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ABSTRACT 

Nerve-sparing is a well-established technique to preserve ejaculation in men undergoing 

retroperitoneal lymph node dissections (RPLND) for testis cancer. In the post-

chemotherapy setting, surgeons are faced with extensive disease, distorted anatomy, and 

increasingly complicated resections. As such, reports indicate that despite attempts to 

nerve-spare, 21-24% of patients still experience post-operative ejaculatory dysfunction. 

Worse yet, many institutions still do not attempt to nerve-spare, reporting ejaculatory 

dysfunction in 75-100% of patients. Although nerve-sparing may not always be 

indicated, experts conservatively estimate it is achievable in >50% of patients with 

advanced-stage disease in the post-chemotherapy setting.  

We contend that a poor understanding of the retroperitoneal sympathetic nerves has 

limited the efficacy, refinement and implementation of precise nerve-sparing practices 

during RPLND. Ultimately, success in nerve-sparing requires comfort with the normal 

neurovascular anatomy of the retroperitoneum; however, this is difficult to achieve 

because the relevant sympathetic networks (i.e., the aortic plexus) have not been 

comprehensively described and are often illustrated inconsistently. Therefore, the goal of 

the present thesis is to provide the first comprehensive characterization of the aortic 

plexus as it pertains to nerve-sparing RPLND.  

This was achieved through three specific aims: (i) to determine the organization of the 

aortic plexus by characterizing the anatomy of the constituent nerves and ganglia 

(Chapters 2 & 3), (ii) to describe the surgically-relevant variations of the lumbar 

splanchnic nerves adjoining the aortic plexus (Chapter 4), and (iii) to examine the 

neurovascular relationship between the sympathetic nerves of the aortic plexus and the 

lumbar vessels as it relates to RPLND (Chapter 5). 

Through dissection of human cadavers, the infrarenal aortic plexus was organized into 

two longitudinal cords, each containing two constituent ganglia. Two (range 1-4) lumbar 

splanchnic nerves (LSN), typically coursing anteromedial to the lumbar veins, join each 

cord. Despite varying in their position, 98% of LSNs originate from the lumbar 

sympathetic chains superior to the inferior mesenteric artery. In 85% of individuals, 
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retroaortic LSNs coursed between the common iliac vessels to join the superior 

hypogastric plexus. Future studies should seek to determine the specific portions of the 

aortic plexus imperative to preserving ejaculation. 

Keywords 
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PREFACE 

Following orchiectomy and chemotherapy, retroperitoneal lymph node dissection 

(RPLND) has proven to be a highly-effective surgery in the treatment of testis cancer to 

remove residual masses/metastases from the deep abdomen – boasting >95% cure rates 

and little-to-no risk of recurrence (Jewett & Groll, 2007). Unfortunately, the literature 

reports that 17-100% of men with advanced disease will be functionally infertile 

following this surgery (Jewett et al., 1988; Coogan et al., 1996; Pettus et al., 2009; 

Heidenreich & Pfister, 2012; Nowroozi et al., 2015; Dimitropoulos et al., 2016). This is 

due to unintentional damage to the aortic plexus (Jewett & Groll, 2007; Katz & Eggener, 

2009) – a preventable complication that is particularly concerning given testis cancer 

primarily affects men 15-29 years of age (Canadian Cancer Society, 2015) whom are 

early in their reproductive years.  

Nerve-sparing during RPLND remains a suitable method to preserve ejaculatory function  

(Jewett & Groll, 2007). During bilateral dissections, it requires surgeons to locate and 

preserve individual fibers from within their surgical field (Pearce et al., 2013) – a 

substantial task considering the anatomy of the preaortic sympathetic plexuses have not 

been described in much detail, nor have the relevant fibers in control of ejaculation been 

isolated. Not surprisingly, nerve-sparing is associated with variable success. For example, 

in a 2012 review Heidenreich and Pfister reported ejaculatory dysfunction in 75% of 

patients who underwent bilateral post-chemotherapy RPLND, (Heidenreich & Pfister, 

2012) while in 2009, Pettus et al. found that antegrade ejaculation was maintained in 79% 

of their patients treated with bilateral post-chemotherapy RPLND (Pettus et al., 2009). 

Although differences in the stage and/or the size of the residual mass are apparent 

between the reports, surgeon comfort with the normal neural anatomy of the 

retroperitoneum is a significant factor in the success of RPLND (Jewett & Groll, 2007) 

and a possible contributing factor to these disparate results. Furthermore, we assert that 

the poor anatomical understanding of the sympathetic nerves in the deep abdomen has 

impeded the use of nerve-sparing during RPLND. Therefore, the goal of the present 

thesis is to provide the first comprehensive characterization of the normal anatomy of the 

aortic plexus and its variations as it pertains to improving nerve-sparing RPLND. 
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CHAPTER 1   
THE PERIPHERAL NEUROANATOMY OF EJACULATION: A 
REVIEW 

In the present chapter, an introduction to the anatomy and physiology of ejaculation is 

presented with a particular focus given to describing the neural circuitry in control, and 

the anatomy of these pathways as it relates to retroperitoneal surgery. The purpose of this 

chapter is to provide an overview of the current literature, and introduce the rationale for 

the present thesis and the studies herein. Preference is given to studies pertaining to 

humans. 

1.1 General Introduction 

1.1.1. Neurophysiology of Ejaculation 

The ejaculation reflex involves the coordination of several pelvic organs and can be 

divided into two distinct phases: seminal emission and expulsion (Coolen et al., 2004; 

Giuliano & Clément, 2005). During seminal emission, mature spermatozoa in the 

epididymis are transported by rhythmic smooth muscle contraction of the vas deferens 

into the posterior urethra (Steers, 1994). Here, the spermatozoa are mixed with fluid 

secretions from the seminal vesicles and prostate gland to form semen (Giuliano & 

Clément, 2005). To limit exposure of the semen to unviable conditions of urine, the 

bladder neck (also referred to as the cervix of the bladder or internal urethral orifice) is 

closed by a constant contraction of the internal urethral sphincter (Gosling & Dixon, 

1975; Gosling et al., 1977; Thomas, 1983; Gosling, 1986; Kihara et al., 1992; Ando et al., 

1993). Expulsion is characterized by the antegrade propulsion of the semen within the 

urethra towards the penile meatus. This process is driven by rhythmic contraction of the 

striated perineal muscles; however, continued closure of the bladder neck is necessary to 

prevent retrograde flow of the semen into the bladder (Whitelaw & Smithwick, 1951; 

Jewett et al., 1988; Yavetz et al., 1994; Jefferys et al., 2012). In contrast, orgasm is a 

central neural process that is accountable for the extragenital responses and subjective 

pleasurable feeling that accompanies expulsion in some mammalian species; it is not part 

of the ejaculation reflex (Coolen et al., 2004; Giuliano & Clément, 2005). 
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1.1.1.1. The Spinal Ejaculation Generator 

It is well established that ejaculation is controlled by divisions of the somatic, 

parasympathetic and sympathetic nervous systems (Coolen et al., 2004; Giuliano & 

Clément, 2005). The integration and coordination of these systems is mediated by the 

spinal ejaculation generator (also referred to as a spinal pattern generator [McKenna et 

al., 1991], spinal pacemaker [Sachs & Garinello, 1979] or central pattern generator 

[Carro-Juárez et al., 2003]) located within the L3-L5 spinal cord (Coolen et al., 2004). Its 

role is to process afferent innervation and trigger ejaculation when a sufficient threshold 

of stimulation is reached (Coolen et al., 2004). Without it, a normal physiological 

ejaculation cannot be elicited (Truitt & Coolen, 2002; Allard et al., 2005). A schematic 

overview is shown in Figure 1. 

The precise mechanism underlying the ability of the spinal ejaculation generator to 

trigger ejaculation continues to be a topic of research; however, it is accepted that the 

afferent stimulation can originate from somatic, visceral and/or cortical sources. It is 

known that somatosensory information from the glans penis, carried by the dorsal nerve 

of the penis, is responsible for a large proportion of afferent stimulation leading to 

ejaculation (Herbert, 1973; Steers, 1994; Yang & Bradley, 1999; Coolen et al., 2004; 

Fode et al., 2015). It has also been postulated from animal studies that visceral afferent 

fibers detecting distention of the posterior urethra by either saline (Carro-Juárez et al., 

2003) or seminal emission (Kimura, 1970; Fode et al., 2015) may contribute to eliciting 

expulsion; however, clinical findings do not fully support this hypothesis (Coolen et al., 

2004). In addition, the brain has influence to modulate the threshold of sensitivity 

required by the spinal ejaculation generator to elicit an ejaculation (Coolen et al., 2004; 

Allard et al., 2005). 
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Figure 1.  Overview of the spinal ejaculation reflex and its neural components. 

The spinal ejaculation generator triggers seminal emission and expulsion after 

reaching a threshold of afferent stimulation. Epithelial secretion by the prostate and 

seminal vesicles are controlled by parasympathetic nerves whereas smooth muscle 

contraction of the sex glands, vas deferens and bladder neck are controlled by 

sympathetic nerves. During expulsion, rhythmic perineal contractions to propel the 

semen is mediated by specialized motor neurons in Onuf’s nucleus in the sacral 
spinal cord.  
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1.1.1.2. Supraspinal Modulation of Ejaculation  

Higher brain areas, particularly the medial preoptic area, paraventricular nucleus of the 

hypothalamus, and the rostral nucleus paragigantocellularis, have been shown to exhibit 

hierarchical control of the spinal ejaculation generator by either exciting or inhibiting its 

function (Coolen et al., 2004). The rostral nucleus paragigantocellularis extends 

serotonergic fibers which directly synapse on the neurons of the spinal ejaculation 

generator, suppressing the ejaculatory reflex (Marson & McKenna, 1992; Marson et al., 

1992). There is evidence to suggest the paraventricular nucleus of the hypothalamus has 

an excitatory effect on the spinal ejaculation generator via a release of oxytocin which 

facilitates ejaculatory behaviour in addition to shortening the post-ejaculation refractory 

period in rats (Coolen et al., 2004). The medial preoptic area is thought to exhibit an 

excitatory affect through dopamine acting on D2 receptors which appears to modulate 

other ejaculatory-related supraspinal regions, rather than acting on the lumbosacral spinal 

cord directly (Hull et al., 1997; Coolen et al., 2004).  

However, the excitatory/inhibitory influence of the supraspinal structures over the spinal 

ejaculation generator is not necessary since a reflexive ejaculation can still be achieved in 

human patients (Sønksen et al., 1994; Brackett et al., 1998, 2010; Ibrahim et al., 2016) 

and animal models (McKenna et al., 1991; Staudt et al., 2012) which have complete 

spinal transection above the 10th thoracic spinal level. This indicates that, although 

influenced by higher brain areas, the spinal ejaculator generator alone is sufficient to 

produce a physiological ejaculation – assuming somatic and autonomic supply to the 

genitals and pelvic organs remain intact. 

1.1.1.3. Neurophysiology of Phase I – Seminal Emission 

The emission phase involves sequentially coordinated smooth muscle contraction of the 

seminal tract and bladder neck to mobilize spermatozoa and secretions from the 

accessory sexual glands to the posterior urethra (Giuliano & Clément, 2005). This 

process is mediated by the sympathetic nuclei of the T12-L2 spinal cord and sacral 

parasympathetic nucleus in the S2-4 spinal cord (Chéhensse et al., 2013). Secretion by 

the glandular epithelia of the seminal vesicles (Kepper & Keast, 1997) and prostate gland 
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(Wang et al., 1991) are under parasympathetic control, and are primarily activated by 

acetylcholine. In contrast, adrenergic innervation by sympathetic nerves causes 

contraction of the glandular smooth muscle cells that are responsible for moving the 

secretions into the posterior urethra (Crosby et al., 1962; Wang et al., 1991; Coolen et al., 

2004). Sympathetic innervation of the vas deferens, mediated by the α1-adrenergic 

receptors, also induces smooth muscle contraction that transports spermatozoa from the 

distal epididymis to the posterior urethra (Kolbeck & Steers, 1992; Steers, 1994; Kihara 

et al., 1997; Kihara, Sato, & Oshima, 1998). Additionally, sympathetic innervation by 

norepinephrine on α1-adrenergic receptors facilitates closure of the bladder neck by 

causing contraction of the internal urethral sphincter during seminal emission as well as 

during expulsion (Gosling & Dixon, 1975; Kimura, Adachi, et al., 1975; Gosling et al., 

1977; Coolen et al., 2004).  

1.1.1.4. Neurophysiology of Phase II - Expulsion 

The second (and final) phase of ejaculation corresponds with rhythmic synchronous 

contraction of the striated perineal muscles, combined with a constant contraction of the 

internal urethral sphincter to ensure closure of the bladder neck (Whitelaw & Smithwick, 

1951; Jewett et al., 1988; Yavetz et al., 1994; Jefferys et al., 2012). The role of the 

striated perineal muscles (including, but not limited to, the bulbospongiosus, 

ischiocavernosus muscles and the external anal/urethral sphincters) is to forcefully propel 

the semen through the urethra (Bohlen et al., 1980; Gerstenberg et al., 1990). In contrast 

to the adrenergic control of the internal urethral sphincter, these muscles are somatically 

innervated by the pudendal nerve (S2-4), with their motor neuron soma residing in 

Onuf’s nucleus within the sacral spinal cord (Schrøder, 1985). Although it is well 

acknowledged that Onuf’s nucleus contains somatic motor neurons, it exhibits a unique 

morphology that is different than other motor neuron groups (Schrøder, 1985) – perhaps 

owing to its unique integration with other autonomic reflexes involved in ejaculation. For 

example, Onuf’s nucleus appears to be unaffected during amyotrophic lateral sclerosis 

(ALS) and other motor neuron degenerative diseases; however, is heavily affected in 

degenerative diseases of visceromotor neurons like Shy-Drager syndrome, amongst 

others, where somatic neuron populations are usually spared (Schrøder, 1985). These 
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remarkable observations indicate that Onuf’s nucleus is a specialized group of somatic 

motor neurons that can be voluntarily controlled, yet can also be involuntarily triggered 

to act in reflexive patterns during expulsion. 

1.1.1.5. Peripheral Neuroanatomy of Ejaculation 

It is generally accepted that the sympathetic control of seminal emission and the internal 

urethral sphincter in humans originates in the lower thoracic, and upper lumbar spinal 

levels (Crosby et al., 1962; Jewett et al., 1988; Keating, 2004; Jefferys et al., 2012). 

Preganglionic sympathetic fibers to the bladder neck originate from the T12-L1 (with 

varying contributions from T10-11 and L2) spinal cord (Crosby et al., 1962; Jänig & 

McLachlan, 1987; Jewett et al., 1988; Fowler et al., 2008; Gomez-Amaya et al., 2015). 

Here, they descend the lumbar sympathetic chain to extend through the lumbar 

splanchnic nerves (Learmonth, 1931; Weidner et al., 1994; Kaiho et al., 2003, 2004) at 

the level of L1, L2 and/or L3 ganglia, depending on the report (Whitelaw & Smithwick, 

1951; Crosby et al., 1962; Jewett et al., 1988). However, the anatomical precision of 

these reports may be undermined when considering the extreme variation common to the 

lumbar sympathetic chain ganglia (Perlow & Vehe, 1935; Yeager & Cowley, 1948; 

Webber, 1958). 

Fibers controlling seminal emission are reported by Crosby et al. (1965) to originate in 

the L1-2, or L3 spinal cord, and immediately extend within the lumbar splanchnic 

nerve(s) from the same region (Learmonth, 1931; Weidner et al., 1994; Kaiho et al., 

2003, 2004). The aforementioned innervation of ejaculation is bilateral and evidence 

from a series of sympathectomies (Whitelaw & Smithwick, 1951) and nerve-sparing 

retroperitoneal lymph node dissections (RPLND) for testis cancer (Jewett et al., 1988) 

suggests unilateral preservation may be sufficient to maintain function. A summary of 

Whitelaw & Smithwick’s (1951) findings are illustrated in Figure 2 and the outcomes 

from Jewett et al. (1988) are shown in Table 1. 

After extending from the lumbar sympathetic chain, the lumbar splanchnic nerves 

coalesce with the fibers of aortic plexus (also referred to as the intermesenteric plexus) 

and descend along the anterior aspect of the infrarenal abdominal aorta (Dyce, 1934; 
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Southam, 1959; Keating, 2004; Mirilas & Skandalakis, 2010). It is well known that the 

fibers of ejaculation course within the lumbar splanchnic nerves (Learmonth, 1931; 

Kimura, Miyata, et al., 1975; Ando et al., 1993; Weidner et al., 1994; Kaiho et al., 2003, 

2004) and, therefore, through the aortic plexus; however, the topographical anatomy of 

this network in humans remains widely inconsistent between sources (e.g., compare Fig. 

1140 from Dwight et al., 1930; Figs. 66 & 68 from Kuntz, 1945; Figs. 110 & 111 from 

Mitchell, 1953; Figs. 1-4 from Southam, 1959; Figs. 1511-1513 from Spalteholz & 

Spanner, 1967; Fig. 12.80 from Gray, 1973; Figs. 20.102, 20.113 & 20.114 from 

Hollinshead, 1974; Fig. 38.7 from O’Rahilly, 1986; Figs. 1 & 2 from Colleselli et al., 

1990; Figs. 2-4 from Donohue et al., 1990; Fig. 6.71 from Woodburne & Burkel, 1994; 

Figs. 4.137, 4.138 & 4.140 from Drake et al., 2005; Figs. 6 & 9 from Mirilas & 

Skandalakis, 2010; and, Plates 297, 302 & 319 from Netter, 2011). Gross cadaveric 

observations from rats, cats, rabbits, dogs, and horses suggests the aortic plexus has 

variable morphology between species with descriptions ranging from a singular fiber, to 

two trunks or a diffuse network of nerves (Langley & Anderson, 1896; Dyce, 1934; 

Mizeres, 1955; Baron et al., 1985a; Kihara, Sato, & Oshima, 1998; Kihara, Sato, 

Ishizaka, et al., 1998). 

At the base of the inferior mesenteric artery resides the inferior mesenteric ganglion 

(Southam, 1959; Jänig & McLachlan, 1987) – the location where preganglionic fibers 

controlling ejaculation would synapse (Crosby et al., 1962; Pidsudko, 2014a); however, 

no experimental data exists to substantiate this hypothesis in humans. In fact, contrary to 

classical anatomical descriptions, a minority of fibers within the lumbar splanchnic 

nerves are postganglionic indicating some fibers synapse within the sympathetic chain 

before extending through the lumbar splanchnic nerves (Kraima et al., 2015). Whether 

the postganglionic fibers, specifically, within the lumbar splanchnic nerves have 

innervation to the organs involved in ejaculation has yet to be studied. A summary of the 

efferent sympathetic outflow to the pelvis is schematized in Figure 3. 

Distal to the inferior mesenteric ganglion in humans, the aortic plexus converges into a 

bundle of fibers called the superior hypogastric plexus (also referred to as the presacral 

nerve) that descends into the pelvis (Langley & Anderson, 1896; Whitelaw & Smithwick, 
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1951; Crosby et al., 1962; Jewett et al., 1988; Keating, 2004; Mirilas & Skandalakis, 

2010). The superior hypogastric plexus is a distinct band of neural tissue ranging from a 

few millimeters to 1-2 centimeters in width with a variety of morphologies including: a 

single nerve, two parallel nerves, a plexiform arrangement, or a dense quadrate shaped 

bundle (Learmonth, 1931; Paraskevas et al., 2008). The lateral position of the superior 

hypogastric plexus with respect to the aortic bifurcation may vary; however, it is most 

often centered a few millimeters left of the aortic midline (Paraskevas et al., 2008; Lu et 

al., 2009). It is well-established that the superior hypogastric plexus contains the fibers 

imperative to normal ejaculation (Learmonth, 1931; Brindley et al., 1989; Kihara et al., 

1991, 1992; Kihara, Sato, Ishizaka, et al., 1998).  



9 

 

Figure 2.  Unilateral lesions insufficient to cause ejaculatory dysfunction. 

The present illustration was drawn to summarize the relevant findings from 

Whitelaw & Smithwick (1951) during their study of thoracolumbar 

sympathectomies on sexual function in humans. Their findings indicate the L1-L3 

sympathetic chain ganglia are important for ejaculation; however, not all ganglia 

are required to maintain function. In fact, unilateral preservation is sufficient to 

maintain ejaculation, and the probability of experiencing ejaculatory dysfunction 

was related to the number of lumbar sympathetic chain ganglia removed during the 

procedure.   
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Table 1.  Ejaculation is spared after partial nerve-sparing during RPLND. 

Summary of the post-operative ejaculatory function following nerve-sparing 

RPLND, modified from Jewett et al. (1988). Post-operative ejaculation in many 

patients indicated not all lumbar splanchnic nerves are needed for ejaculatory 

function. However, the nerves required for antegrade ejaculation may vary between 

individuals given varying outcomes after similar nerve roots were spared (compare 

patients 2 & 15, or 13 & 20). 

Patient 

No. 

Side of 

Tumor 

Nerve Roots 

Spared 

Postoperative 

Ejaculation 

Follow-up 

(months) 

Right Left 

1 Left L2,3 L3 + 31 

2 Left L2,3  + 30 

3 Right L1-3  + 27 

4 Left L1-3  + 27 

5 Right  L2,3 + 22 

6 Right L1,2 L3 + 18 

7 Left L1,2 L2 + 17 

8 Left L1,2 L1,2 + 15 

9 Left L3 L1,2 + 14 

10 Right L1-3  + 11 

11 Left L1,2  + 11 

12 Right L1-3 T12, L1,2 + 9 

13 Left T12, L1  + 8 

14 Right  L1,2 + 7 

15 Left L2,3  - 6 

16 Right T12, 
L1,2 

L1-3 
+ 

6 

17 Right  L3 + 5 

18 Left L2,3 L1-3 + 3 

19 Right  L1,2 + 3 

20 Right T12, L1  - 2 
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Figure 3.  Axonal organization of the lumbar sympathetic nerves. 

Based on an immunohistochemical analysis by Kraima et al. (2015). Myelinated 

preganglionic sympathetic nerves (purple) from the intermediolateral horn of the 

lumbar spinal cord exit via the ventral roots and travel to the sympathetic chain 

ganglia via the white rami communicantes; however, some fibers will also route 

through the grey rami. The fibers in control of ejaculation will synapse on 

unmyelinated post-ganglionic adrenergic neurons (green) in the sympathetic chain, 

preaortic ganglia or continue into the pelvis to synapse. MBP, Myelin Basic Protein; 

TH, Tyrosine Hydroxylase; VIP, Vasointestinal Peptide.  
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This was demonstrated in humans by Learmonth (1931) who observed smooth muscle 

contractions of the internal urethral sphincter, prostate gland and seminal vesicles 

following electrical stimulation of an intact superior hypogastric plexus, as well as the 

distal end of a completely transected plexus (Learmonth, 1931). These findings have been 

further substantiated by Brindley et al. (1989) who demonstrated that electrical 

stimulation of the superior hypogastric plexus in paraplegic men was sufficient to induce 

seminal emission and antegrade expulsion (Brindley et al., 1989). Furthermore, 

disruption of the superior hypogastric plexus, as well as the fibers of the aortic plexus 

and/or lumbar splanchnic nerves, are associated with ejaculatory dysfunction following 

retroperitoneal and/or pelvic surgeries (Stahlgren & Ferguson, 1959; Weinstein & 

Machleder, 1975; Balslev & Harling, 1983; Danzi et al., 1983; Jewett et al., 1988; Hojo 

et al., 1991; Enker, 1992; Yavetz et al., 1994; Maeda et al., 2003; Keating, 2004; Liang et 

al., 2007; Jewett & Groll, 2007; Katz & Eggener, 2009; Lu et al., 2009; Veroux et al., 

2010; Han et al., 2010; Carragee et al., 2011; Doeksen et al., 2011; Heidenreich & Pfister, 

2012; Hsiao et al., 2012; Nowroozi et al., 2015). 

After converging into the superior hypogastric plexus, the sympathetic fibers divide into 

left and right hypogastric nerves and descend into the pelvis (Mauroy et al., 2003). Here, 

they merge with the parasympathetic pelvic splanchnic nerves from S2-4 (Alsaid et al., 

2011), with possible minor contributions from S1 (Ali et al., 2004) or S5 (Baader & 

Herrmann, 2003) to form the left and right inferior hypogastric plexus (Mauroy et al., 

2003) which course anteriorly along the lateral walls of the rectum (Hojo et al., 1991; 

Baader & Herrmann, 2003; Alsaid et al., 2009). The sympathetic fibers will then extend 

through their respective plexuses to innervate the smooth muscle of the seminal vesicles, 

prostate gland, vas deferens and bladder neck to facilitate antegrade flow of semen during 

both seminal emission and expulsion (Crosby et al., 1962; Wang et al., 1991; Kolbeck & 

Steers, 1992; Steers, 1994; Kihara & De Groat, 1997; Kihara et al., 1997; Kihara, Sato, & 

Oshima, 1998; Ali et al., 2004). Figure 4 provides a neuroanatomical overview of the 

peripheral autonomic plexuses involved in the control of ejaculation. 
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Figure 4.  The autonomic supply to the pelvic organs. 

The neuroanatomical organization of the abdominal and pelvic autonomic plexuses 

based on the current literature (Walsh et al., 1983; Baader & Herrmann, 2003; 

Mauroy et al., 2003; Costello et al., 2004; Keating, 2004; Alsaid et al., 2009, 2011). 

For brevity, only the right side was illustrated; however, a bilaterally symmetric left 

side exists (communicating with the right side via the superior hypogastric plexus). 

Note that the nomenclature used to describe the branches of the inferior hypogastric 

plexus are relative to the rectum, whereas the branches of the prostatic 

neurovascular bundle (of Walsh) are relative to the prostate. Brown – sympathetic 

fibers; Teal – parasympathetic fibers; Green – mixed autonomic fibers. 
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1.1.2. Ejaculatory Dysfunction 

Several types of ejaculatory dysfunction exist that alter the normal physiological process 

described above. Idiopathic causes typically include: premature ejaculation, where 

ejaculation occurs prior to intromission or shortly after, or delayed ejaculation, which is 

characterized by an inability to ejaculate (also referred to as anorgasmia or idiopathic 

anejaculation) (Ohl et al., 2011). In both conditions, the neurological reflex loop of 

ejaculation remains intact; therefore, the pathophysiology is likely multifactorial and may 

have an underlying psychological component (Buvat, 2011; Chen, 2016; Kalejaiye et al., 

2017). In contrast, retrograde ejaculation and neurogenic anejaculation are acquired 

conditions that result due to a range of physical impairments – most predictably, 

following iatrogenic injury during surgery in the retroperitoneum.  

1.1.2.1. Retrograde Ejaculation & Neurogenic Anejaculation 

Retrograde ejaculation is characterized by a reflux of semen into the bladder during 

expulsion caused by an impaired ability to properly close the bladder neck (Yavetz et al., 

1994; Ohl et al., 2008, 2011). This can be caused by: certain medications, such as α-

adrenegic antagonists (e.g., tamsulosin) in the treatment of prostatic enlargement causing 

urethral obstruction (Hellstrom et al., 2009), or by damage to the internal urethral 

sphincter (Aggarwal & Lemack, 2015) or its sympathetic innervation (Keating, 2004; 

Jewett & Groll, 2007). The former can be managed by changes in medication whereas the 

latter two situations may be transient or permanent.  

With neurogenic anejaculation, patients experience a loss of seminal emission. In patients 

with spinal cord injuries at T10 or higher (and other neurodegenerative spinal cord 

diseases such as transverse myelitis or multiple sclerosis), this is often due to an inability 

to reach the threshold to trigger ejaculation (Brackett et al., 2010; Ohl et al., 2011; 

Ibrahim et al., 2016). Alternatively, neurogenic anejaculation can result from direct 

impairment to the neurological reflex loop as seen in patients with spinal cord injuries at 

T11 or below (Brackett et al., 2010; Ohl et al., 2011; Ibrahim et al., 2016), or patients 

with damage to the sympathetic nerves innervating the smooth muscle of the vas deferens 

and accessory sex glands (Kedia et al., 1975; Ohl et al., 2011). 
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Most commonly, damage to the peripheral nerves controlling seminal emission and/or 

bladder neck closure occurs after surgical procedures; however, autonomic neuropathy 

secondary to diabetes has also been documented as a progressive cause of retrograde 

ejaculation and neurogenic anejaculation in patients (Dunsmuir & Holmes, 1996; Sexton 

& Jarow, 1997).  

1.1.3. Preventing Iatrogenic Ejaculatory Dysfunction after Retroperitoneal 
Surgery 

Iatrogenic ejaculatory dysfunction (i.e., retrograde ejaculation and/or neurogenic 

anejaculation) is a significant post-operative complication in men undergoing 

retroperitoneal surgery. It is caused by unintended surgical injury to the sympathetic 

nerves of the lumbar sympathetic chain, aortic plexus, and/or superior hypogastric plexus 

responsible for internal urethral sphincter contraction and/or seminal emission (Keating, 

2004; Jewett & Groll, 2007; Katz & Eggener, 2009).  

This can occur in any retroperitoneal or pelvic surgery that involves dissection near the 

infrarenal abdominal aorta and/or lateral aspects of the colon including: RPLND for testis 

cancer (Jewett et al., 1988; Jewett & Groll, 2007; Lambert & Fisch, 2007; Katz & 

Eggener, 2009; Heidenreich & Pfister, 2012; Hsiao et al., 2012; Pearce et al., 2013; 

Nowroozi et al., 2015; Dimitropoulos et al., 2016), retroperitoneal aortic repair 

(Weinstein & Machleder, 1975; Veroux et al., 2010), anterior approach lumbar fusion 

(Carragee et al., 2011), or total mesorectal excision (Stahlgren & Ferguson, 1959; Balslev 

& Harling, 1983; Danzi et al., 1983; Hojo et al., 1991; Enker, 1992; Maeda et al., 2003; 

Keating, 2004; Liang et al., 2007; Han et al., 2010; Doeksen et al., 2011).  

Today, the highest risk of post-operative ejaculatory dysfunction appears to be in men 

undergoing RPLND for advanced testis cancer with upwards of 75-100% of patients 

affected in recent reports (Heidenreich & Pfister, 2012; Nowroozi et al., 2015; 

Dimitropoulos et al., 2016). Furthermore, ejaculatory dysfunction in this patient 

population is particularly concerning considering testis cancer primarily affects young 

men between the ages of 15 and 29 years (Canadian Cancer Society, 2015) – many of 

whom have not yet had children. Although urologists are well-aware that preserving the 
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relevant sympathetic nerves during RPLND can prevent this complication, refinement of 

nerve-sparing techniques has been limited by a poor understanding of the neuroanatomy 

and is therefore not yet widely adopted by all institutions. 

1.1.3.1. Evolution of Nerve-sparing RPLND for Testis Cancer 

Testis cancer is the most common malignancy in young men with an annual estimate of 

1050 new cases in Canada (Canadian Cancer Society, 2015), 2,418 new cases in the 

United Kingdom (Cancer Research UK, 2014), and 8,850 new cases in the United States 

(American Cancer Society, 2017) – a national average of 3, 7 and 24 (respectively) new 

diagnoses daily. Since the middle of the 20th century, RPLND has been successfully 

performed for the treatment of advanced-stage testis cancer (Cooper et al., 2002). It was 

well-known that patients with retroperitoneal metastases could be cured (Albers, 2004), 

albeit at the risk of post-operative ejaculatory dysfunction and potential functional 

infertility due to damage of the sympathetic nerves (Jewett & Groll, 2007). With limited 

descriptions and inconsistencies between illustrations of the anatomy, attempts to spare 

the nerves were made by reducing the surgical boundaries so as to avoid them. The 

evolution of this avoidance method of nerve-sparing was driven by emerging lymph node 

mapping studies that revealed testis cancer metastases to the lymph nodes tended to be 

ipsilateral to the affected testicle (Ray et al., 1974; Weissbach & Boedefeld, 1987). In 

response, several modified surgical templates for RPLND were developed (Donohue et 

al., 1993; Janetschek et al., 1994; Sheinfeld & Herr, 1998; Nelson et al., 1999; Krege et 

al., 2008) to resect ipsilateral lymphatic tissue, while avoiding dissection of the 

contralateral nerves. Given the success of these approaches in improving the rate of 

antegrade ejaculation postoperatively (Richie, 1990; Doerr et al., 1993; Katz & Eggener, 

2009), modified surgical templates for RPLND gained popularity and continued to be 

used at many international centers (Steiner et al., 2006; Beck et al., 2007; Pearce et al., 

2013; Cho et al., 2017). 

However, more recently, studies have challenged the worth of modified templates based 

on the risk of leaving extratemplate metastatic disease (Carver et al., 2007; Eggener et al., 

2007). In fact, it is estimated that, in the post-chemotherapy setting, at least 7% to 32% 

(depending on the surgical template used) of patients would have extratemplate disease 
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left behind (Carver et al., 2007). Because an effort to spare ejaculation should never be 

made at the risk of incomplete cancer resection (Jewett & Groll, 2007), a full bilateral 

surgical template is considered most prudent for advanced-stage cancer, and nerve-

sparing should only be performed where possible (Carver et al., 2007). 

Nerve-sparing during bilateral template resections requires surgeons to locate and 

preserve individual fibers from within their surgical field (Pearce et al., 2013). In patients 

with low-grade disease, nerve-sparing during bilateral RPLND has been demonstrated by 

experienced surgeons to preserve antegrade ejaculation at a rate of 90-100% (Jewett et 

al., 1988; Donohue et al., 1990) – a substantial task considering the anatomy of the 

preaortic sympathetic plexuses in humans has not been described in much detail, nor have 

the relevant fibers in control of ejaculation been isolated. During post-chemotherapy 

RPLND for advanced-stage disease, nerve-sparing becomes less successful as surgeons 

are tasked with navigating increasingly distorted anatomy and resecting more extensive 

disease (Jewett & Groll, 2007). Not surprisingly, nerve-sparing in the post-chemotherapy 

setting is associated with variable rates of antegrade ejaculation. For example, in a 2012 

review, Heidenreich and Pfister reported ejaculatory dysfunction in 75% of patients who 

underwent bilateral post-chemotherapy RPLND (Heidenreich & Pfister, 2012), while, 

others have demonstrated antegrade ejaculation could be maintained in 74-79% of 

patients treated with bilateral post-chemotherapy RPLND (Coogan et al., 1996; Pettus et 

al., 2009). Although differences in the stage and/or the size of the residual mass are 

apparent between the reports, surgeon comfort with the normal neural anatomy of the 

retroperitoneum is a significant factor in the success of RPLND (Jewett & Groll, 2007) 

and a possible contributing factor to these disparate results. Worse yet, some institutions 

still do not attempt to nerve-spare during post-chemotherapy RPLND and report 

ejaculatory dysfunction in the large majority of, if not all, patients (Nowroozi et al., 2015; 

Dimitropoulos et al., 2016). Given that it is estimated that nerve-sparing in the post-

chemotherapy setting is achievable in at least 50% of patients (Jewett & Groll, 2007), a 

limited understanding of the sympathetic nerves in the abdomen is possibly impeding the 

implementation and success of nerve-sparing techniques in the post-chemotherapy 

setting.  
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1.2 Overview of Thesis 

We contend that a poor anatomical understanding of the sympathetic nerves in the deep 

abdomen has limited the efficacy, refinement and promulgation of precise nerve-sparing 

practices during bilateral RPLND. Therefore, the goal of the present thesis is to provide 

the first comprehensive characterization of the normal anatomy of the human aortic 

plexus (Studies 1 & 2) and its variations (Study 3) as it pertains to improving bilateral 

nerve-sparing RPLND (Study 4). 

1.2.1. Study 1 

It is generally accepted that the lumbar splanchnic nerves join the aortic plexus to 

synapse in various preaortic ganglia including the inferior mesenteric ganglion (Baron et 

al., 1985a, 1985b; Jänig & McLachlan, 1987; Rusu, 2009; Gray, 2010; Motoc et al., 

2010). However, anatomical descriptions are inconsistent with respect to the number of 

lumbar splanchnic nerves that supply aortic plexus (Mitchell, 1953; Hollinshead, 1971; 

Gray, 1973; Woodburne & Burkel, 1994; Mirilas & Skandalakis, 2010). Furthermore, 

descriptions and illustrations of the organization of the aortic plexus and its constituent 

ganglia are inconsistent and often incomplete (O’Rahilly, 1986; Mirilas & Skandalakis, 

2010; Motoc et al., 2010; Netter, 2011; Moore et al., 2014). Given that only a few human 

cadaveric studies exist to describe portions of the aortic plexus (Colleselli et al., 1990; 

Rusu, 2009; Motoc et al., 2010), it remains unclear whether inconsistencies between 

textbooks (Kuntz, 1945; Mitchell, 1953; Spalteholz & Spanner, 1967; Hollinshead, 1971; 

Gray, 1973; Woodburne & Burkel, 1994; Netter, 2011) are artistic depictions or differ 

based on true human variability as determined by unpublished dissection.  

To address these apparent inconsistencies, this study provides the first comprehensive 

mapping of the aortic plexus in male cadavers using standard dissection and histological 

techniques.  
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1.2.2. Study 2 

In providing the first detailed anatomical description of the aortic plexus and its ganglia 

in human males during Study 1 (Beveridge, Johnson, et al., 2015), we characterized the 

prehypogastric ganglion: a previously-unidentified structure that appears to be the right-

sided equivalent of the well-acknowledged inferior mesenteric ganglion. Ultimately, 

characterization of the prehypogastric ganglion revealed that the organization of the 

aortic plexus in males is bilaterally symmetrical around four major constituent 

prevertebral ganglia (left/right spermatic ganglia, prehypogastric ganglion, and inferior 

mesenteric ganglion). These findings contrast the classical characterization of the aortic 

plexus as a variable, convoluted network of nerves (Kuntz, 1945; Spalteholz & Spanner, 

1967; Hollinshead, 1974; Mirilas & Skandalakis, 2010; Netter, 2011).  

Because our previous study only investigated the anatomy of the aortic plexus in males, it 

remained uncertain whether females also exhibit the prehypogastric ganglion. 

Furthermore, the literature does not contain any primary reports of homologous structures 

to the male spermatic ganglia (i.e., ovarian ganglia) in humans. Therefore, the second 

study investigated whether a conserved organization is seen in the female aortic plexus 

with particular emphasis on examining the existence of the prehypogastric and ovarian 

ganglia through gross cadaveric dissection and histological analysis. 

1.2.3. Study 3 

In acknowledging that the aortic plexus in males and females is consistently bilateral in 

its organization from the results of the two previous studies (Beveridge, Johnson, et al., 

2015, 2016), it was also observed that it was rarely symmetrical in its positioning. This 

was particularly apparent in the inconsistent positioning of the lumbar splanchnic nerves 

– a variation that may complicate nerve-sparing during retroperitoneal surgery. To date, 

the known anatomy and variations of the lumbar splanchnic nerves has only been 

understood from qualitative observations (Lu et al., 2009; Rusu, 2009; Motoc et al., 

2010). Specifically, a range of two to four lumbar splanchnic nerves may be observed 

joining the aortic plexus (Mitchell, 1953; Hollinshead, 1971; Gray, 1973; Woodburne & 

Burkel, 1994; Mirilas & Skandalakis, 2010) with the possibility of another joining the 
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superior hypogastric plexus (Dwight et al., 1930; Learmonth, 1931; Mitchell, 1953; 

Duncan & Jonck, 1965; Hollinshead, 1971; O’Rahilly, 1986; Mirilas & Skandalakis, 

2010). Details about their prevalence and/or course are rarely discussed. 

Considering the precise involvement of each lumbar splanchnic nerve in seminal 

emission and antegrade ejaculation is not yet understood, an investigation into their 

variations may assist comprehensive nerve-sparing techniques for surgeons. As such, the 

third study of this thesis will use human cadaveric specimens to quantify the prevalence, 

course and positional deviations of the infrarenal lumbar splanchnic nerves joining the 

aortic and superior hypogastric plexus.  

1.2.4. Study 4 

To achieve complete resection of lymphatic tissue during RPLND, the great vessels must 

be mobilized. This is achieved by locating, ligating and then sectioning the lumbar 

arteries and veins entering the posterior aspect of the great vessels to facilitate rolling 

them laterally (Scardino et al., 2011; Wein, 2012). Given the complexities of resecting 

lymphatic tissue and residual masses in the post-chemotherapy setting, nerve-sparing 

with complete vascular control of the lumbar vessels may be difficult to achieve (Jewett 

& Groll, 2007). It is clear that a strong understanding of the neurovascular anatomy is 

required for success (Jewett & Groll, 2007). Several studies exist (including the previous 

studies in this thesis) to provide a foundation for understanding the normal retroperitoneal 

neurovascular anatomy (Banagan et al., 1976; Colleselli et al., 1990; Baniel et al., 1995; 

Lu et al., 2009; Mirilas & Skandalakis, 2010; Beveridge, Johnson, et al., 2015; 

Beveridge, Power, et al., 2015; Beveridge et al., 2017); however, the clinical usefulness 

of this information is limited by the lack of studies examining the relationship of the 

neural and vascular anatomy as it pertains to surgical interventions.  

In the final study of this thesis, we address this issue by examining the relationship 

between the sympathetic nerves and the lumbar vessels within the boundaries of an 

infrahilar bilateral template using human cadavers. With this understanding, we will 

discuss strategies to navigate these structures during bilateral RPLND. 
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CHAPTER 2   
ANATOMY OF THE NERVES AND GANGLIA OF THE AORTIC 
PLEXUS IN MALES 

In the present chapter, a detailed study of the nerves and ganglia of the aortic plexus in 

males is described. A version of this chapter is published in the Journal of Anatomy, 

Volume 226, Issue 1, Pages 93-103. Histological protocols used in the following study 

are listed in Appendix A (H&E) and Appendix B (IHC).  

2.1 Abstract 

It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves 

overlying the abdominal aorta, which is primarily involved with the sympathetic 

innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive 

anatomical description of the aortic plexus and its connections with adjacent plexuses are 

lacking, these delicate structures are prone to unintended damage during abdominal 

surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study 

aimed to provide the first complete mapping of the nerves and ganglia of the aortic 

plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus 

were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-

tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia 

within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric 

ganglion and one previously unidentified ganglion, which has been named the 

prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied 

by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly 

characterized prehypogastric ganglion were supplied by the left and right L2 lumbar 

splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus 

does have potential for variation, primarily in the possibility of exhibiting accessory 

splanchnic nerves. Clinically, our results could have significant implications for 

preserving fertility in men as well as sympathetic function to the hindgut and pelvis 

during retroperitoneal surgeries. 
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2.2 Introduction  

As part of the autonomic nervous system, the sympathetic chains are a pair of bilaterally 

symmetrical trunks of segmental ganglia located lateral to the vertebral column which 

receive preganglionic neurons from the thoracolumbar segments of the spinal cord 

[thoracic (T) 1 – lumbar (L) 2] (Dwight et al., 1930; Gray, 2010; Mirilas & Skandalakis, 

2010). Myelinated axons from the intermediate horn of the thoracolumbar spinal cord 

generally penetrate the sympathetic chain and synapse with the constituent ganglion cells 

(Sadler, 2010). However, some of these preganglionic axons continue beyond the 

sympathetic chain as splanchnic nerves, and ultimately synapse within preaortic 

(prevertebral/collateral) ganglia located in plexuses overlying the visceral branches of the 

aorta (Hollinshead, 1974). Emerging from the thoracic region, the greater, lesser and least 

splanchnic nerves synapse within the coeliac, superior mesenteric and aorticorenal 

ganglia before supplying the abdominal organs except the hindgut (Loukas et al., 2010). 

Sympathetic innervation of the hindgut and pelvic viscera occurs via the lumbar 

splanchnic nerves which synapse in the aortic plexus – the network of autonomic nerves 

overlying the abdominal aorta between the superior mesenteric artery and the bifurcation 

of the common iliac arteries (Dwight et al., 1930; Spalteholz & Spanner, 1967; Gray, 

2010).  

It is generally accepted that the lumbar splanchnic nerves synapse within various 

preaortic ganglia (e.g. inferior mesenteric; right and left spermatic) (Baron et al., 1985b; 

Jänig & McLachlan, 1987; Rusu, 2009; Gray, 2010; Motoc et al., 2010); however, it 

remains unclear how many lumbar splanchnic nerves actually supply the aortic plexus. 

For example, although it is commonly suggested that four pairs of lumbar splanchnic 

nerves exist, the number said to supply the aortic plexus varies in the literature from two 

to four pairs (Spalteholz & Spanner, 1967; Hollinshead, 1974; Mirilas & Skandalakis, 

2010; Netter, 2011). More specifically, some reports suggest that the first lumbar 

splanchnic nerve does not contribute to the aortic plexus directly but rather connects to 

the superior mesenteric ganglion (Netter, 2011) and/or the coeliac ganglion (Rusu, 2009; 

Mirilas & Skandalakis, 2010). In contrast, other studies have reported that the first 
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lumbar splanchnic nerve does indeed supply the aortic plexus (Rusu, 2009) and targets 

the spermatic ganglia (Motoc et al., 2010).  

Given these conflicting reports regarding the splanchnic nerves, it is perhaps not 

surprising that the currently available anatomical descriptions and illustrations of the 

aortic plexus can appear inconsistent and/or incomplete. Additional confusion can arise 

when one considers both the written (Moore et al., 2014) and illustrative (O’Rahilly, 

1986) suggestions that minor, unnamed ganglia may exist within the aortic plexus. For 

example, a textbook illustration of the prevertebral ganglia shows an unlabelled 

‘swelling’ within the aortic plexus that is drawn distinctly, yet at the same level as the 

inferior mesenteric ganglion (O’Rahilly, 1986; reprinted in Mirilas & Skandalakis, 2010).  

To address the apparent inconsistencies in the splanchnic nerve supply to the aortic 

plexus as well as the incomplete description of its constituent ganglia, we endeavoured to 

complete the first comprehensive mapping of the aortic plexus and its connections with 

adjacent plexuses in males. This was achieved through meticulous dissection of fresh, 

frozen human cadavers. Standard histological techniques and microscopy were then used 

to confirm the identification of sympathetic ganglionic tissue collected during dissection. 

2.3 Materials and Methods  

The anatomy of the aortic plexus was investigated in seven fresh, frozen male human 

cadavers [mean age at death = 75.4 years (range 53–97)]. Specimens were obtained with 

permission from the body bequeathal program at Western University, London ON, 

Canada, in accordance with the Anatomy Act of Ontario and Western’s Committee for 

Cadaveric Use in Research. Specimens with history or evidence of previous 

retroperitoneal surgery were excluded from the study population. One specimen showed 

evidence of a small infrarenal abdominal aortic aneurysm (<3 cm) and another specimen 

suffered from neurofibromatosis – neither of which appeared to disrupt the normal 

anatomy of the aortic plexus, and these specimens were thus included in the study 

population.  

  



36 

2.3.1. Dissection 

A superficial midline incision was made from the xiphoid process to the pubic 

symphysis, arcing left of the umbilicus. An incision was made through the linea alba and 

the anterior wall of the peritoneal sac, exposing the peritoneal cavity. A horizontal 

incision at the level of the umbilicus was made from the right to the left midaxillary line 

to divide the anterior body wall into four segments. An oblique incision along the root of 

the mesentery was made from the suspensory muscle of the duodenum towards the 

cecum. The ascending and descending colon were mobilized by incising the right and left 

paracolic gutters, and the sigmoid colon was detached from the rectum. The intestines, 

pancreas and remaining posterior parietal peritoneum were then reflected superiorly to 

expose the infrarenal retroperitoneum. Care was made to landmark the left renal vein, 

ureters, inferior mesenteric vessels and gonadal vessels. Dissection of the aortic plexus 

was completed by first identifying the right lumbar splanchnic nerves within the 

interaortocaval fat. The right lumbar splanchnic nerves were followed posteriorly to 

locate the right sympathetic chain and anteriorly to isolate preaortic nerves of the aortic 

plexus. Then, dissection of the left sympathetic chain, and left lumbar splanchnic nerves 

provided the foundation to elucidate any undissected preaortic nerves. Care was taken to 

properly distinguish intermesenteric nerves of the aortic plexus, classically defined as 

nerves coursing posterior to the left renal vein (Jänig & McLachlan, 1987), from those 

which coursed anterior to the left renal vein within the mesenteric plexus, which we 

differentially classified as intraperitoneal branches of the mesenteric plexuses. The 

present study did not investigate the anatomy of the intraperitoneal branches of the 

mesenteric plexuses nor the potential parasympathetic contributions to the aortic plexus.  

The position of all ganglia and nerves relative to the infrarenal aortic branches were 

documented in writing and with photography. Photographs were taken using a Nikon 

D7000 DSLR camera with a Sigma 18–200 mm, f/3.5–6.3 lens or Nikon Macro 105 mm, 

f/ 2.8 lens. Higher magnification photographs were taken using a surgical microscope 

with an OMAX 3.2MP mounted camera. In a subset of specimens, the tissues identified 

as ganglia of the aortic plexus were excised for histological and immunohistochemical 

analysis and verification. 



37 

2.3.2. Histology 

To verify the macroscopic identification of ganglia during gross dissection, histological 

techniques were used to determine whether the identified structures contained neuron cell 

bodies. Ganglia removed during dissection were immediately fixed in 10% formalin 

solution for a minimum of 24 h before paraffin-embedding. Specimens were sectioned at 

5 µm thicknesses using a Microm HM-325 Microtome, and placed on Surgipath X-tra 

Precleaned Micro Slides (Leica Microsystems). A Zeiss A1 light microscope was used to 

examine the specimens. Calibrated and scaled photomicrographs were taken using a Zeiss 

AxioCam MRc microscope-mounted camera and processed using AXIOVISION LE 

software. 

2.3.2.1. Haematoxylin-Eosin Staining 

All acquired ganglia were subject to haematoxylin-eosin (H&E) staining. Tissues were 

warmed at 60 °C for 30 min and then were stained with H&E using standard regressive 

method procedures (Kiernan, 1990). Neuron cell bodies were identified based on 

previously described qualitative characteristics of peripheral sympathetic ganglia: 

neurons with eccentrically placed nuclei and prominent nucleoli containing abundant 

cytoplasmic lipofuscin surrounded by circumferential, yet irregularly arranged satellite 

cells amongst elongated Schwann cell nuclei (Ovalle & Nahirney, 2008; Young et al., 

2014). To determine consistencies in the microscopic structures, slides were additionally 

compared against a positive control (i.e. the sympathetic chain ganglion, which was 

positive for neuron cell bodies) and a negative control (i.e. the sciatic nerve, which 

contains sympathetic axons but is void of neuron cell bodies). 

2.3.2.2. Anti-Tyrosine Hydroxylase Staining 

A previously unidentified ganglion, which we called the prehypogastric ganglion 

(discussed in detail below), was identified in addition to the three known ganglia of the 

aortic plexus. To further characterize whether this ganglion contained sympathetic 

neurons, immunohistochemistry was performed using an anti-tyrosine hydroxylase 

antibody (anti-TH) (Sigma, monoclonal anti-tyrosine hydroxylase clone TH-2, mouse 

IgG1 isotype, Prod. No. T 1299). Tyrosine hydroxylase is an enzyme involved in 
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catecholamine synthesis, and its presence has been used in previous studies to 

characterize neurons as sympathetic in nature (Amino et al., 2005; Motoc et al., 2010).  

Immunohistochemical sections were heated to 37 °C for a minimum of 12 h, and then 

stained using standard immunohistochemical procedures (Kiernan, 1990; Dako, 2013). 

Antigen retrieval was performed in citrate buffer pH 6.0, in a de-cloaking chamber before 

blocking (Dako, 2013). Slides were incubated for 1 h with 0.5 µL mL–1 of anti-TH, as 

established by preliminary titrations. The application of the secondary antibody was 

completed using an ImmPRESS Anti-Mouse Ig Peroxidase Polymer Detection Kit 

(Vector Laboratories, Cat. No. MP-7402) and was then labelled with DAB (DAB 

Peroxidase Substrate Kit, 3,3’–diaminobenzidine, Vector Laboratories, Cat. No. SK-

4100) as per standard protocols (Vector Laboratories, 2010, 2013). Haematoxylin was 

used as the counterstain (Dako, 2013).  

Serial sections of matched specimens were used as negative controls and followed 

identical procedures, except for the application of the primary antibody, anti-TH. A side-

by-side comparison of the tissue with its negative control was completed to determine 

true positive anti-TH staining relative to non-specific background noise (false-positive 

staining). Positive controls (positive for sympathetic neuron cell bodies) for the 

immunohistochemical experiments were completed on cadaver-matched lumbar 

sympathetic chain or inferior mesenteric ganglia. The positive controls served two 

purposes. First, positive staining of these tissues confirmed a successful experiment. 

Secondly, having positive controls from each specimen provided an indicator of antigen 

preservation post-mortem. Preliminary experiments revealed that specimens dissected 

more than 2 months post-mortem had poor antigen preservation as indicated by the 

negative staining, positive control tissue. Because of this result, only specimens dissected 

within 2 months post-mortem were included in the immunohistochemical analysis. 
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2.4 Results 

The aortic plexus consisted of a symmetrically organized network of nerves overlying the 

aorta between the left renal vein and the bifurcation of the common iliac arteries. 

Proximal nerves were referred to as nerves ‘supplying’ the plexus, and distal nerves as 

‘branches’. The nomenclature for the lumbar sympathetic chain ganglia was in 

accordance with the system described by O’Rahilly (1986), in which the lumbar 

sympathetic chain ganglia are named based on their rami communicantes. Specifically, 

the first lumbar (L1) sympathetic chain ganglion is identified by its rami communicantes 

to the T12 and L1 spinal nerves, and the second lumbar (L2) sympathetic chain ganglion 

is connected to the L1 and L2 spinal nerves.  

The aortic plexus was always supplied by the lumbar sympathetic chains via lumbar 

splanchnic nerves (LSN), and in the majority of subjects, intermesenteric nerves from the 

aorticorenal and superior mesenteric ganglia were also found to supply the aortic plexus 

superiorly. The results of the dissections and histological analysis are summarized 

comprehensively in Figure 5. The aortic plexus was bilaterally symmetrical in that it 

comprised a left and right cord, supplied by the L1 and L2 LSN, and had consistent 

projections to the inferior mesenteric plexus overlying the inferior mesenteric artery, the 

superior hypogastric plexus descending into the pelvis, as well as the spermatic plexus 

overlying the testicular arteries (Figure 6). The right and left cords of the aortic plexus 

were defined as the longitudinal collection of nerves lying just lateral to the midline of 

the aorta (Dwight et al., 1930), which extended from just inferior to the left renal vein, 

towards the inferior mesenteric plexus and superior hypogastric plexus, where they 

converged.  

Ganglia of the aortic plexus were visually differentiated from typical nerves by the 

presence of a dark spot within the nervous tissue. Given that microscopic analysis 

revealed a high concentration of neuron cell bodies in this dark region, we suggest the 

colour differentiation seen during gross dissection may be analogous and conceptually 

similar to grey matter (unmyelinated neuron cell bodies) visible in the central nervous 

system. 
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Figure 5.  Anatomy of the aortic plexus. 

A comprehensive illustration which summarizes the results of the anatomical 

dissections and histological analyses. Nerves and ganglia coloured yellow were 

present in all dissections, whereas nerves coloured green were present in a subset of 

specimens. IMG, inferior mesenteric ganglion; LSG, left spermatic ganglion; LSN, 

lumbar splanchnic nerve; PHG, prehypogastric ganglion; RSG, right spermatic 

ganglion; SCG, sympathetic chain ganglion. 
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Figure 6.  The aortic plexus is bilaterally organized. 

A schematic representation of the organization of the aortic plexus highlighting its 

bilateral symmetry about the aorta (represented by the dotted line). Both the right 

and left L1 lumbar splanchnic nerves supply the respective spermatic ganglia, 

whereas the L2 lumbar splanchnic nerves supply the prehypogastric and inferior 

mesenteric ganglia before branching to the inferior mesenteric plexus or superior 

hypogastric plexus. 
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2.4.1. Dissections 

2.4.1.1. Aortic Plexus – Left Side 

Figure 7 depicts a typical view of the left side of the aortic plexus. In all specimens, the 

left cord was supplied by the left L1 and L2 LSN extending from the left L1 and L2 

sympathetic chain ganglia, respectively. Accessory LSNs were not seen accompanying 

the left L1 LSN; however, they were commonly (observed in 6/7 specimens) associated 

with the left L2 LSN. Interestingly, two of these specimens exhibited a second accessory 

L2 LSN, bringing the total number of L2 LSNs to three. The L3 LSN did not travel 

anterior to the aorta or contribute to the aortic plexus. In the six specimens in which an 

L3 LSN was observed, it took a retroaortic course, supplying the superior hypogastric 

plexus directly. This retroaortic left L3 LSN travelled between the left common iliac 

artery and vein, and joined the posterior side of the superior hypogastric plexus at 

approximately the level of the sacral promontory.  

The left L1 and L2 LSN directly supplied the left spermatic ganglion (LSG) and the 

inferior mesenteric ganglion (IMG), respectively. The IMG was found in all seven 

specimens lateral to the origin of the inferior mesenteric artery and was identified by its 

darker colour among the nerves of the inferior mesenteric plexus. It should be noted that 

in two specimens, an accessory IMG was found on the caval side of the inferior 

mesenteric plexus. The LSG was consistently found in close proximity to the left 

testicular artery. The LSG was identified in an equal number of specimens overlying the 

testicular artery as it was being positioned just inferior to it (3/7 for each). In the last 

specimen (1/7), the LSG was located superior to the left testicular artery. Motoc et al. 

(2010) described the LSG as being supplied by both the L1 splanchnic nerve and the 

intermesenteric branch from the aorticorenal/superior mesenteric ganglia, but we 

observed a lack of intermesenteric supply to the LSG in two specimens. Consistent with 

Motoc et al. (2010), the LSG was always supplied by the left L1 LSN and was positively 

identified by its external branches to the spermatic plexus overlying the left testicular 

artery. The LSG also had an inferior branch that connected to the IMG, as well as 

intraperitoneal connections to the inferior mesenteric plexus, bypassing the IMG, in four 

specimens. Figure 7 also shows an example of intraperitoneal branches apparently  
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Figure 7.  Typical left side of the aortic plexus. 

An illustrative representation (A) and photograph (B) of a typical view of the left 

side of the aortic plexus. The characteristic dark spot can be seen within the left 

spermatic ganglion (LSG) and the inferior mesenteric ganglion (IMG), later 

confirmed with histology to contain neuron cell bodies. Note the distinction between 

intraperitoneal nerves of the mesenteric plexus destined for the enteric plexus of the 

hindgut (being pulled away by a vessel loop), and the intermesenteric nerves (IMN) 

running posterior to the left renal vein (LRV) to connect the LSG and the superior 

mesenteric ganglion (not shown). IMP, inferior mesenteric plexus; LCI, left 

common iliac artery; LSN, lumbar splanchnic nerve; SCG, sympathetic chain 

ganglion; SHP, superior hypogastric plexus; TA, testicular artery; TV, testicular 

vein. 
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travelling superior towards the hindgut, which are distinct from the intermesenteric 

nerves coming from the superior mesenteric ganglion to supply the spermatic ganglion. It 

should be noted that in this photograph, the intraperitoneal nerves are not in anatomical 

position, as the hindgut had been reflected onto the cadaver’s precordium during 

dissection, thus pulling the intraperitoneal branches of the inferior mesenteric plexus 

superiorly and out of anatomical position.  

2.4.1.2. Aortic Plexus – Right Side 

The right side of the aortic plexus was found to have a similar organization to the left side 

(Figure 8). The right cord was supplied by the right L1 and L2 LSN. Accessory LSNs 

were seen accompanying the right L1 and L2 LSN in two specimens. Also, similar to the 

left side, L3 LSNs were never observed supplying the aortic plexus. In fact, no right L3 

LSNs were observed within the dissection limits of this study as they were presumably 

located inferior to the bifurcation of the common iliac arteries. The right L1 LSN 

consistently supplied the right spermatic ganglia (RSG). The RSG was positively 

identified by its characteristic branches to the spermatic plexus overlying the right 

testicular artery (Motoc et al., 2010). The RSG was usually observed overlying the origin 

of the right testicular artery (4/7) but was alternatively found positioned both superior 

(2/7) and inferior (1/7) to the artery in other specimens. Similar to the LSG, the RSG was 

inconsistently supplied by the intermesenteric nerves from the aorticorenal and superior 

mesenteric ganglia; an intermesenteric supply to the RSG was observed in four 

specimens.  

In addition to the external branches to the spermatic plexus, the RSG branched to the 

inferior mesenteric plexus (5/7 specimens) as well as inferiorly (termed the inferior 

branch of the RSG, as described by Motoc et al. 2010) towards the superior hypogastric 

plexus (7/7 of specimens). More specifically, the inferior branch of the RSG was 

observed to consistently supply a previously unnamed ganglion within the right cord of 

the aortic plexus before contributing to the superior hypogastric plexus. Because of the 

lack of association of this ganglion to an arterial branch of the aorta (as the other ganglia 

of the aortic plexus are classically named), we elected to name it the prehypogastric 

ganglion due to its major branch and relative position to the superior hypogastric plexus.  
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Figure 8.  Typical right side of the aortic plexus. 

An illustrative representation (A) and photograph (B) of a typical right cord of the 

aortic plexus. The inferior vena cava (IVC) has been removed during dissection to 

view the right sympathetic chain ganglia (SCG) and their connections to the right 

cord of the aortic plexus. This particular specimen exhibited an accessory L1 

lumbar splanchnic nerve (aL1 LSN) in addition to the normal anatomy. IMA, 

inferior mesenteric artery; IMN, intermesenteric nerve; IMP, inferior mesenteric 

plexus; IVC, inferior vena cava; LSN, lumbar splanchnic nerve; PHG, 

prehypogastric ganglion; RSG, right spermatic ganglion; SHP, superior hypogastric 

plexus; TA, testicular artery. 
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The prehypogastric ganglion was present in all seven specimens and was consistently 

located inferior to the RSG, between the aorta and inferior vena cava around the level of 

the inferior mesenteric artery. The specific position of the prehypogastric ganglion varied 

slightly between specimens; however, given it was not closely associated with arterial 

branches of the aorta like the other ganglia of the aortic plexus, precise positional 

differences were not determined. Due to the lack of a vascular landmark, the position of 

the prehypogastric ganglion was best determined by identifying the nerves connected 

distally and proximally to it, as described below. The prehypogastric ganglion typically 

had an elongated shape with a dark centre measuring between 1 and 6 mm in length. 

Superiorly, it was supplied by the inferior branch of the right spermatic ganglion, and 

posteriorly, it was supplied by the right L2 LSN coming from the right L2 sympathetic 

chain ganglion. The prehypogastric ganglion extended branches to the left, supplying the 

inferior mesenteric plexus, as well as directly inferior, to constitute the major nerve 

branch (and right-sided contribution) to the superior hypogastric plexus. These branches 

were observed in all seven specimens and no variations were seen. Figure 9 is a typical 

photograph of the prehypogastric ganglion in situ, demonstrating the darkened central 

portion of ganglionic tissue.  

2.4.2. Histology 

We consistently identified four distinct ganglia during the dissection of the aortic plexus. 

All ganglia from a subset of cadavers (n = 4) underwent microscopic analysis. This 

revealed tissue similar to the positive control, which exhibited neuronal cell bodies 

consistent with the typical descriptions of sympathetic ganglia found in the literature 

(Ovalle & Nahirney, 2008; Young et al., 2014). Figure 10 illustrates the complete 

histological analysis of all four ganglia from one of the four specimens. This microscopic 

finding supports the dissection results, indicating that the aortic plexus consists of four 

distinct ganglia: the left and right spermatic ganglia, inferior mesenteric ganglion, and a 

prehypogastric ganglion.  
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Figure 9.  The prehypogastric ganglion. 

A high magnification photograph of the prehypogastric ganglion. Note the dark 

centre indicated by the arrowheads, which was shown with histology to contain the 

highest concentration of neuron cell bodies. The prehypogastric ganglion in this 

specimen is supplied by two right L2 lumbar splanchnic nerves (LSN), as well as the 

inferior branch of the right spermatic ganglion (RSG). The prehypogastric ganglion 

has consistent branches to the superior hypogastric plexus (SHP), and the inferior 

mesenteric plexus (IMP). aL2 LSN accessory L2, lumbar splanchnic nerve. 
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Figure 10.  Histology confirms the presence of neurons in the constituent ganglia of 

the aortic plexus. 

Haematoxylin-eosin (H&E) staining of all four ganglia of the aortic plexus from a 

common specimen, compared with known positive and negative ganglionic tissue. 

The presence of neuron cell bodies in all four samples (A-D) indicates the plexus is 

composed of four distinct ganglia. (A) Right spermatic ganglion. (B) Left spermatic 

ganglion. (C) Prehypogastric ganglion. (D) Inferior mesenteric ganglion. (E) Positive 

tissue, lumbar sympathetic chain ganglion. (F) Negative tissue, sciatic nerve. 
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Immunohistochemical analysis was completed on the prehypogastric ganglia to verify it 

as a sympathetic ganglion of the aortic plexus. Only prehypogastric ganglia from 

cadavers dissected within 2 months post-mortem were included during the 

immunohistochemical analysis. Cadavers dissected later than 2 months post-mortem were 

excluded because positive controls from these specimens returned false-negative results 

due to poor antigen preservation post-mortem. It appears that autolysis of the tissues and 

destruction of the antigen had occurred in these specimens, perhaps due to multiple thaw-

refreeze cycles prior to dissection. Thus, three of the seven specimens were included in 

the immunohistochemical characterization of the prehypogastric ganglion. In all three 

specimens, the prehypogastric ganglion was found to be immunopositive for tyrosine 

hydroxylase, indicating the neurons were catecholaminergic and thus sympathetic in 

nature (Amino et al., 2005; Motoc et al., 2010). The results of microscopic analysis of the 

prehypogastric ganglion are shown in Figure 11.  

2.5 Discussion  

The present study has provided the first complete gross anatomical and microscopic 

description of the aortic plexus in fresh, frozen male cadavers. The aortic plexus was 

supplied by the L1 and L2 splanchnic nerves and intermesenteric nerves from the 

aorticorenal/superior mesenteric ganglia, and made significant contributions to the 

inferior mesenteric plexus, spermatic plexuses and superior hypogastric plexus. 

Moreover, the aortic plexus was organized into two longitudinal cords, which coursed in 

parallel until they converged to continue into the pelvis as the superior hypogastric 

plexus. In all specimens, four distinct ganglia were identified that were located within the 

two cords, near the intersection of the lumbar splanchnic nerves. Within the left cord, the 

left spermatic ganglion and the well-described inferior mesenteric ganglion were 

observed. Located within the right cord were the right spermatic ganglion and a 

previously unnamed ganglion, which we have called the prehypogastric ganglion.  

The prehypogastric ganglion, supplied by the right L2 lumbar splanchnic nerve, was 

consistently observed to reside in the inferior portion of the right cord, at a similar level 

to the inferior mesenteric ganglion. To our knowledge, this structure has never been 

discussed in the literature or labelled in any previous diagrams of the aortic plexus. That 
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said, it is possible that the prehypogastric ganglion is depicted as an unnamed ‘swelling’ 

in an illustration of the aortic plexus found in a textbook by O’Rahilly (1986). However, 

it is difficult to be certain whether this ‘swelling’ depicts the prehypogastric ganglion 

because several aspects of this drawing fail to match key anatomical features of the aortic 

plexus found in the present study and described in the literature (e.g. presence of the left- 

and right spermatic ganglia, and left-sided lumbar splanchnic nerves supplying the aortic 

plexus) (Dwight et al., 1930; Motoc et al., 2010). Ultimately, the present study has 

provided the first characterization of this ganglion by way of both photographic 

documentation (Figure 8) and histological verification of its sympathetic nature (Figure 

11).  

Before deciding on the nomenclature for the prehypogastric ganglion (see Results section 

Dissections, Aortic Plexus - Right Side), we first considered the possibility that it was a 

secondary (accessory) inferior mesenteric ganglion, as this would be akin to the anatomy 

of the coeliac ganglia (Dwight et al., 1930; O’Rahilly, 1986; Drake et al., 2010). 

Anatomical textbooks have characterized the inferior mesenteric ganglion as a structure 

residing distal to the origin of the inferior mesenteric artery, which is embedded within 

the nerves of the inferior mesenteric plexus itself, and provides an important relay for 

nerves travelling along the inferior mesenteric artery to supply the hindgut (Dwight et al., 

1930; O’Rahilly, 1986). In contrast to this description, the prehypogastric ganglion (i) 

was not closely associated with the origin of the inferior mesenteric artery, (ii) was 

distinct from the dense inferior mesenteric plexus extending along the inferior mesenteric 

artery to supply the hindgut, and (iii) instead resided on the right side of the aorta with 

seemingly more significant contributions extending towards the superior hypogastric 

plexus to the pelvis. Furthermore, in two specimens, we observed and histologically 

verified the presence of a secondary (accessory) inferior mesenteric ganglion embedded 

in the caval aspect of the inferior mesenteric plexus that was in addition to the distinct 

prehypogastric ganglion – findings which further support our contention that the 

prehypogastric ganglion should not be categorized as a secondary inferior mesenteric 

ganglion. 
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Figure 11.  Tyrosine hydroxylase confirms the adrenergic nature of the ganglia. 

Histological staining of the prehypogastric ganglion collected from five specimens 

(1–5). Column A represents haematoxylin-eosin (H&E) staining. Column B 

represents staining with anti-tyrosine hydroxylase antibody (anti-TH). Column C is 

the negative control for Column B which followed identical immunohistochemical 

procedures, except for the application of the primary antibody, anti-TH. 
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In acknowledging the prehypogastric ganglion as a distinct structure of the aortic plexus, 

it is reasonable to suggest that it may be the right-sided developmental equivalent of the 

inferior mesenteric ganglion. In support of this suggestion, both the inferior mesenteric 

ganglion (left-sided) and the prehypogastric ganglion (right-sided) are supplied by the 

respective inferior spermatic branches of the spermatic ganglia as well as the L2 lumbar 

splanchnic nerves (Figure 5 and Figure 6). Furthermore, histological analysis confirmed 

that the prehypogastric ganglion, like the inferior mesenteric ganglion, is sympathetic in 

nature, as shown by positive anti-TH staining (Figure 11), and has comparable 

microscopic structure (Figure 10). Finally, both ganglia seem to contribute to the inferior 

mesenteric plexus and the superior hypogastric plexus (Figure 7 and Figure 8), further 

supporting the suggestion that these two ganglia are bilateral, embryologic equivalents of 

each other.  

As schematized in Figure 6, the overall neural organization of the aortic plexus seems to 

exhibit bilateral symmetry in its organization of ganglia and nerves; findings which are 

contrary to its classical characterization as a highly convoluted network of nerves. The 

idea of bilateral symmetry is consistent with our current knowledge of the preganglionic 

peripheral sympathetic system as a whole. Examples of such symmetry include the 

presence of bilateral sympathetic chains extending from the cranium to the ganglion 

impar at the base of the sacrum, as well as the presence of symmetrically paired 

splanchnic nerves and their respective ganglia throughout the thoracolumbar region. It is 

hypothesized the symmetrical organization of the peripheral sympathetic system is 

largely influenced by a bilateral migration of neuroblast cells from the neural crest after 

the 5th week of development (Sadler, 2010; Takahashi et al., 2013).  

It is worth noting that there are likely significant clinical implications in failing to 

appreciate that the aortic plexus is derived of bilaterally symmetrical cords, and that 

significant nerves, as well as the newly characterized prehypogastric ganglion, exist 

within the right cord on the caval side of the aorta. In fact, an incomplete understanding 

of the organization of the aortic plexus and its extensions into the pelvis may have 

predisposed these fine structures to the unintended damage during abdominal surgeries, 

such as retroperitoneal lymph node dissections for testicular cancer (Jewett & Groll, 
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2007; Heidenreich & Pfister, 2012; Hsiao et al., 2012), anterior approach lumbar fusion 

surgeries (Lu et al., 2009) and abdominal aortic aneurysm replacements (Veroux et al., 

2010). This unintended trauma could have widespread complications as the sympathetic 

nerves within the aortic plexus ultimately serve the spermatic plexus to the male gonads 

(Motoc et al., 2010), the inferior mesenteric plexus to the hindgut, and the superior 

hypogastric plexus to the pelvic urogenital viscera (Jänig & McLachlan, 1987; Giuliano 

& Clément, 2005). Given the apparent contribution of the prehypogastric ganglion to the 

superior hypogastric plexus (Figure 5 and Figure 8), and potential risk of damage due to 

its position distinct from any aortic branches, we hypothesize that this ganglion may be a 

significant structure in the neural path resulting in anejaculation if damaged (Jänig & 

McLachlan, 1987; Giuliano & Clément, 2005; Heidenreich & Pfister, 2012; Hsiao et al., 

2012; Wein, 2012).  

In summary, through dissection of fresh, frozen human cadavers, the present study has 

provided the first complete mapping of the nerves and ganglia of the aortic plexus. All 

specimens exhibited a bilaterally symmetrical arrangement of four distinct sympathetic 

ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior 

mesenteric ganglion and one previously unidentified ganglion, which has been named the 

prehypogastric ganglion. Because our examination revealed the aortic plexus has the 

potential for variation, primarily in the possibility of exhibiting accessory splanchnic 

nerves, a follow-up study with a larger sample size should be completed to determine 

accurately the extent of its variability. Furthermore, future directions of this research 

should also include a comprehensive functional investigation of each nerve of the plexus, 

with descriptions of the spinal contributions and visceral supply. Clinically, this 

information may help identify the nerves of the aortic plexus responsible for significant 

post-operative morbidities, such as anejaculation, following retroperitoneal surgeries.  
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CHAPTER 3   
HISTOLOGICAL VERIFICATION OF THE PREHYPOGASTRIC AND 
OVARIAN GANGLIA CONFIRMS A BILATERALLY SYMMETRICAL 
ORGANIZATION OF THE GANGLIA COMPRISING THE AORTIC 
PLEXUS IN FEMALE HUMAN CADAVERS 

In characterizing the prehypogastric ganglion, we revealed that the organization of the 

aortic plexus in males is bilaterally arranged – findings that contrast its classical portrayal 

as a variable, convoluted network of nerves. In the present chapter, we investigate if 

homologus ganglia and, ultimately, a structural conservation exists in the female aortic 

plexus. The content of this chapter is published in the Journal of Anatomy, Volume 228, 

Issue 5, Pages 805-811. Histological protocols used in the following study are listed in 

Appendix A (H&E) and Appendix B (IHC). Supplemental images referenced in this 

manuscript are contained in Appendix C. 

3.1 Abstract 

The aortic plexus is a network of sympathetic nerves positioned along the infrarenal 

abdominal aorta. Recently, we characterized the aortic plexus and its ganglia (inferior 

mesenteric, left/right spermatic, and prehypogastric ganglion) in males; however, the 

literature minimally describes its anatomy in females. In the present study, we conducted 

the first histological examination of the left and right ovarian ganglia, while also 

investigating whether females, like males, exhibit a prehypogastric ganglion. The ganglia 

were dissected from embalmed (n = 32) and fresh (n = 1) human cadavers, and H&E 

staining was used to confirm the presence of a left ovarian ganglion in 31/31 specimens, a 

right ovarian ganglion in 29/29 specimens and a prehypogastric ganglion in 25/28 

specimens. Comparable to the topographic arrangement in males, there is a bilateral 

organization of the ganglia comprising the aortic plexus in females. More specifically, the 

left and right ovarian ganglia were positioned in close relation to their respective ovarian 

artery, whereas the prehypogastric ganglion was positioned within the right cord of the 

aortic plexus, contralateral to the inferior mesenteric ganglion. Using 

immunohistochemistry, it was shown that all ganglia from the fresh cadaver stained 

positive for tyrosine hydroxylase, thereby confirming their sympathetic nature. Having 
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provided the first topographical and histological characterization of the ovarian and 

prehypogastric ganglia in females, future studies should seek to determine their specific 

function. 

3.2  Introduction 

The aortic plexus is a complex network of sympathetic nerves overlying the infrarenal 

abdominal aorta containing significant innervation to the hindgut and pelvic organs. In 

males, disruption of the aortic plexus during retroperitoneal surgery is commonly 

associated with loss of antegrade ejaculation, and thus fertility (Flynn & Price, 1984; 

Jewett et al., 1988; Jewett & Groll, 2007; Katz & Eggener, 2009; Veroux et al., 2010; 

Heidenreich & Pfister, 2012; Hsiao et al., 2012). Although nerve-sparing surgical 

procedures are currently recommended, the normal anatomy of the aortic plexus and its 

ganglia have not been described in significant detail. Motivated by this, our group 

recently published the first detailed anatomical description of the aortic plexus and its 

ganglia in human males through dissection, followed by a histological examination of 

fresh frozen cadavers (Beveridge, Johnson, et al., 2015). Importantly, our study 

characterized the prehypogastric ganglion, a novel structure which we suggested could be 

the right-sided equivalent of the well-acknowledged inferior mesenteric ganglion. 

Ultimately, characterization of the prehypogastric ganglion revealed that the topography 

of the aortic plexus in males is bilaterally symmetrical, organized around the four 

constituent prevertebral ganglia (left/right spermatic ganglia, prehypogastric ganglion, 

and inferior mesenteric ganglion) as seen in Figure 12 (Beveridge, Johnson, et al., 2015). 

These findings contrast the classical characterization of the aortic plexus as a variable, 

convoluted network of nerves (Kuntz, 1945; Spalteholz & Spanner, 1967; Hollinshead, 

1974; Mirilas & Skandalakis, 2010; Netter, 2011).  

Because our previous study only examined males, it remains uncertain whether females 

also exhibit the newly described prehypogastric ganglion. Moreover, although the 

existence of the inferior mesenteric ganglion in females is well-established (Jänig & 

McLachlan, 1987; Choi & Novembre, 1999), the current literature does not contain any 

primary reports of homologous structures to the male spermatic ganglia in humans. 
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Figure 12.  Homologous ganglia in the female aortic plexus confirms bilateral 

organization in humans. 

Adapted from Beveridge et al. (2015), this illustration schematically demonstrates 

the organization of the human aortic plexus around the four constituent ganglia: the 

right/left spermatic (ovarian ♀) ganglia, prehypogastric ganglion and the inferior 

mesenteric ganglion. It is important to note that this bilateral arrangement around 

the four ganglia of the aortic plexus has only ever been demonstrated in males. This 

study aims to examine the homologous ganglia, if present, in females. 
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Although the existence of ovarian ganglia has been alluded to in two classical human 

anatomy textbooks (Kuntz, 1945; Crosby et al., 1962), to our knowledge the only 

scientific investigations demonstrating these structures were conducted on pigs, cats and 

rats (Langley & Anderson, 1896; McNeill & Burden, 1986; Klein & Burden, 1988a, 

1988b; Czaja et al., 2001).  

Therefore, through gross cadaveric dissection and histological tissue verification, the 

present study investigated in females the possible existence of: (1) a prehypogastric 

ganglion as the right-sided equivalent structure to the inferior mesenteric ganglion, and 

(2) ovarian ganglia as homologous structures to the left and right spermatic ganglia in 

males. Collectively, these results would confirm whether the aortic plexus in females 

exhibits a topographical arrangement of ganglia consistent with that of males (Figure 12).  

3.3 Materials and Methods 

In a population of 33 female cadavers (one fresh frozen, 32 embalmed; mean age = 78.2, 

SD = 12.5), the structures suspected to be the right ovarian, left ovarian and 

prehypogastric ganglia were dissected, and then excised for histological verification. 

Because the abdomen of the embalmed cadavers had been previously dissected by 

medical students at our institution, we excluded specimens where the complete aortic 

plexus was grossly over-dissected (n = 1) or specific portions of the aortic plexus were 

damaged, in which case only ganglia from the regions that remained intact were 

examined (n = 6). All cadaveric specimens were acquired and dissected in accordance 

with the Anatomy Act of Ontario. The ganglia were identified during dissection within 

the left or right cords of the aortic plexus near the intersections of the infrarenal lumbar 

splanchnic nerves. Most commonly, the ganglia were identified as focal swellings or 

regions of nerve containing slightly darker matter, which has been suggested as a marker 

of neuron cell bodies likely due to the accumulation of lipofuscin (Beveridge, Johnson, et 

al., 2015). If no obvious ganglion was present, a small portion of tissue was excised from 

the expected location in case the ganglion was too small to be observed macroscopically. 

To verify whether the acquired tissues were ganglia, 5-lm sections were stained with 

Hematoxylin and Eosin (H&E) using standard regressive procedures, and then examined 
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for the presence of neuron cell bodies. If no neuron cell bodies were observed, 

subsequent serial sections at varying depths were examined throughout the tissue. The 

specimens obtained from the single fresh, frozen cadaver were additionally used to verify 

the adrenergic nature of the neurons through staining with anti-tyrosine hydroxylase 

antibody (anti-TH) following a previously published protocol (Beveridge, Johnson, et al., 

2015). Scaled micrographs were taken using a Zeiss AxioCam MRc microscope camera.  

3.4 Results 

Through dissection and examination of the 32 female cadavers included in this study, 26 

had intact aortic plexuses and macroscopic identification of the left ovarian, right ovarian 

and prehypogastric ganglia was attempted. In the remaining six specimens, partial over-

dissection of the aortic plexus was present as a result of medical students’ laboratory 

exercises at our institution. In these six cases, only the area of the aortic plexus which 

remained intact was examined. Collectively, tissue suspected to be the left ovarian 

ganglia (n = 31), right ovarian ganglia (n = 29) and prehypogastric ganglia (n = 28) were 

collected for histological examination with H&E staining to verify whether the obtained 

specimens truly contained neuron cell bodies and could thus be classified as ganglia. 

3.4.1. Topography of the Ganglia 

In all of the specimens examined, the ovarian ganglia were located just inferior to the left 

renal vein, near the origin of the ovarian arteries. They were identified during dissection 

as the slightly enlarged portion of neural tissue near the junction of the intermesenteric 

nerve descending from the aorticorenal/superior mesenteric plexuses as it intersected with 

the first infrarenal lumbar splanchnic nerve. The prehypogastric ganglion was located at 

approximately the level of the inferior mesenteric artery, within the right cord of the 

aortic plexus – the same position as described in males. It was most easily identified by 

landmarking the position of the second infrarenal lumbar splanchnic nerve on the right 

side as it intersects the right cord of the aortic plexus. Figure 13 illustrates the position of 

the examined ganglia in situ during the dissection of the fresh cadaver.  
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Figure 13.  Representative photo of the aortic plexus. 

A photograph of the aortic plexus taken from the left side of the body. The left cord 

of the aortic plexus is featured in the foreground, clearly illustrating the connections 

of the left ovarian and inferior mesenteric ganglia with that of the first and second 

infrarenal lumbar splanchnic nerves (LSN) extending from the sympathetic chain. 

In the background, the right cord of the aortic plexus is visible, with the 

prehypogastric ganglion identifiable. Given the perspective of the photo, the right 

ovarian ganglion is not clearly seen, but a label has been placed to illustrate the 

approximate location of the structure. 
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3.4.2. Histology of the Ganglia 

Abundant collections of neuron cell bodies (not uncommonly amounting to more than 

100 neurons per histological section) were observed in all excised ovarian ganglia and 

25/28 prehypogastric ganglia. The remaining 3/28 ‘prehypogastric ganglia’ were 

inconclusive in their histological examinations since they were not completely devoid of 

neuron cell bodies, yet they contained a notable lack of these cells compared with the 

other examined tissues. This distinction is shown in Figure 14. Specifically, Figure 14A 

demonstrates a typical micrograph from a tissue specimen confirmed to be a 

prehypogastric ganglion by the presence of satellite cells surrounding numerous neuron 

cell bodies with eccentrically placed nucleoli and abundant cytoplasmic lipofuscin. 

Alternatively, Figure 14B demonstrates a micrograph of tissue which was not classified 

as being a prehypogastric ganglion due to the unusually low number of neuron cell 

bodies.  

The three inconclusive samples underwent subsequent sectioning to ensure the actual 

ganglionic portion of the tissue was not positioned at a different depth. By sectioning two 

to three slices at four different depths, approximately 40–50 neurons were observed in the 

first sample (Specimen 24C; Supporting Information Appendix C), whereas a total of 

nine neurons were counted throughout the second sample (Specimen 21C; Appendix C). 

In the last sample, sectioning at six different depths revealed a scant three neuron cell 

bodies in total (Specimen 20C; Appendix C). Limited by the cremation of our specimens 

shortly after dissection, we were not able to revisit the cadavers to determine whether the 

low number of neuron cell bodies observed was an indication of (1) identification error 

during dissection, in that only a small portion of the prehypogastric ganglion was excised 

and the rest remained in situ, (2) an anatomical variation whereby the prehypogastric 

ganglion was truly not present in these specimens, but rather a microganglion was 

excised instead, or (3) some disease or process of aging had occurred, resulting in atrophy 

of the prehypogastric ganglion, leaving only a small minority of neurons. 
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Figure 14.  Histology confirms the presence of neurons within the prehypogastric 

ganglion. 

Panel A demonstrates histology from a typical prevertebral ganglion of the aortic 

plexus. Specifically, this is a photomerge of the prehypogastric ganglion from 

specimen #14. Panel B demonstrates a photomerge of the tissue thought to be a 

prehypogastric ganglion at the time of excision (Specimen #21); however, only nine 

neuron cell bodies were seen in this section clustered at the location indicated by the 

arrowhead. Neuron cell bodies were not observed in any other examined depths of 

the tissue. 
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Given that the ovarian ganglia from these three cadavers appeared normal (see Specimens 

20–21 & 24, columns A & B; Appendix C), the third possibility is unlikely. Based on the 

histology, we suspect that the prehypogastric ganglion was incorrectly excised and only a 

piece of it was obtained, which explains why only a few neurons were present at the edge 

of the sectioned tissue. Nevertheless, we must acknowledge that we are not certain of this 

and the variable presence of the prehypogastric ganglion may still be a possibility. 

Therefore, given the drastically smaller number of neuron cell bodies in these three 

samples, it remains inconclusive whether these cadavers contained a prehypogastric 

ganglion. A summary of the complete histological examination is shown in Table 2. 

Photomicrographs of the ganglia from each specimen are provided in the Appendix C. 

In the single fresh, frozen cadaver, subsequent staining on the left ovarian, right ovarian 

and prehypogastric ganglia were immunopositive for tyrosine hydroxylase, thereby 

confirming the cells were adrenergic sympathetic neurons (Figure 15). 

Immunohistochemical staining of the inferior mesenteric ganglion from the same 

specimen is also shown, as it represents the positive control for the immunohistochemical 

experiment. 
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Table 2.  Constituent ganglia of the aortic plexus are consistently present. 

A summary of the results from the H&E staining used to verify the macroscopically 

identified ganglia. All excised specimens were microscopically confirmed to be 

ganglia with the exception of three ‘prehypogastric ganglia’. No tissues were 
completely devoid of neuron cell bodies. 

 

 Right Ovarian 

Ganglion 

Left Ovarian 

Ganglion 

Prehypogastric 

Ganglion 

N excised (total) 29 31 28 

N confirmed as ganglia 

(abundant neuron cell bodies) 
29 31 25 

N inconclusive (notable lack of 

neurons throughout the tissue) 
0 0 3 

N devoid of neurons 0 0 0 
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Figure 15.  Tyrosine hydroxylase confirms the adrenergic nature of the ganglia. 

Immunohistochemical staining of the right/left ovarian and prehypogastric ganglia 

were positive for tyrosine hydroxylase, indicating the adrenergic nature of the 

constituent neurons. Staining of the inferior mesenteric ganglion was used as 

positive control tissue. Tissue-specific negative controls (- ctrl), which underwent 

identical procedures save the application of the primary antibody, are also 

presented. 
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3.5 Discussion 

In the present study, dissection and histological analysis of cadaveric specimens were 

used to identify the left ovarian, right ovarian and prehypogastric ganglia as constituent 

structures of the aortic plexus in human females. Consistent with previous scientific 

reports of ovarian ganglia in pigs, cats and rats (Langley & Anderson, 1896; McNeill & 

Burden, 1986; Klein & Burden, 1988a, 1988b; Czaja et al., 2001), histological 

examination of the excised tissue obtained during dissection revealed that all examined 

specimens contained right (n = 29) and left (n = 31) ovarian ganglia in similar 

topographic locations as the spermatic ganglia in males (Motoc et al., 2010; Beveridge, 

Johnson, et al., 2015). Thus, the present study provides histological verification of the 

ovarian ganglia in humans, which to our knowledge had only been alluded to in two 

classical textbooks (Kuntz, 1945; Crosby et al., 1962). In rats, it was shown that the 

nerves of the ovarian ganglia and plexuses mainly innervate the vasculature of the ovary. 

This is in contrast to the fibers coming from the celiac plexus via the superior ovarian 

nerve which innervate both ovarian vasculature and interstitial tissue (Lawrence & 

Burden, 1980; Aguado, 2002). Furthermore, it has been suspected that visceral afferent 

fibers traveling via the ovarian plexuses account for the intermenstrual pain 

(Mittelschmerz) some women associate with ovulation (Davidson, 1934; Crosby et al., 

1962). More recently, Czaja et al. (2001) identified a major population of sympathetic 

neurons in the ovarian ganglia of pigs which innervate the ipsilateral ampulla and isthmus 

of the oviduct. Although the purpose of the sympathetic innervation from the ovarian 

ganglia to the oviduct remains unknown, a possible vasoconstrictive role and/or a role in 

smooth muscle contraction is likely.  

In addition, the present study revealed using histology that the vast majority (25/28) of 

cadavers had a prehypogastric ganglion. Importantly, these findings provide the first 

reported evidence of the prehypogastric ganglion in females. In each cadaver, the 

prehypogastric ganglion was positioned in the same position as demonstrated in males 

(Beveridge, Johnson, et al., 2015). Taken together, these results confirm that the recently 

discovered prehypogastric ganglion is a consistent structure of the human aortic plexus.  
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Collectively, our results demonstrate that female cadavers exhibit ovarian and 

prehypogastric ganglia in positions that are consistent with that of the homologous 

structures in males (Motoc et al., 2010; Beveridge, Johnson, et al., 2015); findings which 

further confirm that the aortic plexus is organized in a bilaterally symmetrical manner. 

Given the demonstrated symmetry of the four ganglia of the aortic plexus in males and 

now females (as schematized in Figure 12), one could ask whether the prehypogastric 

ganglion is in fact the right sided developmental equivalent structure to the inferior 

mesenteric ganglion because of its chiral anatomy within the contralateral (right) cord of 

the aortic plexus. Although it is generally accepted that humans possess one well defined 

inferior mesenteric ganglion (Jänig & McLachlan, 1987) with the possibility of variable 

accessory inferior mesenteric ganglia (Kuntz & Jacobs, 1955; O’Rahilly, 1986; 

Beveridge, Johnson, et al., 2015), dissection and histological examination of the inferior 

mesenteric plexus of human fetuses revealed the possibility of two well-defined inferior 

mesenteric ganglia, supplied by the respective right and left lumbar splanchnic nerves 

(Fig. 4 in Southam, 1959). Based on Southam’s (1959) developmental observations, it is 

reasonable to suggest that a right and left inferior mesenteric ganglion could develop in 

humans, with the former becoming what we have identified as the prehypogastric 

ganglion in the adult and the latter becoming the inferior mesenteric ganglion proper.  

Considering the possibility that the prehypogastric ganglion develops from the fetal right 

inferior mesenteric ganglion, the anatomy of the human aortic plexus becomes congruent 

with the known anatomy of other species such as the cat, guinea pig, rabbit, dog (Jänig & 

McLachlan, 1987) and pig, where it is generally accepted that a right- and a left-sided 

inferior mesenteric ganglion exist in both male  (Kaleczyc et al., 1995; Ragionieri et al., 

2013; Pidsudko, 2014a) and female adults (Majewski et al., 1991). In the context of this 

comparative anatomy, it appears that the prehypogastric ganglion and the inferior 

mesenteric ganglion proper of humans are equivalent to the right and left inferior 

mesenteric ganglia of other mammals, respectively. Although a clear similarity in these 

ganglia exists across species, the differences in the current nomenclature importantly 

acknowledges the topographical and morphological differences in their anatomy. 

Conventionally, the nomenclature of the prevertebral ganglia are given according to the 

plexus to which they are associated (O’Rahilly, 1986), thus, the nomenclature of the 
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prehypogastric ganglion describes its anatomy distinct from the inferior mesenteric artery 

(Figure 13) with seemingly more significant communications with the superior 

hypogastric plexus (Beveridge, Johnson, et al., 2015). This is in contrast to the anatomy 

of the left and right inferior mesenteric ganglia of non-primate mammals, such as the pig, 

where it is well established that they are positioned bilaterally, immediately adjacent to 

the inferior mesenteric artery (Kaleczyc et al., 1995; Pidsudko, 2014a) in an orientation 

resembling the anatomy of the bi-lobed celiac ganglia positioned around the base of the 

celiac artery in humans (see Plate 302 in Netter, 2011; Figure 1136 in Dwight et al., 

1930). Ultimately, the anatomical distinction of the prehypogastric ganglion from the 

inferior mesenteric ganglion is of importance for surgeons tasked with navigating the 

intricacies of the aortic plexus during retroperitoneal procedures; especially since the 

function of the prehypogastric ganglion remains unclear.  

In the original description of the prehypogastric ganglion in males, our group 

hypothesized it might be a structure which, if damaged, results in anejaculation because 

of its apparent contribution to the superior hypogastric plexus and potential risk for 

surgical damage due to its position distinct from arterial branches of the aorta (Beveridge, 

Johnson, et al., 2015). Given that anejaculation is characterized by a loss of seminal 

emission, it appears unlikely that this would be the sole function of a structure that has 

now been identified in females. Rather, our revised suggestion is that the prehypogastric 

ganglion is instead and/or additionally responsible for contraction of the internal urethral 

sphincter, a function common to both sexes. This hypothesis is particularly compelling 

since contraction of the internal urethral sphincter functions in both sexes to retain urine 

in the bladder; however, it is also imperative for antegrade ejaculation in males (Jung et 

al., 2012).  

In conclusion, the present study provides histological verification of the left ovarian, right 

ovarian and prehypogastric ganglia in females. Although several suggestions about the 

possible role of these ganglia have been proposed based on their anatomy, it is important 

to note that their exact purpose, particularly in humans, remains unknown. Ultimately, 

future studies are needed to elucidate the specific function(s) of the ovarian and 

prehypogastric ganglia in humans.  
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CHAPTER 4   
THE ANATOMY OF THE INFRARENAL LUMBAR SPLANCHNIC 
NERVES IN HUMAN CADAVERS: IMPLICATIONS FOR 
RETROPERITONEAL NERVE-SPARING SURGERY 

Based on our recent research elucidating the anatomy of the aortic plexus, we have 

learned it is comprised of two parallel cords which run paramedially along the anterior 

surface of the infrarenal abdominal aorta. Consistently, the aortic plexus contains four 

prevertebral ganglia, arranged bilaterally with two in each cord. Like all anatomical 

structures, the aortic plexus is prone to variation. A detailed description of the potential 

variations in the anatomy of the aortic plexus is warranted by surgeons attempting to 

spare these nerves during retroperitoneal surgery. The present chapter addresses this need 

by providing the first quantitative study of the infrarenal lumbar splanchnic nerves. The 

content of this chapter is published in the Journal of Anatomy, Volume 232, Issue 1, 

Pages 124-133. 

4.1 Abstract 

Injury to the nerves of the aortic- and superior hypogastric plexuses during 

retroperitoneal surgery often results in significant post-operative complications, including 

retrograde ejaculation and/or loss of seminal emission in males. Although previous 

characterizations of these plexuses have done well to provide a basis for understanding 

the typical anatomy, additional research into the common variations of these plexuses 

could further optimize nerve-sparing techniques for retroperitoneal surgery. To achieve 

this, the present study aimed to document the prevalence and positional variability of the 

infrarenal lumbar splanchnic nerves (LSNs) through gross dissection of 26 human 

cadavers. In almost all cases, two LSNs were observed joining each side of the aortic 

plexus, with 48% (left) and 33% (right) of specimens also exhibiting a third joining 

inferior to the left renal vein. As expected, the position of the LSNs varied greatly 

between specimens. That said, the vast majority (98%) of LSNs joining the aortic plexus 

were found to originate from the lumbar sympathetic trunk above the level of the inferior 

mesenteric artery. It was also found that, within specimens, adjacent LSNs often coursed 

in parallel. In addition to these nerves, 85% of specimens also demonstrated retroaortic 
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LSN(s) that were angled more inferior compared with the other LSNs (p < 0.05), and 

exhibited a unique course between the aorta/common iliac arteries and the left common 

iliac vein before joining the superior hypogastric plexus below the aortic bifurcation. 

These findings may have significant implications for surgeons attempting nerve-sparing 

procedures of the sympathetic nerves in the infrarenal retroperitoneum such as 

retroperitoneal lymphadenectomies. We anticipate that the collective findings of the 

current study will help improve such retroperitoneal nerve-sparing surgical procedures, 

which may assist in preserving male ejaculatory function post-operatively. 

4.2 Introduction 

The major source of sympathetic innervation to the pelvic organs is provided by the 

aortic- and superior hypogastric plexuses. Overlying the infrarenal abdominal aorta, the 

aortic plexus receives sympathetic supply from the lumbar sympathetic trunk and 

suprarenal preaortic plexuses via lumbar splanchnic nerves (LSNs) and intermesenteric 

nerves, respectively (Motoc et al., 2010; Beveridge, Johnson, et al., 2015). After 

extending branches to form the inferior mesenteric plexus, the main cords of the aortic 

plexus converge near the aortic bifurcation as the superior hypogastric plexus that 

descends into the pelvis to innervate the smooth muscle of the urogenital organs, 

including the internal urethral sphincter, ductus deferens, prostate gland and seminal 

vesicles (Learmonth, 1931; Mitchell, 1953; Crosby et al., 1962; Duncan & Jonck, 1965; 

Brindley et al., 1989; Coolen et al., 2004; Paraskevas et al., 2008; Beveridge, Johnson, et 

al., 2015). Unfortunately, given their seemingly variable positioning in the 

retroperitoneum and pelvis, the delicate nerves of the aortic and/or superior hypogastric 

plexus are at risk of damage during retroperitoneal surgery, which can result in 

significant postoperative complications, including loss of seminal emission and/or 

retrograde ejaculation in males (Duncan & Jonck, 1965; Johnson & McGuire, 1981; 

Flynn & Price, 1984; Jewett et al., 1988; Jewett & Groll, 2007; Veroux et al., 2010; 

Heidenreich & Pfister, 2012; Hsiao et al., 2012). Although this preventable post-

operative complication is well acknowledged in the surgical literature, additional research 

into the common variations of the nerves comprising and contributing to the aortic- and 
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superior hypogastric plexuses could further optimize nerve-sparing techniques for 

retroperitoneal surgeons. 

Based on cadaveric and surgical investigations, most of our understanding of the LSNs 

has been derived from qualitative observations (Motoc et al., 2010; Beveridge, Johnson, 

et al., 2015, 2016). Classical anatomical texts reference four LSNs on each side with 

two–four joining the aortic plexus (Mitchell, 1953; Hollinshead, 1971; Gray, 1973; 

Woodburne & Burkel, 1994; Mirilas & Skandalakis, 2010), and more recent cadaveric 

studies have supported this assertion by reporting two consistent infrarenal LSNs (with 

the potential for accessory fibers) joining the intermesenteric nerves of the aortic plexus 

(Beveridge, Johnson, et al., 2015, 2016; Beveridge, Allman, et al., 2016). Moreover, 

below the aortic bifurcation, some sources indicate the possibility of a LSN(s) joining the 

superior hypogastric plexus (Dwight et al., 1930; Learmonth, 1931; Mitchell, 1953; 

Duncan & Jonck, 1965; Hollinshead, 1971; O’Rahilly, 1986; Mirilas & Skandalakis, 

2010; Beveridge, Johnson, et al., 2015); however, details about their prevalence and/or 

course are rarely discussed. Of the reports available, it remains unclear whether these 

fibers course: (i) anterior to the common iliac arteries (see fig. 38.7 from O’Rahilly, 

1986; fig. 6–71 from Woodburne & Burkel, 1994; fig. 9 from Mirilas & Skandalakis, 

2010; plate 389 from Netter, 2011); (ii) between the aortic bifurcation and the left 

common iliac vein (see fig. 1 from Learmonth, 1931; fig. 110 from Mitchell, 1953; 

Beveridge et al. 2015a); or (iii) posterior to the left common iliac vein (see fig. 1140 from 

Dwight et al. 1930; fig. 1 from Learmonth, 1931; fig. 9 from Mirilas & Skandalakis, 

2010; plates 297 and 392 from Netter, 2011). Furthermore, inconsistencies exist with 

respect to whether one (Dwight et al., 1930; Hollinshead, 1971; O’Rahilly, 1986; Mirilas 

& Skandalakis, 2010; Beveridge, Johnson, et al., 2015) or two (Learmonth, 1931; 

Woodburne & Burkel, 1994) LSNs are present on each side that extend to join the 

superior hypogastric plexus. Based on our own observations (Beveridge, Johnson, et al., 

2015), it is our prediction that LSN(s) joining the superior hypogastric plexus, when 

present, will course behind the aortic bifurcation, yet anterior to the left common iliac 

vein. 
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Given that the precise involvement of each LSN in seminal emission and antegrade 

ejaculation is not yet understood, further investigation is warranted to quantify the 

positional deviations of the LSNs in order to assist comprehensive nerve-sparing 

retroperitoneal surgery. Although the position of the LSNs may vary greatly, based on 

our own dissections, we predict that the course of adjacent LSNs will remain similar 

within specimens (i.e., each LSN will course in parallel to one another within an 

individual). Ultimately, to complement previous observations and address the 

aforementioned predictions, the present study endeavored to provide the first 

quantification of the prevalence, positional deviations and course of the infrarenal LSNs 

adjoining the aortic- and superior hypogastric plexuses through dissection and 

measurement of human cadavers. 

4.3 Materials and Methods 

This study was conducted on 26 embalmed human cadavers (16 females, 10 males; µage at 

death = 80.4 ± 9.8 years; range 59–97 years) over a period of two years from the HEART 

(Haase Education in Anatomy & Research Technologies) Lab at Western University, 

ON, Canada. All data were obtained in accordance with the Anatomy Act of Ontario and 

Western’s Cadaveric Use in Research. Specimens were excluded from the present study 

if they exhibited evidence of previous infrarenal retroperitoneal dissection that may have 

altered the anatomy (n = 10), or retroperitoneal disease that may have altered the position 

of the aortic plexus (n = 8; i.e., abdominal aortic aneurysms greater than 3 cm, local 

metastases). 

4.3.1. Dissection 

The preaortic sympathetic nerves were dissected from the left renal vein to the pelvic 

inlet. LSNs were carefully isolated where they intersected the left/right cord of the aortic 

plexus or the posterior aspect of the superior hypogastric plexus, and followed posteriorly 

to their origin at the lumbar sympathetic trunk. Because all LSNs joining the superior 

hypogastric plexus below the aortic bifurcation coursed posterior to the common iliac 

arteries, they were referred to (and grouped for analysis) as retroaortic LSNs. Nerves 

were pinned during dissection in preparation for measurement.  
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4.3.2. Measurement Protocol 

To quantify the position of each LSN, we measured its origin (proximal position at the 

sympathetic trunk) and termination (distal position at the cord of the aortic plexus or 

superior hypogastric plexus) relative to the aortic bifurcation along the rostrocaudal axis. 

This positional metric was adopted based on its successful implementation in a previous 

study that examined the position of the lumbar arteries and veins within the infrarenal 

retroperitoneum (Beveridge, Power, et al., 2015). In addition, measurements of the 

infrarenal abdominal aortic length, rostrocaudal position of the inferior mesenteric artery 

and lateral position of the superior hypogastric plexus were obtained to standardize and 

contextualize the data reported in the study. To determine the lateral positioning of the 

superior hypogastric plexus, the width of the plexus and its distance from each side of the 

aorta were measured at the level of the aortic bifurcation. 

Inter- and intra-rater reliability of the measurement protocol was performed using an 

intraclass correlation coefficient in a two-way mixed model assessing absolute 

agreement. To assess inter-rater reliability, two raters (Raters A and B) measured the 

same three specimens on different days, and were blinded to all previous measurements. 

Subsequently, Rater A measured a different specimen on two different days (blinded 

from all previous measurements) to assess intra-rater reliability. An excellent agreement 

of 0.998 (0.995– 0.999: 95% CI) and 0.995 (0.984–0.998: 95% CI) was determined for 

inter- and intra-rater reliability, respectively. All measurements used in this study were 

obtained by Rater A because his performance underwent both inter- and intra-rater 

reliability analyses.  

4.3.3. Data Analyses and Statistics 

To assess the variability of the number and positioning of LSNs, we first needed to 

implement a strategy that grouped alike LSNs between individuals. This was a 

challenging task given the potential for inaccuracy inherent to the inconsistency of the 

infrarenal region (Yeager & Cowley, 1948; Hollinshead, 1971; Mirilas & Skandalakis, 

2010; Beveridge, Allman, et al., 2016; Beveridge, Johnson, et al., 2016). Classically, the 

LSNs are named by the sympathetic trunk ganglia to which they are associated (Figure 
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16A). Unfortunately, this method can be unreliable (Hollinshead, 1971) due to the 

extreme variability present in the anatomy of the lumbar sympathetic trunk (Yeager & 

Cowley, 1948; Gray, 1973; Mirilas & Skandalakis, 2010; Gandhi et al., 2013). 

Recognizing this shortcoming of the classical nomenclature, we previously elected to 

refer to the LSNs joining the aortic plexus in their order relative to the left renal vein (i.e. 

first infrarenal LSN, etc.), as seen in Figure 16B (Beveridge, Allman, et al., 2016; 

Beveridge, Johnson, et al., 2016). However, this approach proved problematic for the 

present study because subtle positional variations in the left renal vein inappropriately 

changed how nerves were grouped for subsequent statistical analysis. Thus, in the present 

study, we instead grouped the LSNs for analysis based on their position relative to the 

aortic bifurcation (i.e. the most inferior LSNs were grouped together, etc.; Figure 16C). 

Note that this strategy was used to describe the LSNs joining the aortic plexus, whereas 

the retroaortic LSNs that joined the superior hypogastric plexus were identified and 

grouped based on their unique coursing pattern posterior to the aorta/common iliac 

arteries. 

Prior to statistical analyses, the positions of the LSNs were normalized to the infrarenal 

length of the abdominal aorta to limit the variability associated with size differences 

between specimens. In most cases, normalized values were preferentially reported; 

however, some raw measurements were also included (see Results). To examine if the 

positions of the left and right LSNs were similar, we calculated the difference between 

where a pair of LSNs (e.g. the right and left lowest LSNs) joined the aortic/superior 

hypogastric plexus (Δd) using normalized values. A value of Δd equal to zero indicated 

perfect positional symmetry. To determine if adjacent LSNs on the same side coursed in 

parallel, we calculated the difference in position between the connections of each LSN 

with the sympathetic trunk and the aortic/superior hypogastric plexus (Δp) using 

normalized values. Subsequently, each side was independently compared using non-

parametric one-way analysis of variance tests (Kruskal–Wallis H-tests, a = 0.05). Non-

parametric statistics were used because the calculated values of Δp were not normally 

distributed (Shapiro–Wilk, p< 0.05). For clarity, an example of Δd and Δp values can be 

seen in Figure 17C. 
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Figure 16.  Evolution of nomenclature to accurately describe the lumbar splanchnic 

nerves. 

An illustration of the different nomenclatures used in the literature compared with 

the grouping method used in this study. (A) Illustrates how the lumbar splanchnic 

nerves (LSNs) are classically named as per the sympathetic trunk ganglia from 

which they originate (Hollinshead, 1971; Mirilas & Skandalakis, 2010). (B) 

Illustrates a more contemporary strategy used in the primary literature where LSNs 

are named in order relative to the left renal vein (Beveridge, Allman, et al., 2016; 

Beveridge, Johnson, et al., 2016); an asterisk (*) indicates portions of the plexus not 

examined in these studies. To accurately group alike LSNs for comparison in this 

study, the retroaortic LSNs were grouped and the remaining (above the aortic 

bifurcation) were grouped in ascending order (C). 
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Figure 17.  The positions of the lumbar splanchnic nerves are prone to variation and 

are not bilaterally symmetrical. 

A graphic illustration showing the position of the infrarenal lumbar splanchnic 

nerves (LSNs) as they join the cord of the aortic plexus and the lumbar sympathetic 

trunk relative to the total infrarenal space (100%). (A) Each individual nerve that 

was measured in the study. (B) The mean position of each nerve with the associated 

standard error of that mean. (C) The measurements taken from a typical specimen 

(#1849) that illustrates, at the individual level, the position of LSNs on one side does 

not always predict the contralateral positions (see the pair of 2nd lowest LSNs 

coloured in black). Irrespective of this, consistency in the angle of projection (Δp) 

between ipsilateral LSNs can also be observed in this specimen (refer to Figure 22 

for statistics). Retroaortic LSN – yellow; most inferior LSN – blue; second inferior 

LSN – black; third inferior LSN – teal; and fourth inferior LSN – orange. 
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Data were handled and calculations were completed with Excel (Version 2016, 

Microsoft), and all statistical tests were performed using SPSS® Statistics (Version 24, 

IBM). Statistical power was determined using G*Power v3.1.9.2. Graphical figures were 

generated with Excel or SPSS®, then stylized and formatted using Adobe Photoshop 

CS6. Photos were obtained using a Nikon D80 DSLR camera, and 3D modeling of the 

findings was completed using Blender (Version 2.78a, Blender Foundation).  

4.4 Results 

Of the 26 human cadavers included in this study, 21 had an intact retroperitoneum prior 

to examination; the remaining five specimens had a partially dissected retroperitoneum as 

a result of medical students’ laboratory exercises at our institution. In these five cases, 

only the regions of the retroperitoneal plexuses that remained untouched were examined. 

Therefore, the present study examined the variability in the number and position of the 

LSNs on the right (n = 24) and left sides (n = 25) of the aortic plexus. In our study 

population, the mean distance from the aortic bifurcation to the inferior mesenteric artery 

and inferior border of the left renal vein was 44.0 ± 6.6 mm and 91.6 ± 12.8 mm, 

respectively. Of the specimens with bilaterally intact/ untouched anatomy around the 

bifurcation (n = 22), the diameter of the aorta (at the level of the aortic bifurcation) was 

measured to be 30.8 ± 6.8 mm. In 17/22 (77%) of these specimens, the center of the 

superior hypogastric plexus was shifted left of the aortic bifurcation 2.7 ± 2.4 mm; the 

remaining five were shifted right of the bifurcation 1.8 ± 1.4 mm. Irrespective of this 

predominant left-sided shift, the superior hypogastric plexus still extended right of the 

bifurcation in 90.9% (n = 20/22) specimens. Overall, the superior hypogastric plexus 

extended 4.5 ± 3.2 mm right and 7.9 ± 4.0 mm left of the bifurcation, exhibiting an 

average width of 12.4 ± 4.4 mm. 

A total of 142 LSNs (nLEFT = 76, nRIGHT = 66) were identified joining the cords of the 

aortic plexus (Figure 17A). In most cases (n = 136, 95%), the LSNs existed as a single 

fiber bundle coursing at an anteroinferior angle. In a few cases (n = 7, 5%; nLEFT = 3, 

nRIGHT = 4), a variation was observed where a LSN originated from two points on the 

lumbar sympathetic trunk and converged to a common fiber prior to joining the aortic 

plexus. In these cases, the larger root was used as the connection with the sympathetic 
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trunk for statistical analyses (larger root was superior in 4/7 specimens). The mean 

difference between the two roots was 13.1 ± 7.3 mm (range 4.1–25.6 mm). On the right 

side, the two roots were often seen coursing on either side of a lumbar vein.  

A variable number of one to four LSNs joined the cords of the aortic plexus below the 

level of the left renal vein, with two most commonly present (prevalence left = 52%; right 

= 63%). The prevalence and location of each LSN is further reported in Table 3. As 

shown in Figure 17A, there was considerable variability in the rostrocaudal position of 

the LSNs. Still, 118/120 (98.3%) LSNs that extended to join the aortic plexus originated 

from the sympathetic trunk superior to the level of the inferior mesenteric artery. Of 

these, 69.5% (n = 82) also joined the aortic plexus at a position superior to the inferior 

mesenteric artery. No LSNs were observed joining the aortic plexus along the lower 

21.8% (left) and 24.1% (right) of the infrarenal abdominal aortic length. The mean 

position of each LSN is shown graphically in Figure 17B, and schematically in three 

dimensions in Figure 18. Although the mean difference in positions between the left and 

right sides of each LSN ranged from 2.6% to 2.8% (Figure 17B), this was rarely observed 

at the individual level, as noted by the wide standard deviations associated with the mean 

Δd of each pair (mean Δd1st lowest LSN = 3.7 ± 13.7%, mean Δd2st lowest LSN = 1.7 ± 22.1%, 

mean Δd3rd lowest LSN = 2.9 ± 13.6%). Figure 17C shows data obtained from a typical 

specimen (specimen #1849) that illustrates how the position of the LSNs on one side did 

not often mirror the contralateral positions. This relationship can also be seen in Figure 

19, where the anatomy for this specimen is shown in three dimensions, panelled in 60° 

increments. 
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Table 3.  Descriptive statistics of the infrarenal lumbar splanchnic nerves. 

Descriptive statistics for the LSNs joining the infrarenal aortic plexus and superior 

hypogastric plexus. Nerves grouped inferiorly-superiorly (1–4) and compared 

relative to the total infrarenal space (100%). Reported are the total number of 

splanchnic nerves identified and at which level. LSN, lumbar splanchnic nerve. 

 

 

LSN Order 

  Relative Proximal Position (%)  Relative Distal Position (%) 

    LSN (%) Mean SD Range   Mean SD Range 

L
ef

t 

4th Lowest  2 (8) 106.0 10.5 98.6-113.4  88.7 8.2 82.0-94.5 

3rd Lowest  12 (48) 107.7 23.3 76.6-159.1  79.6 18.7 51.0-115.6 

2nd Lowest  25 (100) 94.4 19.8 64.2-157.2  70.1 19.6 35.6-103.1 

1st Lowest  25 (100) 69.1 13.9 38.6-94.5  48.7 14.3 21.8-82.4 

Retroaortic   12 (48) 12.4 15.1 -4.5-36.8   -29.9 12.6 -54.2-(-15.0) 

           

R
ig

h
t 

3rd Lowest  8 (33) 103.2 11.4 82.9-121.3  77.0 15.4 50.5-94.5 

2nd Lowest  23 (96) 98.5 19.6 70.7-157.0  67.3 15.2 40.4-94.6 

1st Lowest  24 (100) 70.6 11.2 82.9-121.3  46.0 12.2 24.1-68.3 

Retroaortic   11 (46) 29.4 16.4 0.0-53.8   -23.7 11.6 -40.8-(-5.0) 
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Figure 18.  The anatomy of the infrarenal lumbar splanchnic nerves in 3D 

A 3D model (click to activate if using Adobe Acrobat Reader) showing the average 

position and course of the infrarenal lumbar splanchnic nerves (LSNs) as 

determined from the present study. The rostrocaudal positions of the LSNs are 

drawn to scale relative to the infrarenal length. Adobe Acrobat Reader is required 

to interact with the 3D model. 
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Figure 19.  A representative model of the infrarenal lumbar splanchnic nerve 

anatomy. 

A 3D representation of the data acquired from a single representative specimen 

(#1849). The first panel (0°) represents an anterior view of the infrarenal region, 

then each subsequent panel rotates 60° clockwise around the rostrocaudal axis (i.e. 

180° represents the posterior view) IMA, inferior mesenteric artery; SMA, superior 

mesenteric artery. 
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In 85% (n = 22/26) of specimens, a retroaortic LSN was present joining the superior 

hypogastric plexus below the aortic bifurcation. They were observed bilaterally (n = 8), 

unilaterally (nLEFT = 8, nRIGHT = 3), or were considered to have inconclusive laterality 

(nLEFT = 2, nRIGHT = 1) due to a lack of contralateral examination because of exclusion 

due to prior trainee dissection. In the remaining 15% (n = 4/26) of specimens, retroaortic 

LSNs were bilaterally absent in three and not examined in one due to previous bilateral 

dissection in the region of interest by trainees. In contrast to the LSNs joining the aortic 

plexus, retroaortic LSNs invariably coursed behind the aorta/common iliac artery and 

anterior to the left common iliac vein to join the superior hypogastric plexus below the 

aortic bifurcation. Figure 20 demonstrates this relationship in the case of a right 

retroaortic LSN, and Figure 21 shows the anatomy of a typical left retroaortic LSN. As 

seen in Figure 17A, the retroaortic LSNs (yellow) had scant positional overlap with the 

LSNs that joined the aortic plexus (blue, teal and orange). When bilaterally present, the 

difference in position where each side joined the superior hypogastric plexus was rarely 

similar (mean Δdretroaortic LSN = 2.6 ± 12.9%). Additional descriptive statistics are 

presented in Table 3.  

To examine our prediction that adjacent LSNs on the same side course in parallel (i.e. 

project at the same orientation angle), the Δp (refer to Figure 17C) of each LSN was 

compared. In line with this prediction, the left and right LSNs were analyzed independent 

of one another. A significant difference was observed for both the right [Kruskal–Wallis 

H-test; χ2 (3) = 19.8, p = 0.00] and left LSNs [Kruskal–Wallis H-test; χ2 (3) = 10.1, p = 

0.02]. Post hoc analyses indicated the Δp for the retroaortic LSNs (left mean rank 

Δpretroaortic LSN = 55.0; right mean rank Δpretroaortic LSN = 55.8) were significantly 

different from all other nerves on the right (mean rank Δp1st lowest LSN = 25.8, mean rank 

Δp2nd lowest LSN = 33.3, mean rank Δp3rd lowest LSN = 26.6), and from the lowest two LSNs on 

the left (mean rank Δp1st lowest LSN = 32.6, mean rank Δp2nd lowest LSN = 34.4, mean rank 

Δp3rd lowest LSN = 38.4). The results of the analysis are shown in Figure 22. It is important 

to note that this trend was also often observed at the individual level, as illustrated in 

specimen #1849 (Figure 17C and Figure 19) 
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Figure 20.  A representative right retroaortic lumbar splanchnic nerve. 

A photograph of the gross dissection of a typical right retroaortic lumbar splanchnic 

nerve (LSN; specimen #1854). (A) The course of the retroaortic LSN cannot be 

clearly observed without moving the vasculature. For reference, the purple pin 

indicates the bifurcation of the aorta. (B) Reflecting the right common iliac artery 

reveals the underlying retroaortic nerve (black arrow) and its connection with the 

superior hypogastric plexus. (C) Lateral translation of the inferior vena cava reveals 

the entire course of the retroaortic nerve from the lumbar sympathetic trunk to the 

superior hypogastric plexus. IVC, inferior vena cava. 
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Figure 21.  Retroaortic lumbar splanchnic nerves join the superior hypogastric 

plexus below the aortic bifurcation. 

An anterior view of the infrarenal retroperitoneum showing the aortic bifurcation 

and superior hypogastric plexus. The overlaid superior hypogastric plexus (held up 

by forceps) is supplied by the right and left cords of the aortic plexus. In addition, it 

is supplied posteriorly by the right (arrowheads) and left (arrows) retroaortic 

lumbar splanchnic nerves (LSNs). Note, in this specimen, the bilateral retroaortic 

nerves converged into a common nerve immediately prior to joining superior 

hypogastric plexus; a unique observation to this study that has been briefly 

acknowledged in the previous literature (Learmonth, 1931). IMA, inferior 

mesenteric artery; IVC, inferior vena cava. 
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Figure 22.  Lumbar splanchnic nerves joining the infrarenal aortic plexus course in 

parallel. 

A box-whisker plot showing the difference in rostrocaudal position (Δp) of the 

origin and termination of each group of infrarenal lumbar splanchnic nerves (LSNs) 

on the right (A) and left (B) side of the body. Outliers, calculated by SPSS®, are 

represented by hollow dots. Significance at the p<0.05 level is denoted with an 

asterisk. As shown, the LSNs joining the aortic plexus typically course in parallel, 

whereas the length and angle of the retroaortic LSNs on each side are significantly 

different. Note, the 3rd lowest LSN on the left was not significantly different from 

any other nerve. 
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4.5 Discussion 

Variations in the LSNs adjoining the aortic and superior hypogastric plexuses may 

complicate complete nerve sparing during retroperitoneal surgery. As such, the present 

study used dissection of cadaveric specimens to quantify the prevalence, course and 

positional deviations of the infrarenal LSNs. In doing so, our results also clarified the 

inconsistency that is currently present in the literature regarding the path of the LSNs that 

join the superior hypogastric plexus below the bifurcation.  

The LSNs joining the superior hypogastric plexus are occasionally illustrated in 

anatomical images, yet the course of these nerves relative to the common iliac vessels 

varies between authors (see Introduction). In the present study, this quandary was 

resolved by the fact that all LSNs joining the superior hypogastric plexus invariably 

coursed between the aorta/common iliac arteries and the left common iliac vein (Figure 

18 – Figure 21). Despite exhibiting a consistent course, retroaortic LSNs were variably 

present, with confirmed unilateral absence in 11 (44%) specimens and complete bilateral 

absence in three (12%) specimens. However, when present, only one retroaortic LSN was 

observed per side. This contrasts drawings by Learmonth (1931) and descriptions from 

Woodburne & Burkel (1994) that suggest both the third and fourth LSNs join the superior 

hypogastric plexus. Although this arrangement was not observed in the present 

population, the potential for additional retroaortic fibers could very well exist in some 

people considering the acknowledged disorganization of lumbar sympathetic trunk 

ganglia that may predispose such a variation (Yeager & Cowley, 1948; Mitchell, 1953; 

Webber, 1958; Hollinshead, 1971; Gray, 1973; Woodburne & Burkel, 1994; Mirilas & 

Skandalakis, 2010; Gandhi et al., 2013).  

Despite the extreme variation of the lumbar sympathetic nerves described in previous 

literature, recent qualitative observations of the aortic plexus have suggested that it is 

almost always bilateral in its organization, but not necessarily symmetrical in its 

positioning (Beveridge, Johnson, et al., 2015, 2016). Put another way, the aortic plexus 

often has the same number of LSNs on its left and right sides, but the position of these 

nerves may not be mirrored. Despite only minor differences between the overall mean 

positions of each LSN joining the aortic plexus (range Δd = 1.7–3.7%), as seen in Figure 
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17B, our results show large standard deviations when averaging the positional differences 

of the left- and right-matched LSNs within individuals (mean Δdretroaortic LSN = 2.6 ± 

12.9%, mean Δd1st lowest LSN = 3.7 ± 13.7%, mean Δd2nd lowest LSN = 1.7 ± 22.1%, mean Δd3rd 

lowest LSN = 2.9 ± 13.6%). This suggests that, on average, the positions of the contralateral 

LSNs are similar yet, within an individual, the position of a left LSN is rarely the same as 

the associated right LSN, and vice versa. These data are consistent with the suggestions 

and qualitative findings present in the previous literature (Beveridge, Johnson, et al., 

2015; Beveridge, Allman, et al., 2016).  

Given this clear positional variability of the infrarenal LSNs joining the aortic plexus 

within individuals, landmarking these fibers during surgery may be difficult to achieve. 

With that said, our findings indicate that there are no LSNs adjoining the aortic plexus 

within the lower 21.8% (left) and 24.1% (right) of the infrarenal abdominal aorta, with 

98% (n = 118) originating from the sympathetic trunk above the level of the inferior 

mesenteric artery. In addition, the present study saw no evidence of a ‘preaortic’ LSN 

joining the superior hypogastric plexus below the bifurcation. This knowledge may be 

welcomed by surgeons tasked with removing caudal interaortocaval masses, or those 

posterior to the inferior mesenteric artery. Although the lower aspect of the abdominal 

aorta does not have any LSNs adjoining the aortic plexus, it is important to recognize the 

presence of the lumbar sympathetic trunk and retroaortic LSN overlying the anterior 

longitudinal ligament of the vertebral column in this region. As detailed above, the 

present study clarified the path of these LSNs as they coursed ‘between’ the common 

iliac arteries and left common iliac vein (Figure 17, Figure 20 and Figure 21). In addition, 

it was noted that despite the similar course (Δp) of the rest of the LSNs, the retroaortic 

LSNs are significantly longer and course more inferiorly (p < 0.05), perhaps owing to 

their necessary descent along the anterior vertebral column before extending to join the 

superior hypogastric plexus. On average, the retroaortic LSNs joined the superior 

hypogastric plexus 29.9 ± 12.6% (left) and 23.7 ± 11.6% (right) of the infrarenal 

abdominal aortic length ‘inferior’ to the bifurcation. Considering the function of the 

retroaortic LSNs remains unknown, surgeons attempting presacral lymphandectomies 

should consider sparing these fibers when possible (in addition to the sacral and pelvic 

splanchnic nerves, more inferiorly). Furthermore, surgeries that attempt to 
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circumnavigate the superior hypogastric plexus should be aware of these fibers given the 

aforementioned anatomy and possible risk for iatrogenic injury when mobilizing the 

superior hypogastric plexus.  

In conclusion, the present study commonly observed two to three infrarenal LSNs joining 

the aortic plexus that varied greatly in rostrocaudal position. Within specimens, the 

position of the LSNs on one side rarely predicted the position of the contralateral nerves; 

however, adjacent nerves on the same side joining the aortic plexus typically coursed in 

parallel to one another. More inferiorly, retroaortic LSNs were observed in the majority 

(85%) of specimens, present both unilaterally and bilaterally with no obvious 

predominance to a particular side. Of note, the retroaortic LSNs exhibited a significantly 

different (more inferior) course relative to the LSNs joining the aortic plexus. 

Specifically, the retroaortic LSNs coursed between the common iliac arteries and the left 

common iliac vein before joining the superior hypogastric plexus below the bifurcation. 

Because the precise components of the retroperitoneal sympathetic plexuses involved in 

ejaculation still remain unknown, complete nerve sparing, when possible, remains the 

most prudent surgical approach. Ultimately, we are optimistic that the collective findings 

of the present study will further inform anatomists as well as benefit surgeons tasked with 

navigating and sparing these delicate structures during retroperitoneal and pelvic 

surgeries. Further studies are recommended to explore the specific role of the individual 

nerves described in this manuscript as they pertain to seminal emission and antegrade 

ejaculation to allow further refinement of nerve-sparing techniques. 
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CHAPTER 5   
RETROPERITONEAL LYMPH NODE DISSECTION: ANATOMICAL 
AND TECHNICAL CONSIDERATIONS FROM A CADAVERIC STUDY 

It is clear that a strong understanding of the neurovascular anatomy is required to perform 

a successful nerve-sparing retroperitoneal lymph node dissection (Jewett & Groll, 2007). 

Several studies exist, including the previous studies in this thesis, to provide a foundation 

for understanding the normal retroperitoneal neurovascular anatomy; however, the 

clinical usefulness of this knowledge is limited by a lack of studies examining the 

relationship of the neural and vascular anatomy as it pertains to surgical interventions.  

In the present chapter, we address this issue by examining the relationship between the 

sympathetic nerves and the lumbar vessels in the context of performing a retroperitoneal 

lymph node dissection. A version of this chapter is published in the Journal of Urology, 

Volume 196, Issue 6, Pages 1764-1771. 

5.1 Abstract 

Purpose: Metastatic testis cancer in the retroperitoneum presents a technical challenge to 

urologists in the primary and post-chemotherapy settings. Where possible, bilateral nerve 

sparing retroperitoneal lymph node dissection should be performed in an effort to 

preserve ejaculatory function. However, this is often difficult to achieve, given the 

complex neurovascular anatomy. We performed what is to our knowledge the first 

comprehensive examination of the anatomical relationships between the sympathetic 

nerves of the aortic plexus and the lumbar vessels to facilitate navigation and nerve 

sparing during bilateral retroperitoneal lymph node dissection.  

Materials and Methods: The relative anatomy of the infrarenal vasculature (lumbar 

vessels, right gonadal vein and inferior mesenteric artery) was investigated in 21 

embalmed human cadavers. The complex relationships between these vessels and the 

sympathetic nerves of the aortic plexus were examined by dissection of an additional 8 

fresh human cadavers.  
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Results: Analysis of the infrarenal vasculature from 21 cadavers demonstrated that the 

position of the right gonadal vein and the inferior mesenteric artery may be useful to 

locate the right superior lumbar vein and the first pair of infrarenal lumbar arteries as well 

as the common lumbar trunk (vein) and the second pair of infrarenal lumbar arteries, 

respectively. Furthermore, the lumbar splanchnic nerves supplying the aortic plexus were 

most often positioned anteromedial to the respective lumbar vein.  

Conclusions: The current study describes the complex neurovascular relationships that 

are crucial to performing successful nerve sparing retroperitoneal lymph node dissection. 

Surgical techniques are also discussed. Collectively, these results may help surgeons 

decrease the rate of postoperative retrograde ejaculation and/or anejaculation.  

5.2 Introduction 

Retroperitoneal lymph node dissection for nonseminomatous germ cell tumors (NSGCT) 

remains an effective treatment for metastatic disease (Albers, 2004; Jewett & Groll, 2007; 

Stephenson et al., 2007; Katz & Eggener, 2009; Heidenreich & Pfister, 2012). With the 

advent of cisplatinum-based chemotherapy, primary retroperitoneal lymph node 

dissection (RPLND) has become less popular for treating early stage disease (Jewett & 

Groll, 2007). Currently, surveillance and/or chemotherapy following orchiectomy 

remains the common practice for managing stage I disease, whereas chemotherapy is the 

primary treatment for low risk stage II NSGCT (Heidenreich & Pfister, 2012). Therefore, 

with the improvement in treating early stage NSGCT, RPLND is most often performed to 

treat advanced staged disease and post-chemotherapy residual masses. However, primary 

RPLND may re-emerge as a treatment for early stage disease, given our understanding of 

the increased long-term risk of secondary malignancies and cardiovascular morbidity 

after chemotherapy (Haugnes et al., 2010, 2012).  

Today modified surgical templates that limit contralateral dissection (Weissbach & 

Boedefeld, 1987; Donohue et al., 1993; Janetschek et al., 1994; Sheinfeld & Herr, 1998; 

Nelson et al., 1999) continue to be used at many international centers to improve the rate 

of antegrade ejaculation postoperatively (Richie, 1990; Doerr et al., 1993; Katz & 

Eggener, 2009). However, studies have since challenged the usefulness of these templates 
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based on viable extratemplate disease (Carver et al., 2007; Eggener et al., 2007). It is 

estimated that in the post-chemotherapy setting at least 7% to 32% of patients would have 

extratemplate disease depending on the template used (Carver et al., 2007). Because an 

effort to spare ejaculation should never be made at the risk of incomplete cancer resection 

(Jewett & Groll, 2007), it was concluded that a full bilateral infrahilar template spanning 

the left renal vein superiorly, the ureters laterally and the aortic bifurcation inferiorly is 

most prudent and nerve sparing should only be performed where possible (Carver et al., 

2007).  

When performed, nerve sparing in the post-chemotherapy setting is associated with 

variable rates of antegrade ejaculation. For example, in a 2012 review Heidenreich and 

Pfister reported ejaculatory dysfunction in 75% of patients who underwent bilateral post-

chemotherapy RPLND (Heidenreich & Pfister, 2012), while Pettus et al found that 

antegrade ejaculation was maintained in 79% of their patients treated with bilateral post-

chemotherapy RPLND (Pettus et al., 2009). Although differences in the stage and/or the 

size of the residual mass are apparent between the reports, surgeon comfort with the 

normal neurovascular anatomy of the retroperitoneum is a significant factor in the 

success of RPLND (Jewett & Groll, 2007) and a possible contributing factor to these 

disparate results. Surprisingly, literature on the neurovascular anatomy of the infrarenal 

retroperitoneum is relatively sparse and much of what is known about the topic has only 

emerged recently.  

Today it is generally accepted that the lumbar arteries are regularly spaced and bilaterally 

paired with the second to fourth pairs commonly encountered below the level of the left 

renal vein (LRV) (Baniel et al., 1995; Beveridge, Power, et al., 2015). In contrast, the 

lumbar veins are variable, unpaired vessels that preferentially drain into the left posterior 

side of the inferior vena cava (IVC) (Baniel et al., 1995; Beveridge, Power, et al., 2015). 

They are positioned at a distance from each other that segmentally increases closer to the 

iliocaval confluence (Beveridge, Power, et al., 2015). Studies have also described the 

anatomy of the sympathetic nerves comprising the aortic plexus. Specifically, it has been 
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shown that the aortic plexus is supplied by at least two lumbar splanchnic nerves1 (LSN) 

on each side and it is composed of two parallel nerves (cords), each containing two major 

ganglia (Beveridge, Johnson, et al., 2015). Collectively, these studies provide a strong 

foundation for understanding the retroperitoneal neurovascular anatomy. However, the 

clinical usefulness of this information is limited by the lack of studies integrating the 

mentioned anatomy by examining their relationships with each other.  

We addressed this issue by examining the relationship between the sympathetic nerves 

and the lumbar vessels within the boundaries of an infrahilar bilateral template. This was 

achieved by dissecting human cadavers. Our findings are extrapolated to discuss 

strategies to navigate these structures during RPLND.  

5.3 Materials and Methods 

In a population of 22 embalmed cadavers with no evidence of retroperitoneal disease we 

measured the positions of the lumbar vessels, the inferior mesenteric artery (IMA) and 

the right gonadal vein from the inferior border of the LRV. All measurements were 

normalized by the length of the infrarenal abdominal aorta before statistical analysis. 

Since these cadavers had been previously dissected by medical students, we excluded one 

specimen in which the retroperitoneum was grossly over dissected.  

The relationship of the sympathetic nerves comprising the aortic plexus to that of the 

lumbar vessels was explored during the dissection of 8 fresh cadavers using a 

transabdominal approach. 

                                                 

1In much of the urological literature the lumbar splanchnic nerves are referred to as 

postganglionic nerves/fibers (Eggener et al., 2007; Jewett & Groll, 2007; Katz & 
Eggener, 2009; Pettus et al., 2009). In the current report, the former (anatomical) 
nomenclature is used. This decision was made because the latter (urological) 
nomenclature misconstrues the fact that these nerves mainly comprise preganglionic/ 
presynaptic axons that do not synapse until the prevertebral ganglia of the aortic plexus 
(Jänig & McLachlan, 1987). 
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All data were obtained in accordance with the Western University committee for 

cadaveric use in research (approval 15052013). Statistical analyses were completed with 

SPSS® Statistics 20 and power was determined with G*Power, version 3.1.9.2 

(http://www.gpower.hhu.de/en.html). The final vascular data set was analyzed using the 

Welch ANOVA with sufficient power (1 – β = 0.8, α = 0.05) to detect small to moderate 

(0.30) effect size. All assumptions of the statistical test were satisfied.  

5.4 Results 

5.4.1. Infrarenal Vascular Relationships 

In the included population of 21 embalmed cadavers several vascular relationships were 

identified (Figure 23). A significant difference in vessel position was found (Welch F8,59.3 

= 130.7, p <0.05, partial η2 = 0.868). In particular, Games-Howell post-hoc analyses 

indicated significantly different positions between the superior vessels (right gonadal 

vein, right superior lumbar vein and second pair of lumbar arteries), middle vessels 

(common lumbar trunk, IMA and third pair of lumbar arteries) and inferior vessels (left 

and right inferior lumbar veins, and fourth pair of lumbar arteries). In each vessel 

grouping (e.g., superior vessels, including right gonadal vein vs right superior lumbar 

vein vs second pair of lumbar arteries) no significant differences in position were seen 

(Figure 23).  

These findings suggest that the right gonadal vein may be useful to approximate the 

location of the right superior lumbar vein, if present, and/or the second pair of lumbar 

arteries. Likewise, the IMA may be useful to approximate the location of the common 

lumbar trunk, if present, and/or the third pair of lumbar arteries.  
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Figure 23.  Lumbar arteries and veins can be landmarked within three regions of 

the infrarenal great vessels using structures visible from an anterior approach. 

Relative position of infrarenal lumbar arteries (LA) and veins (LV), right gonadal 

vein and inferior mesenteric artery. Posthoc analyses demonstrated statistically 

significant difference between superior vessels, including right gonadal vein, right 

superior lumbar vein and second pair of lumbar arteries, middle vessels, including 

common lumbar trunk, IMA and third pair of lumbar arteries, and inferior vessels, 

including left and right inferior lumbar veins, and fourth pair of lumbar arteries. In 

each vessel grouping (e.g., superior vessel group of right gonadal vein vs right 

superior lumbar vein vs second pair of lumbar arteries) no significant difference 

(ns) in position was seen. Error bars represent ± 1 SD. Dotted gray lines indicate 

position of left renal vein inferior border, IMA origin and bifurcation of common 

iliac arteries. 
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5.4.2. Sympathetic Nerves and Infrarenal Lumbar Vessels  

In eight fresh cadavers, the relationship of the sympathetic nerves to the lumbar vessels 

was explored. On the right side, the origin of the first infrarenal LSN coursed from the 

sympathetic chain, often just superior to the inferior border of the LRV (Figure 24). Its 

position in the interaortocaval adipose tissue was often complicated, given the close 

association with the right superior lumbar vein, which was often observed in this region. 

Usually the first infrarenal LSN coursed medial to this lumbar vein, where it then 

intersected the right cord of the aortic plexus near the right testicular artery.  

The second infrarenal LSN coursed in parallel to the first one, originating from the 

sympathetic chain approximately one vertebral level caudal. This nerve most often 

coursed anteromedial to the middle common lumbar trunk and/or the third (second 

infrarenal) lumbar artery before intersecting the right cord of the aortic plexus at the 

position of the prehypogastric ganglion (Figure 24A).  

As seen in this specimen, the neurovascular anatomy may be complicated by the presence 

of an accessory LSN, which often runs in parallel with the LSN proper. This neural 

variation is common to the right and the left sides of the aortic plexus.  

On the left side, the first infrarenal LSN originated from the sympathetic chain near the 

level of the inferior border of the LRV. It typically extended anteroinferior to merge with 

the intermesenteric nerve from the more rostral sympathetic plexuses, forming the left 

cord of the aortic plexus (Figure 24). The renal-lumbar vein, if present, often complicated 

exposure of a portion of the sympathetic plexus, given its position between the first 

infrarenal LSN and the left intermesenteric nerve (Figure 24B) or lateral to both nerves. 

The second infrarenal LSN typically branched from the sympathetic chain more 

superiorly than its right-side counterpart. Its origin was at approximately the level of the 

left testicular artery. It was seen branching off the sympathetic chain as high as where the 

second (first infrarenal) pair of lumbar arteries disappeared deep to the psoas major.  
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Figure 24.  Neurovascular relationships relevant to nerve-sparing RPLND. 

Relationships of sympathetic nerves and ganglia of aortic plexus to position of 

infrarenal lumbar arteries and veins. A) neurovascular relationship of second 

infrarenal lumbar splanchnic nerve to lumbar vein and to accessory second 

infrarenal lumbar splanchnic nerve. B) In this specimen, renal-lumbar vein joins 

left renal vein, coursing between intermesenteric nerve and first infrarenal lumbar 

splanchnic nerve. In some specimens, first infrarenal lumbar splanchnic nerve may 

course anteromedial to this vein. C) Full left side dissection of cadaver. Arrowheads 

indicate approximate position of 2 left side constituent ganglia of aortic plexus. 
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5.5 Discussion 

Several studies describe the anatomy of the nerves and vasculature in the retroperitoneum 

as it pertains to surgical interventions (Banagan et al., 1976; Lu et al., 2009; Mirilas & 

Skandalakis, 2010). However, given the complexities of retroperitoneal masses during 

bilateral RPLND, nerve sparing and complete vascular control of the lumbar vessels may 

be difficult to achieve (Jewett & Groll, 2007). In the current study, we describe the 

neurovascular relationships of the lumbar vessels and the sympathetic nerves of the aortic 

plexus, which may aid in managing these structures during RPLND. We discuss our 

findings in a regional context as it pertains to the practice of RPLND. Note that nerve 

sparing is never performed at the cost of potentially leaving residual tumor (Jewett & 

Groll, 2007; Scardino et al., 2011). 

5.5.1. Paracaval Node Dissection 

Care must be taken to dissect and protect the right ureter while separating the paracaval 

nodal tissue from Gerota’s fascia (Scardino et al., 2011). After ligating the right gonadal 

vein (Scardino et al., 2011), nodal tissue can be dissected from the caval adventitia with 

ease because this region is void of sympathetic nerves (Mirilas & Skandalakis, 2010). 

With the IVC rolled left, a variable number of lumbar veins (usually two or three) may be 

encountered that drain the right side. Typically, the right superior lumbar vein (usually of 

large diameter) will be located near the right renocaval junction, often superior to the 

right gonadal vein. Midway along the infrarenal IVC a smaller lumbar vein may be seen 

that has a tendency to drain into the left side of the IVC or form a common trunk with 

one of the left side lumbar veins (Beveridge, Power, et al., 2015). Lastly, the right 

inferior lumbar vein may be noted draining near the level of the iliocaval confluence.  

With a right-side approach, the plane between the paracaval nodal tissue and the fascia 

overlying the psoas major muscle can be cleaved to expose the sympathetic chain and the 

origin of the LSNs. In a minority of individuals, a lumbar vessel may aberrantly course 

lateral to the sympathetic chain. 
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Figure 25.  Visualizing the neurovascular anatomy pertinent to a nerve-sparing 

interaortocaval nodal dissection. 

Position of sympathetic nerves in interaortocaval nodal tissue (translucent brown 

area). This image shows how dissection in plane of caval adventitia allows for 

ligation of right and left lumbar veins as they join IVC without complication by 

sympathetic nerves. After ligation IVC can be mobilized to facilitate interaortocaval 

node dissection (Figure 26). 
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Figure 26.  Vessel loops are used to maintain visualization of lumbar splanchnic 

nerves at their origin. 

First nerve sparing steps after IVC mobilization. With IVC rolled laterally plane 

between nodal tissue (translucent brown area) and fascia overlying psoas major 

muscle can be separated to identify right sympathetic chain and origin of lumbar 

splanchnic nerves. Vessel loops help maintain visualization of infrarenal lumbar 

splanchnic nerves as they are spared from interaortocaval nodal tissue. SMA, 

superior mesenteric artery. 
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5.5.2. Interaortocaval Node Dissection 

Using the split-and-roll technique on the IVC, the plane between the interaortocaval 

nodal tissue and the caval adventitia can be separated without encountering sympathetic 

nerves. This plane can be followed to identify the left lumbar veins (variable), which 

were typically observed draining centrally (i.e., between the most cranial and caudal right 

lumbar veins) and into the left side of the IVC. Usually, two left lumbar veins were 

observed, of which the largest and most prevalent (the common lumbar trunk) may be 

landmarked using the IMA. It often receives multiple left side tributaries. Therefore, 

ligation of this singular vessel should be noted because it may necessitate multiple para-

aortic ligations.  

The second most common vessel, the left inferior lumbar vein, is located closer to the 

iliocaval confluence, approximately where the right common iliac artery crosses the IVC. 

If a right inferior lumbar vein is present, the left one is typically slightly rostral. After 

ligation, full control of the lumbar veins should be achieved and the IVC can be fully 

mobilized (Figure 25).  

With the right sympathetic chain exposed, meticulous dissection should be done anterior 

to identify the LSNs. Usually, there are two LSNs joining the infrarenal portion of the 

aortic plexus, spaced approximately one vertebral level apart. However, the presence of 

accessory LSNs of comparable size coursing near and in parallel with the LSN proper is a 

common possibility. Vessel loops should be placed around the LSNs for reference 

(Figure 26) (Scardino et al., 2011).  

Following the right LSNs anterior will reveal the right cord of the aortic plexus, a 

longitudinal nerve running along the anteromedial aspect of the infrarenal abdominal 

aorta, which contributes to the formation of the superior hypogastric plexus (Beveridge, 

Johnson, et al., 2015). With the right-side nerves spared, the preaortic nodes can be split 

with care taken to preserve any preaortic nerves that may connect with the contralateral 

cord of the aortic plexus. Most often branches extend from the prehypogastric ganglion 

near the intersection of the second infrarenal LSN and the right cord to join the inferior 
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mesenteric plexus. Subsequently, dissection can proceed along the aortic adventitia to 

identify the right lumbar arteries. 

Usually, three pairs of lumbar arteries are present along the infrarenal abdominal aorta. 

The position of the middle pair (the third lumbar arteries) is approximated using the 

origin of the IMA (Figure 23). Once identified, the adjacent pairs of lumbar arteries can 

be identified at a distance away equal to a third of the length of the infrarenal abdominal 

aorta (Beveridge, Power, et al., 2015).  

5.5.3. Preaortic Node Dissection  

Preaortic node removal will primarily focus on preserving the rostral portions of the 

cords (intermesenteric nerves). Nerves of interest to maintain antegrade ejaculation 

should course posterior to the LRV. This is opposed to intraperitoneal nerves entering the 

mesentery, which during RPLND appear to course anterior to the LRV after the 

abdominal viscera is reflected superior. To aid dissection the IMA may be sacrificed if an 

adequate blood supply to the colon is maintained by the marginal artery (of Drummond) 

(Scardino et al., 2011).  

5.5.4. Para-aortic Node Dissection 

Para-aortic dissection is often challenging, particularly at the superior border, which can 

be a potential source of in-field recurrence. Care must be taken to identify and preserve 

the left ureter, which often requires ureterolysis if a residual mass is present. Dissection 

can proceed along the plane of the aortic adventitia to identify the left lumbar artery or 

arteries. Studies have indicated a strong tendency for the lumbar arteries to be positioned 

at similar levels (Baniel et al., 1995; Beveridge, Power, et al., 2015). Therefore, the 

position of the right lumbar arteries can facilitate locating their respective left side pairs.  

Sparing the intermesenteric nerve as it joins with the first infrarenal LSN may be 

complicated by a renal-lumbar vein coursing lateral to the aorta that drains aberrantly into 

the LRV at a position just posterior to the left gonadal vein (Li et al., 2011; Beveridge, 

Power, et al., 2015). The intermesenteric nerve will course medial to the renal-lumbar 
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vein (Figure 24B and Figure 27). The first infrarenal LSN can course anteromedial or 

posterolateral to this vein.  

While the organization of the aortic plexus is usually bilaterally symmetrical (Beveridge, 

Johnson, et al., 2015), it should be appreciated that it rarely has a bilaterally symmetrical 

position. Thus, the position of the right LSNs cannot be used to landmark the left LSNs.  

Near the origin of the IMA, at about the intersection of the second infrarenal LSN with 

the left cord of the aortic plexus, the inferior mesenteric ganglion can be identified. 

Numerous branches will extend along the IMA to form the inferior mesenteric plexus to 

the hindgut. However, the left cord will continue posterior to the IMA to join the right 

cord, forming the superior hypogastric plexus, which is usually situated left of the aortic 

midline (Lu et al., 2009). 

The inferior para-aortic nodal tissue can be accessed by incising the white line of Toldt to 

mobilize the descending colon, facilitating medial reflection of the distal bowels and their 

mesentery (Scardino et al., 2011). Care should be taken to identify the distal lumbar 

sympathetic chain and the retroaortic LSN, if present (Figure 23). Note that retroaortic 

LSNs will course between the left common iliac artery and vein to join the superior 

hypogastric plexus directly (Beveridge, Johnson, et al., 2015).  



114 

 

Figure 27.  Visualizing the neurovascular anatomy pertinent to a nerve-sparing 

para-aortic nodal dissection. 

Lateral perspective of preaortic and para-aortic nodal dissection. Lumbar vessels 

are ligated as they disappear deep to psoas major. Care should be taken to identify 

sympathetic chain in this dissection plane along with associated lumbar splanchnic 

nerves, which course through para-aortic nodal packet (translucent brown area). 

Often ligation of more lumbar veins may be needed, given tendency of upper veins 

to drain into common trunk along middle of IVC, which is ligated during 

interaortocaval dissection. At cranial border dissection is often complicated by 

lumbar vein aberrantly draining into left renal vein, which intimately courses along 

first infrarenal lumbar splanchnic nerve and/or the intermesenteric nerve from 

superior mesenteric/aorticorenal plexuses. 
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5.6 Conclusions 

 We examined the complex relationships of the lumbar vessels and sympathetic nerves in 

the infrarenal retroperitoneum. This information is crucial when performing successful 

nerve sparing bilateral RPLND and it may decrease the incidence of postoperative 

retrograde ejaculation and/or anejaculation. 
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CHAPTER 6   
GENERAL DISCUSSION AND SUMMARY 

Using gross cadaveric dissection, this thesis provides the first detailed description of the 

aortic plexus (Chapters 2 & 3) and its variations (Chapter 4) in humans as it relates to 

retroperitoneal lymph node dissections (RPLND) for testis cancer (Chapter 5). The 

present chapter will discuss certain results as it relates to RPLND, introduce important 

future directions of the research, and end with an overall summary of the thesis.  

6.1 General Discussion 

6.1.1.  Anatomical Considerations – Microganglia and Accessory Ganglia 

From the present work, it is clear that the aortic plexus contains four major constituent 

ganglia (Beveridge, Johnson, et al., 2015, 2016). In addition, the aortic plexus and its 

adjacent plexuses may also contain minor, unnamed microganglia (Hollinshead, 1974; 

Jänig & McLachlan, 1987; Rusu, 2009; Moore et al., 2014; Beveridge, Johnson, et al., 

2015). During our study of the aortic plexus in Chapter 2, we observed microganglia 

(confirmed with histology) supplementing the normal anatomy. In 2/8 specimens, an 

accessory inferior mesenteric ganglion was present. Both accessory inferior mesenteric 

ganglia were embedded within the nerves of the inferior mesenteric plexus, located on the 

medial aspect of the inferior mesenteric artery, significantly smaller than the inferior 

mesenteric ganglion proper and distinct from the prehypogastric ganglion. One of the 

specimens containing an accessory inferior mesenteric ganglion, also contained an extra 

ganglion, which was located near the rostral end of the superior hypogastric plexus, 

inferior to the prehypogastric ganglion. In our observations, the presence of microganglia 

did not alter the gross organization of the aortic plexus/superior hypogastric plexus and, 

therefore, these variable structures are of lesser importance from a surgical standpoint. 

That said, during the present studies we did encounter one specimen that had an 

accessory spermatic ganglion that was associated with an accessory lumbar splanchnic 

nerve and accessory testicular artery – a variation that could complicate intraoperative 

nerve-sparing. For reference, the case report of this variation is provided in Appendix D. 
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6.1.2. Clinical Considerations – Retroaortic Lumbar Splanchnic Nerves 

It was well-known that RPLND can cure advanced-stage testis cancer (Albers, 2004) at 

the risk of developing post-operative ejaculatory dysfunction due to damage of the 

sympathetic nerves (Jewett & Groll, 2007). The development of nerve-sparing RPLND 

has provided a means to preserve ejaculation in patients while maintaining a thorough 

cancer resection (Jewett et al., 1988; Donohue et al., 1990; Jewett & Groll, 2007; Large et 

al., 2009; Heidenreich & Pfister, 2012; Wells et al., 2017). Without nerve-sparing, the 

risk of ejaculatory dysfunction following full bilateral template surgery is almost certain 

(Table 4). However, despite not nerve-sparing, ejaculatory dysfunction is not always seen 

(Kom et al., 1971; Nijman et al., 1982, 1987; Nowroozi et al., 2015). This observation is 

not intuitive because bilateral resection should uniformly remove the infrarenal aortic 

plexus and no known collateral sympathetic pathways to mediate antegrade ejaculation 

exist. In dogs, compensatory control of seminal emission (Kihara et al., 1991), but not 

closure of the bladder neck (Kihara et al., 1992), has been demonstrated following 

complete bilateral transection of the hypogastric nerves (distal extension of the aortic 

plexus); however, without bladder neck closure, seminal emission alone would only ever 

result in retrograde ejaculation. Thus, no literature exists to explain how bilateral RPLND 

without nerve-sparing can occasionally spare ejaculatory function. 

We assert partial nerve-sparing – unbeknownst to the surgeons – to explain this 

phenomenon. In Chapter 2, we observed in our dissections of human cadavers, the 

possibility of a retroaortic lumbar splanchnic nerve extending from the lumbar 

sympathetic chain to join the superior hypogastric plexus directly (Beveridge, Johnson, et 

al., 2015). In Chapter 4, we further characterized these nerves to be present in 85% of 

individuals, invariably coursing posterior to the aorta to emerge from between the 

common iliac arteries and left common iliac vein to join the superior hypogastric plexus 

inferior to the bifurcation (Beveridge et al., 2017). Given the variable presence of this 

nerve and potential protection afforded by its position deep to the abdominal aorta 

(Figure 20), its unintentional preservation may explain the minority of men with 

antegrade ejaculation despite undergoing bilateral RPLND without nerve-sparing. 
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Table 4.  A minority of men maintain antegrade ejaculation after bilateral RPLND 

without nerve-sparing. 

A compilation of studies reporting the rate of ejaculatory dysfunction (EjD) in men 

after bilateral retroperitoneal lymph node dissection (RPLND) for testis cancer 

without nerve-sparing (NS). 

 

Study 

Total No. Patients 

(Bilateral RPLND, no NS) Number with EjD (%) 

 (Dimitropoulos et al., 2016) 53 53 (100%) 

 (Nowroozi et al., 2015) 17 15 (88%) 

 (Nijman et al., 1987) 101 89 (88%) 

 (Nijman et al., 1982) 14 12 (86%) 

 (Kom et al., 1971) 9 6 (67%) 
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6.2 Future Work 

In the present thesis, we provide the first comprehensive characterization of the aortic 

plexus (Beveridge, Johnson, et al., 2015, 2016) and its variations (Beveridge et al., 2017) 

which are prone to damage during testis cancer surgery — findings that have informed 

novel nerve-sparing techniques (Beveridge, Allman, et al., 2016). However, preservation 

of the aortic plexus in its entirety is often not feasible in patients with advanced disease 

and nerve-sparing should never be attempted at the risk of an incomplete cancer resection 

(Jewett & Groll, 2007). Therefore, surgical effort should be focused on sparing the nerves 

of the aortic plexus relevant to ejaculation, since transection of the sympathetic nerves to 

the colon and pelvic organs does not appear to have any perceivable effects (Jänig & 

McLachlan, 1987). Importantly, focusing surgical effort on sparing only the nerves 

relevant to ejaculation may: (i) reduce the overall time of the surgery, (ii) improve rates 

of post-operative antegrade ejaculation, and (iii) allow for more accurate pre-operative 

predictions of a patient’s ability to ejaculate after RPLND, given the extent of their 

individual disease. Unfortunately, it remains unknown which nerves of the aortic plexus 

are in control of seminal emission and/or the internal urethral sphincter. Therefore, a 

necessary extension of the work presented in this thesis is to uncover the neural pathways 

of the aortic plexus controlling seminal emission and the internal urethral sphincter. 

Clues about the pathways of innervation pertaining to ejaculation can be gleaned from 

comparing the ejaculatory function of patients undergoing nerve-sparing/modified 

template/bilateral template RPLND (Jewett et al., 1988; Large et al., 2009; Pearce et al., 

2013) or lumbar sympathectomies (Whitelaw & Smithwick, 1951). Most significantly, 

these studies have demonstrated that preservation of every sympathetic nerve in the 

retroperitoneum is not necessary to preserve antegrade ejaculation. Moreover, it appears 

unilateral preservation may be sufficient to maintain normal sexual function (See Figure 

2). These suggestions are clearly substantiated in the study by Jewett et al. (1988) that 

reported which lumbar splanchnic nerves were spared in 20 patients that underwent 

RPLND, and the corresponding post-operative ejaculatory status for each (See Table 1). 

Interestingly, no clear correlation is seen between which nerves were spared and post-

operative ejaculatory status. For example, nerve-sparing of only the right L2,3 lumbar 
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splanchnic nerves in Patient #2 was sufficient to maintain antegrade ejaculation post-

operatively, but not for Patient #15 (Jewett et al., 1988). This suggests the arrangement of 

the fibers controlling ejaculation are prone to variation between individuals; however, 

this cannot be said with absolute certainty considering the lumbar splanchnic nerves in 

this study were defined by the vertebral level that the ganglion of origin resided upon – a 

method of nomenclature acknowledged to be inconsistent (Perlow & Vehe, 1935; Yeager 

& Cowley, 1948; Webber, 1958).  

Taken together, the current surgical literature provides compelling evidence to suggest 

most lumbar splanchnic nerves and/or intermesenteric nerves play a role in seminal 

emission and bladder neck closure; however, preservation of every nerve is not required 

for normal ejaculation. It would appear partial nerve-sparing causes paresis of the smooth 

muscles controlling ejaculation that can manifest as ejaculatory dysfunction once a 

threshold of function is reached. Electrophysiological recordings paired with lesion-and-

test models would provide a suitable means to investigate this hypothesis. However, an 

understanding of the neuromuscular pathophysiology of retrograde ejaculation and 

neurogenic anejaculation is a prerequisite for these studies. To properly elucidate this 

etiology, a non-clinical experimental model is required. 

6.2.1. An Animal Model to Study the Peripheral Control of Ejaculation 

Clinical studies have provided compelling evidence to suggest that many, if not all, 

nerves of the infrarenal aortic plexus are involved with ejaculation. However, a 

translatable animal model is required to properly examine the etiology of retrograde 

ejaculation/neurogenic anejaculation, and identify the precise nerve(s) – or perhaps 

proportion of nerves – necessary to avoid post-operative ejaculatory dysfunction. Given 

the variable morphology of the aortic plexus between species (Langley & Anderson, 

1896; Dyce, 1934; Baron et al., 1985a; Kihara, Sato, & Oshima, 1998; Kihara, Sato, 

Ishizaka, et al., 1998), it is imperative that the prospective model show comparable 

anatomy to humans (i.e., two parallel intermesenteric cords containing the right and left 

spermatic, inferior mesenteric, and prehypogastric or equivalent, ganglia). 
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Rats have been extensively used to study the neurophysiology of ejaculation (Kihara & 

De Groat, 1997; Truitt & Coolen, 2002; Carro-Juárez et al., 2003; Coolen et al., 2004; 

Allard et al., 2005; Staudt et al., 2012); however, the anatomy of the murine aortic plexus 

is typically reduced to a single nerve (the intermesenteric nerve) supplying a single 

inferior (caudal) mesenteric ganglion (Jänig & McLachlan, 1987; Kihara & De Groat, 

1997; Kihara et al., 1997) making this model less suitable for studying incomplete lesions 

in the periphery. 

Cats were first used to describe the anatomy of the aortic plexus at the end of the 19th 

century (Langley & Anderson, 1896). The feline aortic plexus is comprised of 2-4 

inferior (caudal) mesenteric ganglia, and remarkable spermatic/ovarian ganglia; however, 

like rats, they exhibit a single intermesenteric nerve rather than a preaortic plexus 

(Langley & Anderson, 1896; Jänig & McLachlan, 1987). Additionally, our own 

unpublished experiences with rats and cats have demonstrated that the retroperitoneal 

sympathetic nerves are tenuous and difficult to manipulate when attempting to model a 

nerve-sparing lymphadenectomy.  

Furthermore, dogs appear to have comparable anatomy to humans; three pairs of lumbar 

splanchnic nerves joining the infrarenal aortic (intermesenteric) plexus that is 

demonstrated to contain gonadal ganglia and an inferior (caudal) mesenteric ganglion 

(Mizeres, 1955). The morphology of the constituent cords are supported in more recent 

drawings (Kihara et al., 1992; Ando et al., 1993); however, another study from the same 

group raises possible inconsistency by illustrating a singular intermesenteric nerve in 

place of the aortic plexus (Kihara, Sato, Ishizaka, et al., 1998). Furthermore, the majority 

of studies describe a single inferior (caudal) mesenteric ganglion in dogs (Mizeres, 1955; 

Kihara et al., 1992; Ando et al., 1993; Kihara, Sato, Ishizaka, et al., 1998) whereas one 

review indicates a bi-lobed ganglion in this species (Jänig & McLachlan, 1987). Thus, 

additional studies are needed to determine if a homologous structure to the human 

prehypogastric ganglion is present in dogs. 

Finally, boars have been identified as suitable model for urogenital research due to their 

anatomical and functional resemblance to humans (Dalmose et al., 2000; Burdzińska et 
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al., 2012; Ragionieri et al., 2013; Pidsudko, 2014a, 2014b). Furthermore, their use in a 

study immunotracing the innervation of the bladder shows a pair of inferior mesenteric 

ganglia respectively supplied by a right and left intermesenteric nerves (see Fig 3. in 

Pidsudko, 2014a) suggesting a possible organizational homology to the inferior 

mesenteric and prehypogastric ganglia in humans. Research from our lab has further 

substantiated this organizational homology. Using serial histology, we delineated a neural 

separation, devoid of neuron cell bodies, between the porcine caudal mesenteric ganglia 

that confirmed they were in fact two distinct structures and not one unified ganglion 

(Groh et al., 2018). Furthermore, we showed the porcine aortic plexus exhibited 

comparable organizational symmetry overall, complete with two longitudinal 

intermesenteric cords, each supplied by lumbar splanchnic nerves from the respective 

lumbar sympathetic chains (Figure 28) – findings that indicate a structural homology to 

humans (Groh et al., 2018).  

To further identify the potential usefulness of the boar as a suitable animal model for 

ejaculatory research, it is important to consider not only the structural homology to 

humans, but also physiological similarities. Indeed, we recently demonstrated stimulation 

of the aortic plexus caused closure of the bladder neck (Groh et al., 2018) – a functional 

homology to the known neural anatomy and physiology of the internal urethral sphincter 

in humans (Learmonth, 1931; Whitelaw & Smithwick, 1951; Brindley et al., 1989; 

Keating, 2004). Importantly, our results indicate that a partial (unilateral) aortic plexus 

lesion was not associated with a loss of bladder neck closure (Groh et al., 2018) – 

findings that are congruent with the observed antegrade ejaculation following partial 

nerve sparing in humans (Whitelaw & Smithwick, 1951; Jewett et al., 1988).  

With these findings that support the boar as a comparable model to study the peripheral 

innervation supplying the internal urethral sphincter, future studies can begin to study the 

etiology of retrograde ejaculation and identify the precise neural pathways imperative to 

avoid post-operative ejaculatory dysfunction. Such work is ongoing in our lab where we 

are investigating the specific regions of the internal urethral sphincter impacted by 

various (partial/unilateral) nerve lesions and its associated ability to resist retrograde flow 

during ejaculation. 
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Figure 28.  A conservation of anatomy in the aortic plexus exists between boars and 

humans, from Groh et al. (2018). 

The neuroanatomical structure of the porcine aortic plexus (A) was compared to the 

known anatomy of humans (B). Histological sections stained with H&E are 

presented in panels (i-vi) for each ganglion of the porcine aortic plexus, and reveal 

prominent collections of neuronal cell bodies. Each of these panels (i-vi) is 

complemented by sections stained for tyrosine hydroxylase that confirm the 

adrenergic nature of the ganglia; panels v/vi also include representative negative 

controls for the immunohistochemical stain. Lastly, panel vii presents a 

representative serial section stained with H&E of the neural segment between the 

right and left caudal mesenteric ganglia that is devoid of neuronal cell bodies, 

indicating a clear distinction between these two neural structures. 



127 

6.3 Overall Summary 

Using gross cadaveric dissection, we have provided the first detailed description of the 

aortic plexus (Chapters 2 & 3) and its variations (Chapter 4) in humans. The aortic plexus 

was found to be symmetrically organized into two longitudinal cords that coursed in 

parallel until they converged to continue into the pelvis as the superior hypogastric plexus 

(Beveridge, Johnson, et al., 2015, 2016). Each cord contained two constituent ganglia 

located near and around the junction of the infrarenal lumbar splanchnic nerves within 

the cords of the aortic plexus: the left & right spermatic/ovarian ganglia, the 

prehypogastric ganglion and the inferior mesenteric ganglion (Beveridge, Johnson, et al., 

2015, 2016). Furthermore, the lumbar splanchnic nerves joining the aortic plexus 

consistently coursed in parallel in an anteroinferior direction from the lumbar 

sympathetic chains to merge with the two intermesenteric cords of the aortic plexus 

(Beveridge et al., 2017). Despite these consistencies in the general organization of the 

aortic plexus, the position and number of lumbar splanchnic nerves was subject to 

significant variability. Typically, two lumbar splanchnic nerves joined each side of the 

infrarenal aortic plexus, with the possibility of encountering as little as one or as many as 

four on each side (Beveridge et al., 2017). Furthermore, the position of the lumbar 

splanchnic nerves within individuals was not similar; however, 98% of lumbar splanchnic 

nerves originated from the lumbar sympathetic chain superior to the level of the inferior 

mesenteric artery (Beveridge et al., 2017). Below of the origin of the inferior mesenteric 

artery, 85% of individuals exhibited a retroaortic lumbar splanchnic nerve(s) that coursed 

between the aorta/common iliac arteries and the left common iliac vein to join the 

posterior aspect of the superior hypogastric plexus (Beveridge et al., 2017). As an 

extension to this neuroanatomical characterization, in Chapter 5 we studied their 

relationship to the lumbar arteries and veins to inform precise nerve-sparing strategies for 

retroperitoneal lymph node dissection (Beveridge, Allman, et al., 2016). Armed with a 

comprehensive understanding of the surgical anatomy of the aortic plexus in humans, 

future studies should seek to determine which nerves are specifically involved with 

ejaculation, and the pathways imperative to preserving fertility during retroperitoneal 

surgery.  
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Appendix A.  Hematoxylin and eosin staining protocol using standard regressive 

procedures. 

Obtained from Department of Oral Pathology. 

H & E Protocol 
 

1. Xylene (5 minutes) 
2. Xylene (5 minutes) 
3. Xylene (3 minutes) 
4. 100% EtOH (2 minutes) 
5. 100% EtOH (1 minute) 
6. 95% EtOH (2 minutes) 
7. 95% EtOH (1 minute) 
8. 95% EtOH (1 minute) 
9. H2O (2 minutes) 
10. Hematoxylin (3 minutes) 
11. Rinse in H2O 
12. 2 to 3 dips in Acid Alcohol (1% HCl in 70% EtOH) 
13. Rinse in H2O 
14. Dip in Ammonium Alcohol (2% NH4OH in 70% EtOH), until stain turns blue 

(~2-3 dips) 
15. Rinse in H2O 
16. Eosin (3 minutes) 
17. Rinse in H2O 
18. 70% EtOH (1 minute or 10 dips) 
19. 95% EtOH (1 minute or 10 dips) 
20. 95% EtOH (1 minute or 10 dips) 
21. 100% EtOH (1 minute or 10 dips) 
22. 100% EtOH (1 minute or 10 dips) 
23. 100% EtOH (1 minute or 10 dips) 
24. Xylene (5 minutes) 
25. Xylene (5 minutes) 
26. Mount and Coverslip 
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Appendix B.  Anti-TH immunohistochemical staining protocol. 

Obtained from Department of Oral Pathology. 

IHC Protocol 
 

1. Complete Steps 1-9 from the H&E Protocol (Appendix A) 
 

2. Slides are quenched with fresh 3% H2O2 in MeOH (prepared from 20mL 30% 
H2O2 in 180mL MeOH) for 5 minutes 

3. Rinse in H2O (5 minutes) 
4. Rinse in Phosphate Buffered Saline (PBS) on shaker (5 minutes) 
5. Antigen Retrieval is done in citrate buffer (pH 6.0) in a decloaking chamber 

(place 500mL of distilled H2O in bottom of decloaking chamber) 
6. Rinse in H20, then in PBS 
7. Slides are blocked in 10% horse serum at room temperature (30 minutes), then 

drained onto paper towel. DO NOT RINSE IN PBS 
8. Slides are incubated with monoclonal antibody anti-TH [0.5 µL/mL, as 

determined by preliminary titration experiments] at room temperature in a 
humidified chamber (1 hour) 

9. Rinse in PBS on shaker (5 minutes) 
10. Slides are incubated with ImmPress Kit (anti-mouse horse-radish peroxidase 

micropolymer solution) at room temperature (30 minutes) 
11. Rinse in PBS on shaker (5 minutes) 
12. Diaminobenzidine (DAB) is prepared (5mL distilled H2O + 2 drops of buffer + 

4 drops of DAB + 2 drops of H2O2, in that order with vortexing after each step) 
13. Slides are incubated with DAB (10 minutes maximum) 
14. The reaction is stopped with distilled H2O, and drained into the waste container 
15. Rinse in H2O 

 

16. Hematoxylin (1 minutes) 
17. Rinse in H2O 
18. 2 to 3 dips in Acid Alcohol (1% HCl in 70% EtOH) 
19. Rinse in H2O 
20. Dip in Ammonium Alcohol (2% NH4OH in 70% EtOH), until stain turns blue 

(~2-3 dips) 
21. Rinse in H2O 
22. 70% EtOH 1 minute or 10 dips 
23. 95% EtOH 1 minute or 10 dips 
24. 95% EtOH 1 minute or 10 dips 
25. 100% EtOH 1 minute or 10 dips 
26. 100% EtOH 1 minute or 10 dips 
27. 100% EtOH 1 minute or 10 dips 
28. Xylene 5 minutes 
29. Xylene 5 minutes 
30. Mount and Coverslip 
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Appendix C.  Photomicrographs of the constituent ganglia from the aortic plexus 

The study presented in Chapter 3 references a compilation of photomicrographs showing 

the histology of all examined tissues in the study. These micrographs are presented on the 

subsequent pages; Columns A, B and C show histology from the left ovarian ganglia, 

right ovarian ganglia and prehypogastric ganglia, respectively. 
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Appendix D.  Accessory Right Spermatic Ganglion Case Report 

Abstract 

The spermatic ganglia are collections of sympathetic neuron cell bodies located within 

the right cord of the aortic plexus, positioned at the origin of the testicular arteries in 

males. During routine dissection of the aortic plexus at our institution, one specimen 

exhibited a second (accessory) testicular artery on the right side which coursed 

retrocaval. Histology was used to confirm the presence of an accessory right spermatic 

ganglion at the base of the accessory retrocaval testicular artery. Interestingly, the 

accessory spermatic ganglion was also supplied by its own accessory right lumbar 

splanchnic nerve. This is the first case to describe the anatomy of an accessory spermatic 

ganglion in a specimen which exhibits an accessory testicular artery on the right side. In 

addition to a detailed description of this neurovascular variation, this case report 

discusses a possible developmental rationale which may be of interest to surgeons who 

aim to preserve these sympathetic nerves and their variations during retroperitoneal 

surgeries.    

Introduction 

The spermatic ganglia are the superior constituent ganglia of the aortic plexus 

(Beveridge, Johnson, et al., 2015). Located near the origin of the testicular arteries in 

males (Motoc et al., 2010; Beveridge, Johnson, et al., 2015), the spermatic ganglia are 

supplied by the first (most superior) infrarenal lumbar splanchnic nerve joining the aortic 

plexus (Beveridge, Johnson, et al., 2015). Additionally, they may also receive neural 

fibers by way of intermesenteric nerves from the aorticorenal/superior mesenteric 

plexuses (Motoc et al., 2010; Beveridge, Power, et al., 2015). These ganglia are 

recognizable by their distal branches extending along the testicular arteries to comprise 

the spermatic plexus. The spermatic ganglia also exhibit an inferior branch that extends 

caudally along the abdominal aorta towards the inferior positioned, prevertebral ganglia 

of the aortic plexus; the inferior mesenteric ganglion on the left and prehypogastric 

ganglion on the right (Beveridge, Johnson, et al., 2015). 
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The topographical location of the spermatic ganglia is achieved during embryogenesis. At 

this time, the neural crest cells (primitive post-ganglionic neurons) delaminate from the 

dorsal neural tube, and migrate ventrally towards the developing dorsal aorta (Huber, 

2006; Schoenwolf, 2009; Takahashi et al., 2013; Kameda, 2014). Although several 

chemotactic factors have been identified which mediate this process, the exact 

mechanisms behind the morphogenesis of the spermatic ganglia, specifically, remain 

unclear. 

In the present case report, a previously unreported variation in the anatomy of the right 

spermatic ganglia is discussed which may provide insight into the complex migratory 

mechanisms driving the development of these ganglia. Here, we present data from a 

dissection of a fresh frozen human cadaver which exhibited an accessory spermatic 

ganglion positioned at the origin of an accessory retrocaval testicular artery on the right 

side. 

Methods 

The data from the present case report was acquired from dissection of a fresh, frozen 

human cadaver [Male; Age at death = 65 years; Medical Hx = Cardiac Arrest, Coronary 

Artery Disease, Hypertension, Bladder cancer]. This specimen was obtained and 

dissected in accordance with the Anatomy Act of Ontario and Western’s Committee for 

Cadaveric Use in Research, approval #15052013. A transabdominal approach was used 

to access the retroperitoneum and dissection of the aortic plexus was achieved using a 

previously reported protocol (Beveridge, Johnson, et al., 2015). 

To confirm the macroscopic identification of a sympathetic ganglion, haematoxylin-eosin 

(H&E) staining with standard regressive procedures was used to visualize the presence of 

neuron cell bodies while anti-tyrosine hydroxylase (Anti-TH) immunostaining was used 

to verify the sympathetic nature of the neurons (Motoc et al., 2010; Kameda, 2014) using 

previously referenced protocols (Beveridge, Johnson, et al., 2015). Histology was 

performed on 5µm sections taken from paraffin embedded tissue. 
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Results 

During routine dissection of the aortic plexus at our institution, one specimen exhibited 

an accessory retrocaval testicular artery in addition to the testicular artery proper on the 

right side (Figure 29A). The right testicular artery proper was defined as the vessel which 

was more closely paired to the left testicular artery. The accessory right testicular artery 

was located 2.9cm superior to the origin of the testicular artery proper, just inferior to the 

left renal vein. The accessory testicular artery coursed retrocaval before pairing with the 

testicular vein and testicular artery proper, lateral to the inferior vena cava.  

At the base of both right testicular arteries, within the right cord of the aortic plexus, was 

an observable swelling of nervous tissue. Both swellings were excised to undergo 

histological analysis to verify their characterization as sympathetic ganglia. H&E staining 

of this tissue demonstrated the presence of neuronal cell bodies containing abundant 

lipofuscin granules, surrounded by irregularly arranged satellite cells (Figure 29B-C). 

Additionally, immunohistochemical staining for both specimens was tyrosine 

hydroxylase positive thus confirming their sympathetic nature (Figure 29D-G). The 

identified ganglia were further characterized as accessory/proper spermatic ganglia given 

their association with the respective right testicular arteries. Each spermatic ganglion was 

supplied by a separate lumbar splanchnic nerve; however, both lumbar splanchnic nerves 

originated from one unified lumbar sympathetic chain ganglion. In addition to the supply 

by the first lumbar splanchnic nerve, the right spermatic ganglion proper had some 

connections to an accessory L2 lumbar splanchnic nerve (observable in Figure 29). 

As expected, inferior to the right spermatic ganglion proper, the prehypogastric ganglion 

was identified as a distinct structure supplied by the lumbar splanchnic nerve branching 

from the second lumbar sympathetic chain ganglion. The identification of the 

prehypogastric ganglion was also histologically verified for comprehensiveness (data not 

shown). The anatomical arrangement of the accessory right spermatic ganglion, right 

spermatic ganglion proper, and the prehypogastric ganglion within the right cord of the 

aortic plexus can be seen in Figure 29. 
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Discussion 

The present study describes a specimen which exhibited an accessory right spermatic 

ganglion at the origin of an accessory retrocaval testicular artery on the right side. The 

development of an accessory retrocaval testicular artery is not an unusual vascular 

variation given the previous reports of – and embryological rationales behind – the 

development of accessory testicular arteries (Deepthinath et al., 2006; Rusu, 2006; Nayak 

et al., 2007; Singh et al., 2011) or retrocaval testicular arteries (Mirapeix et al., 1996; 

Motoc et al., 2010; Reddy et al., 2011; Singh et al., 2011) in the literature. However, the 

present report also describes the anatomy of an accessory spermatic ganglion, positioned 

at the origin of the accessory testicular artery; a previously unreported finding which 

suggests a possible embryological association between the developing testicular arteries 

and the migration of the sympathetic neurons that form the spermatic ganglia.  

In development, the migration of the neural crest cells from the dorsal neural tube during 

the 4th and 5th week of embryogenesis gives rise to the sympathetic chain ganglia and the 

prevertebral ganglia (Huber, 2006; Schoenwolf, 2009; Takahashi et al., 2013; Kameda, 

2014). Bone morphogenic proteins from the developing dorsal aorta mediate this process 

by inducing the production of specific chemoattractant factors in the para-aortic region 

(Saito et al., 2012). Although several factors have been identified to understand the 

aggregation of neurons into compact masses or ganglia in the developing sympathetic 

chain (for review, see Kameda, 2014), our understanding of the mechanisms which 

mediate the precise morphogenesis of the prevertebral ganglia are less understood (Lumb 

& Schwarz, 2015). 

A cadaveric study by Motoc et al. (2010), suggested that the topographical position of the 

spermatic ganglia is not influenced by the origin of the testicular arteries. This was 

supported by their observation of the left spermatic ganglion in the expected location 

within the aortic plexus during the dissection of a specimen that exhibited a left testicular 

artery originating from the left renal artery rather than the abdominal aorta (Motoc et al., 

2010). 
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In contrast to this previous suggestion regarding the development of the spermatic 

ganglia, our observations support the theory that there is a developmental association 

between the testicular arteries and the spermatic ganglia. Specifically, we observed that 

development of an accessory testicular artery was associated with the development of an 

accessory spermatic ganglion; a finding which is congruent with the well-established 

understanding that the major prevertebral ganglia (i.e. the celiac, superior mesenteric, 

aorticorenal, and inferior mesenteric ganglia) develop around the origin of the abdominal 

aortic branches. Given our observation of an accessory spermatic ganglion paired with 

the development of an accessory testicular artery, it is not unreasonable to suggest that 

abdominal aortic branches (like the developing dorsal aorta) may play an integral role in 

mediating migration of the prevertebral ganglia. Therefore, we theorize that the 

developing branches of the abdominal aorta (embryologic splanchnic and vitelline 

arteries) play a role honing the migration of the neural crest cells with a prevertebral fate, 

by adjusting the distribution of the chemotactic factors initially mediated by the dorsal 

aorta; the outcome facilitating congregation around the origin of arterial branches. This 

suggestion is further supported by unpublished data from Schwarz in 2008, who observed 

ectopically positioned sympathetic ganglia closely associated with blood vessels in 

Neuropilin1 knockout embryos (Lumb & Schwarz, 2015). In their 2015 review, Lumb & 

Schwartz proceed to suggest that their observation of vascular-associated, ectopic 

aggregations of sympathetic neurons in embryos with inhibited gangliogenesis may 

suggest underlying migratory signals from blood vessels. To explore this theory, future 

embryological studies elucidating how these developing arteries may alter migratory 

signaling in the para-aortic mesenchyme are needed.  

From the present report, it is clear the development of an accessory spermatic ganglia and 

lumbar splanchnic nerve supply can be associated with the development of an accessory 

testicular artery. Although it remains unclear whether the vasculature influences the 

aberrant morphology of the nerves and ganglia, the present data suggests that the 

morphology of the aortic plexus may be predicted based on the anatomy of the arterial 

branches. This technique may be of particular interest to surgeons tasked with nerve-

sparing during retroperitoneal procedures. 
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Appendix E.  Research Ethics Board Approval 

Policies and Procedures for use of the cadaveric anatomy lab and cadaveric material at Western 

University, Department of Anatomy Cell Biology. 

 

USE OF CADAVERIC MATERIAL FOR RESEARCH PURPOSES  
Department of Anatomy & Cell Biology, Western University. 

 
1. The use of human material is governed by the Anatomy Act of Ontario.  Under 

the Act, the Department of Anatomy & Cell Biology (ACB) is ultimately 
responsible for the appropriate use and disposal of the cadavers it receives 
through its Body Bequeathal Programme.  Therefore, all requests for the use 
of cadaveric material in research may be reviewed by the Inspector of 
Anatomy for Ontario (Chief Coroner) if necessary and, after use, all specimens 
must be returned to the Department for proper disposal. 

 
2. For research to be carried out outside the gross anatomy laboratories in the 

Department of Anatomy & Cell Biology the following criteria must to be met.  
Each request for cadaveric material will be reviewed by the ACB internal 
Committee for Use of Cadaveric Material for Research.  This committee 
consists of a Chair (Dr. Marjorie Johnson) 3 other clinical anatomy faculty 
members and a member of the Pathology Department (currently Dr. Ted 
Tweedie).  These members are appointed by the committee chair. 
 
Criteria: 

 i.  Specimens must be stored in a secure location, out of the public view.  
Similarly, the research must not be carried out in a public place. 

 
ii.  Specimens must be transported to and from the Department of Anatomy & 
Cell Biology concealed in containers that give no indication as to content and 
accompanied by a member of clinical anatomy   If the specimens are to be 
taken off-campus, a letter from the Department of Anatomy & Cell Biology 
authorizing their transportation must accompany the specimens. See Part I 
(Part I is not relevant to present thesis and therefore not included in this 
appendix). 
 
iii.  If specimens are being used in the cadaveric anatomy lab, investigators 
must follow the lab regulations outlined in Part II. 
 
iv. All specimens must be returned to the anatomy lab supervisor (Haley 
Linklater) for cremation in accordance with the Bequeathal program policies. 
 
v.  All specimens are anonymized so that investigators receive a specimen 
number.  Only the age, sex and cause of death, if needed, will be provided to 
the investigators.  All other donor information, as part of the Bequeathal 
program, is kept locked in the office of the anatomy lab supervisor. 
 

3. Specimens may not generally be photographed or videotaped, except under 
special circumstances.  If filming or photography is needed, please complete 
the form in Part III. 
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4. The request for approval should be submitted as a 1-5-page summary of the 
research proposal under the following headings: 

 
Name(s) & Title(s) and contact information of Applicant(s): 

Co-PI:  

Dr. Brian L. Allman, PhD Dept. of ACB  

Dr. Nicholas Power, MD Dept. of Surgery, Urology  

 

PhD Student: 

Tyler Beveridge, MSc Dept. of ACB  

 

 Title (of project): The anatomy of the infrarenal aortic plexus 

Approval # 15052013 

 

 Hypothesis: Improvements to nerve-sparing surgery are impeded by a poor 

anatomical understanding of the retroperitoneal sympathetic plexuses. 

 

Description of Project: 

Specimen Handling: 

 Dissection of the retroperitoneum (deep abdomen and pelvis) will be 

completed using standard techniques.  

 Anonymity of the cadavers will be maintained by use of specimen numbers, 

and only non-identifiable photographs of the tissue will be taken for publication 

purposes.  

 Specimens will be cremated at the end of each year, as per standard handling 

procedures in the gross anatomy lab. 

 Tissue samples existed for histology will be stored in the locked office of the 

PhD Student, Tyler Beveridge for a period of 5 years, following completion of 

his degree, as per standard data handling protocols. At which point, the tissue 

will be cremated along with other general cadaveric waste from the Anatomy 

Lab. 

 

Facilities: 

 All cadaveric dissection will occur in the gross anatomy facilities (Haase 

Anatomy Lab and/or morgue) in the Medical Sciences Building at Western 

University. 

 Tissue samples excised for histology with be processed at the University 

Hospital, and stained using the facilities offered by Linda Jackson, in the 

Department of Oral Pathology in Dental Sciences Building 4th Floor. 

 Microscopy will take place in both the Department of Oral Pathology and 

Department of Anatomy and Cell Biology. 

 

Study Duration: 

 Anticipated completion of study and student’s degree: April 2018. 

 

 Significance/Relevance (of study): Improved anatomical characterization of the 

sympathetic nerves in the abdomen may benefit nerve-sparing to preserve male fertility 

during retroperitoneal surgery 

 

 Source of Funding: CIHR CGS-D Student Scholarship
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5.  The proposal will be reviewed by the Committee for Use of Cadaveric Material 
for Research for approval.   The proposal should be submitted electronically to 
the committee Chair, who may forwarded the proposal to the Inspector of 
Anatomy if clarification is needed.  

 
6. An approval number will be assigned to each project, which may be used for 

ethics approval. 
 
7. A statement of completion and a summary of project findings is to be submitted 

by the project PI no later than one year after completion of the study. 
 
8. The Bequeathal program and all records are reviewed by the Chief Coroner’s 

Office on an annual basis, including a summary of donors used for research or 
extracurricular educational programs, when requested. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Schulich School of Medicine & Dentistry, Western University, MSB Rm. 483 

1511 Richmond St.  London, ON, Canada N6A 5C1 

www.schulich.uwo.ca                              
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Part II - Western University Human Anatomy Laboratory Regulations.  
This Laboratory comes under the jurisdiction of the Solicitor General of the 
Province of Ontario through the General Inspector of Anatomy. It and the conduct 
of all those in it are subject to the relevant sections of the Human Tissue Gift Act, 
the Anatomy Act, the Coroners Act and the Cemeteries Act.  
 
1. No one is allowed in the lab unless supervised by the laboratory staff or the 
instructor delegated by the Associate Chair of Clinical Anatomy or Chair 
Committee for Cadaveric Use in Research.  
 
2. In all matters of conduct, in the absence of the Head of the School of Anatomy, 
the Sr. Lab Demonstrator is the final authority. In the absence of the Sr. Lab 
Demonstrator, the instructor delegated by the Head of the School of Anatomy is 
the final authority.  
 
3. No frivolity or acts which could be construed as disrespectful to the cadavers 
will be tolerated.  
 
4. A clean white lab coat must be worn at all times in the lab as a sign of respect to 
the deceased and for barrier protection when handling the dissections.  
 
5. Some people consider wearing a hat, especially a baseball cap, as disrespectful 
in the presence of a deceased body. Wearing a hat is, therefore, not allowed in the 
lab, except for religious reasons.  
 
6. Closed toed shoes are required at all times in the lab.  
 
7. Disposable nitrile gloves must be worn when handling the dissections.  
 
8. No smoking, eating, or drinking is permitted in the lab.  
 
9. No photograph or video recording may be taken without the permission of the 
Head of the School of Anatomy. Since most cell phones have a camera, use of 
cell phones inside the anatomy lab is not allowed.  
 
By signing below, you agree that you have read and will abide by the rules and 
regulations of the human anatomy lab.  
 
 
 
Printed Name: _Tyler S. Beveridge____________________ Date: May 15, 2013 
 
Signature: ________________________________________ 
 

 

 
Schulich School of Medicine & Dentistry, Western University, MSB Rm. 483 

1511 Richmond St.  London, ON, Canada N6A 5C1 

www.schulich.uwo.ca                              
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Part III - Request for Photography/Videography 

 
Please provide the following information: 

Name: Tyler S. Beveridge 

Department or Affiliation: Anatomy and Cell Biology 

Daytime Contact 
Number:  

Email Address:  
  

Date of Laboratory Visit: Throughout Graduate Studies, 2013 - 2018 

Specimens or Body 
Regions to be Viewed: Retroperitoneum 

Purpose of Photography 
and/or Videography  
(please be specific): Research Publications, Presentations and Thesis 

Who will see the results 
of this project? Scientific Community via presentations and publications 

 
 
 
Please sign below stating that you agree with the terms and conditions: 

This request for photography and/or videography is solely in the interest of education. The 
results of this work will never be used to earn a profit.  
Photographs and/or video recordings will not contain images that could identify the donor 
in any way. 
 

 
______________________________________                             May 15, 2013 
                           Signature           Date           
 

Request Approved? 
Yes __x____ No _______ 
 
 
______________________________________ May 15, 2013 
                           Signature         Date          
            

_____Director of Clinical Anatomy, ACB         
                      Title of Authority 
 
 
Schulich School of Medicine & Dentistry, Western University, MSB Rm. 483 

1511 Richmond St.  London, ON, Canada N6A 5C1 

www.schulich.uwo.ca 
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