
Ancestry Estimation and Control of Population Stratification for

Sequence-based Association Studies

Chaolong Wang1,2,§,*, Xiaowei Zhan2,*, Jennifer Bragg-Gresham2, Hyun Min Kang2, Dwight

Stambolian3, Emily Y. Chew4, Kari E. Branham5, John Heckenlively5, The FUSION Study6,
Robert Fulton7, Richard K. Wilson7, Elaine R. Mardis7, Xihong Lin1, Anand Swaroop8,
Sebastian Zöllner2,9, and Gonçalo R. Abecasis2,§

1Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115

2Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of
Public Health, Ann Arbor, MI 48109

3Department of Ophthalmology, University of Pennsylvania Medical School, Philadelphia, PA
19104

4Division of Epidemiology and Clinical Research, National Eye Institute, Bethesda, MD 20892

5Department of Ophthalmology, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105

7The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108

8Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, Bethesda, MD
20892

9Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109

Abstract

Knowledge of individual ancestry is important for genetic association studies where population

structure leads to false positive signals. Estimating individual ancestry with targeted sequence

data, which constitutes the bulk of current sequence datasets, is challenging. Here, we propose a

new method for accurate estimation of genetic ancestry. Our method skips genotype calling and

directly analyzes sequence reads. We validate the method using simulated and empirical data and

show that the method can accurately infer worldwide continental ancestry with whole genome

shotgun coverage as low as 0.001X. For estimates of fine-scale ancestry within Europe, the

method performs well with coverage of 0.1X. At an even finer-scale, the method improves

discrimination between exome-sequenced participants originating from different provinces within
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Finland. Finally, we show that our method can be used to improve case-control matching in

genetic association studies and reduce the risk of spurious findings due to population structure.

INTRODUCTION

Genome-wide association studies (GWAS) have successfully identified thousands of

common complex trait associated variants1–4, but translating these discoveries into

mechanistic insights has been challenging. In order to dissect the genetic architecture of

complex traits, efforts are shifting to rare functional variants that can be detected with next

generation sequencing. Building on advances in sequencing technologies and large sample

sets obtained through collaboration, targeted sequencing studies can now interrogate

abundant rare variants in samples of >10,000 individuals5–9. Early successes from these

studies include type 1 diabetes10, inflammatory bowel disease11, and age-related macular

degeneration (AMD)12.

A key challenge in genetic association studies is to avoid spurious association signals caused

by differences in ancestral background13–16. The identification of population structure is

challenging for studies with targeted sequencing data. One reason is that targeted regions are

typically short, account for only a fraction of the genome and do not contain sufficient

genetic variation to infer global individual ancestry. Furthermore, targeted regions around

disease-susceptibility loci are likely to harbor variants associated with the traits of interest so

that corrections for stratification based on only these loci could mask true association

signals.

Fortunately, targeted sequencing experiments also produce many reads that map outside

target regions6,17. These off-target reads, resulting from limitations in capture technology,

are often discarded and excluded from analysis. Still, when average off-target depth reaches

>1–2X these reads can be used to discover and genotype SNPs across the genome18,19, and

with off-target depth >0.2–0.5X these reads can genotype common variants, albeit with high

error rates20. Nevertheless, most targeted sequencing studies produce few off-target reads

and off-target coverage is decreasing as capture technologies improve. In most targeted

sequencing experiments it is thus difficult to accurately call off-target genotypes. In

addition, the off-target sequence reads are distributed sparsely and randomly across each

genome, so that the number of covered sites in any pair of samples is typically small.

Methods for estimating ancestry that rely on high quality genotype data across a shared set

of markers, such as principal components analysis (PCA)21,22, do not produce good results

when applied to targeted sequencing experiments – whether they are applied to targeted

regions (which typically do not include enough information to estimate global ancestry) or

to off-target regions (which typically do not produce high quality genotypes and where most

pairs of samples will share few high-quality genotypes).

With high-quality genotype data, each principal component is defined as the product of a

weight vector and a genotype vector, with weights reflecting the marginal information about

ancestry provided by each site. With off-target sequence reads, entries in the genotype

vector are often missing and can only be estimated with varying and often high error rates

depending, for example, on the number of reads covering each locus. Intuitively, we might
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wish to adjust for missing data patterns and high error rates by adjusting the weight vector –

for example, to ignore the contributions of loci with no data and to up-weigh the

contributions of loci that have higher coverage.

Here, we propose a novel statistical method that addresses these challenges by estimating

individual ancestry directly from off-target sequence reads without calling genotypes. We

compare each sequenced sample to a set of reference individuals whose ancestral

information is known and whose genome-wide SNP data are available23,24. Our method first

constructs a reference coordinate system by applying PCA to SNP genotypes of the

reference individuals, and then uses off-target reads to place study samples in this reference

PCA space, one at a time. With an appropriate reference panel, the estimated coordinates of

the study samples identify their ancestral background and can be directly used to correct for

population structure in association studies or to ensure adequate matching of cases and

controls.

To place each sample, we proceed as follows: First, we simulate sequence data for each

reference individual, exactly matching the coverage pattern of the sample being studied (in

this way, each reference individual will have the same number of reads covering each locus

as the study sample). Then, we build a PCA ancestry map based on these simulated

sequence reads for the reference individuals together with the real sequence reads for the

study sample. Finally, we project this new ancestry map into the original PCA space using

Procrustes analysis25,26. The transformation obtained from this analysis of the reference

samples is then used to place the study sample in the original PCA space, appropriately up

and down weighing sites according to their coverage and the information they contain about

ancestry. The process is illustrated in Figure 1 and is described in detail in the Online

Methods.

We validate the method using simulated low-coverage sequence data for a worldwide

sample set23 and a European sample set24 and empirical targeted sequencing data from the

1000 Genomes exon project27 and a case-control study of the macular degeneration28. Our

results show that our method can accurately infer worldwide continental ancestry or even the

fine-scale ancestry within Europe with extremely low off-target coverage (~0.001X for

worldwide ancestry and ~0.10X for European ancestry). We have implemented our method

in the publicly available LASER software (Locating Ancestry from SEquence Reads).

Overview of Simulations

To evaluate the performance of LASER, we first simulated sequence data for two sets of

samples whose array genotype data are publicly available. One is the Human Genome

Diversity Panel (HGDP), consisting of 938 individuals from 53 populations worldwide23;

and the other is a subset of the Population Reference Sample (POPRES), consisting of 1,385

individuals from 37 European populations24. We split each sample set into one test set of

individuals for whom we would simulate low coverage sequence data, and one reference set

of individuals whose high quality genotypes would be used to construct the reference PCA

space.
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Inference of Worldwide Ancestry

For the worldwide sample set, we randomly selected 238 individuals from the HGDP23, and

used their array genotypes at 632,958 loci as templates to simulate sequence data (Online

Methods). We simulated multiple sequence datasets with mean coverage ranging from

0.001X to 0.25X. The remaining 700 HGDP samples were used to construct the reference

PCA space. We examined the first four principal components. These can be used to separate

major continental groups in the HGDP (see Figure 2): PC1 and PC2 separate major

continental groups in the Old World, while PC3 and PC4 further separate Native American

and Oceanian populations, respectively. We applied LASER to each simulated sequence

dataset to estimate the ancestry coordinates of the test individuals in the reference PCA

space. We assessed the accuracy by comparing ancestry estimates derived from LASER to

PCA coordinates of the test individuals based on their original SNP genotypes using the

squared Pearson correlation r2 along each PC and the Procrustes similarity t0 (Online

Methods). Our results show consistently high accuracy across all simulated datasets (Figure

2, Supplementary Table 1). When the simulated coverage is 0.001X (corresponding to ~630

loci covered with ≥ 1 reads), r2 ranges from 0.7396 for PC4 to 0.9506 for PC1 and the

Procrustes similarity is t0 = 0.9508. Figure 2B shows that although the patterns are a bit

fuzzy, major continental groups are well separated at 0.001X coverage. Accuracy increases

with coverage; when the coverage is 0.10X, the estimated coordinates are almost identical to

coordinates estimated using a GWAS SNP panel with t0 = 0.9993 (Figure 2D,

Supplementary Table 1). Thus, our method should be able to reconstruct worldwide ancestry

with even very modest amounts of sequence data.

Inference of Ancestry Within Europe

Similarly, for estimates of fine-scale ancestry within Europe, we used genotypes at 318,682

loci and 385 randomly selected POPRES individuals24 as templates to simulate low

coverage sequence data (from 0.01X to 0.40X). The remaining 1,000 POPRES European

ancestry samples were used to construct the reference PCA space. We focused on the top

two PCs of the POPRES reference panel, which mirror the geographic map of Europe24

(Figure 3A). Compared to the estimates of worldwide continental ancestry, much higher

coverage is required to reveal the more subtle differences in population structure within

Europe (Figure 3, Supplementary Table 2). With an average coverage of 0.01X, samples

clump in the center of the reference PCA space (Figure 3B, r2 = 0.5687 for PC1 and 0.0108

for PC2, t0 = 0.4786). As coverage increases to 0.05X (Figure 3C), we become able to

observe population structure along PC1 (r2 = 0.8851), which separates Northern and

Southern Europeans, but still no structure along PC2 (r2 = 0.2516). Clear population

structure within Europe is revealed when coverage is >0.10X (Figure 3D–F), with t0

increasing from 0.9126 (0.10X coverage) to 0.9764 (0.40X coverage) (Supplementary Table

2). Thus, reconstructing ancestry within Europe requires substantially more data than

reconstructing continental ancestry in a worldwide sample.

Evaluation with 1000 Genomes Project Data

We then evaluated LASER using empirical data from the 1000 Genomes exon pilot27, which

produced deep sequence data for the exons of 906 genes in a subset of the samples studied
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by the International HapMap Consortium29. We examined 410 samples passing quality

control from seven worldwide populations (see Supplementary Table 3 and Online

Methods). We used all 938 HGDP individuals to construct the reference PCA space. The

average off-target sequencing coverage for the 410 samples was ~0.096X at the 633K SNP

loci genotyped in the HGDP (Supplementary Figure 1). In this comparison, we generated

ancestry estimates for each sample first using HapMap Consortium genotypes, and then

using off-target sequence reads from the 1000 Genomes exon sequencing project. As shown

in Supplementary Figure 2, coordinates estimated from off-target sequence reads are highly

consistent with those based on SNP genotypes (t0 = 0.9955, r2 = 0.9950, 0.9871, 0.9439, and

0.7747 for PC1 to PC4). Even when focusing on 103 samples whose off-target coverage is

below 0.06X, we still obtained t0 = 0.9938 (r2 = 0.9930, 0.9884, 0.9012, and 0.6811 for PC1

to PC4, Supplementary Table 4). Surprisingly, t0 for the 103 samples with highest off-target

coverage (from 0.10X to 0.55X) was slightly lower than t0 for the lower coverage groups

(Supplementary Table 4). This might be explained by different ancestry representation of

samples in different coverage groups and by possible DNA contamination of some samples.

Evaluation Using Targeted Sequencing Data

We next applied LASER to 3,159 samples sequenced around eight macular degeneration

susceptibility loci and two candidate regions28. The samples include 2,362 macular

degeneration cases, 789 controls, two samples with unknown phenotype, and one European

(CEU) and one Yoruba (YRI) nuclear family selected among the HapMap Project samples

(each nuclear family included mother, father and a child). Macular degeneration cases and

controls were recruited in Ophthalmology clinics across the United States. In these samples,

off-target coverage was 0.224X across the 633K loci in HGDP, and 0.241X across the 319K

loci in POPRES (Supplementary Figure 3). When using the HGDP as the reference panel,

the two trios were placed to the correct positions: the CEU trio clustered with the HGDP

Europeans, and the YRI trio clustered with the HGDP Africans. Diverse ancestral

background was observed among the 3,153 case-control samples: 3,069 clustered with

Europeans/Middle Eastern ancestry individuals; 73 aligned between Africans and Europeans

(likely corresponding to African American samples); five aligned between Europeans and

Native Americans; three clustered with Central/South Asians; and three clustered with East

Asians (Supplementary Figure 4A–B). We then used the POPRES reference panel to dissect

the population structure among samples in the cluster with European/Middle Eastern

ancestry. Our results show that although most of these samples had northern European

ancestry, many other samples formed a small cluster around southern Europe

(Supplementary Figure 4C–D). For 931 of the sequenced AMD cases and controls, GWAS

array genotype data are also available30. For these samples, results based on the off-target

reads match well with the coordinates estimated using SNP genotypes, in both the HGDP

PCA space (t0 = 0.9068, Supplementary Figure 5) and the POPRES PCA space (t0 = 0.9209,

Supplementary Figure 6). The accuracy increased for samples with higher off-target

coverage (Supplementary Table 5).

Evaluation Using Exome Sequence Data

The previous experiments examined situations where targeted regions were relatively small.

A large number of modern sequencing studies target entire exomes. To explore whether our
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method might be useful in this setting, we examined ancestry estimates derived from exome

sequence data. For this analysis, we used 941 Finnish individuals from the FUSION31

(Supplementary Table 6) that have been extensively characterized as part of the GoT2D

Study of Type 2 Diabetes Genetics, by genotyping on the Omni 2.5M array, by deep exome

sequencing (~96X depth, 0.69 million variants) and by low pass whole genome sequencing

(~5X depth, 27 million variants). We constructed a reference PCA space using 470

individuals and genotypes at ~8.4 million SNPs with minor allele frequency (MAF) ≥ 0.01.

We then placed the remaining 471 individuals into this reference map, using ancestry

estimates derived using whole genome sequencing data as a gold standard. Figure 4 shows

that ancestry estimates derived using our method are much more similar to this gold

standard (t0 = 0.9763; r2 = 0.9778 for PC1 and 0.9259 for PC2) than results based on exome

genotypes alone (t0 = 0.8263; r2 = 0.9411 for PC1 and 0.4373 for PC2) and better separate

individuals born in the different provinces of Finland. This improved separation of

individuals originating from different parts of Finland is highlighted when variance in PCA

coordinates is decomposed into within-province and between-providence components:

between-province variation in coordinates increases from 48% when using exome genotypes

to 64% using our method (see Online Methods).

In contrast to our Finnish example, many contemporary analyses will rely on reference

panels where array-based genotypes (rather than whole genome sequence data) are

available. In this setting, the advantages of our method are even more dramatic, as illustrated

by an analysis of simulated exome sequence data for samples with diverse European

ancestries24 (Online Methods). For each simulated sample, we used the empirical coverage

pattern from a randomly selected exome sequencing project sample32, with overall average

on-target and off-target depths of ~88.9X and ~1.0X, respectively. In this setting, ancestry

placements within a PCA ancestry map of Europe were inaccurate when based on genotypes

for deeply sequenced regions (Procrustes similarity t0 = 0.5031, r2 = 0.7589 for PC1 and

0.0007 for PC2, Supplementary Figure 7A). In contrast, using off-target reads, our method

provided accurate estimates of individual ancestry (t0 = 0.9467, r2 = 0.9744 for PC1 and

0.7640 for PC2, Supplementary Figure 7B). Incorporating both on-target and off-target

reads, our ancestry estimates improve further (t0 = 0.9669, r2 = 0.9804 for PC1 and 0.8610

for PC2, Supplementary Figure 7C). We also note that, compared to the simulations in

Supplementary Table 2, ancestry estimates appear less accurate in this setting, for two

reasons: first, because empirical coverage patterns in the exome sequencing project data are

more uneven than in our original simulation, second (and more importantly), because there

is great variation in per individual off-target coverage in the exome sequencing project

samples (ranging from 0.49X to 4.70X in our simulated samples). As reference panels of

sequenced individuals become commonplace, we expect that ancestry estimates using

exome genotypes or using our method will both improve substantially.

Controlling for Population Structure in Association Studies

Our final set of simulations explored whether ancestry coordinates estimated using our

method could help control for population stratification21,22. To mimic population structure

within Europe, we simulated individuals distributed along a 20 × 20 lattice, as suggested by

Mathieson and McVean (2012)16. We then preferentially sampled 1,500 cases from one half
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of the lattice. When these cases were matched to 1,500 controls sampled at random across

the whole lattice, we observed strong inflation in association test statistics with genomic

control inflation factor of λcommon = 1.326 for common variants (MAF ≥ 0.05) and λlowfreq

= 1.267 for low-frequency variants (0.01 ≤ MAF < 0.05) (Table 1). When our estimated

principal components were used as covariates in association analysis, evidence for

stratification was much reduced, resulting in λcommon = 0.992 and λlowfreq = 0.996 at 0.10X

coverage (t0 = 0.9993; r2 = 0.9986 for PC1 and 0.9985 for PC2); and in λcommon = 0.991 and

λlowfreq = 0.998 with more modest 0.005X coverage (t0 = 0.9853; r2 = 0.9711 for PC1 and

0.9706 for PC2) (Table 1). In a second analysis, we simulated sequence data for 10,800

potential controls and used estimated ancestry coordinates to select 1,500 controls matching

our cases33. In this second analysis, we again successfully controlled for stratification with

λcommon = 1.011 and λlowfreq = 1.013 at 0.10X coverage and to λcommon = 1.041 and λlowfreq

= 1.045 at 0.005X coverage (Table 1). We next explored more challenging sampling

strategies where all cases were sampled from one or two 8 × 8 grids (Supplementary Figure

8). In these more challenging settings, using estimated PCA as covariates did not adequately

control for stratification (Supplementary Table 7). In comparison, matching-based analyses

were more robust, and were able to control for stratification in all scenarios, provided off-

target coverage was greater than 0.10X (Supplementary Table 7). This observation is

important, since it suggests that while using PCA as covariates will be adequate in situations

where mild stratification is expected, matching based strategies will be robust in a wider

variety of settings.

DISCUSSION

We show that the genetic ancestry of an individual can be accurately estimated using off-

target sequence reads that are a by-product of most targeted sequencing studies. With off-

target reads corresponding to 0.001X coverage of the genome, worldwide continental

ancestry can be reconstructed; and with off-target reads corresponding to 0.10X coverage,

ancestry can be estimated within Europe. Since Europe is the continent with the most

homogeneous genetic variation34, we expect LASER can be used to infer fine-scale

structure within other continents when appropriate reference panels are available. A key

ingredient for successful application of our method is the availability of appropriate

reference samples that can be used to define the PCA space. We used HGDP samples23 to

construct a worldwide continental ancestry map and POPRES samples24 to construct a

genetic ancestry map of Europe. Both HGDP and POPRES samples were genotyped with

standard GWAS arrays; if these reference samples were genotyped at higher density or

whole genome sequenced, we would expect our method to perform even better as it would

increase the number of overlapping sites between sequenced samples and these reference

panels, making it easier to discern subtle population structure34,35. We also note that one

should be extremely careful in interpreting PCA ancestry maps when the reference panel

does not include ancestries in the study sample. For this reason, we always recommend

starting with a worldwide ancestry map and gradually focusing on more regional maps.

Our simulations used several simplifying assumptions. For example, we used a Poisson

distribution to simulate coverage and assumed a uniform sequencing error rate of 1% per

base. In practice, we expect these assumptions will have only a minor impact on our results.
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For example, although less uniform distribution of coverage might require slight increases in

depth for accurate estimates of ancestry, this could be counter-acted by improved

genotyping of reference samples. In addition, simulations showed that our method is

relatively robust to misspecification of sequencing error rates (Supplementary Tables 8–9).

We foresee several potential enhancements to our approach. For example, since different

runs of our method will show small stochastic variation in the placement of each individual,

we expect that repeated analysis of the same sample can improve results (Supplementary

Figure 9) – particularly when coverage is very low or when trying to place samples in a

European ancestry map (or another map where differences between populations are small).

Our simulations show that averaging results over 10 repeated runs for a sample sequenced

with 0.10X coverage produces ancestry placements within the map of Europe almost as

accurate as generating a single placement based on a sample sequenced with 0.20X

coverage. Another interesting challenge is the development of methods that can be used with

other ancestry spaces, such as those derived from multidimensional scaling approaches36,37

or direct modeling of allele frequency gradients38.

As targeted sequencing technologies improve, there has been a constant drive to reduce off-

target sequencing coverage. In principle, reducing off-target coverage can decrease

sequencing costs, by minimizing the amount of sequencing effort expended on low priority

areas of the genome. Our work shows that, even in the context of disease association studies,

reads that map to low priority areas of the genome can be of high value – for example,

because they enable sequencing studies to access large pools of sequenced controls. Often,

PCA has been used to model experimental artifacts, such as batch effects, in addition to

population structure. Our approach, which places one sample at a time in a pre-defined

reference ancestry space, does not capture artifacts due to experimental batch effects or

close relatedness between samples. This allows us to separate genetic ancestry from other

contributors to sample structure. In practice, when artifacts due to batch effects are a

concern, ancestry estimates derived using our method can be combined with key summaries

of sequence data (for example, by summarizing sequencing depth, read length, or even

locus-by-locus coverage information in an additional set of PCs)39,40. When relatedness is a

concern, our method can robustly estimate individual ancestry but will not identify cryptic

relatedness. If pedigree information is available, the ancestry information provided by our

method can be combined with mixed models for association analysis41–43. In other cases,

further methodological developments may be needed to accurately identify related

individuals using off-target sequencing reads.

Computationally, our method examines one sample at a time. Thus, computational costs

increase linearly with the number of samples to be analyzed and analyses can easily be run

in parallel. The cost for analysis of each sample depends on the number of individuals, N,

and markers, L, in the reference panel and the fraction of loci with nonzero coverage, λ, in

the study sample. Roughly, we expect computational cost for each sample to be O(N2Lλ +

N3), which is the time required to compute the pairwise similarity matrix of the sample

specific reference panel and the corresponding eigen decomposition. In our simulations,

analysis typically required no more than a few minutes per sample (e.g., ~1.3 minutes when

N = 1000, L ≈ 319K, and λ ≈ 0.2).

Wang et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Our simulations show that using estimated ancestry coordinates as covariates is expected to

reduce modest inflation in test statistics due to population structure and imperfect matching

of case-control samples. However, our simulations also show that when stratification is

more severe, matching based strategies can control for stratification in a wider variety of

settings. Alternative solutions might be to estimate higher order PCs21 or to use nonlinear

techniques, such as the kernel smoothing methods, to correct for structure based on our

estimated PCs44. The diverse ancestry observed among sequenced AMD samples further

illustrates the importance and utility of estimating the ancestry of study samples in genetic

association studies. Using off-target reads to estimate ancestry enabled us to match cases to

previously sequenced controls and increase sample size and statistical power in a targeted

sequencing study of macular degeneration. In this way, we were able to ancestry match

potential control samples from public resources with sequenced cases, enabling the

discovery of a rare variant, p.Lys155Gln, in the C3 gene that is significantly associated with

increased risk of macular degeneration28. This sort of matching of study samples to public

resources illustrates how accurate reconstructions of ancestry enable new and interesting

study designs and analytical possibilities.

ONLINE METHODS

All experiments relied on pre-existing data. The original collection of DNA, genotypes and

sequence data was carried out with informed consent of human participants. Experiments

described here were approved by the University of Michigan Institutional Review Board.

THE LASER METHOD

The LASER method consists of (1) principal component analysis (PCA) on reference

genotypes to define a reference ancestry space; (2) simulation of sequence data for reference

individuals, matching the coverage of each study sample; (3) PCA on combined sequence

data; and (4) Procrustes analysis to transform coordinates from step 3 into the reference

ancestry space. Step 1 is performed once, and later steps are repeated for each sample.

PCA on reference genotypes

We code reference genotypes in matrix G. Each Gij = 0, 1, 2 represents the number reference

alleles at locus j = 1 … L for individual i = 1 … N. Let µj and σj represent column means and

standard deviations for this matrix. A standardized genotypic matrix Q is defined by Qij =

(Gij − µj)/σj. Missing entries and invariant columns (σj = 0) in G are set to 0 in Q. After

eigen decomposition of the N × N matrix M = QQT, the kth PCA is given by , where

λk is the kth eigen value of M and v⃗k is the corresponding eigen vector. Coordinates of the

top K PCAs for reference individuals are stored in N × K matrix Y.

Simulating sequence data for the reference individuals

We simulate sequence data for reference individuals matching the coverage pattern of study

samples. Suppose we are analyzing study sample h. For locus j, let Chj tally the total number

of overlapping reads and Shj tally the subset that match the reference allele. We store

simulated sequence data in matrices C′ and S′. We fix simulated coverage  for all i
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and j, exactly matching the sample being analyzed. We draw the count of reference alleles

as:

(1)

Here, ε is the estimated sequencing error rate per base (ε =0.01 unless noted). If Gij is

missing, we set  to missing.

PCA on combined sequence data

To perform PCA on the reference individuals together with the study sample h, we next

stack matrix S′ and row vector Sh. To reduce computational complexity, we remove

columns where all elements are zero and obtain matrix S̃. We then perform PCA on matrix S̃

and store the top K PCs for reference individuals in N × K matrix X and for the study sample

in K -element vector Zh.

Procrustes analysis

To place the study sample into the reference PCA space, we apply Procrustes analysis25,26

to find a transformation f (including translation, scaling, rotation, and reflection) that

maximizes the similarity between f(X) and Y while preserving the relative pairwise distances

among points within X. We then obtain , the coordinates of the study sample in

the reference coordinate space. Success can be quantified by a Procrustes similarity statistic

, where D is the scaled minimum sum of squared Euclidean distances

between f(X) and Y across all possible transformations, ranging from 0 to 1 (ref. 26). Lower

Procrustes similarity corresponds to greater uncertainty and a less reliable .

GENETIC DATA

Genotype Data

We used Human Genome Diversity Panel (HGDP)23 and Population Reference Sample

(POPRES)24,45 genotypes to define reference coordinate spaces. The HGDP dataset includes

632,958 autosomal SNPs and 938 unrelated individuals from 53 worldwide populations23.

Our POPRES subset contains 318,682 autosomal SNPs and 1,385 individuals from 37

European populations24. For both datasets, we pre-processed data as summarized in

Supplementary Figure 10, excluding SNPs with different alleles in 1000 Genomes data and

dbSNP, >2 alleles, ambiguous strand or missing from dbSNP (version 135).

We also analyzed genotypes from HapMap Project29 and AMD GWAS30. In the HapMap

dataset we focused on 410 individuals that overlap with the 1000 Genomes pilot exon

project (1,294,658 SNPs). In the AMD GWAS we focused on 931 individuals also in our

targeted sequencing study (316,475 SNPs; Supplementary Figure 11).
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Targeted Sequencing Data

The 1000 Genomes pilot exon project sequenced exons of 906 randomly selected genes at

>50X average depth27. We analyzed 410 individuals from 7 populations overlapping with

HapMap and estimated contamination rates < 10% (Supplementary Table 3)46. The AMD

targeted sequencing dataset included 6 HapMap individuals (CEU trio: NA12878,

NA12891, and NA12892; YRI trio: NA19238, NA19239, and NA19240), 2,362 cases and

789 controls recruited in ophthalmology clinics across the United States28. These were

sequenced for 0.97 megabases across 10 regions to 127.5X average depth.

Exome Sequence Data

The GoT2D Study of Type 2 Diabetes characterized 941 Finnish individuals from the

Finland-United States Investigation of NIDDM Genetics (FUSION): exome sequencing at

mean depth ~96X, whole genome sequencing at mean depth ~5X, genotyping on the

Illumina Omni2.5 BeadChip. Our analyses focused on autosomal biallelic SNPs with

missingness <5%, Hardy-Weinberg equilibrium p > 10−6, and MAF > 0.01. After QC47,

whole genome analyses included 8,447,085 SNPs and exome analyses included 95,741

SNPs (of which 94,423 overlapped).

Pre-processing of Sequence Data

We started with BAM files and used the “mpileup” command in SAMtools48 to extract

bases overlapping loci genotyped in the reference panel. Sequence reads with Phred

mapping quality <30 and bases with Phred quality score <20 were discarded. Unless noted,

we only analyzed reads outside targeted regions.

HGDP and POPRES Simulations

We simulated sequence data for 238 randomly selected HGDP and 385 randomly selected

POPRES samples. The remaining 700 HGDP and 1,000 POPRES individuals defined

reference coordinate spaces. We first simulated Poisson coverage with mean between 0.001

and 0.40, then sampled reference alleles using Equation 1 (Supplementary Tables 1 and 2).

We next repeated the simulation using coverage patterns from the NHLBI Exome

Sequencing Project32. Among randomly selected NHLBI samples, mean exome coverage

was ~88.9X and mean off-target coverage was ~1.0X.

COMPARISON WITH SNP-BASED PCA

When analyzing SNP genotypes, we combined genotypes for one study sample and N

reference individuals and performed PCA on the shared set of SNPs. Then, we used

Procrustes analysis to project the study sample into the reference PCA space49. When

estimating SNP-based coordinates for samples in the 1000 Genomes pilot exon project, we

used 581,686 SNPs that overlap between HapMap and HGDP. For the AMD samples, we

used 45,700 SNPs shared between the HGDP, POPRES, and AMD datasets.

We used the squared Pearson correlation r2 to measure concordance between sequence and

SNP-based coordinates along each PCA. We also report overall similarity between the two
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sets of coordinates using the Procrustes similarity statistic t0, obtained by using Procrustes

analysis26 to translate between sequence and SNP-derived coordinates for test samples.

FINE-SCALE POPULATION STRUCTURE

Each FUSION sample can be assigned to one of 12 sub-populations according to birth

province. We split each sub-population into two groups, resulting in 470 reference

individuals and 471 test individuals (Supplementary Table 6). We constructed a reference

PCA map based on whole genome sequence results. We placed test individuals into this map

using (1) whole genome genotypes, (2) genotypes across loci overlapping between exome

and whole genome data, and (3) off-target reads generated during exome sequencing

(~0.89X off-target depth).

To evaluate how well the three analyses capture population structure, we define statistic ψ as

the proportion of between-population variance in PCA coordinates. We use K-dimensional

vectors x⃗ij, µ⃗i, and v⃗ to represent the coordinates of sample j from population i, the centroid

of population i, and the overall centroid. For m populations, each with ni sampled

individuals, the proportion of between-population variance in the PCA is defined as

(2)

This statistic ranges from 0 to 1, and is similar in spirit to the FST statistic, which estimates

between-population variance in allelic states50. Larger values of ψ indicate population

structure is better captured.

SIMULATED CASE/CONTROL STUDIES

We simulated51 20,000 diploid individuals evenly distributed along a 20 × 20 lattice, each

genotyped at 1M independent biallelic SNPs with MAF ≥ 0.01. The scaled migration rate

between neighboring lattice points was M = 10, as suggested by ref.16 to mimic population

structure within Europe. In each lattice-point, we assigned 3 individuals to a reference set

and, among the remainder, marked 20 as potential cases and the rest as potential controls. In

total, this resulted in 1,200 reference individuals, 8,000 potential cases, and 10,800 potential

controls. We first created stratified case/control data by preferentially sampling cases from

the right half of the lattice (900 vs. 600 elsewhere) and sampling 1,500 controls randomly

from the entire lattice. We explored more extreme settings by sampling cases from smaller

regions of the lattice (Supplementary Figure 8). In these additional scenarios, we sampled

1,280 cases and 1,280 controls.

We then simulated sequence coverage between 0.001 and 0.20X and used LASER to place

cases and controls in the 2-dimensional ancestry space defined by reference individuals. In

association tests52, we first used logistic regression or Cochran-Armitage trend tests and

without correcting for stratification. To correct for stratification, we either incorporated

estimated PCs as covariates in the logistic regression model or used a heuristic algorithm to

identify one matched control for each case based on proximity in the reference ancestry
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space28 and applied the Cochran-Mantel-Haenszel tests on the matched case/control pairs.

Genomic inflation was calculated as ref.16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Graphical illustration of the LASER method.
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Figure 2. Estimation of worldwide continental ancestry
238 individuals were randomly selected from the HGDP as the testing set (colored symbols),

and the remaining 700 HGDP individuals were used as the reference panel (gray symbols).

The upper row shows PC1 and PC2, and the lower row shows PC3 and PC4. (A) Results

based on SNP genotypes. (B) Results based on simulated sequence data at 0.001X coverage.

The Procrustes similarity to the SNP-based coordinates is t0 = 0.9508. (C) Results at 0.01X

coverage (t0 = 0.9949). (D) Results at 0.10X coverage (t0 = 0.9993).
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Figure 3. Estimation of ancestry within Europe
385 individuals were randomly selected from the POPRES as the testing set (colored

symbols), and the remaining 1,000 POPRES individuals were used as the reference panel

(gray symbols). (A) Results based on SNP genotypes. (B) Results based on simulated

sequence data at 0.01X coverage. The Procrustes similarity to the SNP-based coordinates is

t0 = 0.4786. (C) Results at 0.05X coverage (t0 = 0.7720). (D) Results at 0.10X coverage (t0 =

0.9137). (E) Results at 0.20X coverage (t0 = 0.9495). (F) Results at 0.40X coverage (t0 =

0.9764). Population labels follow the color scheme of ref. 24. Abbreviations are as follows:

AL, Albania; AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH-F,

Swiss-French; CH-G, Swiss-German; CH-I, Swiss-Italian; CY, Cyprus; CZ, Czech

Republic; DE, Germany; DK, Denmark; ES, Spain; FI, Finland; FR, France; GB, United

Kingdom; GR, Greece; HR, Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV,

Latvia; MK, Macedonia; NL, Netherlands; NO, Norway; PL, Poland; PT, Portugal; RO,
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Romania; RU, Russia; Sct, Scotland; SE, Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey;

UA, Ukraine; YG, Serbia and Montenegro.

Wang et al. Page 19

Nat Genet. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Estimation of fine-scale ancestry within Finland
(A) Reference PCA map based on integrated whole genome genotypes of 470 reference

individuals. Proportion of among-population variance in the PCA map is ψ = 0.6623. (B)

Estimation of ancestry for 471 test individuals based on integrated whole genome genotypes

(ψ = 0.6685). Reference individuals are indicated by gray points. (C) Estimation of ancestry

for test individuals based on exome sequencing genotypes (ψ = 0.4849). Compared to panel

B, Procrustes similarity t0 = 0.8263, and r2 = 0.9411 and 0.4373 for PC1 and PC2

respectively. (D) Estimation of ancestry for test individuals based on genome-wide off-

target reads from exome sequencing experiments (ψ = 0.6385). Compared to panel B, t0 =

0.9763, and r2 = 0.9778 and 0.9259 for PC1 and PC2 respectively. The mean coverage is

~96X and ~0.89X for on-target and off-target regions, respectively.
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