
ORIGINAL ARTICLE

doi:10.1111/evo.12300

ANCESTRAL CHARACTER ESTIMATION UNDER

THE THRESHOLD MODEL FROM QUANTITATIVE

GENETICS

Liam J. Revell1,2

1Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125

2E-mail: liam.revell@umb.edu

Received December 15, 2012

Accepted October 13, 2013

Evolutionary biology is a study of life’s history on Earth. In researching this history, biologists are often interested in attempting

to reconstruct phenotypes for the long extinct ancestors of living species. Various methods have been developed to do this on

a phylogeny from the data for extant taxa. In the present article, I introduce a new approach for ancestral character estimation

for discretely valued traits. This approach is based on the threshold model from evolutionary quantitative genetics. Under the

threshold model, the value exhibited by an individual or species for a discrete character is determined by an underlying, unobserved

continuous trait called “liability.” In this new method for ancestral state reconstruction, I use Bayesian Markov chain Monte Carlo

(MCMC) to sample the liabilities of ancestral and tip species, and the relative positions of two or more thresholds, from their joint

posterior probability distribution. Using data simulated under the model, I find that the method has very good performance in

ancestral character estimation. Use of the threshold model for ancestral state reconstruction relies on a priori specification of the

order of the discrete character states along the liability axis. I test the use of a Bayesian MCMC information theoretic criterion

based approach to choose among different hypothesized orderings for the discrete character. Finally, I apply the method to the

evolution of feeding mode in centrarchid fishes.

KEY WORDS: Bayesian, Centrarchidae, comparative method, deviance information criterion, interspecific data, Markov chain

Monte Carlo, phylogenetic tree.

A great deal has been learned by evolutionary biologists by study-

ing contemporary instances of rapid evolution, through computer

simulations, and by experimental research on the genetic and phe-

notypic changes through time of fast reproducing organisms in the

laboratory (e.g., Bürger et al. 1989; Rice and Hostert 1993; Losos

et al. 1997). Nonetheless, much of evolutionary biology is still

fundamentally a historical discipline. Evolutionary biologists are

interested in reconstructing the past, and in many instances this

may involve estimating something about the features of extinct

ancestral species from those of their extant descendants. This es-

timation of the characteristics of hypothetical ancestral species

in the context of a phylogeny is a domain of phylogenetic com-

parative biology (Brooks and McLennan 1991; Harvey and Pagel

1991; Pagel 1994; Schluter et al. 1997; Nunn 2011).

Phylogenetic comparative biology has taken many bold

methodological steps in the past decade. Most significantly, re-

searchers have developed a wide range of new methods to estimate

past evolutionary processes from a phylogeny and (in many cases)

phenotypic trait data for the extant species in the tree. For instance,

we now have sophisticated statistical tools for studying the pace of

lineage accumulation through time (e.g., Rabosky 2006; Stadler

2011), we can fit different regimes of phenotypic evolution to

different parts of a tree (e.g., Butler and King 2004; O’Meara

et al. 2006; Revell and Harmon 2008; Revell and Collar 2009;
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Eastman et al. 2011; Revell et al. 2012), and we can model and

study the interaction of trait evolution and species diversification

in a phylogeny (e.g., Maddison et al. 2007; Fitzjohn 2010). Over

the same time interval, however, less research has been conducted

on the estimation of ancestral states (but see, e.g., Huelsenbeck

and Bollback 2001; Nielsen et al. 2002; Huelsenbeck et al. 2003;

Pagel et al. 2004; Bokma 2008).

For discretely valued character traits—such as the presence

or absence of a feature, or the number of elements in a seri-

ally repeated structure—the prevailing method of ancestral state

reconstruction uses a model of evolution in which phenotypic

changes accrue under a continuous-time discrete-state Markov

process (Pagel 1994, 1999; Schluter et al. 1997; Cunningham

et al. 1998). This is the same basic model as is used for the

evolution of nucleotide sequence in model-based phylogeny in-

ference. The typical form of this model for phenotypic trait data

is a generalization of the Jukes–Cantor model (Jukes and Cantor

1969) that has been dubbed the Mk-model (Pagel 1994; Lewis

2001), although it is relatively straightforward to consider re-

lated alternative models, such as a model of character change

with different forward and backward transition rates between

states.

The central attribute of a discrete-state continuous-time

Markov model is an instantaneous transition matrix, Q. Q is a

square matrix of dimensions m × m for m states of a discrete

character. It has a general form as follows (for the three-state

case):

Q =

⎡

⎢

⎣

− (α + β) α β

γ −(γ + δ) δ

ε ζ −(ε + ζ)

⎤

⎥

⎦
.

Here, off-diagonals are the instantaneous transition rates

from an initial state (row) to a derived state (column). So, for

example, the instantaneous transition rate between states 1 and

2 is α. Under this model, the waiting time to a change when a

lineage is in state 1 (either to states 2 or 3) is exponentially dis-

tributed with rate parameter α + β, and the expected number of

substitutions from state 1 to state 2 given time t is simply α × t.

Finally, the matrix of probabilities of change between all states

given time t can be computed as P(t) = exp(Qt), where exp(X)

denotes matrix exponentiation.

Under this model, the instantaneous substitution rates may

differ between states, and the backward and forward rates of

transition can also vary; however, the process is “memoryless,”

which means that the probability of changing between state 1 and

2 (for instance) does not depend on the prior states for the lin-

eage, nor on the amount of time spent in the current state. (But see

Beaulieu et al. 2013 for an interesting new “hidden-rates” model.)

The continuous-time Markov chain is primarily a phenomenolog-
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Figure 1. Simulation of evolution under the threshold model on

a 40-taxon tree. The abscissa gives the (normally unobserved) lia-

bility trait. The discrete threshold character states are shown here

as different colors, and the thresholds by vertical dashed lines.

ical model—meaning that it is not linked particularly well with

any specific underlying biological process for the evolution of

the character traits in our analysis. Many evolutionary biologists

would probably agree that the idea that a lineage can change

state instantly, with an equal and indefinite probability of rever-

sal, is unrealistic and inconsistent with our views on how complex

morphological and ecological characters arise. This model may

be fully appropriate (or at least an adequate approximation) for

the process of nucleotide substitution and for evolution in some

types of discretely valued character traits; however, for complex

or polygenic discrete organismal traits, it may be time to consider

another model.

The threshold model of quantitative genetics is a model

in which the discrete presentation of an organismal character

trait is actually based on an underlying, unobserved continu-

ous trait called “liability” (Wright 1934; Lynch and Walsh 1998;

Felsenstein 2005, 2012). The reason this is called the threshold

model is because when liability (our unobserved continuous char-

acter) exceeds a fixed threshold, the character state changes value

(Lynch and Walsh 1998). There may be one or multiple thresh-

olds on our unobserved liability axis. For instance, in Figure 1 I

have illustrated evolution on a 40-species phylogenetic tree under

the threshold model. Here, the vertical axis gives time since the
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root of the tree, color is the observed threshold character, and the

abscissa gives our (normally unobserved) liability trait (Fig. 1).

On this hypothetical liability axis, a change in liability from −2.0

to 0.0 will, for instance, cause the discrete character to change

from state black to state red, and a further change from 0.0 to

3.0 causes a change in state from red to blue (Fig. 1). Finally,

if liability exceeds 3.5, the observed threshold character changes

again—this time to state green (Fig. 1).

Liability might be a concrete, yet unmeasured characteris-

tic, such as blood hormone level. In this case, a threshold level

of blood hormone, when exceeded, could cause, for example,

the expression of a discrete character to be turned on, or vice

versa. However, over evolutionary time scales, I would argue that

liability may also be a very good proxy for the many and var-

ied changes in organismal genotype and phenotype that underlie,

for instance, a discrete shift in habitat use or life history. One

important difference between the threshold model and nucleotide

models for discrete character evolution on the tree is that although

the latter can be made to be explicitly ordered (by constraining

the values that can be assumed by certain elements of Q; e.g.,

Skinner and Lee 2010), the former is inherently so. Changes in

liability take place on a continuous trait axis, and for a lineage

initially in state red to change to state green (in my example from

Fig. 1) it requires a specifically larger amount of evolution of the

underlying liability trait than that required for the same lineage

to evolve to state blue (not to mention evolution through the state

blue). This may be realistic and advantageous under some circum-

stances, but could be problematic under others, for instance when

the character ordering is uncertain. This will be discussed further

below.

The threshold model of quantitative genetics has only re-

cently drawn the attention of comparative biologists. Specifically,

in two recent articles Felsenstein (2005, 2012) innovatively devel-

oped the threshold model as an approach for studying the evolu-

tionary correlation between multiple discrete characters, as well

as between discrete and continuously valued traits—something

that had been quite difficult previously (but see Ives and Garland

2010). This article is a natural extension of Felsenstein (2005,

2012), but it nonetheless (to my knowledge) marks the first time

that the threshold model has been applied specifically to try and

estimate the states for a discretely valued character at ancestral

nodes in a phylogenetic tree.

Methods
MATHEMATICAL AND COMPUTATIONAL DETAILS

This method for ancestral character estimation of discrete

characters under the threshold model using Bayesian Markov

chain Monte Carlo (MCMC) is implemented in the function

ancThresh in the R package “phytools” (R Core Development

Team 2012; Revell 2012). phytools depends extensively on the

important core phylogenetics package “ape” (Paradis et al. 2004;

Paradis 2012). Both phytools and ape are open-source and dis-

tributed freely from their respective project websites and via the

Comprehensive R Archive Network, CRAN.

Following Felsenstein (2012), I assume Brownian motion as

my model for the evolution of liability on the tree (Cavalli-Sforza

and Edwards 1967; Felsenstein 1985); however, it is theoretically

straightforward to extend this proposed approach to other mod-

els of continuous trait evolution, such as the Ornstein–Uhlenbeck

(OU) model (Felsenstein 1988, 2012; Hansen 1997; Butler and

King 2004; also see Discussion). To estimate ancestral states un-

der the threshold model, I use Bayesian MCMC to sample lia-

bilities (and values for the liability thresholds) from their joint

posterior probability distribution conditioned on a specified se-

quence of trait values along the liability axis, and on a model for

liability evolution.

To sample liabilities and thresholds from their posterior dis-

tribution, I use an expression for the likelihood (the probability of

our data and tree given our sampled model parameters) with two

parts. The first part is the probability of our sampled liabilities

for the tips and nodes in our tree, given our evolutionary model.

I henceforward denote the vector of sampled liabilities for tips

as x; the vector of sampled liabilities for all internal nodes, ex-

cluding the root node, a; and, finally, our sampled liability at the

root, a0. Following Felsenstein (2005), the observed discrete trait

values for the tips of the tree are contained in vector y. Because

liabilities are scaleless (they are unobserved, so we can set them

to any scale—as long as we adjust the positions of the thresholds

proportionally), we can just fix the rate of liability evolution by

Brownian motion at σ2 = 1.0. The probability of a set of unob-

served liability values under Brownian evolution with σ2 = 1.0 is

then given by the multivariate normal equation (Felsenstein 1973;

Rohlf 2001):

P(x, a, a0|C) =
exp

[

− 1
2

([x, a] − a01)′ C−1 ([x, a] − a01)
]

(2π)(n+i−1)/2 |C|1/2
.

(1)

Here, n is the number of tips in the tree, i is the number

of internal nodes, and 1 is a conformable vector of 1.0s. C is

the (n + i − 1) × (n + i − 1) matrix of variances and covariances

between the n tips and i − 1 internal nodes (excluding the root),

under Brownian evolution with rate σ2 = 1.0. For instance, in

the simplified example tree of Figure 2, the matrix C looks as

follows:
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Figure 2. Example tree and branch lengths for the calculation of

the among-species and node variance–covariance matrix expected

under Brownian evolution with σ2
= 1.0.

C =

t1 t2 t3 t4 t5 i1 i2 i3

t1

t2

t3

t4

t5

i1

i2

i3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0

0.6 1.0 0.0 0.0 0.0 0.6 0.0 0.0

0.0 0.0 1.0 0.7 0.7 0.0 0.7 0.7

0.0 0.0 0.7 1.0 0.8 0.0 0.7 0.8

0.0 0.0 0.7 0.8 1.0 0.0 0.7 0.8

0.6 0.6 0.0 0.0 0.0 0.6 0.0 0.0

0.0 0.0 0.7 0.7 0.7 0.0 0.7 0.7

0.0 0.0 0.7 0.8 0.8 0.0 0.7 0.8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Each i,jth element in C contains the height above the root for the

common ancestor of species or node i and species or node j. The

fact that the expected covariances between species are directly

proportional to their shared history follows from the Brownian

process in which variance accumulates linearly with time, and

from the additivity of variances and covariances (Rohlf 2001;

Revell 2008). Under an alternative model for the evolution of

liability, such an OU model (Hansen 1997; Butler and King 2004),

different variances and covariances would be expected.

The second part of our expression for the likelihood is very

simple: it is just the probability that our sampled tip liabilities and

thresholds could account for our observed interspecific pheno-

typic pattern for the discrete character. To compute this, we need

the function f (x, τ) that translates our sampled tip liabilities (in

x) and thresholds (τ) into predicted values for the discrete char-

acter. The only way that our tip liabilities are consistent with our

observed data is if f (x, τ) and y match exactly. Thus,

P(y|x, τ) =

{

1 if f (x, τ) = y

0 if f (x, τ) �= y
(2)

gives the probability of our observed data (y) given our sampled

liabilities and thresholds.

y can be a vector of states, as in this example. However,

if there is uncertainty about the tip value for some species, we

could imagine instead that y is a matrix containing the probability

of each tip being in each state. In this latter case, we would then

evaluate equations (2) as a probability on the interval [0, 1] (rather

than just 0 or 1), computed as the product of the probabilities of the

trait values predicted by the liabilities sampled at each tip. This is

mathematically equivalent to specifying prior probabilities on the

tip states, rather than treating them as known exactly. In that case,

P(y|x, τ) is the conditional posterior probability of our tip states,

y, given x and τ. This option is implemented in ancThresh (and

used in my empirical example, see below), but, for simplicity, will

not be discussed further in this article.

Note that normally only the tip liabilities (x) are relevant here,

whereas in equations (1) both tip and internal node liabilities

(a0 and a) are used. This is because we do not have observed

phenotypes for internal nodes. If we had some data for internal

nodes (such as from fossils) these could theoretically be included

in the computation of this probability. (Alternatively, we could

include this information in our prior probabilities for internal

nodes, see below.)

The likelihood of our sampled liabilities (for tip species and

internal nodes; x, a0, and a) and thresholds (τ), given our data

at the tips of the tree (y) and our phylogenetic tree with branch

lengths (C) thus becomes the product of the two probabilities of

equations (1) and (2):

l(x, a0, a, τ|y, C)

=
exp

[

− 1
2

([x, a] − a01)′ C−1 ([x, a] − a01)
]

(2π)(n+i−1)/2 |C|1/2

×

{

1 if f (x, τ) = y

0 if f (x, τ) �= y
.

Equivalently, the log-likelihood (L) can be written as follows:

L =− ([x, a] − a01)′ C−1 ([x, a] − a01)
/

2 − (n + i − 1)

× log(2π)
/

2 − log(|C|)
/

2−

{

0 if f (x, τ) = y.

∞ if f (x, τ) �= y

To sample x, a0, a, and τ from their joint posterior distri-

bution using Bayesian MCMC (given some starting values), we

simply update them sequentially and then accept the updated value

with probability given by

min(1, exp[L(x′, a′
0, a′, τ ′) + Pr(x′, a′

0, a′, τ ′)

− L(x, a0, a, τ) − Pr(x, a0, a, τ)]),

where Pr(x) indicates the log prior probability of x. This MCMC

sampler should result in a set of values for the variables in

the model obtained in proportion to their posterior probability

(Metropolis et al. 1953; Yang 2006).
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It seems more sensible to specify prior probabilities for an-

cestral values of the discrete character than for ancestral liabilities.

Thus, an uninformative prior on the liabilities would be equivalent

to specifying that all possible states for the discrete character (or at

least all states observed among extant species) are equiprobable.

Alternatively, if we have extrinsic information (for instance, from

the fossil record) that is relevant to the states at internal nodes,

we can supply this information via the prior probabilities for that

node. During our MCMC chain, then, we use f ([a0, a], τ) both

to compute the prior probabilities of ancestral liability values and

to translate sampled ancestral character states to the discrete char-

acter space. Our posterior probability of any discrete character

value at any internal node is the relative frequency of that state in

the posterior sample.

Because liabilities are scaleless, a single threshold can be

fixed anywhere—here we arbitrarily fix a single threshold at the

value 0.0. If we have more than two character states for our dis-

crete trait then we must also sample the position of the thresholds

between character states from their posterior probability distribu-

tion. The position of thresholds can only be interpreted relative to

the rate of liability evolution (fixed at σ2 = 1.0) and each other.

This is because, for a lineage evolving under Brownian motion

with initial state a0, at (the state for liability after time t) will

be normally distributed with mean a0 and variance σ2t , in which

σ2 is the Brownian rate of liability evolution. For true thresholds

τ = [0, 2] and character states A↔B↔C, the probability of at

resulting in the threshold character state A will be the integral

of the normal density with variance σ2t and mean a0 from −∞
to 0. (By the same logic, the probabilities of being in state B or

C are the integrals from 0 to 2 and 2 to ∞, respectively.) The

trouble is, these probabilities are exactly the same if σ = 0.1 and

τ = [0, 0.2], σ = 1.0 and τ = [0, 2] (the generating values), or

σ = 10 and τ = [0, 10]. This tells us that our discrete character

data contain information about σ2 or τ, not both.

The decision to fix the rate of liability evolution at σ2 = 1.0

follows Felsenstein (2012), but the specific value at which σ2 is

fixed is arbitrary. Increasing or decreasing σ, the liabilities, and

the positions of the liabilities by a constant factor k scales the

likelihood in the expression above by factor 1/k, and thus will

cancel from the numerator and denominator of the posterior odds

ratio during Bayesian MCMC. This means that (so long as our

prior on the thresholds is uninformative or scaled to our choice of

σ2) we will sample from the same posterior distribution of states at

internal nodes regardless of our choice of σ2. The reason that the

likelihood of the liabilities is influenced by the scale of σ, whereas

the probability of individual character states are not (so long as

the thresholds are scaled proportionately), is because the former

is the product of values for a probability density function, whereas

the latter is an integral computed on an interval that changes width

with the position of the thresholds.

As noted by Felsenstein (2012), this changes slightly if there

is within-species variation (i.e., within-species polymorphism) in

the threshold character. In this case, we can choose to either fix

σ2 and estimate the within-species variation in liability relative to

σ2, or fix the within-species variation in liability and estimate σ2;

however, as with σ2 and τ, we cannot estimate both.

SIMULATION TESTS

For all analysis of simulated data, I conducted numerical simu-

lations under the threshold model from evolutionary quantitative

genetics. I simulated 100-taxon phylogenies under a constant-rate

pure-birth (Yule) process, and rescaled all trees to a total height

of 1.0. To simulate under the threshold model, I first evolved a

continuous character (liability) on the tree and recorded all tip and

internal node states. Then I used a set of arbitrary thresholds (con-

stant for each set of simulations) to translate simulated liabilities

to discrete character states for all nodes and tips. For these simula-

tions I used a single, constant rate of liability evolution (σ2 = 1.0),

and the following four sets of thresholds: I simulated three states

(A, B, and C) for the discrete character with liability thresholds

[0, 1] and [0, 2], and I simulated four states (A, B, C, and D) for

the discrete trait with thresholds [0, 1, 2] and [0, 1, 4]. I specified

the ancestral liability (and threshold character) at the root node

of the tree by drawing a random value uniformly from the range

given by the liability thresholds ±1. I also rejected and repeated

any simulation in which any character state was represented by

fewer than 5% of terminal species (i.e., five species, in this case).

Simulating under the threshold model is straightforward; how-

ever, because these analyses require very computationally inten-

sive Bayesian MCMC, I performed only 20 replicate simulations

for each set of conditions. To maximize comparability, I used the

same 20 simulated trees for each simulation condition.

I evaluated the method using the following approach. First,

for each simulated dataset and tree, I ran the Bayesian MCMC for

500,000 generations using the default conditions. These defaults

included a variance on the normal proposal distribution for lia-

bilities of 0.5, and a proposal variance of 0.05 for the position of

thresholds on the liability axis. I used a uniform prior on ancestral

character states, and an exponential prior with a rate parameter

λ = 0.01 on the thresholds.

I sampled every 100 generation and automatically eliminated

the first 100,000 generations (i.e., 1001 samples, including the

initial state) as burn-in. From the post burn-in posterior sample I

computed the posterior probabilities for each node in each state.

I also extracted “estimates” of the ancestral character state at

each node as the state with the maximum posterior probability. I

compared these estimates to the generating values. In addition, I

computed estimates based only on nodes in which one state had a

greater than 0.5, 0.7, or 0.9 posterior probability. I then compared

each of these sets of estimates to their generating values. Finally, I
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estimated the relative positions of the liability thresholds (and 95%

high probability intervals) from the posterior sample of thresholds.

In addition to these measures, I evaluated the accuracy of

the posterior probabilities under the model by asking if, for each

posterior probability x of being in state Y, that is, PP(Y ) = x , the

frequency of simulations actually in state Y was (on average) x.

In other words—if we bin all nodes with a posterior probabilities

of PP(A) = 0.3, we predict that 30% of those should be in state

A. To compute this measure, I used a moving window approach

with a bin width of 0.025 and a step size of 0.025. This results in

a set of 40 nonoverlapping bins between 0 and 1.

As this study is designed primarily as “proof-of-concept” for

ancestral character estimation under the threshold model using

Bayesian MCMC, I do not focus on optimizing chain convergence

in my replicated simulations; however, it should be noted that

standard MCMC diagnostics can be used to estimate effective

sample size (ESS), convergence, and mixing of the Markov chain.

I computed and will describe the results of these diagnostics for

my demonstrative empirical analysis of feeding mode evolution

on the tree of Centrarchidae below. It is also straightforward to

run multiple chains with different or random starting conditions,

and to combine the post burn-in samples of separate chains. All of

these functions can be conducted easily in R using, for example,

the “coda” package (Plummer et al. 2006).

In all of the above analyses, I assumed that the ordering of

discrete character states along the liability axis is known a priori

by the researcher (although the relative positions of the liabil-

ity thresholds are not known, but sampled from their posterior

probability distribution). In some evolutionary scenarios the or-

dering of the discrete characters may be obvious. For example,

in the evolution of digit number of the manus and pes of scincid

lizards, it is probably reasonable to think that digits are added

or subtracted in unitary increments (Skinner and Lee 2010; also

as in the classic threshold character example of polydactyly in

guinea pigs, Wright 1934). However, in other circumstances for

evolution under the threshold model a sequence on the liability

axis might be less apparent. I propose that multiple alternative

orderings be compared using an information theoretic approach.

Here, I investigate the possibility of using DIC (deviance infor-

mation criterion; Spiegelhalter et al. 2002), a Bayesian MCMC

analog of the AIC (Akaike information criterion; Akaike 1974;

Burnham and Anderson 2002), which is convenient in that it uses

the likelihoods from the posterior sample and the likelihood for

the mean values of the parameters from the posterior—both of

which can be readily computed for this model.

To test whether using DIC could be effective in recovering

the true liability threshold ordering, I reused the datasets sim-

ulated with thresholds [0, 1]. For each of the 20 simulations, I

performed MCMC using each of the three unique orderings of

the three character states implied by this model. For m = 3 char-

acter states there are only m!/2 = 3 possible orderings because

the orders A↔B↔C and C↔B↔A are equivalent. I calculated

and compared the DIC of each simulation using each of the three

orderings. I then computed the fraction of orderings across simu-

lations in which the true order had the best DIC (compared to the

fraction expected by chance, i.e., 1/3), as well as the mean �DIC

for each simulation and ordering.

COMPARISON TO OTHER METHODS

I believe that the strongest justification for use of this method

comes from its improved biological realism, particularly for com-

plex morphological or ecological characteristics; however, it’s

natural that many readers will be curious about how it performs

in comparison to more phenomenological approaches, especially

the widely used Mk or nucleotide model. To conduct this com-

parison, I used the following procedure. I fit a series of four

different versions of the continuous-time discrete-state Markov

model to the data from each simulation conducted above. These

models were as follows: an equal rates model, in which the rate

of change between all three or four characters are assumed to be

equivalent; a symmetric model, which allows different rates of

change between pairs of states, but changes between all states

are theoretically possible; a one-rate, ordered model, in which

changes are only permitted between adjacent character states on

the liability axis, but the rate of change between all states adja-

cent in this ordered sequence are equal; and an ordered multirate

model, in which only changes between adjacent states on the

liability axis are permitted, and two or three different rates are al-

lowed for the backward and forward transitions between adjacent

states (depending on the total number of states in our dataset). I

optimized each model and computed the empirical Bayesian pos-

terior probabilities that each node was in each state (i.e., marginal

ancestral state reconstruction; Yang 2006), and then applied the

moving window approach described above to assess the accuracy

of the posterior probabilities by comparing them to the observed

frequencies across simulations.

In addition to this test, I also conducted the reciprocal anal-

ysis. I fit the three-rate ordered model to each of the four-state,

three-threshold datasets with thresholds [0, 1, 4]. Using the aver-

age fitted value of the transition matrix, Q, across all simulations,

I simulated 20 datasets under the continuous-time discrete-state

Markov process. I fit the threshold model to each tree and dataset

using Bayesian MCMC, and compared the posterior probabilities

from the MCMC to the frequencies of node in each state from the

simulations. This final simulation asks how the threshold model

performs when the data have evolved in an ordered sequence (as

in the threshold model), but when the evolutionary process for

those data more closely reflects a continuous-time discrete-state

Markov chain.
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Table 1. Feeding modes for the 32 centrarchid fish species used in this study.

Feeding mode

Moderately Highly

Species Nonpiscivorous piscivorous piscivorous

Acantharchus pomotis 0.00 1.00 0.00

Lepomis gibbosus 1.00 0.00 0.00

Lepomis microlophus 1.00 0.00 0.00

Lepomis punctatus 1.00 0.00 0.00

Lepomis miniatus 1.00 0.00 0.00

Lepomis auritus 1.00 0.00 0.00

Lepomis marginatus 1.00 0.00 0.00

Lepomis megalotis 1.00 0.00 0.00

Lepomis humilis 1.00 0.00 0.00

Lepomis macrochirus 1.00 0.00 0.00

Lepomis gulosus 0.00 1.00 0.00

Lepomis symmetricus 1.00 0.00 0.00

Lepomis cyanellus 0.00 1.00 0.00

Micropterus cataractae 0.00 0.00 1.00

Micropterus coosae 0.00 1.00 0.00

Micropterus notius 0.00 1.00 0.00

Micropterus treculi 0.00 0.50 0.50

Micropterus salmoides 0.00 0.00 1.00

Micropterus floridanus 0.00 0.00 1.00

Micropterus punctulatus 0.00 0.00 1.00

Micropterus dolomieu 0.00 0.00 1.00

Centrarchus macropterus 0.50 0.50 0.00

Enneacanthus chaetodon 1.00 0.00 0.00

Enneacanthus gloriosus 1.00 0.00 0.00

Enneacanthus obesus 1.00 0.00 0.00

Pomoxis annularis 0.00 1.00 0.00

Pomoxis nigromaculatus 0.00 1.00 0.00

Archoplites interruptus 0.00 1.00 0.00

Ambloplites ariommus 0.00 0.50 0.50

Ambloplites rupestris 0.00 1.00 0.00

Ambloplites cavifrons 0.00 1.00 0.00

Ambloplites constellatus 0.50 0.50 0.00

Data are from Collar et al. (2009) and D. Collar (pers. comm.). For information on the source of these data, see Collar et al. (2009). Species with uncertain

feeding mode (for instance, moderate or high piscivory) were assigned equal probability of being in each plausible state.

EMPIRICAL EXAMPLE

In addition to these simulation tests, I also applied the threshold

model for ancestral character estimation to an empirical dataset for

the evolution of feeding mode in Centrarchidae (the sun fish). Cen-

trarchids can be classified as completely nonpiscivorous, moder-

ately piscivorous, or highly piscivorous. Here I use the multigene

centrarchid phylogeny of Near et al. (2005) and the data for feed-

ing mode given in Collar et al. (2009), as well as some additional

states not presented in that article because data for other charac-

ters were not available (D. Collar, pers. comm.). Feeding mode is

uncertain for some lineages (Collar et al. 2009; D. Collar, pers.

comm.). The states for feeding mode (including ambiguity) that I

used in this study are given in Table 1. For species with uncertain

feeding mode, I assumed that the tip species was in each of the

possible states with equal probability, which is exactly equivalent

to setting a flat prior probability distribution for the possible states

of that tip. In addition, I assumed the trait order not ↔ moder-

ately ↔ highly for the trait “piscivorous” evolving as a threshold

character. I analyzed the data and tree using the phytools function

ancThresh under the default conditions for 1,000,000 gen-

erations, sampled every 100 generations, and rejected the first

200,000 generations (2001 samples, including the initial state) as

burn-in. I tested for convergence to the posterior distribution for li-

abilities and the position of the thresholds using Geweke’s (1992)
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Table 2. Summary of results from ancestral character estimation using simulated data and trees.

Model max(PP) PP > 0.50 PP > 0.70 PP > 0.90 Threshold(s) Reject

[0,1] 0.846 0.848 0.893 0.947 0.895 NA 29%

(0.999) (0.795) (0.506) (0.71, 1.10)

[0,2] 0.907 0.907 0.943 0.959 1.439 NA 78%

(0.999) (0.887) (0.674) (1.16, 1.71)

[0,1,2] 0.792 0.793 0.863 0.925 0.894 1.814 78%

(0.996) (0.722) (0.389) (0.70, 1.07) (1.59, 2.05)

[0,1,4] 0.885 0.886 0.928 0.963 0.672 2.565 >99%

(0.994) (0.858) (0.676) (0.49, 0.87) (2.14, 3.00)

Mean 0.858 0.859 0.907 0.949

(0.997) (0.816) (0.561)

Columns headings are as follows: Model, the generating model (thresholds) used for simulation; max(PP), the mean frequency of correctly inferred nodes

based on choosing a point estimate based on the maximum posterior probability; PP > 0.50, the mean frequency of correctly inferred nodes if only nodes

in which one state had a posterior probability greater than 0.50—number in parenthesis give the mean fraction of nodes used; PP > 0.70, the same, but

with a cutoff of 0.70; PP > 0.90, the same, but with a cutoff of 0.90; Threshold(s), the mean (and mean 95% HPD interval) for the position of one or more

thresholds; Reject, the rejection rate of simulated datasets based on the criterion that at least 5% of tip nodes should be in each discrete character state.

Rejected simulations were invariably repeated, thus the same number of simulations were used for each row of the table.

convergence diagnostic. I also computed the ESS of each poste-

rior sample. ESS is our sample size from the posterior probability

distribution that takes into account the autocorrelation of adjacent

samples in the chain. I computed the posterior probability of each

state at each node as the posterior frequency from the sample. I

estimated the relative position of the thresholds as well as their

95% high probability density intervals (HPDs). Finally, for tips

of uncertain value, I also computed their posterior probabilities

of being in each state based on the model.

Results
SIMULATION TESTS

A summary of my tests of the accuracy of this new method for

ancestral character estimation under various conditions is given

in Table 2 and Figure 3. The average results across all simulations

conditions are also given. In general, ancestral character estima-

tion by this method can be quite accurate when the data on the

tree have evolved under the assumed model. For instance, when

ancestral state estimates are based on the state with the highest

posterior probability, the true (i.e., simulated) ancestral state was

correctly picked in more than 85% of instances averaged across

all the models studied (Table 2). When only nodes in which one

state was preferred with over 0.90 posterior probability are con-

sidered (over 55% of nodes, across all simulations), the correct

state was selected on average nearly 95% of the time (Table 2).

In addition to this basic analysis, I also tested for the ac-

curacy of the posterior probabilities from the Bayesian MCMC

under the threshold model. Specifically, I used a moving win-

dow to ask if, for all posterior probability x of being in state Y,

PP(Y ) = x , the frequency of simulations actually in state Y was

(on average) x. The results from this analysis across all four sets

of simulations show strongly that posterior probabilities obtained

assuming the threshold model accurately reflect our certainty in

ancestral character states (Fig. 3).

Accuracy in estimating the location of the thresholds on the

liability axis was mixed. In general, the estimated thresholds were

downwardly biased, and in some cases this bias was quite sub-

stantial (Table 2). It seems highly possible that this is due to the

rejection procedure I used during simulation. Specifically, I re-

peated any simulation resulting in fewer than 5% of tips in each

state. For some simulation conditions, the consequence of apply-

ing this criterion to the simulations was an extremely high rate

of rejection (Table 2). This type of rejection procedure will tend

to favor simulations in which the realized variance of liabilities

(relative to the position of the thresholds) is high. Because the evo-

lutionary variance (Brownian rate) is fixed during estimation, this

selection bias should cause the estimated thresholds to be closer

to one another than the true thresholds. For simulations with more

than one “estimable” threshold (i.e., a threshold neither fixed at 0

nor set to ∞), we might still anticipate that the expected value of

their ratio would be unaffected. Indeed, this seems to be the case.

Specifically, for thresholds [0, 1, 2] the mean ratio of thresholds 2

and 3 is 2.07 (very close to the generating value of 2.0); similarly,

for thresholds [0, 1, 4] the mean ratio is 4.30 (relatively close to

the generating ratio of 4.0).

I also evaluated the prospect of using an information theo-

retic approach to choose among possible orderings of the discrete

character on the liability axis. For this analysis, I used the data

simulated with thresholds [0, 1]. Given two thresholds there are

three possible states for the discrete character, and in this case they

were simulated with the sequence A↔B↔C. I reran the MCMC
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Figure 3. Accuracy of posterior probabilities from the threshold model when data are generated under the model. Accuracy is measured

as the fraction of times in which a node with posterior probability of state Y equal to x (i.e., P P (Y) = x) is in state Y. Points were obtained

by aggregating close posterior probabilities and frequencies using a “moving-window” approach. The closer the points lie to the 1:1 line

(dashed), the more accurate the posterior probabilities. The solid line in each plot is the ordinary least-squares regression of frequency

on the posterior probabilities. Each panel shows the result from a different simulation scenario, as follows: (A) three states (A↔B↔C)

with thresholds [0, 1]; (B) three states (A↔B↔C) with thresholds [0, 2]; (C) four states (A↔B↔C↔D) with thresholds [0, 1, 2]; and (D) four

states (A↔B↔C↔D) with thresholds [0, 1, 4].

for each simulated dataset, but incorrectly assumed the two alter-

native possible sequences of A↔C↔B and B↔A↔C. (Note that

there are only m!/2 = 3—not m!—unique sequences for m = 3

states of the discrete character because the assumed sequences

X↔Y↔Z and Z↔Y↔X are equivalent for all X, Y, and Z.) For

each simulation, I computed the DIC (Spiegelhalter et al. 2002)

and chose the ordering with the lowest DIC. DIC is analogous

to AIC but is calculated from the mean deviance, D̄ = −2L(θ),

in the posterior sample along with the likelihood at the posterior

sample parameter means, D(θ̂) = −2L(θ̂), as follows:

DIC = pD + D̄

= 2D̄ − D(θ̂).

Here, pD = D̄ − D(θ̂) is an estimate of model parameterization.

This is because the greater the effective number of parameters

in a model, the greater the difference between the likelihood of

any sample from the posterior and the likelihood of the optimized

parameters. DIC, unlike AIC, does not require an analytical or

numerical solution of the likelihood function.

Table 3 shows the results of this analysis. DIC favors the gen-

erating model in 55% of simulations, which is significantly more

frequently than expected by chance (χ2 = 6.1, P = 0.047). In

addition, average �DIC is much lower for the generating model

than for other sequences of character evolution on the liability

axis (Table 3). One notable (and apparently discrepant) result

from these simulations is that the log-likelihood for the mean
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Table 3. Summary of results for the deviance information crite-

rion (DIC) analysis of different assumed discrete character ordering

on the liability axis.

Generating Assumed min

model model (DIC) �DIC max[L(θ̂)]

A↔B↔C A↔B↔C 0.55 5.184 0.85

A↔B↔C A↔C↔B 0.10 17.23 0.15

A↔B↔C B↔A↔C 0.35 14.84 0.00

In all cases, the generating order was A↔B↔C. Column headings are as fol-

lows (if not obvious): min(DIC), the frequency, from 20 simulated datasets,

in which each assumed ordering had the minimum DIC; �DIC, mean dif-

ference in DIC from minimum for each assumed ordering; and max[L (θ̂)],

the frequency, from 20 datasets, in which each ordering had the maximum

likelihood at the mean parameters from the posterior sample (θ̂).

parameter values from the posterior sample, L(θ̂), is consistently

higher under the generating model than when other sequences of

character evolution are assumed (χ2 = 24.7, P < 0.001; Table 3),

in spite of more variable results from DIC. This can only be due

to higher estimated parameterization (pD) under the generating

model than under other models. Because the true number of vari-

ables in each model is the same, the reason for this is unclear;

however, one possible explanation for this pattern is that it is

the spurious by-product of some of the MCMC runs under the

generating model failing to converge to the posterior distribution

during burn-in.

In addition to these results based on DIC, my analyses

suggest that getting the sequence correct has important conse-

quences for the accuracy of ancestral character estimation un-

der the threshold model. Table 4 shows the accuracy of ancestor

state estimation under each of the three assumed models. Accu-

racy tends to be 5–14% higher for the correct character sequence

than when an incorrect sequence is assumed. This difference may

even understate the “real” accuracy improvement resulting from

the correct sequence, because in many simulations, the major-

ity of nodes are unambiguous (e.g., see Empirical Example) and

would probably be estimated with quite high accuracy under any

model.

COMPARISON TO OTHER METHODS

Although the results above show that the threshold model can

be quite accurate and that the Bayesian posterior probabilities

correctly reflect our uncertainty about ancestral states under the

model, many readers are probably curious about how ances-

tral character estimation under the threshold model compares

to conventional, phenomenological models—specifically, the Mk

model. To address this, I took the results from simulations un-

der the threshold model described above, and fit four different

flavors of the continuous-time Markov chain model: an equal

rates model, a symmetric model, a one-rate ordered model, and

a multirate ordered model. Under each model, I computed the

empirical Bayesian posterior probabilities (Yang 2006) that each

node was in each state, and then I used a moving window approach

to compare these posterior probabilities to the frequencies with

which each node was actually in each state, across all replicate

simulations.

The results from all simulation conditions were qualitatively

similar. Figure 4 shows one exemplar result, taken from the set

of simulations conducted using character states A↔B↔C↔D

and thresholds [0, 1, 4]. Comparison to Figure 3D (the plot for

these datasets obtained from Bayesian MCMC analysis under the

threshold model) shows that the continuous-time Markov model

does not accurately estimate the true posterior probabilities—

although its performance improves as increasingly realistic fea-

tures (i.e., ordered character states, multiple rates) are added to

the model.

In addition to this comparison, I also conducted the converse

test in which I simulated under the continuous-time Markov chain

and then estimated ancestral states using the threshold model. For

these simulations, I used the mean fitted value of the transition

matrix Q from Figure 4D for simulation. The results are shown in

Figure 5A. Unsurprisingly (and, to some extent, reassuringly), the

generating model, in this case a continuous-time Markov chain

Table 4. Summary of the accuracy of ancestral character estimation for different assumed orderings of the discrete character along the

liability axis.

Generating model Assumed model max(PP) PP > 0.50 PP > 0.70 PP > 0.90 Threshold

A↔B↔C A↔B↔C 0.846 0.848 0.893 0.947 0.895

(0.999) (0.795) (0.506) (0.71, 1.10)

A↔B↔C A↔C↔B 0.755 0.781 0.851 0.911 0.461

(0.920) (0.679) (0.416) (0.36, 0.60)

A↔B↔C B↔A↔C 0.713 0.734 0.807 0.898 0.678

(0.943) (0.714) (0.447) (0.55, 0.83)

Column headers are the same as in Table 2.
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Figure 4. Accuracy of posterior probabilities from several variants of the continuous-time discrete-state Markov model (Mk-model)

when data are generated under the threshold model. Data are from a simulation with four states (A↔B↔C↔D) and thresholds [0, 1, 4]

(Fig. 3D). Models are as follows: (A) equal rates model, in which a single transition rate is modeled and transitions are allowed between

all states; (B) symmetric model, all transitions are theoretically possible, but all forward and backward transitions are modeled with a

different rate; (C) ordered, single-rate model, in which only transitions A↔B↔C↔D are permitted, and all permitted transitions have

the same rate; and (D) ordered, multirate model, in which transitions A↔B↔C↔D are permitted, and each transition type can have a

different rate. Interpretation of the accuracy of posterior probabilities is as in Figure 3.

model, substantially outperforms the threshold model in estima-

tion (Fig. 5B).

EMPIRICAL EXAMPLE

In my empirical analysis of feeding mode evolution in Centrarchi-

dae, I first computed Geweke’s (1992) convergence diagnostic and

ESSs from the posterior sample for all the variables (liabilities and

thresholds) in the model. Geweke’s convergence test and ESS cal-

culations are implemented in the R package coda (Plummer et al.

2006). Geweke’s (1992) convergence diagnostic showed MCMC

convergence for all but two of 64 model variables (63 liabilities

and one threshold). This test compares the first and last parts of a

(post burn-in) MCMC chain to ask whether they come from the

same distribution. The test statistic has a standard normal distri-

bution under the null; thus we would expect 5%, or about three

tests, to be significant at the α = 0.05 level even if convergence

had been achieved by the MCMC chain. The mean absolute value

of Geweke’s test statistic was 0.82 (range: −3.42, 1.90). Mean

ESSs for all parameters was 282.2 (range: 32.4, 1208.5).

Figure 6A shows the results from ancestral character estima-

tion under the threshold model for feeding mode in centrarchid

fishes. Assuming this model of trait evolution, my results suggest

that the ancestor of the group was most likely moderately pisciv-

orous or nonpiscivorous. If the former, then nonpiscivory evolved
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Figure 5. Accuracy of posterior probabilities from the threshold model and the Mk-model when data are generated under the Mk-model.

Simulation was of a four-state character using the mean fitted transition matrix, Q, from the simulations of Figure 3D and the results

from Figure 4D. Fitted models were as follows: (A) the threshold model; and (B) an ordered, multirate continuous-time discrete-state

Markov model.

in at least two separate genera on the tree: Lepomis and Ennea-

canthus, both clades dominated by nonpiscivorous species. High

piscivory evolved only in Micropterus, but this occurred either

more than once or with multiple reversions to moderate piscivory.

Figure 6B gives an estimate of the posterior density for the

location of the threshold between moderate piscivory and high

piscivory. Because liabilities are scaleless, only the relative—not

absolute—value of the positions of the thresholds are meaningful.

The threshold between nonpiscivory and moderate piscivory is

fixed at 0. The distance between this threshold and the mean value

from the posterior sample for the threshold between moderate

piscivory and high piscivory is 0.86. This is very close to the

expected absolute value of a change in liability over one time unit

of σ
√

2/π = 0.80 for a rate of liability evolution set to σ2 = 1.0.

The sum of the branch lengths in the tree is about 3.28; thus

one interpretation of the position of the threshold tells us that

about three to four times the evolutionary distance between the

two thresholds should be traversed (on average) over the entire

history of this clade.

DISCUSSION
Phylogenetic comparative biology provides some of the most im-

portant tools for making evolutionary inferences about the bio-

logical past (Felsenstein 1985, 2004; Brooks and McLellan 1991;

Nunn 2011). For many years, evolutionary biologists have been

fascinated by the prospect of estimating the ancestral character-

istics of extinct species from the phenotypic traits of living taxa

related by a phylogeny. In fact, this was one of the most popular

endeavors among phylogenetic comparative biologists for over a

decade. In recent years, the practice of ancestral character esti-

mation has garnered both considerable criticism and skepticism

(e.g., Cunningham et al. 1998; Omland 1999; Ekman et al. 2008;

Losos 2009; Skinner and Lee 2010). Many critiques focus on the

fact that ancestral state estimation can be vulnerable to very large

uncertainty, imposing severe limits on the nature of evolutionary

inferences from ancestral phenotype reconstructions (e.g., Losos

1999, 2009).

What has received less attention is the sensitivity of ancestral

state estimates to the adequacy of our phylogenetic models (but

see, e.g., Ryan and Rand 1999; Ekman et al. 2008; Goldberg and

Igic 2008; Skinner and Lee 2010). Specifically, the classic “nu-

cleotide model”—in other words, a model in which discrete char-

acter change occurs according to a discrete-state continuous-time

Markov process—may be inadequate for complex morphological,

behavioral, or physiological traits. For instance, in the present

study I analyzed feeding mode in Centrarchidae, the sunfishes.

The fish species in this study are classified into three feeding

classes (nonpiscivorous, moderately piscivorous, and highly pis-

civorous) based on the results of considerable prior study. Because

feeding mode in fishes involves extensive anatomical, behavioral,

and physiological adaptation (Collar et al. 2009), it seems unre-

alistic to model this trait’s evolution on the tree using a process in

which the trait can change between any pair of states for feeding

mode instantaneously and with an indefinite constant probability

of reversion. I would argue that it is more realistic to assume that

feeding mode evolves as a function of many small, incremen-

tal changes to underlying, unobserved, or unmeasured attributes

of the species; and, furthermore, that the longer a species has

exhibited a constant feeding mode, the less likely it should be to
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Figure 6. (A) Posterior probabilities for the evolution of feeding mode as a threshold character in centrarchid fishes. (B) Posterior density

for the position of the threshold between moderate and high piscivory.
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change again or revert to a prior state. Both of these assumptions

are features of the threshold model (Felsenstein 2012).

In the present article (and implementation of this method), I

allow for the possibility that trait values for terminal species are

uncertain. This is accomplished by first specifying (prior) prob-

abilities that each tip species is in each of the observed states on

the tree. In the empirical component of this study, for instance, I

have (in some cases of uncertain feeding mode) assigned equal

prior probability that a species belonged in two different feeding

mode classes. For example, I assigned equal prior probability that

the species Ambloplites ariommus (the shadow bass) was either

moderately or highly piscivorous. That is because diet data in this

species consist of samples from only eight individuals in one study

(Viosca 1936). Although that study showed that fish comprise a

component of the diet of A. ariommus, the data are too few to as-

sign the species conclusively to one or the other piscivory classes.

Although not the case here, if we were completely ignorant about

feeding mode for one or more species we could assign equal prior

probabilities for all three feeding modes. Because uncertainty is

included via the prior, we also get back posterior probabilities that

our tip species are found in each state. For the centrarchid dataset,

these posterior probabilities are shown at the tips of the tree in

Figure 6A.

Allowing uncertainty in the states for tip species should not

be confused with allowing for the possibility of within-species

polymorphism for the discrete character state. As discussed

by Felsenstein (2012) this is theoretically possible, but not

equivalent to what has been done here. To model within-

species polymorphism one would need to add an additional

parameter—the within-species variability in liability (relative

to the among-species Brownian rate of species mean liability

evolution, here fixed at 1.0). This is because if the rate of species

mean liability is high relative to the variance of liability within

species, within-species polymorphism should be extremely tran-

sitory on an evolutionary time scale. Conversely, if the variance

in liability is large relative to the rate of liability evolution, then

polymorphism could persist over considerable evolutionary time.

In addition, within-species polymorphism contains informa-

tion about the position of the species mean liability relative to the

threshold. For instance (assuming symmetry of the distribution of

liabilities within species) a 50:50 within-species polymorphism,

known exactly, indicates that the species mean liability sits di-

rectly on a threshold. This is wholly different from a 0.50:0.50

prior on the discrete character, which merely indicates ignorance;

in other words, the species phenotype is poorly known and thus

we should not reject a posterior sample in which a species-mean

liability was sampled from either side of the threshold.

For some character traits the ordering of the discrete charac-

ter along the liability axis is obvious. For instance, in my empirical

example from centrarchid fishes it seems quite likely (given the

myriad of behavioral and morphological characteristics associ-

ated with feeding mode) that the ordering not ↔ moderately ↔
highly for the trait “piscivorous” is the only plausible ordering of

these three character traits. Readers should keep in mind that an

assumed ordering is not the same as assuming a temporal evolu-

tionary sequence from the base of the tree forward. In fact, nothing

about an assumed ordering gives us any information about, for

instance, the state at the root—which must be estimated from the

data and tree.

In the case of characters in which we are confident that a nat-

ural ordering exists—but for which that ordering is unknown or

multiple orderings are plausible—I propose an information theo-

retic approach. Here, we can compute the DIC from the posterior

sample. I have shown using simulation that this method shows

some promise in identifying the true character order on the liabil-

ity axis; however, if we have a good idea of the ordering a priori,

this would probably be better. Furthermore, the number of possi-

ble orderings for a character with m states increases as m!/2. This

means that although for three states there are three orderings, and

for four states there are only 12 orderings; with as few as six states

there are 360 orderings, and for 10 states there are over 1.8 million

unique orderings. Given the computationally intensive nature of

the Bayesian MCMC method used in this article, it will probably

not be viable to consider all possible orderings for more than a

few different states of a discretely valued threshold character. Fi-

nally, for many instances in which the ordering is unknown, the

character may not be ordered or the ordering may change in dif-

ferent parts of the phylogeny. Because there is no way to compare

ordered to unordered trait evolution using the threshold model

(only alternative possible orderings), I would recommend caution

in applying the method to datasets of this type.

Finally, in both Felsenstein (2012) and the present article we

have focused on Brownian motion as a model for evolution of

the liabilities on tree. Although this is a widely used model for

quantitative trait evolution on phylogenies, one attribute of the

model that makes it slightly unrealistic for many circumstances

is that, given enough time, variance among species increases in-

finitely without bounds. That means that most lineages that cross

a threshold have a very narrow window of time during which

there is significant probability they will cross back, after which

that probability falls dramatically. An alternative continuous trait

evolution model with growing popularity in phylogenetic compar-

ative biology is the OU model (Felsenstein 1988; Hansen 1997;

Butler and King 2004). In this model, liability would evolve as

a random walk with tendency to revert toward a central location.

The OU process is most often used by comparative biologists

to model stabilizing selection (Hansen 1997). Under the strictest

interpretation of the Wright’s (1934) threshold model, liabilities

are invisible and thus cannot be under selection directly; how-

ever, OU may nonetheless be a good model for the evolution of
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Figure 7. (A) Posterior probabilities for evolution of a three-state simulated threshold character in which the underlying model for

evolution of the liability is an Ornstein–Uhlenbeck model with α = 2.0. The total tree length was set to 1.0. The center of each pie chart

gives the true state from simulation. (B) Posterior density for α from the OU model. Although the posterior density is broad, it is very

nearly centered exactly (mean = 1.98; vertical dashed line) on the generating value of 2.0. The HPD interval for α is (0.65, 3.51).
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liability on the tree if liability is under indirect selection (through

correlation with unmeasured continuous traits), or if liability has

natural boundaries in the values that it can assume. The phytools

implementation of the method of this article now includes the OU

model as an option. Figure 7A shows simulated and reconstructed

ancestral states for data generated under the threshold model with

OU as the underlying evolutionary process for the evolution of

liability on the tree. In this simulation the total tree length is 1.0,

thresholds were set to [0, 0.5] with character sequence A↔B↔C,

and the simulated value of α was set to 2.0. Figure 7B shows the

posterior density of α from 1,000,000 generations of Bayesian

MCMC, with the first 200,000 generations excluded as burn-in.

The posterior density is centered very closely on the generating

value of α (posterior mean = 1.98), and, although the posterior

density is quite broad, the 95% HPD interval (0.65, 3.51) does

not include zero. Although this result is preliminary, it certainly

suggests that it may be viable to use OU or other stochastic

processes (in addition to Brownian motion) to model the evolution

of liability on the branches of the tree.

On a whole I believe that this new approach for ancestral state

estimation shows considerable promise. Intuitively, the threshold

model seems much more realistic for discretely coded, complex,

morphological, behavioral, or ecological traits than, say, the “nu-

cleotide model”—in which the data are modeled using a discrete-

state Markov process (the same process generally assumed for

the evolution of DNA sequences). Furthermore, for data sim-

ulated under the threshold model, accuracy of this method was

quite high. I hope to explore additional details of this method—for

instance, improving the efficiency of the MCMC sampler, testing

multiple models for the evolution of liability, and incorporating

intraspecific polymorphism—with my future research.
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