

−P∑
n=−1

tnβ
n+1

)
+ . . .+ |P〉

(
H(β)βP − t−P

)
+

L−Q∑
x=P+1

|x〉H(β)βx

+ |L−Q+ 1〉
(
H(β)βL−Q+1 − tQβL+1

)
+ . . .+ |L〉

(
H(β)βL −

Q∑
n=1

tnβ
L+n

)]

=
1√
L

L∑
x=1

βx |x〉H(β)− 1√
L

( −P∑
n=−1

|1〉 tnβn+1 + . . .+ |P〉 t−P + |L−Q+ 1〉 tQβL+1 + . . .+

Q∑
n=1

|L〉 tnβL+n
)

= |β〉RH(β)−
(
|1〉 B1(β) + . . .+ |P〉 BP(β) + |L−Q+ 1〉 BL−Q+1(β) + . . .+ |L〉 BL(β)

)
,

where we denote B1(β) = 1√
L

∑−P
n=−1 tnβ

n+1, . . . ,BP(β) = 1√
L
t−P ,BL−Q+1(β) = 1√

L
tQβ

L+1, . . . ,BL(β) =
1√
L

∑Q
n=1 tnβ

L+n, and H(β) =
∑Q
n=−P tnβ

n is called non-Bloch Hamiltonian.
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Second, by induction, we obtain

Ĥ2 |β〉R = Ĥ
[
|β〉RH(β)−

(
|1〉 B1(β) + . . .+ |P〉 BP(β) + |L−Q+ 1〉 BL−Q+1(β) + . . .+ |L〉 BL(β)

)]
= |β〉RH

2(β)−
(
|1〉 B1(β) + . . .+ |P〉 BP(β) + |L−Q+ 1〉 BL−Q+1(β) + . . .+ |L〉 BL(β)

)
H(β)

− Ĥ
(
|1〉 B1(β) + . . .+ |P〉 BP(β) + |L−Q+ 1〉 BL−Q+1(β) + . . .+ |L〉 BL(β)

)
= |β〉RH

2(β)−
∑
n∈D

(
|n〉 Bn(β)H(β) + Ĥ |n〉 Bn(β)

)
Ĥ3 |β〉R = Ĥ

[
|β〉RH

2(β)−
∑
n∈D

(
|n〉 Bn(β)H(β) + Ĥ |n〉 Bn(β)

)]
= |β〉RH

3(β)−
∑
n∈D
|n〉 Bn(β)H2(β)−

∑
n∈D

Ĥ
(
|n〉 Bn(β)H(β) + Ĥ |n〉 Bn(β)

)
= |β〉RH

3(β)−
∑
n∈D

(
|n〉 Bn(β)H2(β) + Ĥ |n〉 Bn(β)H(β) + Ĥ2 |n〉 Bn(β)

)
. . . . . .

Ĥα |β〉R = |β〉RH
α(β)−

∑
n∈D

α−1∑
δ=0

Ĥα−1−δ |n〉 Bn(β)Hδ(β),

where D = {1, . . . ,P, L−Q+ 1, . . . , L} is the set of sites on the boundaries. More explicitly, if

Ĥα−1 |β〉R = |β〉RH
α−1(β)−

∑
n∈D

α−2∑
δ=1

Ĥα−2−δ |n〉 Bn(β)Hδ(β),

then

Ĥα |β〉R = Ĥ
[
|β〉RH

α−1(β)−
∑
n∈D

α−2∑
δ=1

Ĥα−2−δ |n〉 Bn(β)Hδ(β)
]

=
(
|β〉RH(β)−

∑
n∈D
|n〉 Bn(β)

)
Hα−1(β)−

∑
n∈D

α−2∑
δ=1

Ĥα−1−δ |n〉 Bn(β)Hδ(β)

= |β〉RH
α(β)−

∑
n∈D
|n〉 Bn(β)Hα−1(β)−

∑
n∈D

α−2∑
δ=1

Ĥα−1−δ |n〉 Bn(β)Hδ(β)

= |β〉RH
α(β)−

∑
n∈D

α−1∑
δ=0

Ĥα−1−δ |n〉 Bn(β)Hδ(β).

Consequently,

〈x|e−iĤt|β〉R =

+∞∑
α=0

(−it)α

α!
〈x|
[
|β〉RH

α(β)−
∑
n∈D

α−1∑
δ=0

Ĥα−1−δ |n〉 Bn(β)Hδ(β)
]

=

+∞∑
α=0

(−it)α

α!

[
〈x|β〉RH

α(β)−
∑
n∈D

α−1∑
δ=0

〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)
]

=

+∞∑
α=0

(−it)α

α!

[ 1√
L
βxHα(β)−

∑
n∈D

α−1∑
δ=0

〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)
]
. (D2)
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Finally, we obtain the general form of Green’s function

G(x, y; t) = −i
(
L

2π

)∫ 2π

0

dθ

+∞∑
α=0

(−it)α

α!

[ 1√
L
βxHα(β)−

∑
n∈D

α−1∑
δ=0

〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)
]
L 〈β|y〉

= −i
(
L

2π

)∫ 2π

0

dθ

+∞∑
α=0

(−it)α

α!

[ 1√
L
βxHα(β)−

∑
n∈D

α−1∑
δ=0

〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)
] 1√

L
β−y

= −i
(
L

2π

)∫ 2π

0

dθ

+∞∑
α=0

(−it)α

α!

[ 1

L
βx−yHα(β)−

∑
n∈D

α−1∑
δ=0

1√
L
β−y 〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)

]
= −i

(
1

2π

)∫ 2π

0

dθ

+∞∑
α=0

(−it)α

α!
βx−yHα(β) + i

(
L

2π

)∫ 2π

0

dθ

+∞∑
α=0

(−it)α

α!

∑
n∈D

α−1∑
δ=0

1√
L
β−y 〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)

= −i
(

1

2π

)∫ 2π

0

dθβx−ye−iH(β)t + i

(
L

2π

)∫ 2π

0

dθ

+∞∑
α=0

∑
n∈D

α−1∑
δ=0

1√
L

(−it)α

α!
β−y 〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β)

= −i
∮
|β|=R

dβ

2πiβ
βx−ye−iH(β)t + i

∮
|β|=R

dβ

2πiβ

+∞∑
α=0

∑
n∈D

α−1∑
δ=0

(−it)α

α!
β−y 〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β), (D3)

where we have used dθ = dβ
iβ and rescaled Bn(β) as 1√

L
Bn(β) in the last equality. The first term of G(x, y; t),

denoted as IG(x, y; t) ≡ −i
∮
|β|=R

dβ
2πiββ

x−ye−iH(β)t, is the main part of open-boundary Green’s functions, and the

second term, denoted as IB(x, y; t) ≡ i
∮
|β|=R

dβ
2πiβ

∑+∞
α=0

∑
n∈D

∑α−1
δ=0

(−it)α
α! β−y 〈x|Ĥα−1−δ|n〉 Bn(β)Hδ(β), is the

contribution from the boundaries of the system, which tends toward vanished with x, y being in the deep bulk as
L → +∞. To see this clearly, we recall that x, y are in the deep bulk if P,Q � x, y � L − Q + 1. We must
always remember that the Green’s function is the matrix value and the integral is performed over each matrix element
independently. In addition, the integral of IB is a polynomial of β with only one pole β = 0 for each matrix element;
therefore the integral is irrelevant with positive real value R. The nonzero contribution from IB requires that
there exist nonvanishing 〈x|Ĥα−1−δ|n〉 and Ic ≡ i

∮
|β|=R

dβ
2πiββ

−yBn(β)Hδ(β) for some summation index {α, n, δ}.
Since Ĥ shifts {|n〉 , n ∈ D} at the left (right) boundary to the right (left) direction by a finite length, nonvanishing

〈x|Ĥα−1−δ|n〉 requires (α−1−δ)→ +∞ (i.e., large in the thermodynamics limit) with α→ +∞ if x is in the deep bulk,
which leads to that δ must be finite. According to the residue theorem, the integral Ic is nonzero only if the element of
Bn(β)Hδ(β) contains the βy term. Note that the order of β of the element of Bn(β), n ∈ {1, 2, . . . ,P} is in the range
{0,−1, . . . ,−P + 1}, while that of Bn(β), n ∈ {L−Q+ 1, . . . , L− 1, L}, is in the range {L+ 1, L+ 2, . . . , L+Q},
and the order of β of the element of Hδ(β) is in the range {−δP, . . . , δQ}. We immediately find that the nonvanishing
integral Ic requires δ → +∞ when y is also in the deep bulk, which leads to a contradiction. However, the finite
δ is enough to make Ic nonvanishing when y is located at the boundaries of the system. In turn, nonvanishing
〈x|Ĥα−1−δ|n〉 requires finite (α − 1 − δ) if x is located at the boundaries, which results that there possibly exist
nonzero contributions from Ic for both y being in the bulk and the boundaries with α ∈ (0,+∞), thus nonvanishing
IB . Finally, we conclude that Green’s functions contain a nonzero contribution from IB when x and (or) y are located
at the boundaries, while IB vanishes when both x, y are in the deep bulk as L→ +∞. In this paper, we concentrate
on the main part IG of open-boundary Green’s functions, which implies the deep bulk information.

Appendix E: Open-boundary Green’s functions in frequency space

We transform the open-boundary Green’s function in the deep bulk into frequency space,

G(x, y;ω) ≡
∫ +∞

0

dt IG(x, y; t)eiωt. (E1)
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Here, we should be careful to perform the matrix integral and treat it according to the matrix elements. Checking
that for arbitrary constant matrix K[∫ +∞

0

dt eiKt
]
µν

=

[∫ +∞

0

+∞∑
n=0

(it)n

n!
Knd(Kt)K−1

]
µν

=

∫ +∞

0

(
d(Kµρt) +

+∞∑
n=1

(it)n

n!
Kµσ1

Kσ1σ2
. . . d(Kσnρt)

)
K−1ρν

=

(
Kµρt

∣∣∣+∞
0

+

+∞∑
n=1

in

n!
Kµσ1

Kσ1σ2
. . .Kσnρ

tn+1

n+ 1

∣∣∣+∞
0

)
K−1ρν

=
1

i

(
iδµρ +

+∞∑
n=0

(it)n+1

(n+ 1)!
Kµσ1Kσ1σ2 . . .Kσn+1ρ

)∣∣∣∣∣
+∞

0

K−1ρν

=
1

i

(
+∞∑
n=0

(itK)nµρ
n!

)∣∣∣∣∣
+∞

0

K−1ρν

=
1

i

(
+∞∑
n=0

(itK)
n
µρ

n!

)∣∣∣∣∣
t→+∞

K−1ρν −
1

i

(
+∞∑
n=0

(itK)
n
µρ

n!

)∣∣∣∣∣
t=0

K−1ρν

= i
(
K + i0+

)−1
µν
, (E2)

we immediately obtain (omit the factor i0+)

G(x, y;ω) =

∫ +∞

0

dt

(
−i
∮
|β|=R

dβ

2πiβ
βx−yei

(
ω−H(β)

)
t

)
=

∮
|β|=R

dβ

2πiβ

βx−y

ω −H(β)
. (E3)

When we impose PBC to the system, we constrain βL+1 = 1 and β = eik in MBB, which are exactly the Bloch wave

functions |k〉 in Eq. (C2). Consequently, Ĥ |k〉 = H(k) |k〉 due to PBC, and G(x, y;ω) =
∫ 2π

0
dk
2π

eik(x−y)

ω−H(k) , in which

the contributions from the boundary vanish naturally. However, the conventional topological invariants calculated
under PBC cannot predict the topological edge modes in general, indicating the breakdown of the conventional bulk-
boundary correspondence in non-Hermitian systems. Here, the topological edge modes in 1D non-Hermitian systems
are the eigenenergies isolated from the continuous energy bands (EBBs) under OBC [36].

Appendix F: Integral contours of open-boundary Green’s functions

After obtaining the general form of open-boundary Green’s functions, the urgent affair is choosing the integral
contour for G(x, y;ω), since the contour with arbitrary R maybe not be physical. We can express Eq. (E3) as

G(x, y;ω) =

∮
|β|=R

dβ

2πiβ
βx−y

adj [ω −H(β)]

det [ω −H(β)]
, (F1)

where adj [ω −H(β)] is the adjoint matrix of ω−H(β). Note that each element of βx−yadj [ω −H(β)] is a polynomial
of β, formally reading

∑
j gjβ

j . For each element of βx−yadj [ω −H(β)], the integral surrounding the circle |β| = R

in Eq. (F1) results in the coefficients of the Laurent series f(β, ω) ≡ det [ω −H(β)]
−1

expanded in a ring R1(ω) <
R < R2(ω) multiplying corresponding gj . Motivated by Ref. [54], consider the Toeplitz matrix T (f) of Laurent series

f(β, ω), whose elements are given by Tjk =
∮
|β|=R

dβ
2πiβ

βj−k

det[ω−H(β)] . We must always keep the formula T (f)−1 = T (f−1)

holding, thus leading to that f(β, ω)−1 = det [ω −H(β)] is smoothly interpolated to a unit 1, which keeps this formula
trivially. Since the winding number of 1 surrounding the loop |β| = R vanishes, the winding number of f(β, ω)−1 [same
for f(β, ω)] enclosing this contour also vanishes. The continuous interpolation between 1 and f(β, ω)−1 can be
explicitly realized as follows. We define a continuous map I : [0, 1] → Cµ with I(0) = 0, I(1) = E0, and the

interpolation is given by F (β, ωµ, λ) = E−M0 det [I(λ)(ω −H(β)) + (E0 − I(λ))], which leads to F (β, ω, 0) = 1 and
F (β, ω, 1) = f(β, ω)−1. During λ running in [0, 1], F (β, ω, λ) must be expressed in the contours keeping the vanishing
winding number. The next task is to select the integral contours, namely find the physical expanded ring of Laurent
series f(β, ω).
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The physical integral contour of G(x, y;ω) is the circle |β| = R on which the winding number of ch(β, ω)−1 ≡ f(β, ω)
vanishes. Note that the roles of zeros and poles of ch(β, ω) and f(β, ω) exchange, but it does not matter to the result
of the winding number. Recalling the properties of sub-GBZs in Appendix A, we find that all of the physical integral
contours |β| = R are |βp(ω)| < R < |βp+1(ω)|, which are equivalent to GBZµ with respect to f(β, ω) for any given
ω ∈ Cµ and ω 6∈ Eµ[GBZµ], denoted as ωµ, µ = 1, 2, . . . ,M hereafter. In other words, f(β, ωµ) is analytic in the ring
R1(ωµ) < R < R2(ωµ) with R1(ωµ) = |βp(ωµ)|, R2(ωµ) = |βp+1(ωµ)|, and all of the closed integral contours in this
ring are homotopic to each other. Finally, the open-boundary Green’s function is given by

G(x, y;ωµ) =

∮
GBZµ

dβ

2πiβ

βx−y

ωµ −H(β)
. (F2)

Noteworthily, all of the sub-GBZs with respect to EBBs Eµ(β) are degenerate at BZ for Hermitian systems or non-
Hermitian systems without the skin effect, and consequently, Eq. (F2) reduces to

G(x, y;ω) =

∫ 2π

0

dk

2π

eik(x−y)

ω −H(k)
, (F3)

which is exactly the conventional form of Green’s functions expressed in BZ. We emphasize that Eq. (F2) is equivalent
to the open-boundary Green’s function only when the two correlated points x, y are in the deep bulk in the thermo-
dynamics limit, as well as Eq. (F3) for the cases of Hermitian systems or non-Hermitian systems without the skin
effect, while the Green’s function under PBC is exactly Eq. (F3) for any x, y in both Hermitian and non-Hermitian
systems.

Mathematically, each monomial term of matrix element of βx−yadj [ω −H(β)] within the integral Eq. (F1) takes
the form

G(x, y;ω) =

∮
|β|=R

dβ

2πiβ
βx−y

gjβ
j

det [ω −H(β)]
, (F4)

and we can regard βj
′

det[ω−H(β)] with any integers j′ 6= 0 as the Laurent series to choose the integral contours. The

sequent integral contours can be any closed loops in any rings, which are not the ring |βp(ωµ)| < R < |βp+1(ωµ)|
anymore. These integral contours are not homotopic to GBZµ, resulting in nonphysical Green’s functions, since only
GBZµ produces the physical continuous bulk spectrum (EBB). Therefore, we obtain the physical integral contours
for open-boundary Green’s functions in the deep bulk only via regarding f(β, ω) as the allowed Laurent series.
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