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We show that, within the quasiparticle random phase approximation (QRPA) and the renormalized QRPA
(RQRPA) based on the Bonn-CD nucleon-nucleon interaction, the competition between the pairing and the
neutron-proton particle-particle and particle-hole interactions causes contributions to the neutrinoless double-beta
decay matrix element to nearly vanish at internucleon distances of more than 2 or 3 fermis. As a result, the matrix
element is more sensitive to short-range/high-momentum physics than one naively expects. We analyze various
ways of treating that physics and quantify the uncertainty it produces in the matrix elements, with three different
treatments of short-range correlations.
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I. INTRODUCTION

Neutrino oscillations are firmly established (see, e.g., [1–5])
and demonstrate that neutrinos have masses many orders of
magnitude smaller than those of charged leptons. But since
the masses are nonzero, neutrinoless double-beta (0νββ) decay
experiments will likely tell us sooner or later whether neutrinos
are Majorana or Dirac particles [6–10]. Moreover, the rate of
the 0νββ decay, or limits on it, can tell us about the absolute
neutrino-mass scale and to some extent about the neutrino mass
hierarchy.1 But to achieve these goals we need an accurate
evaluation of the nuclear matrix elements that govern the
decay.

In this paper, which builds on previous publications [13,14]
(which we call I and II), we analyze some of the physics
affecting the nuclear matrix element M0ν—the competition
between pairing and neutron-proton particle-particle corre-
lations, the nonintuitive dependence of the decay amplitude
on internucleon distance, and the treatment of short-range
correlations and other high-momentum phenomena—that have
not been sufficiently discussed before. As in our earlier
papers (and most attempts to evaluate M0ν) we use the
quasiparticle random phase approximation (QRPA) and its
generalization, the renormalized QRPA (RQRPA), with an
interaction obtained from the G matrix associated with the
realistic Bonn-CD nucleon-nucleon interaction. That interac-
tion, slightly renormalized, is used both as the like particle
pairing and as the neutron-proton force. Where appropriate, we
compare the results to those of the complementary large-scale
shell model (LSSM).

The paper is organized as follows. In the next section,
after briefly summarizing the relevant formalism, we show
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1Reference [11] discusses the goals and future direction of the field.
Reference [12] discusses issues particularly relevant for the program
of 0νββ decay search.

that the final value of M0ν reflects two competing forces:
the like particle pairing interaction that leads to the smearing
of Fermi levels and the residual neutron-proton interaction
that, through ground state correlations, admixes “broken-pair”
(higher-seniority) states. A partial cancellation between these
interactions increases the sensitivity to their strengths. The
same tendencies are present in the LSSM, as a recent paper
shows [15]. (During the processing of this manuscript, a
new paper on the LSSM appeared [16], emphasizing the
competition again.) In Sec. III we discuss the dependence
of M0ν on the distance between the two neutrons that are
converted into two protons. We show that the competition
mentioned above implies that only internucleon distances
rij <∼ 2–3 fm contribute. That fact, not recognized before,
explains the sensitivity of the decay rate to higher order
terms in nucleon currents, nucleon form factors, and short-
range nucleon-nucleon repulsion. We show that the surprising
dependence on the internucleon distance occurs not only in
the QRPA but also in an exactly solvable model [17] that
contains many ingredients of real nuclear systems. Short-range
correlations have recently inspired a lively discussion [19–21]
and we devote Sec. IV to various ways of treating them. In
Sec. V we present numerical results for nuclei of experimental
interest, that include a comprehensive analysis, within the
QRPA method and its generalization, of the total uncertainty
of the 0νββ nuclear matrix elements, and compare with
results of the LSSM. Section VI summarizes our findings.
Finally, in Appendix A we present formulas for two ways
of evaluating the matrix elements, one via the evaluation
of unsymmetrized two-body matrix elements (the procedure
usually used) and another one through the product of two
one-body matrix elements. And in Appendix B we show how
to calculate shell-model particle-hole decompositions so they
can be compared with those calculated in the QRPA.

II. FORMALISM AND MULTIPOLE DECOMPOSITIONS

Throughout we assume that the 0νββ decay, if observed, is
caused by the exchange of the Majorana neutrinos, the same
particles observed to oscillate. The half-life of the decay is
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ŠIMKOVIC, FAESSLER, RODIN, VOGEL, AND ENGEL PHYSICAL REVIEW C 77, 045503 (2008)

then

1

T1/2
= G0ν(E0, Z)|M0ν |2|〈mββ〉|2, (1)

where G0ν(E0, Z) is a precisely calculable phase-space factor
and M0ν is the nuclear matrix element. The effective Majorana
neutrino mass 〈mββ〉 is related to the absolute mass scale and
oscillation parameters through

〈mββ〉 =
N∑
i

|Uei |2eiαi mi, (all mi � 0), (2)

where Uei is the first row of the neutrino mixing matrix and
the αi are unknown Majorana phases. Any uncertainty in M0ν

makes the value of 〈mββ〉 equally uncertain.
As stated above, we use the QRPA and RQRPA methods

based on the G matrix derived from the realistic Bonn-CD
nucleon-nucleon force, i.e., the many body Hamiltonian is

H =
A∑

i=1

p2
i

2mp

+ 1

2

A∑
i,j=1

VG-matrix(i, j ). (3)

We describe in detail in Sec. V below the input used to solve
the corresponding well-known equations of motion.

In the QRPA (and RQRPA) M0ν is written as a sum over the
virtual intermediate states, labeled by their angular momentum
and parity Jπ and indices ki and kf (explanations of the
notation are in Appendix A, and in Ref. II):

MK =
∑

Jπ ,ki ,kf ,J

∑
pnp′n′

(−1)jn+jp′+J+J √
2J + 1

{
jp jn J

jn′ jp′ J

}

×〈p(1), p′(2);J ‖f̄ (r12)OKf̄ (r12)‖n(1), n′(2);J 〉
× 〈0+

f ||[ ˜c+
p′ c̃n′ ]J ||Jπkf 〉〈Jπkf |Jπki〉

× 〈Jπki ||[c+
p c̃n]J ||0+

i 〉. (4)

The operators OK,K = Fermi (F), Gamow-Teller (GT), and
Tensor (T) contain neutrino potentials and spin and isospin
operators, and RPA energies E

ki,kf

J π . The neutrino potentials, in
turn, are integrals over the exchanged momentum q,

HK

(
r12, E

k
Jπ

)
= 2

πg2
A

R

∫ ∞

0
fK (qr12)

hK (q2)qdq

q + Ek
Jπ − (Ei + Ef )/2

. (5)

The functions fF,GT(qr12) = j0(qr12) and fT (qr12) = j2(qr12)
are spherical Bessel functions (the sign of j2 was given
incorrectly in Ref. [14]). The functions hK (q2) are defined
in Appendix A and in Ref.II. The potentials depend explicitly,
though rather weakly, on the energies of the virtual intermedi-
ate states, Ek

Jπ . The function f̄ (r12) in Eq. (4) represents the
effects of short-range correlations. These will be discussed in
detail in Sec. IV.

Two separate multipole decompositions are built into
Eq. (4). One, already mentioned, is in terms the Jπ of the
virtual states in the intermediate nucleus, the good quantum
numbers of the QRPA and RQRPA. The other decomposition
is based on the angular momenta and parities J π of the pairs
of neutrons that are transformed into protons with the same

J π (we drop the superscript π from now on for convenience).
This latter representation is particularly revealing. In Fig. 1
we illustrate it both in the LSSM and QRPA, with the same
single particle-spaces in each. These two rather different
approaches agree in a semiquantitative way, but the LSSM
entries for J > 0 are systematically smaller in absolute
value.

Reference [15] makes the claim that QRPA results are too
large because they omit configurations with seniority greater
than 4, which are especially effective in canceling the pairing
part of the matrix element. This statement is not correct. The
QRPA does include configurations with higher seniority (4, 8,
12, etc.) and, as Fig. 1 shows, the broken pair contributions
to the matrix elements are as large or larger than in the
LSSM. (Some of the difference might be due to differences in
single-particle energies and occupation numbers, which are not
identical in the two calculations even though the single-particle

FIG. 1. Contributions of different angular momenta J associated
with the two decaying neutrons to the Gamow-Teller part of M0ν

in 82Se (upper panel) and 130Te (lower panel). The results of LSSM
(dark histogram) [23] and QRPA treatments (lighter histogram) are
compared. Both calculations use the same single-particle spaces:
(f5/2, p3/2, p1/2, g9/2) for 82Se and (g7/2, d5/2, d3/2, s1/2, h11/2) for
130Te. In the QRPA calculation the particle-particle interaction was
adjusted to reproduce the experimental 2νββ-decay rate.
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FIG. 2. Contributions of different angular momenta J associated
with the two decaying neutrons to M0ν in 76Ge, 100Mo and 130Te. We
use the QRPA, with the interaction strength gpp adjusted so that the
2νββ lifetime is correctly reproduced. Short-range correlations are
included the same way as in I and II.

wave functions are.) The reasons that the QRPA results
presented in Sec. V are larger are a somewhat greater pairing
contribution and contributions from negative parity multipoles
that reinforce it. Most of the negative-parity contributions are
absent from the shell model because of restrictions on the
model space. These results suggest that the shell model is as
likely to be missing important physics as is the QRPA. We
return to this point in Sec. V.

In Fig. 2 we show the J decomposition for three nuclei in
the QRPA, with single-particle spaces encompassing two ma-
jor shells, a more natural span for this method. The cancellation
between components with J = 0 pairs and with J �= 0 pairs
is always pronounced. The net M0ν is considerably smaller
than the pairing contribution and so depends rather sensitively
on the pairing physics that determines the J = 0 part, as well
as on the strength of the proton-neutron force that determines
the J �= 0 part.

From the structure of Eq. (4) and in particular from the
form of the reduced matrix elements 〈0+

f ||[ ˜c+
p′ c̃n′ ]J ||Jπkf 〉

and 〈Jπki ||[c+
p c̃n]J ||0+

i 〉 it is obvious that only one of the
two possible couplings between the neutron and proton
operators in the two-body matrix element 〈p(1), p′(2);
J ‖f̄ (r12)OKf̄ (r12)‖n(1), n′(2); J 〉 is realized. This means
that this two-body matrix element should not be antisym-
metrized. In the LSSM one typically uses the closure approx-
imation, which represents M0ν as the ground-state-to-ground-
state transition matrix element of a two-body operator. M0ν can
then be rewritten purely in terms of the antisymmetrized two-
body matrix elements. After antisymmetrization, however, it is
not possible to recover the decomposition into the multipoles
Jπ of the virtual intermediate states. In Appendix B we show
how shell-model practitioners, by retaining unsymmetrized
matrix elements, can decompose the matrix element into
intermediate-state multipoles Jπ for comparison with QRPA
calculations. We cannot, however, make the comparison here
without more shell-model data than has been published.

FIG. 3. The contributions of different intermediate-state angular
momenta J to M0ν in 100Mo (positive parities in the upper panel and
negative parities in the lower one). We show the results for several
values of gpp . The contribution of the 1+ multipole changes rapidly
with gpp , while those of the other multipoles change slowly.

When using the QRPA or RQRPA to evaluate M0ν , one
must fix several important parameters, the effects of which
were discussed in detail in I and II. The strength gpp by which
we renormalize the Bonn-CD G matrix in the neutron-proton
particle-particle channel is particularly important. We argued
in I and II that gpp should be chosen to reproduce the
rate of two-neutrino ββ decay. This choice, among other
things, essentially removes the dependence of M0ν on the
number of the single-particle states (or oscillator shells) in
the calculations. The 2ν matrix element depends only on the
1+ multipole. In Fig. 3 we show that it is essentially this
multipole that is responsible for the rapid variation of M0ν with
gpp. Fixing its contribution to a related observable (2ν decay)
involving the same initial and final nuclear states appears to
be an optimal procedure for determining gpp.

III. DEPENDENCE ON THE DISTANCE BETWEEN THE
NUCLEONS INVOLVED IN THE 0νββ TRANSITION.

The operators OK in Eq. (4) depend on the distance
r12 between the two neutrons that are transformed into
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protons. The corresponding neutrino potentials are the Fourier
transforms over the neutrino momentum q as shown in Eq. (5).
Obviously, the range of r12 is restricted from above by
r12 � 2Rnucl. We show here, however, that in reality only much
smaller values, r12 <∼ 2–3 fm, or equivalently larger values
of q, are relevant. Thus a good description of the physics
involving distances r12 ∼ 1 fm, or q ∼ 200 MeV is important.
That finding has not been recognized before, but perhaps it
should be not so surprising that q ∼ pFermi is the most relevant
momentum transfer.

An example of the r12 dependence of M0ν is shown in
Fig. 4 for three nuclei. The quantity C(r) is defined by
evaluating M0ν after multiplying HK (r ′, Ek

Jπ ) by r2δ(r − r ′),
so that C(r) is the contribution at r to M0ν , with

∫ ∞
0 C(r)dr =

M0ν . As the lower panel of the figure demonstrates, the
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FIG. 4. The dependence on r12 of M0ν for 76Ge, 100Mo, and 130Te.
The upper panel shows the full matrix element, and the lower panel
shows separately ‘pairing’ (J = 0 for the two decaying neutrons) and
‘broken pair’ (J �= 0) contributions. The integrated matrix element is
5.35 for 76Ge, 4.46 for 100Mo, and 4.09 for 130Te. The gpp values that
reproduce the known T 2ν

1/2 are 1.030, 1.096, and 0.994. The single-
particle space for 76Ge contains nine levels (oscillator shells N =
3, 4), and that for 100Mo and 130Te contains 13 levels (oscillator shells
N = 3, 4 plus the f and h orbits from N = 5). Short-range correlation
are not included, i.e., f̄ (r12) = 1 in Eq. (4).
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FIG. 5. The r12 dependence of M0ν for 76Ge, from calculations
with different number of single-particle orbits. The dot-dashed curve
was obtained with 21 s.p. subshells, the full curve with 12 subshells,
the dashed curve with nine subshells, the dotted curve with six
subshells, and the double dot-dashed curve with only four subshells.

cancellation between the J = 0 and J �= 0 components is
essentially complete for r12 >∼ 2–3 fm. Since the typical
distance from a particular nucleon to its nearest neighbor is
∼1.7 fm (because Rnucl = 1.2A1/3) the nucleons participating
in the 0νββ decay are mostly nearest neighbors. Short-range
nucleon-nucleon repulsion, the finite nucleon size, represented
by nucleon form factors, and components of the weak currents
that are typically suppressed by q/Mnucleon are therefore more
important than one would naively expect.

Perhaps the most interesting thing about the figure is that
the pairing and nonpairing parts of C(r) taken individually (as
in the two panels of the figure) extend to significantly larger r .
The cancellation between them, that we discussed earlier, is
particularly effective beyond 2 or 3 fm, leaving essentially
nothing there. Figure 5 shows that the shape of C(r), like
the integrated matrix element, is essentially independent of
the number of single-particle orbits included, as long as the
truncation is not too severe (as it is with the dash-double-dot
curve, for which important spin-orbit partners were omitted—
only the four single particle states p3/2, p1/2, f5/2, g9/2 were
included) and the coupling constant gpp is chosen to reproduce
the measured 2νββ lifetime. For other values of gpp the
cancellation between the J = 0 and J �= 0 contributions at r

larger than 2 or 3 fm is not as complete as in Fig. 4. We return
to this point shortly.

We show the r12 dependence of the different parts of the
M0ν in Fig. 6. All individual contributions die out at r larger
than 2 or 3 fm. The pseudoscalar-axial vector interference part
has opposite sign from the other contributions, and essentially
(and accidentally) cancels the contributions of the vector, weak
magnetism and pure pseudoscalar pieces. The higher-order
terms reduce the matrix element noticeably, and have to be
included.

To gain some insight into the renormalization of the double-
beta decay operator in the shell model, Ref. [17] employs a
solvable model based on the algebra SO(5) × SO(5). The
valence space contains two major shells (fpg9/2 and sdg7/2),
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FIG. 6. The r12 dependence of the contributions of various pieces
of M0ν for 76Ge are shown. Here AA stands for axial, VV for vector,
AP for axial-pseudoscalar interference, PP for pseudoscalar, and MM
for weak-magnetism. For definitions see Appendix A, or Ref. [22].
The model space contains nine subshells.

split by an energy ε, with degenerate levels within each
shell. The single-particle wave functions are taken from a
harmonic oscillator with h̄ω =9.2 MeV. The Hamiltonian (for
this schematic model only, not in the rest of the paper) is

H = εN̂2 − G

2∑
a,b=1

(
S†a

ppSb
pp + S†a

nnS
b
nn + gppS†a

pnS
b
pn

− gphT a · T b

)
, (6)

where a, b = 1, 2 label the shells (lower and upper), ε is the
energy difference between the shells, N̂2 is the number operator
for the upper shell, T a is total isospin operator for shell a, and

S†a
pp = 1

2

∑
α∈a

ĵα[π †
απ †

α]0
0,

S†a
nn = 1

2

∑
α∈a

ĵα[ν†
αν†

α]0
0, (7)

S†a
pn = 1√

2

∑
α∈a

ĵα[π †
αν†

α]0
0.

Here π †
α (ν†

α) creates a proton (neutron) in level α with angular
momentum jα, ĵ ≡ √

2j + 1, and the square brackets indicate
angular-momentum coupling. H contains only generators of
SO(5) × SO(5), so its lowest lying eigenstates consist of
configurations in which the nucleons are entirely bound in
isovector S pairs of the type in Eq. (7).

This model has no active spin, so it is only suitable
for calculating Fermi (neutrinoless) double-beta decay. To
simulate the effect of gpp on Gamow-Teller decay we change
the Fermi matrix element by varying the strength of isovector
neutron-proton pairing, in the same way that we change the
Gamow-Teller matrix element in the realistic QRPA by varying
the strength of isoscalar pairing. The advantage of this model
is that we can solve it exactly rather than in the QRPA.
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FIG. 7. The r12 dependence of M0ν in the exactly solvable model
for four values of gpp (upper panel). The integrated matrix elements
are 2.93 for gpp = 0 and 1.69 for gpp = 1. The lower panel shows
separately the contributions of J = 0 pairs and J �= 0 pairs for
gpp = 0.8.

We can use the model to test the r12-dependence of
the double-beta decay matrix element in an exact solution.
(Analytic expressions for the necessary matrix elements are in
Ref. [17].) The upper panel of Fig. 7 shows the dependence for
several values of gpp, with gph = 0 and ε = 10G. Just as in
the realistic QRPA calculations, the contribution beyond r =
3 fm is very small for gpp around 1; it is too small to distinguish
from zero in the figure beyond 5 fm for gpp = 0.8. However,
for other values, as noted above, the large-r contributions can
be substantial. The bottom panel divides the function into
like-particle pairing and nonpairing parts for gpp = 0.8. The
two cancel to high precision at large r . The suppression at
long ranges we observe in the QRPA, then, appears to be
fairly general. It happens even in a very simple model, solved
exactly. (As noted above, a new preprint [18] appeared during
the processing of this manuscript. In it the r12 dependence of
the M0ν , as well as the dependence of the separated pairing
and broken-pair contributions, was evaluated in the LSSM.
That analysis, inspired by our work, yielded curves that are
strikingly similar to those in Fig. 4.)
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IV. SHORT-RANGE CORRELATIONS AND OTHER
HIGH-MOMENTUM PHENOMENA

Since only r12 <∼ 2–3 fm, [equivalently q > h̄c/(2–3 fm)],
contributes to M0ν , some otherwise negligible effects become
important. These effects are not commonly included, or
included only in rough approximation, in nuclear-structure cal-
culations. For example, the dipole approximation for nucleon
form factors and the corresponding parameters MV and MA

come from electron and neutrino charged-current-scattering
from on-shell nucleons. Nuclear structure deals with bound
nucleons and virtual neutrinos that are far off-shell. Similarly,
the induced pseudoscalar current, with its strength obtained
from the Goldberger-Treiman relation, has been tested in muon
capture on simple systems. Here we are using this current
for off-shell virtual neutrinos. Short range nucleon-nucleon
repulsion has been considered carefully when calculating
nuclear binding energies, but here we need its effect on a
transition operator connecting two different nuclear ground
states. All these effects will introduce some uncertainty
because their treatment is not well tested. Nevertheless, it is
important to understand their size at least roughly.

To show the importance of high momenta explicitly, we
display in Fig. 8 the q dependence C(q)—defined in complete
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FIG. 8. The momentum-transfer dependence of M0ν in 76Ge. The
upper panel is for the full matrix element; in the lower panel we
separate the J = 0 and J �= 0 parts. The scale is different in the two
panels. The model space contains nine subshells.
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FIG. 9. The r12 dependence of M0ν in 76Ge evaluated in the model
space that contains nine subshells. The four curves show the effects
of different treatments of short-range correlations. The resulting M0ν

values are 5.32 when the effect of short range correlations is ignored,
5.01 when the UCOM transformation [24] is applied, 4.14 when
the f̄ (r12) from Fermi hypernetted-chain calculations [25] is used in
Eq. (4), and 3.98 when the phenomenological Jastrow f̄ (r12) is
used [26].

analogy to C(r)—of M0ν in 76Ge, in a similar manner to which
we exhibited the r12 dependence earlier. The cancellation
between the J = 0 and J �= 0 parts is particularly complete
at lower values of q so that the resulting curve in the upper
panel, although reduced in magnitude, is clearly shifted toward
higher q.

The first high-momentum effect we examine is short-range
correlations. Figure 9 displays the r12 dependence of M0ν

for several methods of handling short-range physics. For
obvious reasons all methods reduce the magnitude of M0ν .
The Unitary Correlation Operator Method (UCOM) [24] leads
to the smallest reduction, less than 5%. The phenomenological
Jastrow-like function f̄ (r12) in Eq. (4) (from Ref. [26]) reduces
M0ν by about 20%. We also display the results of using a
microscopically-derived Jastrow function [25]; its effect is
similar to that of the phenomenological function. Since it is
not clear which approach is best, we believe it prudent to treat
the differences as a relatively modest uncertainty.

Nucleon form factors pose fewer problems because it turns
out that once the short-range correlations effects are included,
no matter how, the form factors are almost irrelevant as long
as the cut-off masses MA,V are at least as large as the standard
values (MA = 1.09 GeV and MV = 0.85 GeV). In Fig. 10 we
show the dependence of M0ν on the values of MA,V which for
this purpose are set equal to each other, with three alternatives
for treating short-range correlations. By 2 GeV the curves
have essentially reached the infinite-mass limit. Since they are
essentially flat past 1 GeV for both the UCOM and Jastrow-like
prescriptions, including the form factors causes only minor
changes in M0ν . Only if the correlations are ignored altogether
do the form factors make a significant difference.

Finally, there is little doubt that the higher order weak
currents, induced pseudoscalar and weak magnetism, should
be included in the calculation. Even though the Goldberger-
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FIG. 10. The dependence of M0ν in 76Ge on the value of the
dipole-form-factor cut-off parameters MA,V . The upper curve was
calculated without short range correlations, while the two lower
curves were obtained with the UCOM and Jastrow methods. The
two lower curves, unlike the upper one, are essentially flat for MA,V

larger than the standard value of ≈1 GeV.

Treiman relation has not been tested in two-body operators, the
relation is sufficiently well established that we do not associate
a sizable uncertainty with its use.

V. NUMERICAL RESULTS

Figure 11 shows our calculated ranges for M ′0ν , defined as
M ′0ν = (gA/1.25)2M0ν to allow us to display the effects of
uncertainties in gA. Such a definition allows us to use the same
phase space factor G0ν with gA = 1.25 when calculating the
0νββ-decay rate.

We consider the effects of short-range correlations an
uncertainty, since we do not know the best way of treating
them. The error bars in Fig. 11 represent the difference
between the highest and lowest of 24 calculations—in either

0.0

1.0

2.0

3.0

4.0

5.0

6.0

<
M

’0ν
>

NSM (Jastrow)
(R)QRPA (Jastrow,UCOM)

76
Ge

82
Se

96
Zr

100
Mo

116
Cd

128
Te

130
Te

136
Xe

FIG. 11. Circles represent the mean value of the upper and lower
limits of our calculated values of M

′0ν ; see text for description of error
bars. For comparison the results of a recent large scale shell model
evaluation of M

′0ν that used the Jastrow-type treatment of short range
correlations are also shown as triangles.

the QRPA or RQRPA, each with three different sets of
single-particle states (usually two, three, and four oscillator
shells), two values for the in-medium gA (1.0 and 1.25), and
two treatments of short-range correlations (phenomeological
Jastrow functions and the UCOM method)—and include the
experimental uncertainty in the values of the 2ν lifetimes used
to determine gpp. Thus the error bars displayed in Fig. 11
represent our estimate of the full uncertainty in the 0νββ matrix
elements within the QRPA and RQRPA methods. Though the
results are in reasonable agreement with those presented in
Refs. [20,21], the uncertainties are different.

Reference [16] presents new LSSM results for M ′0ν ,
the values of which are shown also in Fig. 11. They are
somewhat smaller than the QRPA values for 76Ge and 82Se
and in a fair agreement for 116Cd, 128Te, 130Te, and 136Xe.
Various nuclear-structure effects may be responsible for the

TABLE I. The calculated ranges of the nuclear matrix element M
′0ν evaluated within both the QRPA and RQRPA

and with both standard (gA = 1.254) and quenched (gA = 1.0) axial-vector couplings. In each case we adjusted gpp

so that the rate of the 2νββ = decay is reproduced. Column 2 contains the ranges of M
′0ν with the phenomenological

Jastrow-type treatment of short-range correlations (see I and II), while column 3 shows the UCOM-based results
(see Ref. [24]). Columns 3 and 5 give the 0νββ-decay half-life ranges corresponding to the matrix-element ranges in
columns 2 and 4, for 〈mββ〉 = 50 meV.

Nuclear (R)QRPA (Jastrow s.r.c.) (R)QRPA (UCOM s.r.c.)
transition

M
′0ν T 0ν

1/2 (〈mββ〉 = 50 meV) M
′0ν T 0ν

1/2 (〈mββ〉 = 50 meV)

76Ge → 76Se (3.33, 4.68) (6.01, 11.9) × 1026 (3.92, 5.73) (4.01, 8.57) × 1026

82Se → 82Kr (2.82, 4.17) (1.71, 3.73) × 1026 (3.35, 5.09) (1.14, 2.64) × 1026

96Zr → 96Mo (1.01, 1.34) (7.90, 13.9) × 1026 (1.31, 1.79) (4.43, 8.27) × 1026

100Mo → 100Ru (2.22, 3.53) (1.46, 3.70) × 1026 (2.77, 4.58) (8.69, 23.8) × 1025

116Cd → 116Sn (1.83, 2.93) (1.95, 5.01) × 1026 (2.18, 3.54) (1.34, 3.53) × 1026

128Te → 128Xe (2.46, 3.77) (3.33, 7.81) × 1027 (3.06, 4.76) (2.09, 5.05) × 1027

130Te → 130Xe (2.27, 3.38) (1.65, 3.66) × 1026 (2.84, 4.26) (1.04, 2.34) × 1026

136Xe → 136Ba (1.17, 2.22) (3.59, 12.9) × 1026 (1.49, 2.76) (2.32, 7.96) × 1026
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discrepancies. More complicated configurations in LSSM that
are absent in QRPA typically reduce M0ν and could make
most of the difference. On the other hand, in the QRPA
includes more single particle states than in LSSM. That has
the tendency to increase M0ν and could also be responsible for
the discrepancy. As we said earlier, the notion that the QRPA
omits high-seniority states is not correct and should not be
used to argue that the LSSM results are more accurate.

Given the interest in the subject, we show the range of
predicted half-lives corresponding to our full range of M ′0ν

in Table I (for 〈mββ〉 = 50 meV). As we argued above,
this is a rather conservative range within the QRPA and its
related frameworks. One should keep in mind, however, the
discrepancy between the QRPA and LSSM results as well as
systematic effects that might elude either or both calculations.

VI. CONCLUSIONS

The most important and novel result here is that the generic
competition between J = 0 (pairing) and J �= 0 (broken
pair) multipoles leads to almost complete cancellation of the
contribution to the matrix element from internucleon distances
r >∼ 2–3 fm. That explains why the effects that depend on
smaller values of r , or equivalently larger momentum transfers
q, become important. This competition also means that the
final matrix elements have enhanced sensitivity to the strengths
of these interactions. Despite the uncertainties associated with
the short range effects, we conclude that a proper fitting of the
QRPA and/or RQRPA parameters leads to a relatively narrow
range for M ′0ν , with a smooth dependence (96Zr being an
exception) on atomic charge and mass.

We evaluate the values of the matrix elements for nuclei
of experimental interest and display our best estimate of the
corresponding spread. Part of that spread is associated with the
difference in the size of the single particle space and whether
QRPA or RQRPA is used, as discussed earlier in I and II. An
interesting new conclusion is that short-range correlations, no
matter how they are treated, essentially eliminate the effect
of finite nucleon size on the matrix elements. But we still do
not know the best way to treat the correlations, a fact that
contributes about 20% to uncertainties presented above. The
uncertainty in the effective value of gA contributes about 30%,
with the rest due to choice of method and model space, and
the experimental uncertainty in 2ν lifetimes.
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APPENDIX A

Here we outline the derivation of M0ν , emphasizing induced
(higher-order) currents. We assume light-neutrino exchange
throughout, and the standard lepton×hadron weak charged-
current Hamiltonian. The hadronic current, expressed in terms
of nucleon fields �, is

jρ† = �τ+
[
gV (q2)γ ρ + igM (q2)

σρν

2mp

qν

− gA(q2)γ ργ5 − gP (q2)qργ5

]
�, (A1)

where mp is the nucleon mass and qµ is the mo-
mentum transfer, i.e., the momentum of the virtual
neutrino. Since in the 0νββ decay 
q2 � q2

0 we take
q2 � −
q2. For the vector and axial vector form fac-
tors we adopt the usual dipole approximation gV (
q2) =
gV /(1 + 
q2/M2

V )2, gA(
q2) = gA/(1 + 
q2/M2
A)2, with gV =

1, gA = 1.254,MV = 850 MeV, and MA = 1086 MeV. We
use the usual form for weak magnetism, gM (
q2) = (µp −
µn)gV (
q2), and the Goldberger-Treiman relation, gP (
q2) =
2mpgA(
q2)/(
q2 + m2

π ), for the induced pseudoscalar term.
To derive the expression for the matrix element we follow

the procedure outlined in Ref. [27], arriving after a few steps
at an expression for the 0+

i → 0+
f ground state to ground state

transition:

M0ν = 4πR

g2
A

∫ (
1

(2π )3

∫
e−i 
q.(
x1−
x2)

|q|
)

×
∑
m

〈0+
f |J †

α (
x1)|m〉〈m|J α†(
x2)|0+
i 〉

Em − (Ei + Ef )/2 + |q| d 
qd 
x1d 
x2.

(A2)

We have made the (accurate) approximation that all electrons
are emitted in the s1/2 state, with energies equal to half
the available energy (Ei − Ef )/2. The normalization factor
4πR/g2

A, introduced for convenience, is compensated for by
corresponding factors in the phase space integral.

Reducing the nucleon current to the nonrelativistic form
yields (see Ref. [28]) in Eq. (A2):

J ρ†(
x) =
A∑

n=1

τ+
n

[
gρ0J 0(
q2) +

∑
k

gρkJ k
n (
q2)

]
δ(
x − 
rn),

(A3)

where J 0(
q2) = gV (q2) and


Jn(
q2) = gM (
q2)i

σn × 
q
2mp

+ gA(
q2)
σ − gP (
q2)

q 
σn · 
q
2mp

,

(A4)


rn is the coordinate of the nth nucleon, k = 1, 2, 3, and gρ,α is
the metric tensor.

The two current operators in M0ν lead to an expression in
terms of five parts [22]:

M0ν = MV V + MMM + MAA + MAP + MPP , (A5)

with the notation indicating which parts (axial, vector, etc.) of
the nucleon current contribute. After integrating over d 
x1, d 
x2,
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and d
q in Eq. (A3) and writing one-body charge-changing
operators in second quantization as

ÔJM =
∑
pn

〈p‖OJ ‖n〉√
2J + 1

[c+
p c̃n]JM, (A6)

we obtain

MK =
∑

J,π,ki ,kf

∑
pnp′n′

(−)J
R

g2
A

×
∫ ∞

0

PK
pnp′n′,J (q)

|q|(|q| + (



ki

Jπ + 

kf

Jπ

)/
2
)hK (q2)q2dq

×〈0+
f ||[ ˜c+

p′ c̃n′ ]J ||Jπkf 〉〈Jπkf |Jπki〉
× 〈Jπki ||[c+

p c̃n]J ||0+
i 〉. (A7)

Here K = V V,MM,AA,PP,AP , and

hV V (
q2) = −g2
V (
q2), hMM (
q2) = g2

M (
q2)
q2

4m2
p

,

hAA(
q2) = g2
A(
q2), hPP (
q2) = g2

P (
q2)
q4

4m2
p

, (A8)

hAP (
q2) = −2
gA(
q2)gP (
q2)
q2

2mp

.

The reduced matrix elements of the one-body operators
c+
p c̃n (the tilde denotes a time-reversed state) in Eq. (A8)

depend on the BCS coefficients ui, vj and on the QRPA vectors
X, Y [22]. The nuclear structure information resides in these
quantities.

The PK
pnp′n′,J (q) in Eq. (A8) are products of the reduced

one-body matrix elements of operators O(n)(q):

PV V
pnp′n′,J (q) = 〈p‖O(1)

J (q)‖n〉〈p′‖O(1)
J (q)‖n′〉,

PAA
pnp′n′,J (q) =

∑
L=J,J±1

(−)J+L+1

×〈p‖O(2)
LJ (q)‖n〉〈p′‖O(2)

LJ (q)‖n′〉,
(A9)

PPP
pnp′n′,J (q) = 〈p‖O(3)

J (q)‖n〉〈p′‖O(3)
J (q)‖n′〉,

PAP
pnp′n′,J (q) = PPP

pnp′n′,J (q),

PMM
pnp′n′,J (q) = PAA

pnp′n′,J (q) − PPP
pnp′n′,J (q).

Here

O(1)
JM (q) = 2

√
2jJ (qr)YJM (
r ),

O(2)
LJM (q) = 2

√
2jL(qr){YL(
r ) ⊗ σ1}JM,

O(3)
LJM (q) = 2

√
2

√
2J − 1

2J + 1
jJ−1(qr)CJ0

J−1010

×{YJ−1(
r ) ⊗ σ1}JM

−2
√

2

√
2J + 3

2J + 1
jJ+1(qr)CJ0

J+1010

×{YJ+1(
r ) ⊗ σ1}JM. (A10)

The final step, leading to Eq. (4) in the text, is to rewrite the
product of two one-body matrix elements as an appropriately

recoupled (with pairs of protons and neutrons coupled to angu-
lar momentum J ) unsymmetrized two-body matrix element.
Without the complications of angular momentum, this step
simply reads

〈p|O(1)|n〉〈p′|O(2)|n′〉 = 〈p, p′|O ′(1, 2)|n, n′〉. (A11)

We then transform to relative and center-of-mass coordinates

r12 = 
r1 − 
r2 and 
R12 = (
r1 + 
r2)/2. Since the exchange
potential depends only on r12 = |
r12| we end up with Eq. (4).
The Fermi (F), Gamow-Teller (GT), and tensor (T) operators
in that equation are

OF

(
r12, E

k
Jπ

) = τ+(1)τ+(2)HF

(
r12, E

k
Jπ

)
,

OGT
(
r12, E

k
Jπ

) = τ+(1)τ+(2)HGT
(
r12, E

k
Jπ

)
σ12, (A12)

OT

(
r12, E

k
Jπ

) = τ+(1)τ+(2)HT

(
r12, E

k
Jπ

)
S12.

Here

σ12 = 
σ1 · 
σ2,
(A13)

S12 = 3(
σ1 · r̂12)(
σ2 · r̂12).

The functions hK (q2) that determine the HK ’s through the
integrals over q in Eq. (5) are

hF (
q2) = −g2
AhV V (
q2),

hGT(
q2) = 1
3

(
2hMM (
q2) + hPP (
q2) + hAP (
q2)

) + hAA(
q2),

hT (
q2) = 1
3

(
hMM (
q2) − hPP (
q2) − hAP (
q2)

)
,

(A14)

and the full matrix element is

M0ν = −MF

g2
A

+ MGT + MT . (A15)

Short-range repulsion can then be included as explained in
Sec. IV.

APPENDIX B

Here we show how to calculate shell-model particle-hole
decompositions so they can be compared with those calculated
in the QRPA. To avoid too many complications, we will use the
closure approximation. (In the text we have shown that, within
the QRPA at least, using the closure approximation for the
0νββ-decay results in an error of �10%.) The matrix element
M (the subscript K is implied) can be written as in Eq. (4),
with the overlap between intermediate-nucleus eigenstates a
Kronecker delta if the those states are determined uniquely (as
in the shell model). The matrix element M can be decomposed:

M =
∑

α

Mα, (B1)

where α stands for the set of indices p, p′, n, n′ and

Mα =
∑
J J

sα
J J Oα

J . (B2)
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The parity index π is implicitly included along with J and J .
The Oα

J are given by

Oα
J =

∑
ki ,kf

〈0+
f ||[ ˜c+

p′ c̃n′ ]J ||Jπkf 〉〈Jπkf |Jπki〉

×〈Jπki ||[c+
p c̃n]J ||0+

i 〉, (B3)

and the sα
J J are everything else in Eq. (4):

sα
J J = (−1)jn+jp′+J+J Ĵ

{
jp jn J

jn′ jp′ J

}
Zα
J , (B4)

with Ĵ ≡ √
2J + 1 and

Zα
J ≡ 〈p(1), p′(2);J ‖f̄ (r12)OKf̄ (r12)‖n(1), n′(2);J 〉.

(B5)

(The f̄ (r12) can be omitted if short-range correlations are
included some other way.)

Now we can write Mα in two different ways:

Mα =
∑
J

M
pp,α

J =
∑

J

M
ph,α

J (B6)

with

M
pp,α

J =
∑

J

sα
J J Oα

J , (B7)

and

M
ph,α

J =
∑
J

sα
J J Oα

J , (B8)

The M
pp,α

J are the pp-hh amplitudes and the M
ph,α

J are the ph

multipole-multipole amplitudes that we want to calculate in
the shell model. All the nuclear structure information is in the
Oα

J .
From Eq. (B7) we have

Oα
J =

∑
J

s
−1,α
JJ M

pp,α

J , (B9)

and

M
ph,α

J =
∑
J

sα
J J Oα

J

[from Eq. (B9)]
−−−−−−−→

×
∑
J

sα
J J

∑
J ′

s
−1,α
JJ ′ M

pp,α

J ′ . (B10)

So, exchanging the primed and unprimed labels in the sum,
we can write the M

ph,α

J in terms of the M
pp,α

J as

M
ph,α

J =
∑
J ,J ′

sα
J ′J s

−1,α
JJ M

pp,α

J . (B11)

The final particle-hole multipole contribution that we want is
then just

M
ph

J ≡
∑

α

M
ph,α

J . (B12)

From the relation

Ĵ 2
∑
X

X̂2

{
a b J

c d X

} {
a b J ′
c d X

}
= δJ,J ′ (B13)

we have

s
−1,α
JJ = (−1)jn+jp′+J+J Ĵ 2Ĵ

Zα
J

{
jp jn J

jn′ jp′ J

}
. (B14)

Finally, putting everything together, we get

M
ph

J ≡
∑

p,p′,n,n′,JJ ′
(−1)J+J ′Ĵ Ĵ ′Ĵ 2

{
jp jn J

jn′ jp′ J ′

}

×
{

jp jn J

jn′ jp′ J

}
Zα
J ′

Zα
J

M
pp,α

J . (B15)

In a shell model calculation, one can write the dou-
ble beta-decay matrix element solely in terms of antisym-
metrized matrix elements of the corresponding operator. But
to obtain the particle-hole decomposition above, the natural
definition since the operator really represents a product of
two one-body currents, one must start from a represen-
tation of the operator in terms of unsymmetrized matrix
elements Zα

J

ÔK = −1

2

∑
p,n,p′,n′,J

Zα
J
[[

a
†
jp

a
†
jp′

]J [
ãjn

ãjn′
]J ]0

, (B16)

and calculate the M
pp,α

J , for all α ≡ p, p′, n, n′, not just
p � p′, n � n′.
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