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We present a relativistic formulation of pion loop corrections to the coupling of photons with nucleons

on the light front. Vertex and wave function renormalization constants are computed to lowest order in the

pion field, including their nonanalytic behavior in the chiral limit, and studied numerically as a function of

the ultraviolet cutoff. Particular care is taken to explicitly verify gauge invariance and Ward-Takahashi

identity constraints to all orders in the m� expansion. The results are used to compute the chiral

corrections to matrix elements of local operators, related to moments of deep-inelastic structure functions.

Finally, comparison of results for pseudovector and pseudoscalar coupling allows the resolution of a

longstanding puzzle in the computation of pion cloud corrections to structure function moments.

DOI: 10.1103/PhysRevD.88.076005 PACS numbers: 11.30.Rd, 11.10.Gh, 12.39.Fe, 13.60.Hb

I. INTRODUCTION

The importance of chiral symmetry in hadron physics

has been understood for more than 50 years. As an explicit

Lagrangian representation of the approximate chiral sym-

metry that had been recognized in low-energy pion-

nucleon interactions, Gell-Mann and Levy [1] constructed

the extremely successful linear sigma model. In that model

the pion couples to the nucleon through pseudoscalar

coupling, while an additional scalar (�) field is also

coupled linearly. At a more formal level, Gell-Mann [2]

proposed SUð2Þ � SUð2Þ as an exact algebra for the

charges associated with the Hamiltonian governing the

strong interaction, even though chiral symmetry was not

an exact symmetry of that Hamiltonian.

On the basis of current algebra one can show very gen-

erally that the amplitude for pion scattering or production

must vanish as the four-momentum of the pion vanishes

[3,4]. Within the linear sigma model, this important result

for low-energy pion-nucleon scattering, for example, is only

possible through a subtle cancellation of two large contri-

butions, the first involving pion emission and absorption

through the pseudoscalar (PS) coupling, and the second

involving � exchange in the t channel. Keeping track of

the necessary cancellations between such large terms in the

linear sigma model is tedious and for that reason modern

formulations of chiral effective field theory tend to prefer a

Lagrangian formulation based on a nonlinear realization of

chiral symmetry [5–8]. In such a formulation the natural

�NN vertex involves pseudovector (PV) coupling and the

vanishing of pion-nucleon scattering amplitudes as the pion

four-momentum vanishes emerges trivially. In this work,

motivated by the phenomenological simplicity of enforcing

soft-pion theorems, we focus on the case of PV coupling.

However, since the linear realization of chiral symmetry is

still used in the literature, for completeness we also compare

our results with those for PS coupling.

More recently, chiral symmetry and the pion cloud of the

nucleon have been shown to play a central role in under-

standing various flavor and spin asymmetries in quark

distribution functions measured at high energies. Most

prominent of these has been the SU(2) flavor asymmetry

in the proton sea, with the large excess of �d quarks over �u
being predicted in Ref. [9] and found in deep-inelastic

scattering [10] and Drell-Yan experiments [11,12]. While

a nonperturbative pionic component of the nucleon wave

function provides a natural explanation for the sign of the

observed asymmetry, calculations of the magnitude of the
�d� �u difference have typically been made in models

without a direct connection to QCD. Furthermore, while

the most convenient framework for describing high-energy

reactions is the light front, the realization of chiral sym-

metry on the light front is yet to be fully understood (for a

recent discussion see, e.g., Ref. [13]).

In Ref. [14] we examined the framework dependence of

pion loop effects for the simple case of the nucleon self-

energy. We showed that results for the model-independent,

nonanalytical behavior associated with the long-range part

of the pion cloud [15] are in fact independent of whether

the calculation is performed using light front, instant form

(in the rest frame or infinite momentum frame), or cova-

riant perturbation theory. On the other hand, important

differences were observed for the nonanalytic structure of

the self-energy when comparing the PV and PS couplings.

Applying the methodologies developed in Refs. [14,16],

we consider here the more physically relevant case of the

electromagnetic coupling of the nucleon dressed by pion

loops. This represents the necessary next step towards the

computation of the chiral corrections to quark distribution

functions of the nucleon, whose moments are given by

matrix elements of twist-2 operators. The twist-2 matrix

elements were studied previously by Chen and Ji [17] and

Arndt and Savage [18], who computed the most important

pion loop contributions to the leading nonanalytic behavior
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within heavy baryon chiral perturbation theory. In the

present analysis we compute the pion loop corrections to

the vertex renormalization factors using a fully relativistic

framework, which includes higher order corrections in the

pion massm�. Furthermore, we demonstrate explicitly that

gauge invariance and theWard-Takahashi identities hold to

all orders m�, provided the full set of one-loop diagrams

is considered, including rainbow, tadpole, and Kroll-

Ruderman contact terms. We verify this for both PV and

PS theories. Using the results for the vertex corrections, we

then derive the pion loop corrections to the matrix elements

of the twist-2 operators for both the proton and neutron,

and verify the nonanalytic behavior of the isoscalar and

isovector contributions. Note that for the lowest moment of

the nonsinglet distribution the chiral corrections are essen-

tially those that appear for the nucleon electromagnetic

form factors at zero four-momentum transfer squared,

q2 ¼ 0. These have been computed in a relativistic formal-

ism to one loop order in Refs. [19,20]. In contrast to form

factors, for high-energy observables such as quark distri-

bution functions the natural framework is the light front, to

which we specialize in this work. While we also focus on

the lowest moment of the quark distributions, for the

reconstruction of the distributions themselves [21], higher

moments of the distributions will of course be necessary

(Sec. IV).

In Sec. II we review the basics of the pion-nucleon

interaction in terms of the chiral Lagrangian evaluated to

lowest order in derivatives of the pion field. The electro-

magnetic nucleon vertex corrections arising from pion

loops are computed in Sec. III, and their nonanalytic

properties studied as a function of the pion mass. To

illustrate the role of the various contributions to the vertex

renormalization explicitly, we compute the renormaliza-

tion factors numerically as a function of the ultraviolet

cutoff. The results for the vertex corrections and wave

function renormalization are subsequently used in Sec. IV

to compute the chiral corrections to nucleon matrix ele-

ments of twist-2 operators. Comparison of the results for

PV and PS coupling also allows us to identify the origin

of the discrepancy between the nonanalytic behaviors of

the twist-2 moments computed in heavy baryon chiral

perturbation theory and at the parton level in terms of

the Sullivan process [22]. Finally, in Sec. V we summa-

rize our findings and outline future extensions of the

present work. In Appendix A we collect formulas for

the complete set of Feynman rules needed to compute the

vertex renormalization and wave function corrections. The

demonstration that the results respect gauge invariance and

the Ward-Takahashi identity is presented in Appendixes B

and C, respectively, and some useful results for the non-

analytic behavior of integrals are listed in Appendix D.

Although some of the formal results which we summarize

here can be found elsewhere, our aim will be to provide a

pedagogical discussion of the derivations in order to clarify

some conflicting claims in the literature about the compu-

tation of the analytic and nonanalytic contributions to the

pion loop integrals.

II. PION-NUCLEON INTERACTION

To lowest order in derivatives of the pion field � ¼
ð�þ; ��; �0Þ, where �� ¼ ð�1 � i�2Þ=

ffiffiffi

2
p

¼ ��
�, the

�NN Lagrangian is given by [5,23–25]

L�N ¼ gA
2f�

�c N�
��5� � @��c N

� 1

ð2f�Þ2
�c N�

�
� � ð� � @��Þc N ; (1)

where c N is the nucleon field, ~� is the Pauli matrix

operator in nucleon isospin space, f� ¼ 93 MeV is the

pion decay constant, and gA ¼ 1:267 is the nucleon axial

vector charge. Our convention follows that in Ref. [24],

but differs by an overall minus sign for the gA term in

Eq. (1) from that in Ref. [25]. For quantities where the �

field enters quadratically, such as the pion loop correc-

tions discussed here, the overall sign on the gA term is

immaterial. The gA-dependent term in the Lagrangian

(1) gives rise to the ‘‘rainbow’’ diagram in which a pion

is emitted and absorbed by the nucleon at different

space-time points, while the second is the Weinberg-

Tomozawa coupling [5,26], which has two pion fields

coupling to the nucleon at the same point. The latter

gives the leading contribution to S-wave pion-nucleon

scattering [27], and generates the pion tadpole or bubble

diagrams.

The above definitions mean that the field ��
corresponds to an incoming negatively charged pion,

with ��
þ to an outgoing positively charged pion. In writ-

ing Eq. (1) we have also made use of the Goldberger-

Treiman relation between gA, f� and the �NN coupling

constant g�NN ,

gA
f�

¼ g�NN

M
; (2)

where g�NN � 13:4 and M is the nucleon mass.

The interaction of pions and nucleons with the electro-

magnetic field is introduced by minimal substitution,

@� ! @� þ ieA�, where the charge e ¼ �1 for a photon

coupling to an electron. This gives rise to a ��N interac-

tion Lagrangian of the form

L��N ¼ � �c N��Q̂Nc NA� þ ið@��Þ � ðQ̂��ÞA�

þ igA
2f�

�c N�
��5� � Q̂��c NA�

� i

ð2f�Þ2
�c N�

�
� � ð� � Q̂��Þc NA�; (3)

where Q̂N ¼ jejðIþ �3Þ=2 is the nucleon charge operator,

defined in terms of the total isospin I of the nucleon and its
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third component such that Q̂pc p¼jejc p, and Q̂nc n ¼ 0,

and similarly for the pion charge operator one has Q̂�� ¼
jejð�þ;���; 0Þ. The first two terms in Eq. (3) correspond

to the photon coupling to the bare nucleon and pion,

respectively, the third term is the Kroll-Ruderman coupling

[28,29] required by gauge invariance, while the fourth term

gives rise to a photon coupling to a pion-nucleon tadpole

vertex. The Lagrangians (1) and (3) can be used to derive a

set of Feynman rules for computing lowest order ampli-

tudes, which are summarized in Appendix A.

The transformation of the PS coupling Lagrangian,

such as in the linear � model [1,30], to the PV coupling

Lagrangian in Eq. (1) can be understood as a canonical

transformation of the field variables, analogous to the

coordinate transformation from the Cartesian coordinates

x and y to the plane polar coordinates r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and

� ¼ tan�1ðy=xÞ [5,31]. In analogy with the coordinate

transformation, the PV coupling Lagrangian can be de-

rived from the PS Lagrangian with the form of xþ iy
(representing, for example, M�g�NN��ig�NN�5� ��)
by taking the equivalence between the ðx; yÞ and ðr; �Þ
coordinates, such that xþ iy ¼ rei� with an appropriate

field redefinition for the nucleon, pion and � fields. Since

the redefined scalar field turns out to be completely

decoupled after the canonical transformation and be-

comes irrelevant to the chiral symmetry, one may

completely remove it in the PV coupling Lagrangian

[5,23–25,32], as shown in Eqs. (1) and (3). In the original

PS coupling Lagrangian it is crucial to keep the � field to

maintain the chiral symmetry. Thus, the pseudoscalar

Lagrangian is not invariant under chiral transformations

without the presence of a scalar field, as in the linear

sigma model [33].

However, historically the pseudoscalar pion-nucleon in-

teraction without a scalar field has often been discussed in

the literature, with the lowest order Lagrangian density

given by

LPS
�N ¼ �g�NN

�c Ni�5� � �c N þ � � � : (4)

As discussed by Lensky and Pascalutsa [34], this can

be formally obtained by redefining the nucleon field

c N ! �c N , where � ¼ exp ½ðigA� � �=2f�Þ�5�, which

leads to the PS Lagrangian in Eq. (4), together with the

Weinberg-Tomozawa contribution in (1) replaced by

an isoscalar term as in the � model and a modified

isovector term.

To contrast a number of important features pertinent

to the PV and PS calculations, we discuss here the con-

sequences of neglecting the scalar field contribution for the

PS theory. For on-shell nucleons obeying the free Dirac

equation, the PS and PV Lagrangians (1) give identical

results for matrix elements, provided the couplings are

related by Eq. (2). For off-shell nucleons, however, the

PS and PV interactions lead to different results because of

the strong coupling to negative energy states in the former.

This can be illustrated by splitting the nucleon off-shell

propagator into an on-shell part and an off-shell part,

according to the identity [35]

1

6p�M
¼

P

s uðp; sÞ �uðp; sÞ
p2 �M2

þ �þ

2pþ ; (5)

where �þ ¼ �0 þ �3 and pþ ¼ p0 þ pz. One observes

that while the on-shell component gives equivalent results

for PV and PS interactions, the contribution from the off-

shell part �þ=2pþ differs for the PV and PS couplings

[36]. These differences were studied in detail for the case

of the nucleon self-energy � in Ref. [14], where the lead-

ing nonanalytic behavior of � was found to be of order

m2
� logm2

� for the PS case, in contrast to the m3
� behavior

of the PV theory. In the nucleon self-energy, the difference

in the off-shell part �þ=2pþ indeed appears as a pion

tadpole contribution in the PS theory. Since the pion tad-

pole involves the two-pion coupling, which corresponds to

a scalar coupling, it is evident that the equivalence between

the PVand PS coupling theories cannot be attained without

a scalar field to restore the chiral symmetry. Important

differences arise also for the vertex corrections, as we shall

discuss in the following.

III. VERTEX CORRECTIONS

Beyond tree level, the interactions described by

Eqs. (1) and (3) give rise to loop corrections which renor-

malize the electromagnetic photon–nucleon vertex. These

corrections are illustrated in Fig. 1. In this section we will

derive the corrections arising from each of these diagrams

explicitly and study their dependence on the high-

momentum cutoff mass, as well as their nonanalytic prop-

erties as a function of the pion mass. For illustration, we

estimate the contribution from each diagram numerically

by introducing ultraviolet regularization cutoff parameters

in this work. More quantitative numerical estimates using

Lorentz invariant regularization methods, such as dimen-

sional regularization, will be presented in future work [37].

The vertex renormalization constant Z1 is defined as

ðZ�1
1 � 1Þ �uðpÞð�ijej��ÞuðpÞ ¼ ð�ijejÞ �uðpÞ��uðpÞ; (6)

where the operator �� is given by the sum of vertex

correction diagrams in Figs. 1(c)–1(g), and for conve-

nience is defined with the charge factor ð�ijejÞ taken

out. We use the convention in which the nucleon spinors

are normalized according to �uðpÞuðpÞ ¼ 1. For small val-

ues of 1� Z1, one also has, to lowest order in the �N
coupling, Z�1

1 � 1 � 1� Z1. To evaluate the vertex renor-

malization constants from the various diagrams in Fig. 1,

we take the � ¼ þ components, so that

1� Z1 ¼
M

pþ �uðpÞ�þuðpÞ; (7)
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where the� components of the momentum four-vector are

given by p� ¼ p0 � pz.

A. Photon-nucleon coupling

For the coupling of the photon to a proton dressed by a

neutral �0 loop (p ! pþ �0), Fig. 1(c), the vertex cor-

rection is computed from the operator

��
p ¼

�
gA
2f�

�
2 Z d4k

ð2�Þ4 ð6k�5Þ
ið6p� 6kþMÞ

DN

� �� ið6p� 6kþMÞ
DN

ð�5 6kÞ
i

D�

; (8)

where we use the shorthand notation for the pion and

nucleon propagators,

D� 	 k2 �m2
� þ i"; (9a)

DN 	 ðp� kÞ2 �M2 þ i"; (9b)

respectively. For a neutron target, the correction from the

coupling to an intermediate state proton dressed by a

negatively charged pion (n ! pþ ��) is given by ��
n ¼

2�
�
p . Taking the � ¼ þ component and using Eq. (7),

the contribution to the vertex renormalization factor

ð1� Zp
1 Þ ¼ 1

2 ð1� Zn
1Þ 	 ð1� ZN

1 Þ is then given by

1�ZN
1 ¼ i

�
gA
2f�

�
2Z d4k

ð2�Þ4 ½k
4 þ 4ðp � kÞ2 � 4M2k2ð1� yÞ

� 4p � kk2� 1

D�D
2
N

¼�i

�
gA
2f�

�
2Z d4k

ð2�Þ4
�
4M2ðk2 � 2yp � kÞ

D�D
2
N

� 4M2y

D�DN

� 1

D�

�

; (10)

where y ¼ kþ=pþ is the fraction of the nucleon’s þ
component of momentum carried by the pion. In deriving

Eq. (10) we have used the Dirac equation, 6puðpÞ ¼
MuðpÞ.
Since there are two more powers of momentum k in the

numerator of ZN
1 than in the denominator, the integral (10)

is formally divergent. One can perform the loop integration

and regularize the divergence in several ways. In Ref. [14]

we considered the nucleon self-energy arising from pion

dressing, and computed the loop integrals using equal-time

perturbation theory in the rest frame and in the infinite

momentum frame, using light-front coordinates (all with

appropriate high-momentum cutoffs), and covariantly with

dimensional regularization. Each method was shown to

give identical results for the model-independent, nonana-

lytic part of the integrals, with the (model-dependent)

(b)

(e)

(c)

(a)

(g)

(d)

(f)

FIG. 1. Pion loop corrections to the photon–nucleon coupling in the PV pion-nucleon theory: (a) photon coupling to the bare

nucleon, (b) wave function renormalization, (c) rainbow diagram with coupling to the nucleon, (d) rainbow diagram with coupling to

the pion, (e) Kroll-Ruderman diagrams, (f) pion tadpole diagram with coupling to the pion-nucleon vertex, (g) pion bubble diagram

with coupling to the pion.
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analytic contributions dependent upon the regularization

prescription.

In the case of the vertex renormalization, it is convenient

to use the þ prescription to evaluate Z1, and it will be

particularly instructive to examine the integrands as a

function of kþ (or y) and k?. Performing the k� integration

using the Cauchy integral theorem by closing the contour

in the lower half-plane, one can write the nucleon contri-

bution to the vertex renormalization as

1� ZN
1 ¼ g2AM

2

ð4�f�Þ2
Z

dydk2?

�
yðk2? þ y2M2Þ

½k2? þ y2M2 þ ð1� yÞm2
��2

� y

k2? þ y2M2 þ ð1� yÞm2
�

� 1

4M2
log

�
k2? þm2

�

�2

�

�ðyÞ
�

; (11)

where the mass � is an ultraviolet cutoff on the k� inte-

gration. In Eq. (11) the first, second, and third terms

correspond to the terms in the integrand of Eq. (10) pro-

portional to 1=D�D
2
N , 1=D�DN and 1=D�, respectively.

The first term, which is logarithmically divergent in k?,
gives a contribution that is equivalent to that obtained from

a PS pion-nucleon coupling (4) [38,39],

1� ~ZN
1 ¼ �ig2�NN

Z d4k

ð2�Þ4
k2 � 2yp � k

D�D
2
N

¼ g2�NN

16�2

Z

dydk2?
yðk2? þ y2M2Þ

½k2? þ y2M2 þ ð1� yÞm2
��2

;

(12)

where the couplings are related as in Eq. (2), and we use

the tilde (‘‘
 ’’) notation for quantities computed from the

PS interaction. This result agrees exactly with the result

from the infinite momentum frame calculation of Drell,

Levy, and Yan [38] within the PS �N theory.

The second term in Eq. (11) is a new contribution,

associated with the momentum dependence of the PV

pion-nucleon vertex, and enters with the opposite sign to

the PS-like component. The third term is nonzero only at

y ¼ 0, and arises from the 1=D� term in Eq. (10). For

k? & � this serves to enhance the contribution from the

1=D�D
2
N PS-like term.

Numerically, the contributions to ZN
1 from each of the

three terms are illustrated in Fig. 2 as a function of the

cutoff mass � used to render the k? integration finite,

taking the k� integration cutoff � ¼ 1 GeV. The results

show large cancellation between the 1=D�D
2
N term (which

gives a negative contribution to 1� ZN
1 ) and the 1=D�DN

term (which gives a positive contribution), with the total

closely following the residual 1=D� contribution, which is

smaller in magnitude than the other two pieces. This

clearly illustrates that a calculation of the vertex renormal-

ization using the PS �N interaction, apart from not

having the correct chiral symmetry properties, yields

very different results phenomenologically compared with

the PV theory.

B. Photon-pion coupling

For the photon coupling to a positively charged pion

emitted from the proton, Fig. 1(d), the corresponding

operator can be written

��

�þ ¼ 2

�
gA
2f�

�
2 Z d4k

ð2�Þ4 ð6k�5Þ
ið6p� 6kþMÞ

DN

ð�5 6kÞ

� i

D�

i

D�

ð2k�Þ; (13)

where the overall isospin factor 2 accounts for the

p ! n�þ transition. For a neutron target, the operator

for the coupling to the negatively charged pion in the

transition n ! p�� would be �
�
�� ¼ ��

�

�þ . Taking the

� ¼ þ component in Eq. (13), the resulting vertex renor-

malization factor for the pion coupling ð1� Z�þ
1 Þ ¼

�ð1� Z��
1 Þ 	 2ð1� Z�

1 Þ can be written as

1� Z�
1 ¼ i

�
gA
2f�

�
2 Z d4k

ð2�Þ4 ½2ðp � kÞ2 � k2p � k� 2M2k2�

� 2y

D2
�DN

¼ �i

�
gA
2f�

�
2 Z d4k

ð2�Þ4
�
8yM2p � k
D2

�DN

þ 2yp � k
D2

�

þ 4yM2

D2
�

�

; (14)

where Z�
1 here is defined with the isospin factor removed.

Because y is odd in kþ, while D2
� is even, the third term in

Eq. (14) proportional to y=D2
� will vanish after integration

over kþ. For the second term, proportional to 2yp � k=D2
�,

we can use the identity

0 0.2 0.4 0.6 0.8 1

Λ (GeV)

0

0.5

1

1.5

Z
1N

D
π
 D

N

2

D
π

D
N

|

D
π

|

total
|

|

FIG. 2 (color online). Contributions to the vertex renormaliza-

tion ZN
1 from terms in Eq. (10) proportional to 1=D�D

2
N (dashed

line), 1=D�DN (dot-dashed line), 1=D� (dotted line), and the

sum (solid line), as a function of the k? momentum cutoff �.
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Z

d4k
2yp � k
D2

�

¼
Z

d4k
1

D�

: (15)

In fact, since

@

@kþ
1

Dn
�

¼ � nk�

Dnþ1
�

; (16)

one has, for any integer n,

Z

d4k
2yp � k
Dnþ1

�

¼ 1

n

Z

d4k
1

Dn
�

: (17)

Using the relation (15), and performing the k� integration

by closing the contour in the upper half-plane, the photon–

pion coupling contribution to Z1 can be written as

1� Z�
1 ¼ g2AM

2

ð4�f�Þ2
Z

dydk2?

�
yðk2? þ y2M2Þ

½k2? þ y2M2 þ ð1� yÞm2
��2

þ 1

4M2
log

�
k2? þm2

�

�2

�

�ðyÞ
�

: (18)

Note that the first term in Eq. (18) is identical to the first

term in Eq. (11) for the Zp
1 contribution to the vertex

renormalization. It is also the result one obtains from

the ‘‘Sullivan process’’ [9,22,40–45] for the contribution

of the pion cloud to the deep-inelastic structure function of

the nucleon, where the current couples to the pion cloud,

leaving an on-shell nucleon in the final state. These analy-

ses all utilized the PS pion-nucleon interaction, in which

the vertex renormalization factor is given by

1� ~Z�
1 ¼ �ig2�NN

Z d4k

ð2�Þ4
2yp � k
D2

�DN

¼ g2�NN

16�2

Z

dydk2?
yðk2? þ y2M2Þ

½k2? þ y2M2 þ ð1� yÞm2
��2

:

(19)

This result also coincides with the vertex renormalization

computed in the infinite momentum frame in Ref. [38] in

terms of nucleon and pion ‘‘partons’’ in the PS theory.

Comparison of Eqs. (19) and (12) also demonstrates that

the PS model respects the charge conservation condition,

1� ~Z�
1 ¼ 1� ~ZN

1 ; (20)

which follows directly from the Ward-Takahashi identity

(see Appendix C).

In contrast, the full PV result for Z�
1 in Eq. (18) contains

in addition a singular, � function term in y, just as in

Eq. (11) for Zp
1 but with the opposite sign. As illustrated

in Fig. 3, this term cancels some of the contribution from

the PS, 1=D�D
2
N term, leaving an overall positive contri-

bution to 1� Z�
1 . Clearly the PV Z�

1 and Zp
1 results are

different for any value of the k? cutoff �, and in order to

demonstrate their equivalence requires consideration of

additional terms arising from the derivative PV coupling.

C. Kroll-Ruderman terms

The momentum dependence of the PV �N interaction

gives rise to an additional Kroll-Ruderman (KR) term [26]

which describes the photon coupling to the �NN vertex,

Fig. 1(e). For the case of the p ! n�þ vertex, these are

computed from the operator

��

KR;�þ ¼ 2i

�
gA
2f�

�
2 Z d4k

ð2�Þ4
�

6k�5

ið6p� 6kþMÞ
DN

���5

þ �5�
� ið6p� 6kþMÞ

DN

�5 6k
�

i

D�

: (21)

For a neutron target, the corresponding operator describing

the photon coupling to the n ! p�� vertex is ��
KR;�� ¼

��
�

KR;�þ . Note that the emission of a neutron �0 does not

give rise to a KR correction term.

The contribution to the vertex renormalization factor is

then given by ð1�ZKR;�þ
1 Þ¼�ð1�ZKR;��

1 Þ	2ð1�ZKR
1 Þ,

where

1� ZKR
1 ¼ �i

�
gA
2f�

�
2 Z d4k

ð2�Þ4 ð2k
2 � 4p � kþ 4M2yÞ

� 1

D�DN

¼ �i

�
gA
2f�

�
2 Z d4k

ð2�Þ4
�

� 4M2y

D�DN

� 2

D�

�

: (22)

Performing the k� integration, the resulting contribution to

1� Z1 is

1�ZKR
1 ¼� g2AM

2

ð4�f�Þ2
Z

dydk2?

�
y

k2? þ y2M2 þ ð1� yÞm2
�

þ 1

2M2
log

�
k2? þm2

�

�2

�

�ðyÞ
�

; (23)

where the first term in the integrand arises from the

1=D�DN term, while the �ðyÞ term is associated with the

1=D� contribution in Eq. (22).
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|

FIG. 3 (color online). Contributions to the vertex renormaliza-

tion Z�
1 from terms in Eq. (18) proportional to 1=D�DN (dot-

dashed line), 1=D� (dotted line), and the sum (solid line), as a

function of the k? momentum cutoff �.
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The contributions from the individual terms to ZKR
1 are

shown in Fig. 4 as a function of the k? momentum cutoff

�, as well as the total KR correction. Note the large

cancellation between the 1=D� and 1=D�DN terms for

values of the cutoff � & 0:8 GeV. Omission of the

�-function 1=D� contribution would thus lead to a signifi-

cant overestimate of the KR correction.

Formally, the Kroll-Ruderman terms are needed to en-

sure gauge invariance in the PV theory. Indeed, from

Eqs. (11), (18), and (23) one can verify explicitly that

ð1� ZN
1 Þ ¼ ð1� Z�

1 Þ þ ð1� ZKR
1 Þ (24)

for the PV case. In contrast, in the PS theory, where the�N
vertex is independent of momentum, there is no analogous

KR contribution, and gauge invariance is reflected through

the relation (20). In Fig. 5 we show the total contributions

to Z1 from the nucleon and pion rainbow diagrams, ZN
1 and

Z�
1 , and the total KR correction. The sum of these three

terms is of course zero by Eq. (24).

D. Tadpoles and bubbles

At lowest order the Lagrangian (3) contains, in addition

to the PV coupling of the pion to the nucleon, quadratic

terms arising from the covariant derivative. For the cou-

pling of the photon to the ��pp vertex in the pion tadpole

diagram in Fig. 1(f) the relevant operator is

�
�
ptad ¼ � 1

2f2�

Z d4k

ð2�Þ4 �
� i

D�

: (25)

For the coupling to the ��nn vertex, the corres-

ponding operator is �
�
ntad ¼ ��

�
ptad. The contribution to

the vertex renormalization from the ��NN tadpoles is

then ð1� ZNtad
1 Þ 	 ð1� Zptad

1 Þ ¼ �ð1� Zntad
1 Þ, where

1� ZNtad
1 ¼ � i

2f2�

Z d4k

ð2�Þ4
1

D�

: (26)

After integration over k�, this can be written

1� ZNtad
1 ¼ 1

2ð4�f�Þ2
Z

dydk2? log

�
k2? þm2

�

�2

�

�ðyÞ:

(27)

For the bubble diagram with the photon coupling di-

rectly to a pion, Fig. 1(g), the relevant operator for a proton

target is

��
�bubðpÞ ¼

1

2f2�

Z d4k

ð2�Þ4 ð�i6kÞ2k� i

D�

i

D�

; (28)

with that for a neutron target given by��
�bubðnÞ¼���

�bubðpÞ.

Taking the � ¼ þ component on both sides of Eq. (28),

the contribution to the vertex renormalization is given by

ð1�Z�bub
1 Þ	 ð1�Z�bubðpÞ

1 Þ¼�ð1�Z�bubðnÞ
1 Þ, where

1� Z�bub
1 ¼ i

2f2�

Z d4k

ð2�Þ4
2yp � k
D2

�

: (29)

Using the identify (15) this can be written, after k� integra-

tion, as
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FIG. 4 (color online). Contributions to the vertex renormaliza-

tion ZKR
1 from terms in Eq. (23) proportional to 1=D�DN (dot-

dashed line), 1=D� (dotted line), and the sum (solid line), as a

function of the k? momentum cutoff �.
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FIG. 5 (color online). Contributions to the vertex renormaliza-

tion Z1 from the photon–nucleon coupling ZN
1 (solid line),

photon–pion coupling Z�
1 (dashed line), and Kroll-Ruderman

terms ZKR
1 (dot-dashed line), as a function of the k? momentum

cutoff �. Note that the sum of the pion tadpole and bubble

contributions to Z1 vanishes.

0 0.2 0.4 0.6 0.8 1

Λ (GeV)

0

0.5

1

1.5

Z
1

Z
 N tad

1

Z
 π bub

1

FIG. 6 (color online). Nucleon tadpole (solid line) and pion

bubble (dashed line) contributions to the vertex renormalization

as a function of the k? momentum cutoff �.

ANATOMY OF RELATIVISTIC PION LOOP CORRECTIONS . . . PHYSICAL REVIEW D 88, 076005 (2013)

076005-7



1� Z�bub
1 ¼ � 1

2ð4�f�Þ2
Z

dydk2? log

�
k2? þm2

�

�2

�

�ðyÞ;

(30)

which is equal and opposite to the pion tadpole contri-

bution in Eq. (27). The vanishing of the sum of the pion

tadpole and bubble contributions,

ð1� Z�bub
1 Þ þ ð1� ZNtad

1 Þ ¼ 0; (31)

ensures therefore that these have no net effect on the

vertex renormalization. In Fig. 6 the pion tadpole and

bubble diagrams are illustrated for a k? momentum

cutoff �.

E. Nonanalytic behavior

The model-independent, nonanalytic (NA) structure of

the vertex renormalization factors can be studied by expand-

ing 1� Z1 in powers ofm�. The terms in the expansion that

are even powers of m� are analytic in the quark mass mq

(from the Gell-Mann–Oakes–Renner relation, m2
� 
mq for

smallm�), while odd powers ofm� or logarithms ofm� are

nonanalytic in mq. The NA terms reflect the long-range

structure of chiral loops, and are exactly calculable in terms

of low-energy constants such as gA and f�, independent of
the details of short-range physics.

The NA behavior of the nucleon rainbow contribution is

given by

ð1� ZN
1 Þ!

NA g2AM
2

ð4�f�Þ2
�
m2

�

M2
logm2

� � 5�

4

m3
�

M3
� 3m4

�

4M4
logm2

�

�
1

D�D
2
N

term

�

� m2
�

2M2
logm2

� þ �

2

m3
�

M3
þ m4

�

4M4
logm2

�

�
1

D�DN

term

�

þ m2
�

4M2
logm2

�

� �
1

D�

term

�

¼ 3g2A
4ð4�f�Þ2

�

m2
� logm2

� � �
m3

�

M
� 2m4

�

3M2
logm2

� þOðm5
�Þ
�

; (32)

where for completeness we have included the first three lowest order NA terms, and the origins of the various powers ofm�

have been indicated in the brackets to the right of the equations. Comparison with the PS result [the 1=D�D
2
N term in

Eq. (32)] shows that for the leading NA (LNA) term (order m2
� logm2

�) one has

ð1� ZN
1 ÞLNA ¼ 3

4
ð1� ~ZN

1 ÞLNA: (33)

This makes clear the origin of the difference between the results in Refs. [38,39], which were obtained for a PS �N
coupling, and Refs. [17,18], which were obtained for the PV theory. Note that this result does not depend on the details of

the ultraviolet regulator, since the nonanalytic structure is determined entirely by the infrared behavior of the integrals.

The NA behavior of the pion rainbow contribution is given, to order in m�, by

ð1� Z�
1 Þ!

NA g2AM
2

ð4�f�Þ2
�
m2

�

M2
logm2

� � 5�

4

m3
�

M3
� 3m4

�

4M4
logm2

�

�
1

D2
�DN

term

�

� m2
�

4M2
logm2

�

� �
1

D�

term

�

¼ 3g2A
4ð4�f�Þ2

�

m2
� logm2

� � 5�

3

m3
�

M
�m4

�

M2
logm2

� þOðm5
�Þ
�

: (34)

Note that the behavior arising from the 1=D2
�DN term is identical to that from the 1=D�D

2
N term in ZN

1 , which reflects the

gauge invariance of the PS theory, Eq. (20).

For the PV theory, the Kroll-Ruderman terms has the nonanalytic behavior

ð1� ZKR
1 Þ !NA g2AM

2

ð4�f�Þ2
�

� m2
�

2M2
logm2

� þ �

2

m3
�

M3
þ m4

�

4M4
logm2

�

�
1

D�DN

term

�

þ m2
�

2M2
logm2

�

� �
1

D�

term

�

¼ 3g2A
4ð4�f�Þ2

�
2�

3

m3
�

M
� m4

�

3M2
logm2

� þOðm5
�Þ
�

: (35)
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Here theOðm2
� logm2

�Þ terms cancel between the 1=D�DN

and 1=D� terms, so that the leading NA behavior of the KR

term 
m3
�. For the sum of the Z�

1 and ZKR
1 terms,

ð1� Z�
1 Þ þ ð1� ZKR

1 Þ !NA 3g2A
4ð4�f�Þ2

�

m2
� logm2

�

� �
m3

�

M
� 2m4

�

3M2
logm2

�

�

; (36)

the NA behavior is therefore explicitly verified to be

equivalent to that in (1� ZN
1 ) in Eq. (32).

Finally, for the pion loop contributions from Sec. III D,

the NA behavior is given by the m2
� logm2

� term for

both the pion tadpole [Fig. 1(f)] and bubble [Fig. 1(g)]

diagrams,

ð1� ZNtad
1 Þ !NA � 1

2ð4�f�Þ2
m2

� logm2
�; (37)

ð1� Z�bub
1 Þ !NA 1

2ð4�f�Þ2
m2

� logm2
�: (38)

The results for the leading order nonanalytic contribu-

tions to the vertex renormalization factors are summarized

in Table I for each of the above terms, where the entries are

given in units of 1=ð4�f�Þ2m2
� logm2

�. Note that the con-

tributions from the terms associated with 1=D�D
2
N and

1=D2
�DN (denoted by asterisks *) are the same as those

in the PS theory, while the other contributions arise only

for PV coupling. The table clearly illustrates the origin of

the difference between the 1� ZN
1 corrections in the PV

and PS theories, and in particular the relative factor 3=4
found in heavy baryon chiral perturbation theory [17,18]

compared with calculations based on the Sullivan process

with PS coupling [22,38].

IV. PARTON DISTRIBUTIONS AND MOMENTS

The above results on the vertex renormalization factors

can be used to compute the NA behavior of moments of

parton distribution functions (PDFs) arising from the pion

cloud of the nucleon. The presence of the pion cloud

induces corrections to the PDFs of a bare nucleon, whose

Bjorken x dependence can be represented in terms of

convolutions of pion and nucleon light-cone distribution

functions fiðyÞ and the corresponding parton distributions

in the pion and nucleon [16]. The light-cone distribution

fiðyÞ are defined such that when integrated over y they

give the appropriate vertex renormalization factors Zi
1,

ð1� Zi
1Þ ¼

R
dyfiðyÞ. Unlike in the PS coupling models

[9,22,40–46], the dressed nucleon PDFs in the PV theory

contain several additional terms [16,47],

qðxÞ ¼ Z2q0ðxÞ þ ð½fN þ fNtad� � q0ÞðxÞ
þ ð½f� þ f�bub� � q�ÞðxÞ þ ðfKR � qKRÞðxÞ; (39)

where q0 is the bare nucleon PDF [arising from the dia-

gram in Fig. 1(a)], q� is the PDF in the pion, and qKR 	
�q0=gA, with �q0 the spin-dependent PDF in the bare

nucleon. The constant Z2 is the wave function renormal-

ization constant, and the symbol � represents the convo-

lution integral ðf � qÞðxÞ ¼ R
1
xðdz=zÞfðzÞqðx=zÞ, where

for the f� and f�bub contributions the integration variable

z should be taken to be the fraction of the nucleon’s þ
component of momentum carried by the pion, y ¼ kþ=pþ,
while for the fN , fNtad, and fKR terms z¼1�y. Note
that because of the additional pion field at the vertex in

the KR diagram, Fig. 1(e), the contribution of the KR terms

to the (unpolarized) PDF involves a convolution with a

spin-dependent parton distribution. In the corresponding

‘‘Sullivan’’ process based on the PS coupling [9,22,40–44],

only the fN and f� functions contribute, and these are

related by Eq. (20).

A. Pionic corrections to twist-2 matrix elements

According to the operator product expansion in QCD,

the moments of PDFs are related to matrix elements of

local operators,

hNjÔ�1...�n
q jNi ¼ 2hxn�1iqpf�1 . . .p�ng; (40)

where the braces f� � �g denote symmetrization of Lorentz

indices, and the operators are given by the quark bilinears

TABLE I. Leading nonanalytic contributions to the vertex renormalization 1� Z1, in units of

1=ð4�f�Þ2m2
� logm2

�. The asterisks ð�Þ in the ZN
1 and Z�

1 rows denote contributions that are

present for the pseudoscalar �N coupling. Note that the nonanalytic contributions from the KR

terms cancel at this order, but are nonzero at Oðm3
�Þ, and are needed to ensure gauge invariance

of the theory, Eq. (24). The sum of all contributions is given in the last two columns for the PV

and PS theories, respectively.

1=D�D
2
N 1=D2

�DN 1=D�DN 1=D� or 1=D2
� Sum (PV) Sum (PS)

1� ZN
1 g2�A 0 � 1

2g
2
A

1
4g

2
A

3
4 g

2
A g2A

1� Z�
1 0 g2�A 0 � 1

4g
2
A

3
4 g

2
A g2A

1� ZKR
1 0 0 � 1

2g
2
A

1
2g

2
A 0 0

1� ZNtad
1 0 0 0 �1=2 �1=2 0

1� Z�bub
1 0 0 0 1=2 1=2 0
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Ô
�1...�n
q ¼ �c�f�1 iD�2 . . . iD�ngc � traces; (41)

with D� the covariant derivative. The nth moment of the

PDF qðxÞ is given by

hxn�1iq ¼
Z 1

0
dxxn�1ðqðxÞ þ ð�1Þn �qðxÞÞ: (42)

For n ¼ 1, we define hx0iq 	 MðpÞ to be the moment in

the proton, with u $ d for the neutron MðnÞ.
For the direct coupling of the photon to the nucleon,

which includes the wave function renormalization

[Fig. 1(b)], the nucleon rainbow diagram [Fig. 1(c)], and

the pion tadpole diagram [Fig. 1(f)], the contributions to

the twist-2 matrix elements are given by

M
ðpÞ
N ¼ Z2 þ ð1� ZN

1 Þ þ ð1� ZNtad
1 Þ; (43a)

M
ðnÞ
N ¼ 2ð1� ZN

1 Þ � ð1� ZNtad
1 Þ; (43b)

for the proton and neutron, respectively. The wave function

renormalization Z2 factor in Eq. (43a) is

1� Z2 ¼ ð1� Zp
1 Þ þ ð1� Zn

1Þ ¼ 3ð1� ZN
1 Þ: (44)

The contributions from the photon–pion couplings, includ-

ing the pion rainbow diagram [Fig. 1(d)], the Kroll-

Ruderman term [Fig. 1(e)], and the pion bubble diagram

[Fig. 1(g)], are given for the proton and neutron by

M
ðpÞ
� ¼ 2ð1� Z�

1 Þ þ 2ð1� ZKR
1 Þ þ ð1� Z�bub

1 Þ; (45a)

M
ðnÞ
� ¼ �2ð1� Z�

1 Þ � 2ð1� ZKR
1 Þ � ð1� Z�bub

1 Þ: (45b)

Using Eq. (44), the pion cloud contributions to the

isoscalar (sum of proton and neutron) moments from cou-

pling involving nucleons cancel,

M
ðpþnÞ
N ¼ 1; (46)

leaving the charge of the nucleon (or valence quark num-

ber) unrenormalized from that given by the bare coupling,

Fig. 1(a). Similarly, the contributions to the isoscalar mo-

ments involving direct coupling to pions add to zero, as

required by charge conservation,

M
ðpþnÞ
� ¼ 0: (47)

Note that these results, Eqs. (46) and (47), are true to all

orders in the pion mass, not just for the LNA parts that were

discussed in Refs. [17,18,48], and to which we turn to in

the next section.

B. LNA behavior of isovector moments

The LNA contributions from the nucleon coupling dia-

grams to the proton and neutron moments are given by

M
ðpÞ
N !LNA1� ð3g2A þ 1Þ

2ð4�f�Þ2
m2

� logm2
�; (48a)

M
ðnÞ
N !

LNA ð3g2A þ 1Þ
2ð4�f�Þ2

m2
� logm2

�: (48b)

Taking the difference between the proton and neutron

moments, the isovector contribution then becomes

M
ðp�nÞ
N !LNA1� ð3g2A þ 1Þ

ð4�f�Þ2
m2

� logm2
�; (49)

which agrees with the results obtained in heavy baryon

chiral perturbation theory [17,18].

Similarly, the LNA contributions from the pion coupling

diagrams to the proton and neutron moments are given by

M
ðpÞ
� !LNA ð3g2A þ 1Þ

2ð4�f�Þ2
m2

� logm2
�; (50a)

M
ðnÞ
� !LNA � ð3g2A þ 1Þ

2ð4�f�Þ2
m2

� logm2
�; (50b)

so that the isovector contribution can be written

M
ðp�nÞ
� !LNA ð3g2A þ 1Þ

ð4�f�Þ2
m2

� logm2
�: (51)

The pion coupling contributions to the moment therefore

cancel those of the nucleon coupling in Eq. (49), such that

the total lowest moment of the PDF is not affected by pion

loop corrections.

The analysis is more straightforward for the PS theory,

where neither tadpoles, bubbles nor KR terms are present,

and LNA behavior of the nucleon and pion coupling con-

tributions to the isovector moments is given by

~Mðp�nÞ
N !LNA1� 4g2A

ð4�f�Þ2
m2

� logm2
�; (52a)

~Mðp�nÞ
� !LNA 4g2A

ð4�f�Þ2
m2

� logm2
�: (52b)

This agrees with the results obtained in Ref. [39] using the

light-cone momentum distributions computed for the

Sullivan process in the PS theory [22,38]. As observed

in Ref. [17], the PV and PS results agree in the limit as

gA ! 1, although they clearly differ in the general case

for gA � 1.
For higher moments, n > 1, the pion coupling contribu-

tions will be suppressed by additional powers ofm2
�, while

the LNA behavior of the nucleon coupling diagrams re-

mains 
m2
� logm2

� [17,18,48]. Cancellation will therefore

not occur between the nucleon and pion coupling contri-

butions for these moments, so that the shape of underlying

PDFs will in general be modified by the presence of pion

loops. We have verified that our LNA results agree with

those presented in Ref. [47]. Further details of the pion

light-cone momentum distribution fiðyÞ are discussed

in Ref. [16], and an analysis of their phenomenological
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consequences will be presented in a forthcoming

publication [37].

V. CONCLUSION

In this work we have presented a detailed analysis of

pion cloud corrections to the electromagnetic coupling of

the nucleon, using the lowest order effective Lagrangian

constrained by the chiral symmetry of QCD. We have

computed the complete set of vertex corrections arising

from the various one-loop diagrams, including rainbow

diagrams with pion and nucleon coupling, Kroll-

Ruderman contributions, and tadpole and bubble diagrams

associated with �N contact interactions.

Explicit evaluation of the vertex renormalization factors

allowed us to directly verify relations between the nucleon

and pion coupling diagrams, and demonstrate the consis-

tency of the theory with electromagnetic gauge invariance.

The KR terms in particular are essential for ensuring gauge

invariance to all orders in the pion mass, even though these

do not contribute to the leading nonanalytic behavior of the

vertex factors. We have also shown that the sum of the pion

tadpole and bubble diagrams vanishes.

We have examined the chiral expansion of all the

vertex corrections as a function of the pion mass m�,

computing the coefficients of the nonanalytic terms up to

and including order m4
� logm�. The LNA terms agree

with earlier calculations in heavy baryon chiral perturba-

tion theory [17,18], although our formulation is relativis-

tic and allows for higher order corrections in m�=M.

Comparison of the results for the pseudoscalar �N theory

reveals the origin of the longstanding discrepancy be-

tween the LNA behavior in the chiral effective theory

and in approaches based on the Sullivan process

[22,38,44,45] which use a �5 coupling.

To study the behavior of the total vertex corrections,

rather than just their longest-range LNA contributions, we

have computed the vertex renormalization factors numeri-

cally as a function of the transverse momentum cutoff used

to regularize the integrals. The pion and nucleon rainbow

corrections give positive contributions to the vertex renor-

malization factor (1� Z1) for the range of cutoffs consid-

ered here (� � 1 GeV), while the contribution from the

KR diagram is negative. The overall magnitude of the

vertex correction is ð1� ZN
1 Þ ¼ ð1� Z�

1 Þ þ ð1� ZKR
1 Þ �

15% for � ¼ 0:5 GeV and � 25% for � ¼ 1 GeV. The
tadpole and bubble contributions range up to � 30% for

� ¼ 1 GeV. Although a transverse momentum cutoff

breaks the Lorentz invariance of the �N theory, for the

purposes of the present study it is sufficient to illustrate the

relative contributions of the various pion loop diagrams.

For a more quantitative analysis, for example, of the cor-

rections to the �d� �u PDF difference, a covariant regulari-

zation scheme can be used [37].

Finally, using the results for the vertex and wave func-

tion renormalization constants we computed the pion loop

corrections to the matrix elements of twist-2 operators for

the proton and neutron, which in the operator product

expansion are related to moments of parton distribution

functions. For the lowest moment, we demonstrated ex-

plicitly that the pion loop corrections cancel for the iso-

scalar combination of moments for the nucleon and pion

couplings separately. The isovector moments, on the other

hand, were found to have the characteristic m2
� logm2

�

leading dependence for both the nucleon and pion coupling

diagrams (with the sum of course canceling, as required by

charge conservation). Again, comparison of the PVand PS

results for the moments enabled us to clearly identify the

source of the difference between the coefficients of the

LNA terms in the two theories. While the PV theory is

clearly preferred by considerations of chiral symmetry, the

explicit demonstration that the PS theory can be made

consistent in this context with the introduction of a scalar

� field remains an interesting challenge.

The results derived here can be used in the future to

investigate the nonanalytic behavior of the nucleon

PDFs, particularly the extrapolation of calculations in

lattice QCD performed at unphysically large quark

masses [49,50] to the physical region. Our findings

will also pave the way for phenomenological studies,

especially the quest for a consistent interpretation of the

physics of the pion cloud at the parton level, enabling

deeper studies of the origin of the �d� �u asymmetry [16].

In addition, this work will also guide investigation of the

very important asymmetry between the s and �s distribu-

tions, with its connection to the five-quark component of

the nucleon wave function, as well as the spin-flavor

asymmetry ��u� � �d between the polarized �u and �d
distributions.
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APPENDIX A: FEYNMAN RULES

For convenience we summarize in this appendix the

complete set of Feynman rules derived from the PV

LagrangianL��N in Eq. (3), needed to compute the vertex

renormalization and wave function corrections from pion

loops. The conventions throughout this work denote the

nucleon momentum by p� and the pion momentum by k�,
with e the electric charge on the electron. Isospin couplings
that are not listed are identically zero.
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APPENDIX B: GAUGE INVARIANCE

In this section we demonstrate explicitly that the elec-

tromagnetic coupling to the nucleon dressed by pions,

illustrated in Fig. 7, is gauge invariant, for both the PV

and PS pion-nucleon theories.

For the �0pp coupling the current derived from the PV

Lagrangian in Eq. (3) is a sum of the three contributions in

Figs. 7(a)–7(c),

J
�

ð�0Þ ¼
g2A
4f2�

Z d4k

ð2�Þ4 ½J
�
wfðLÞ þ J

�
wfðRÞ þ J

�
N�; (B1)

where

J
�
wfðLÞ ¼ �uðpþ qÞ6k�5

i

6pþ 6q� 6k�M
�56k

i

6pþ 6q�M

� ð�ie��ÞuðpÞ i

D�ðkÞ
; (B2a)

J
�
wfðRÞ ¼ �uðpþ qÞð�ie��Þ i

6p�M
6k�5

i

6p� 6k�M

� �56kuðpÞ
i

D�ðkÞ
; (B2b)

represent the ‘‘wave function renormalization’’ diagrams

in Figs. 7(a) and 7(b), and

J
�
N ¼ �uðpþ qÞ6k�5

i

6pþ 6q� 6k�M
ð�ie��Þ

� i

6p� 6k�M
�56kuðpÞ

i

D�ðkÞ
(B3)

corresponds to the rainbow diagram with coupling to the

proton in Fig. 7(c). Here the electromagnetic current op-

erator brings in a finite momentum q to the proton.

Contracting the currents with the photon four-vector q�
and using the Dirac equation ð6p�MÞuðpÞ ¼ 0, one finds

q�J
�
wfðLÞ ¼ e �uðpþ qÞ�56k

1

6pþ 6q� 6k�M
�5 6kuðpÞ

1

D�ðkÞ
;

(B4a)

q�J
�
wfðRÞ ¼�e �uðpþ qÞ�5 6k

1

6p� 6k�M
�5 6kuðpÞ

1

D�ðkÞ
;

(B4b)

and

q�J
�
N ¼ e �uðpþ qÞ�5 6k

�
1

6p� 6k�M
� 1

6pþ 6q� 6k�M

�

� �5 6kuðpÞ
1

D�ðkÞ
¼ �q�J

�
wfðLÞ � q�J

�
wfðRÞ; (B4c)

where we have used 6q ¼ ð6pþ 6q�MÞ � ð6p�MÞ
and 6q ¼ ð6pþ 6q� 6k�MÞ � ð6p� 6k�MÞ to simplify

Eqs. (B4b) and (B4c), respectively. The sum of the three

contributions then gives the required result,

q�J
�

ð�0Þ ¼ 0: (B5)

For the �þnp coupling the current has seven contribu-

tions, including the wave function renormalization dia-

grams in Figs. 7(a) and 7(b), the �þ rainbow diagram in

Fig. 7(d), the Kroll-Ruderman contributions in Figs. 7(e)

and 7(f), and the �þ tadpoles and bubbles in Figs. 7(g)

and 7(h),

J
�

ð�þÞ ¼
Z d4k

ð2�Þ4
�
g2A
2f2�

½J �
wfðLÞ þ J

�
wfðRÞ þ J

�
� þ J

�
KRðLÞ

þ J
�
KRðRÞ� þ

1

4f2�
½J �

Ntad þ J
�
�bub�

�

: (B6)

The current for the �þ rainbow is given by

J
�
� ¼ �uðpþ qÞð6kþ 6qÞ�5

i

6p� 6k�M
�5 6kuðpÞ

� i

D�ðkþ qÞ ð�ieÞð2k� þ q�Þ i

D�ðkÞ
; (B7)

p p+q

k

(f)
p p+q

k

(e)

(a)

(g)

p p+q

k

p+q

k k+q

p

(c)

p p+q

k

p

k k+q

p+q

k

p+qp p

k

p+q

(h)

(d)

(b)

FIG. 7. Coupling of an electromagnetic current to a proton

(with momentum p) dressed by a pion (with momentum k):
(a), (b) wave function renormalization diagrams, (c) rainbow

diagram with coupling to the proton, (d) rainbow diagram with

coupling to the �þ, (e), (f) Kroll-Ruderman diagrams,

(g) tadpole diagram with coupling to the ��pp vertex,

(h) bubble diagram with coupling to the pion. The current brings

in a momentum q.
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while the Kroll-Ruderman currents are

J
�
KRðLÞ ¼ �uðpþ qÞ6k�5

i

6pþ 6q� 6k�M
ð�e�5�

�ÞuðpÞ i

D�ðkÞ
; (B8a)

J
�
KRðRÞ ¼ �uðpþ qÞðe�5�

�Þ i

6p� 6k�M
�56kuðpÞ

i

D�ðkÞ
: (B8b)

Finally, for the pion tadpole and bubble diagrams the two currents are given by

J
�
Ntad ¼ �i �uðpþ qÞð26kþ 6qÞuðpÞð�ieÞð2k� þ q�Þ i

D�ðkÞ
i

D�ðkþ qÞ ; (B9a)

J
�
�bub ¼ 2i �uðpþ qÞe��uðpÞ i

D�ðkÞ
; (B9b)

respectively. Note that diagrams involving a pion tadpole with the photon coupling to a proton in the initial or final state

directly involve loop integrations with an odd number of factors k in the integrand [see Eq. (A8)] and therefore vanish

identically.

Contracting the �þ currents with the photon momentum q�, one has

q�J
�
� ¼ e �uðpþ qÞ�5ð6kþ 6qÞ 1

6p� 6k�M
�5 6kuðpÞ

�
1

D�ðkÞ
� 1

D�ðkþ qÞ

�

; (B10a)

q�J
�
KRðLÞ ¼ �e �uðpþ qÞ�5 6k

1

6pþ 6q� 6k�M
�5 6quðpÞ

1

D�ðkÞ
; (B10b)

q�J
�
KRðRÞ ¼ �e �uðpþ qÞ�5 6q

1

6p� 6k�M
�56kuðpÞ

1

D�ðkÞ
: (B10c)

Adding the wave function renormalization contributions in Eqs. (B4a) and (B4b), one can verify, after some tedious but

straightforward manipulations, that

q�J
�

ð�þÞ ¼ 0: (B11)

Note that the inclusion of the KR contributions is vital to cancel the contributions from the �þ current with the PV

coupling, without which the theory would not be gauge invariant. The tadpole and bubble contributions are each

independently gauge invariant, as can be seen from the contractions

q�J
�
Ntad ¼ e �uðpþ qÞð26kþ 6qÞuðpÞ

�
1

D�ðkÞ
� 1

D�ðkþ qÞ

�

¼ 0; (B12a)

q�J
�
�bub ¼ �2e �uðpþ qÞ6quðpÞ i

D�ðkÞ
¼ 0; (B12b)

where the first expression can be verified by changing variables 6k0 ¼ 6kþ 6q ! 6k, and the second vanishes because of the

Dirac equation. The same of course holds true also for a neutron initial state.

For the PS coupling, only the diagrams in Figs. 7(a)–7(d) are present. As in the PV case, for the �0pp coupling the

current in the PS theory has three contributions from Figs. 7(a)–7(c),

~J
�

ð�0Þ ¼ g2�NN

Z d4k

ð2�Þ4 ½
~J
�
wfðLÞ þ ~J

�
wfðRÞ þ ~J

�
N�; (B13)

where

~J
�
wfðLÞ ¼ �uðpþ qÞi�5

i

6pþ 6q� 6k�M
i�5

i

6pþ 6q�M
ð�ie��ÞuðpÞ i

D�ðkÞ
; (B14a)

~J
�
wfðRÞ ¼ �uðpþ qÞð�ie��Þ i

6p�M
i�5

i

6p� 6k�M
i�5uðpÞ

i

D�ðkÞ
; (B14b)

~J �
N ¼ �uðpþ qÞi�5

i

6pþ 6q� 6k�M
ð�ie��Þ i

6p� 6k�M
i�5uðpÞ

i

D�ðkÞ
: (B14c)

Contracting the currents (B14) with q� and again using the Dirac equation, one finds
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q� ~J �
wfðLÞ ¼ e �uðpþ qÞ�5

1

6pþ 6q� 6k�M
�5uðpÞ

1

D�ðkÞ
; (B15a)

q� ~J
�
wfðRÞ ¼ �e �uðpþ qÞ�5

1

6p� 6k�M
�5uðpÞ

1

D�ðkÞ
; (B15b)

q� ~J �
N ¼ e �uðpþ qÞ�5

�
1

6p� 6k�M
� 1

6pþ 6q� 6k�M

�

�5uðpÞ
1

D�ðkÞ
: (B15c)

From Eqs. (B15) it is evident that

q� ~J
�
N ¼ �q� ~J

�
wfðLÞ � q� ~J

�
wfðRÞ; (B16)

so that gauge invariance is satisfied explicitly for the proton

dressed by a neutral �0 with PS coupling,

q�~J
�

ð�0Þ ¼ 0: (B17)

Similarly for the PS �þnp coupling, the current is given

by the three contributions in Figs. 7(a), 7(b), and 7(d),

~J
�

ð�þÞ ¼ 2g2�NN

Z d4k

ð2�Þ4 ½
~J
�
wfðLÞ þ ~J

�
wfðRÞ þ ~J

�
��;

(B18)

where

~J �
� ¼ �uðpþ qÞi�5

i

6p� 6k�M
i�5uðpÞ

� i

D�ðkþ qÞ ð�ieÞð2k� þ q�Þ i

D�ðkÞ
: (B19)

The contraction of q� with ~J
�
� gives

q� ~J �
� ¼ e �uðpþ qÞ�5

i

6p� 6k�M
�5

�
�

1

D�ðkÞ
� 1

D�ðkþ qÞ

�

; (B20)

where the first term in the parentheses cancels with q� ~J
�
wfðRÞ

in Eq. (B15b), and the second cancels with q� ~J
�
wfðLÞ in

(B15a) after changing variables 6k0¼6kþ6q!6k. Therefore
gauge invariance is explicitly verified also for the �þ with

PS coupling,

q�~J
�

ð�þÞ ¼ 0: (B21)

Note that since these results are obtained at the operator level,

they are independent of the particular renormaliation scheme

chosen to regulate the integrals.

APPENDIX C: WARD-TAKAHASHI IDENTITY

In this section we demonstrate the consistency of the

vertex corrections and wave function renormalization with

the Ward-Takahashi identity. To begin with, we consider

the nucleon self-energy operator, which can in general be

written in terms of the vector and scalar components as

�̂ðpÞ ¼ �v 6pþ �s: (C1)

Evaluating the matrix element of the self-energy operator

between on-shell nucleon states gives

� ¼ 1

2

X

s

�uðp; sÞ�̂ðpÞuðp; sÞ ¼ M�v þ �s; (C2)

where the sum is taken over the spin polarizations

s ¼ �1=2 of the nucleon. The self-energy modifies the

pole of the nucleon propagator according to

1

6p�M� �̂ðpÞ
¼ Z2

6p�M� �M
; (C3)

where Z2 is the wave function renormalization constant,

Z2 ¼
1

1��v

; (C4)

and the mass shift �M is given by

�M ¼ Z2�: (C5)

Alternatively, using Eqs. (C4) and (C5) one can express

the vector and scalar components of the self-energy as

�v ¼ �ðZ�1
2 � 1Þ; (C6)

�s ¼ ðZ�1
2 � 1ÞMþ Z�1

2 �M: (C7)

From Eqs. (C1) and (C6) one observes that the nucleon

wave function renormalization Z2 is related to the deriva-

tive of the nucleon self-energy operator by

ðZ2 � 1Þ�� ¼ @�̂ðpÞ
@p�

: (C8)

On the other hand, from Eq. (6) in Sec. III the vertex

renormalization constant Z1 is defined in terms of the

matrix element of the vertex correction �� by

ðZ�1
1 � 1Þ �uðpÞ��uðpÞ ¼ �uðpÞ��uðpÞ: (C9)

The Ward-Takahashi identity relates the vertex operator

�� to the p� derivative of the self-energy operator �̂,

which can be expressed as the equality of the vertex and

wave function renormalization factors, Z1 ¼ Z2.

To demonstrate that this relation is explicitly satisfied by

the PV pion-nucleon theory defined by Eqs. (1) and (3),

recall that the self-energy for a nucleon dressed by a pion

loop is given by [14]

ANATOMY OF RELATIVISTIC PION LOOP CORRECTIONS . . . PHYSICAL REVIEW D 88, 076005 (2013)

076005-15



�̂ðpÞ ¼ 3i

�
gA
2f�

�
2Z d4k

ð2�Þ4 ð6k�5Þ
ið6p� 6kþMÞ
DNðp� kÞ ð�5 6kÞ

i

D�ðkÞ
;

(C10)

where DNðp� kÞ ¼ ðp� kÞ2 �M2 þ i" and D�ðkÞ ¼
k2 �m2

� þ i". Differentiating the nucleon propagator

with respect to the nucleon momentum, which is equiva-

lent to the insertion of a zero energy photon,

@

@p�

1

6p� 6k�M
¼ � 1

6p� 6k�M
�� 1

6p� 6k�M
; (C11)

leads to

�@�̂ðpÞ
@p�

¼ 3

�
gA
2f�

�
2 Z d4k

ð2�Þ4 ð6k�5Þ
ið6p� 6kþMÞ
DNðp� kÞ

� �� ið6p� 6kþMÞ
DNðp� kÞ ð�5 6kÞ

i

D�ðkÞ
: (C12)

Comparing the right-hand side of (C12) with the expres-

sion for �� in Eq. (8), one can then identify

3��
p ¼ �@�̂ðpÞ

@p�

: (C13)

Now, changing variables k ! p� k in Eq. (C10) enables

the self-energy to be written equivalently as

�̂ðpÞ ¼ 3i

�
gA
2f�

�
2 Z d4k

ð2�Þ4 ð6p� 6kÞ

� �5

ið6kþMÞ
DNðkÞ

�5ð6p� 6kÞ i

D�ðp� kÞ ; (C14)

which when differentiated with respect to p� gives rise to

three terms,

�@�̂ðpÞ
@p�

¼ 3

�
gA
2f�

�
2 Z d4k

ð2�Þ4
�

2ðp� kÞ�ð6p� 6kÞ�5

ið6kþMÞ
DNðkÞ

�5ð6p� 6kÞ
�

i

D�ðp� kÞ

�
2

� i���5

ið6kþMÞ
DNðkÞ

�5ð6p� 6kÞ i

D�ðp� kÞ � ð6p� 6kÞ�5

ið6kþMÞ
DNðkÞ

i�5�
� i

D�ðp� kÞ

�

: (C15a)

Changing variables k ! p� k once again then gives

3
1

2

�

�
�

�þ þ�
�

KR;�þ

�

¼ �@�̂ðpÞ
@p�

: (C15b)

Since the expressions for �̂ðpÞ in Eqs. (C10) and (C14) are
equivalent, this implies that the electromagnetic operators

are related by

�
�
p ¼ 1

2
ð��

�þ þ�
�

KR;�þÞ: (C16)

Taking matrix elements of both sides of Eq. (C16) between

proton states, one arrives at the relation

ð1� Zp
1 Þ ¼

1

2
ð1� Z�þ

1 Þ þ 1

2
ð1� ZKR;�þ

1 Þ; (C17)

or, in terms of the ‘‘isoscalar’’ vertex factors defined in

Sec. III, the desired expression ð1� ZN
1 Þ ¼ ð1� Z�

1 Þ þ
ð1� ZKR

1 Þ as in Eq. (24).

The proof for the PS case follows similarly, and is in fact

more straightforward since the KR terms are absent in

this case. One can also check the validity of the Ward-

Takahashi identity by performing the integrations explic-

itly, and comparing the integrated expressions for the

vertex renormalization factors.

APPENDIX D: NONANALYTIC BEHAVIOR

OF INTEGRALS

In this appendix we summarize some useful results for

the integrals appearing in the expressions for the vertex

corrections in Sec. III and the self-energies Appendix C,

using dimensional regularization to render ultraviolet di-

vergent integrals finite. Expanding the results in powers of

m�, we also provide explicit expressions for their non-

analytic behavior in the chiral limit.

For the integrals involving only the pion propagator

(1=D�),

Z

d4k
1

D�

¼ i�2m2
�

�
1

"
þ 1� �� log�� log

m2
�

�2
þOð"Þ

�

!NA � i�2m2
� logm2

�; (D1)

Z

d4k
1

D2
�

¼ i�2

�
1

"
� �� log�� log

m2
�

�2
þOð"Þ

�

!NA � i�2 logm2
�: (D2)

The expressions in Eqs. (D1) and (D2) can also be related using
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@

@m2
�

Z

d4k
1

D�

¼
Z

d4k
1

D2
�

: (D3)

Note that there are no higher order contributions in m� for either of these integrals. The corresponding integrals involving

only the nucleon propagator (1=DN), on the other hand, do not have nonanalytic contributions,

Z

d4k
1

DN

¼ i�2M2

�
1

"
þ 1� �� log�� log

M2

�2
þOð"Þ� !NA0; (D4)

Z

d4k
1

D2
N

¼ i�2

�
1

"
� �� log�� log

M2

�2
þOð"Þ

�

!NA0: (D5)

For the integral of one pion propagator and one nucleon propagator, one has

Z

d4k
1

D�DN

¼ i�2

�
1

"
þ 2� �� log�� log

M2

�2
� m2

�

2M2
log

m2
�

M2
�m�r

M2

�

tan�1 m�

r
þ tan�1 2M

2 �m2
�

m�r

��

!NA � i�2

2M2
½m2

� logm2
� þ 2�Mm� þOðm3

�Þ�; (D6)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 �m2
�

p

. Note that this term is responsible for the leadingOðm3
�Þ behavior of the nucleon self-energy [14].

Finally, for integrals involving one pion and two nucleon propagators, or one nucleon and two pion propagators, the

additional powers of the loop momentum render the results finite,
Z

d4k
1

D2
�DN

¼ �i�2 1

M2

�
1

2
log

m2
�

M2
�m2

� � 2M2

m�r

�

tan�1 m�

r
þ tan�1 2M
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The expressions in Eqs. (D6) and (D7) can also be related using

@
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