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Abstract

While generative models such as Latent

Dirichlet Allocation (LDA) have proven fruit-

ful in topic modeling, they often require de-

tailed assumptions and careful specification of

hyperparameters. Such model complexity is-

sues only compound when trying to general-

ize generative models to incorporate human

input. We introduce Correlation Explanation

(CorEx), an alternative approach to topic mod-

eling that does not assume an underlying gen-

erative model, and instead learns maximally

informative topics through an information-

theoretic framework. This framework nat-

urally generalizes to hierarchical and semi-

supervised extensions with no additional mod-

eling assumptions. In particular, word-level

domain knowledge can be flexibly incorpo-

rated within CorEx through anchor words, al-

lowing topic separability and representation to

be promoted with minimal human interven-

tion. Across a variety of datasets, metrics,

and experiments, we demonstrate that CorEx

produces topics that are comparable in quality

to those produced by unsupervised and semi-

supervised variants of LDA.

1 Introduction

The majority of topic modeling approaches utilize

probabilistic generative models, models which spec-

ify mechanisms for how documents are written in

order to infer latent topics. These mechanisms may

be explicitly stated, as in Latent Dirichlet Alloca-

tion (LDA) (Blei et al., 2003), or implicitly stated,

as with matrix factorization techniques (Hofmann,

1999; Ding et al., 2008; Buntine and Jakulin, 2006).

The core generative mechanisms of LDA, in par-

ticular, have inspired numerous generalizations that

account for additional information, such as the au-

thorship (Rosen-Zvi et al., 2004), document labels

(McAuliffe and Blei, 2008), or hierarchical structure

(Griffiths et al., 2004).

However, these generalizations come at the cost

of increasingly elaborate and unwieldy generative

assumptions. While these assumptions allow topic

inference to be tractable in the face of additional

metadata, they progressively constrain topics to a

narrower view of what a topic can be. Such assump-

tions are undesirable in contexts where one wishes to

minimize model complexity and learn topics with-

out preexisting notions of how those topics origi-

nated.

For these reasons, we propose topic modeling

by way of Correlation Explanation (CorEx),1 an

information-theoretic approach to learning latent

topics over documents. Unlike LDA, CorEx does

not assume a particular data generating model, and

instead searches for topics that are “maximally in-

formative” about a set of documents. By learning

informative topics rather than generated topics, we

avoid specifying the structure and nature of topics

ahead of time.

In addition, the lightweight framework underly-

ing CorEx is versatile and naturally extends to hier-

archical and semi-supervised variants with no addi-

tional modeling assumptions. More specifically, we

1Open source, documented code for the CorEx topic model

available at https://github.com/gregversteeg/

corex_topic.
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may flexibly incorporate word-level domain knowl-

edge within the CorEx topic model. Topic models

are often susceptible to portraying only dominant

themes of documents. Injecting a topic model, such

as CorEx, with domain knowledge can help guide it

towards otherwise underrepresented topics that are

of importance to the user. By incorporating rele-

vant domain words, we might encourage our topic

model to recognize a rare disease that would other-

wise be missed in clinical health notes, focus more

attention to topics from news articles that can guide

relief workers in distributing aid more effectively, or

disambiguate aspects of a complex social issue.

Our contributions are as follows: first, we frame

CorEx as a topic model and derive an efficient alter-

ation to the CorEx algorithm to exploit sparse data,

such as word counts in documents, for dramatic

speedups. Second, we show how domain knowledge

can be naturally integrated into CorEx through “an-

chor words” and the information bottleneck. Third,

we demonstrate that CorEx and anchored CorEx

produce topics of comparable quality to unsuper-

vised and semi-supervised variants of LDA over sev-

eral datasets and metrics. Finally, we carefully detail

several anchoring strategies that highlight the versa-

tility of anchored CorEx on a variety of tasks.

2 Methods

2.1 CorEx: Correlation Explanation

Here we review the fundamentals of Correlation Ex-

planation (CorEx), and adopt the notation used by

Ver Steeg and Galstyan in their original presenta-

tion of the model (2014). Let X be a discrete ran-

dom variable that takes on a finite number of val-

ues, indicated with lowercase, x. Furthermore, if

we have n such random variables, let XG denote

a sub-collection of them, where G ⊆ {1, . . . , n}.

The probability of observing XG = xG is written

as p(XG = xG), which is typically abbreviated to

p(xG). The entropy of X is written as H(X) and the

mutual information of two random variables X1 and

X2 is given by I(X1 : X2) = H(X1) + H(X2) −
H(X1, X2).

The total correlation, or multivariate mutual in-

formation, of a group of random variables XG is ex-

pressed as

TC(XG) =
∑

i∈G

H(Xi)−H(XG) (1)

= DKL

(

p(xG)||
∏

i∈G

p(xi)

)

. (2)

We see that Eq. 1 does not quantify “correlation” in

the modern sense of the word, and so it can be help-

ful to conceptualize total correlation as a measure of

total dependence. Indeed, Eq. 2 shows that total cor-

relation can be expressed using the Kullback-Leibler

Divergence and, therefore, it is zero if and only if

the joint distribution of XG factorizes, or, in other

words, there is no dependence between the random

variables.

The total correlation can be written when condi-

tioning on another random variable Y , TC(XG |
Y ) =

∑

i∈GH(Xi | Y )−H(XG | Y ). So, we can

consider the reduction in the total correlation when

conditioning on Y .

TC(XG;Y ) = TC(XG)− TC(XG | Y ) (3)

=
∑

i∈G

I(Xi : Y )− I(XG : Y ) (4)

The quantity expressed in Eq. 3 acts as a lower

bound of TC(XG) (Ver Steeg and Galstyan, 2015),

as readily verified by noting that TC(XG) and

TC(XG|Y ) are always non-negative. Also note, the

joint distribution of XG factorizes conditional on Y
if and only if TC(XG | Y ) = 0. If this is the case,

then TC(XG;Y ) is maximized, and Y explains all

of the dependencies in XG.

In the context of topic modeling, XG represents

a group of word types and Y represents a topic to

be learned. Since we are always interested in group-

ing multiple sets of words into multiple topics, we

will denote the binary latent topics as Y1, . . . Ym and

their corresponding groups of word types as XGj

for j = 1, . . . ,m respectively. The CorEx topic

model seeks to maximally explain the dependencies

of words in documents through latent topics by max-

imizing TC(X;Y1, . . . , Ym). To do this, we maxi-

mize the following lower bound on this expression:

max
Gj ,p(yj |xGj

)

m
∑

j=1

TC(XGj
;Yj). (5)
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As we describe in the following section, this ob-

jective can be efficiently approximated, despite the

search occurring over an exponentially large proba-

bility space (Ver Steeg and Galstyan, 2014).

Since each topic explains a certain portion of the

overall total correlation, we may choose the number

of topics by observing diminishing returns to the ob-

jective. Furthermore, since the CorEx implementa-

tion depends on a random initialization (as described

shortly), one may restart the CorEx topic model sev-

eral times and choose the one that explains the most

total correlation.

The latent factors, Yj , are optimized to be infor-

mative about dependencies in the data and do not

require generative modeling assumptions. Note that

the discovered factors, Y , can be used as inputs to

construct new latent factors, Z, and so on leading

to a hierarchy of topics. Although this extension is

quite natural, we focus our analysis on the first level

of topic representations for easier interpretation and

evaluation.

2.2 CorEx Implementation

We summarize the implementation of CorEx as pre-

sented by Ver Steeg and Galstyan (2014) in prepa-

ration for innovations introduced in the subsequent

sections. The numerical optimization for CorEx be-

gins with a random initialization of parameters and

then proceeds via an iterative update scheme simi-

lar to EM. For computational tractability, we subject

the optimization in Eq. 5 to the constraint that the

groups, Gj , do not overlap, i.e. we enforce single-

membership of words within topics. The optimiza-

tion entails a combinatorial search over groups, so

instead we look for a form that is more amenable to

smooth optimization. We rewrite the objective using

the alternate form in Eq. 4 while introducing indica-

tor variables αi,j which are equal to 1 if and only if

word Xi appears in topic Yj (i.e. i ∈ Gj).

max
αi,j ,p(yj |x)

m
∑

j=1

(

n
∑

i=1

αi,jI(Xi : Yj)− I(X : Yj)

)

s.t. αi,j = I[j = argmax
j̄

I(Xi : Yj̄)].

(6)

Note that the constraint on non-overlapping groups

now becomes a constraint on α. To make the opti-

mization smooth we should relax the constraint so

that αi,j ∈ [0, 1]. To do so, we replace the second

line with a softmax function. The update for α at

iteration t becomes,

αt
i,j = exp

(

λt(I(Xi : Yj)−max
j̄

I(Xi : Yj̄))

)

.

Now α ∈ [0, 1] and the parameter λ controls the

sharpness of the softmax function. Early in the opti-

mization we use a small value of λ, then increase it

later in the optimization to enforce a hard constraint.

The objective in Eq. 6 only lower bounds total cor-

relation in the hard max limit. The constraint on α
forces competition among latent factors to explain

certain words, while setting λ = 0 results in all fac-

tors learning the same thing. Holding α fixed, taking

the derivative of the objective (with respect to the

variables p(yj |x), and setting it equal to zero leads

to a fixed point equation. We use this fixed point to

define update equations at iteration t.

pt(yj) =
∑

x̄

pt(yj |x̄)p(x̄) (7)

pt(xi|yj) =
∑

x̄

pt(yj |x̄)p(x̄)I[x̄i = xi]/pt(yj)

log pt+1(yj |x
ℓ) = (8)

log pt(yj)+
n
∑

i=1

αt
i,j log

pt(x
ℓ
i | yj)

p(xℓi)
− logZj(x

ℓ)

The first two lines just define the marginals in terms

of the optimization parameter, pt(yj |x). We take

p(x) to be the empirical distribution defined by some

observed samples, xℓ, ℓ = 1, . . . , N . The third line

updates pt(yj |x
ℓ), the probabilistic labels for each

latent factor, Yj , for a given sample, xℓ. Note that an

easily calculated constant, Zj(x
ℓ), appears to ensure

the normalization of pt(yj |x
ℓ) for each sample. We

iterate through these updates until convergence.

After convergence, we use the mutual information

terms I(Xi : Yj) to rank which words are most in-

formative for each factor. The objective is a sum

of terms for each latent factor and this allows us to

rank the contribution of each factor toward our lower

bound on the total correlation. The expected log of

the normalization constant, often called the free en-

ergy, E[logZj(x)], plays an important role since its

expectation provides a free estimate of the i-th term

in the objective (Ver Steeg and Galstyan, 2015), as
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can be seen by taking the expectation of Eq. 8 at

convergence and comparing it to Eq. 6. Because our

sample estimate of the objective is just the mean of

contributions from individual sample points, xℓ, we

refer to logZj(x
ℓ) as the pointwise total correlation

explained by factor j for sample ℓ. Pointwise TC

can be used to localize which samples are particu-

larly informative about specific latent factors.

2.3 Sparsity Optimization

2.3.1 Derivation

To alter the CorEx optimization procedure to ex-

ploit sparsity in the data, we now assume that all

variables, xi, yj , are binary and x is a binary vector

where Xℓ
i = 1 if word i occurs in document ℓ and

Xℓ
i = 0 otherwise. Since all variables are binary,

the marginal distribution, p(xi|yj), is just a two by

two table of probabilities and can be estimated effi-

ciently. The time-consuming part of training is the

subsequent update of the document labels in Eq. 8

for each document ℓ. The computation of the log

likelihood ratio for all n words over all documents is

not efficient, as most words do not appear in a given

document. We rewrite the logarithm in the interior

of the sum.

log
pt(x

ℓ
i | yj)

p(xℓi)
= log

pt(Xi = 0 | yj)

p(Xi = 0)
+ (9)

xli log

(

pt(X
ℓ
i = 1 | yj)p(Xi = 0)

pt(Xi = 0 | yj)p(Xℓ
i = 1)

)

Note, when the word does not appear in the docu-

ment, only the leading term of Eq. 9 will be nonzero.

However, when the word does appear, everything

but logP (Xℓ
i = 1 | yj)/p(X

ℓ
i = 1) cancels out. So,

we have taken advantage of the fact that the CorEx

topic model binarizes documents to assume by de-

fault that a word does not appear in the document,

and then correct the contribution to the update if the

word does appear.

Thus, when substituting back into Eq. 8, the sum

becomes a matrix multiplication between a matrix

with dimensions of the number of variables by the

number of documents and entries xℓi that is as-

sumed to be sparse and a dense matrix with di-

mensions of the number of variables by the num-

ber of latent factors. Given n variables, N sam-

ples, and ρ nonzero entries in the data matrix, the
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Figure 1: Speed comparisons to a fixed number of itera-

tions as the number of documents and words vary. New

York Times articles and PubMed abstracts were collected

from the UCI Machine Learning Repository (Lichman,

2013). The disaster relief articles are described in section

4.1, and represented simply as bags of words, not phrases.

asymptotic scaling for CorEx goes from O(Nn) to

O(n)+O(N)+O(ρ) exploiting sparsity. Latent tree

modeling approaches are quadratic in n or worse, so

we expect CorEx’s computational advantage to in-

crease for larger datasets.

2.3.2 Optimization Evaluation

We perform experiments comparing the running

time of CorEx before and after implementing the im-

provements which exploit sparsity. We also compare

with Scikit-Learn’s simple batch implementation of

LDA using the variational Bayes algorithm (Hoff-

man et al., 2013). Experiments were performed on a

four core, Intel i5 chip running at 4 GHz with 32 GB

RAM. We show run time when varying the data size

in terms of the number of word types and the num-

ber of documents. We used 50 topics for all runs and

set the number of iterations for each run to 10 itera-

tions for LDA and 50 iterations for CorEx. Results

are shown in Figure 1. We see that CorEx exploit-

ing sparsity is orders of magnitude faster than the
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naive version and is generally comparable to LDA

as the number of documents scales. The slope on

the log-log plot suggests a linear dependence of run-

ning time on the dataset size, as expected.

2.4 Anchor Words via the Bottleneck

The information bottleneck formulates a trade-off

between compressing data X into a representation

Y , and preserving the information in X that is rel-

evant to Z (typically labels in a supervised learning

task) (Tishby et al., 1999; Friedman et al., 2001).

More formally, the information bottleneck is ex-

pressed as

max
p(y|x)

βI(Z : Y )− I(X : Y ), (10)

where β is a parameter controlling the trade-off be-

tween compressing X and preserving information

about the relevance variable, Z.

To see the connection with CorEx, we compare

the CorEx objective as written in Eq. 6 with the

bottleneck in Eq. 10. We see that we have exactly

the same compression term for each latent factor,

I(X : Yj), but the relevance variables now corre-

spond to Z ≡ Xi. If we want to learn represen-

tations that are more relevant to specific keywords,

we can simply anchor a word type Xi to topic Yj ,
by constraining our optimization so that αi,j = βi,j ,
where βi,j ≥ 1 controls the anchor strength. Oth-

erwise, the updates on α remain the same. This

schema is a natural extension of the CorEx optimiza-

tion and it is flexible, allowing for multiple word

types to be anchored to one topic, for one word type

to be anchored to multiple topics, or for any com-

bination of these semi-supervised anchoring strate-

gies.

3 Related Work

With respect to integrating domain knowledge into

topic models, we draw inspiration from Arora et

al. (2012), who used anchor words in the con-

text of non-negative matrix factorization. Using an

assumption of separability, these anchor words act

as high precision markers of particular topics and,

thus, help discern the topics from one another. Al-

though the original algorithm proposed by Arora et

al. (2012), and subsequent improvements to their

approach, find these anchor words automatically

(Arora et al., 2013; Lee and Mimno, 2014), recent

adaptations allow manual insertion of anchor words

and other metadata (Nguyen et al., 2014; Nguyen et

al., 2015). Our work is similar to the latter, where we

treat anchor words as fuzzy logic markers and em-

bed them into the topic model in a semi-supervised

fashion. In this sense, our work is closest to Halpern

et al. (2014; 2015), who have also made use of do-

main expertise and semi-supervised anchored words

in devising topic models.

There is an adjacent line of work that has focused

on incorporating word-level information into LDA-

based models. Jagarlamudi et al. (2012) proposed

SeededLDA, a model that seeds words into given

topics and guides, but does not force, these topics

towards these integrated words. Andrzejewski and

Zhu (2009) presented a model that makes use of “z-

labels,” words that are known to pertain to specific

topics and that are restricted to appearing in some

subset of all the possible topics. Although the z-

labels can be leveraged to place different senses of a

word into different topics, it requires additional ef-

fort to determine when these different senses occur.

Our anchoring approach allows a user to more easily

anchor one word to multiple topics, allowing CorEx

to naturally find topics that revolve around different

senses of a word.

Andrzejewski et al. (2009) presented a second

model which allows specification of Must-Link and

Cannot-Link relationships between words that help

partition otherwise muddled topics. These logical

constraints help enforce topic separability, though

these mechanisms less directly address how to an-

chor a single word or set of words to help a topic

emerge. More generally, the Must/Cannot link

and z-label topic models have been expressed in a

powerful first-order-logic framework that allows the

specification of arbitrary domain knowledge through

logical rules (Andrzejewski et al., 2011). Others

have built off this first-order-logic approach to au-

tomatically learn rule weights (Mei et al., 2014)

and incorporate additional latent variable informa-

tion (Foulds et al., 2015).

Mathematically, CorEx topic models most closely

resemble topic models based on latent tree recon-

struction (Chen et al., 2016). In Chen et al.’s (2016)

analysis, their own latent tree approach and CorEx

both report significantly better perplexity than hi-
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erarchical topic models based on the hierarchical

Dirichlet process and the Chinese restaurant process.

CorEx has also been investigated as a way to find

“surprising” documents (Hodas et al., 2015).

4 Data and Evaluation Methods

4.1 Data

We use two challenging datasets with corresponding

domain knowledge lexicons to evaluate anchored

CorEx. Our first dataset consists of 504,000 human-

itarian assistance and disaster relief (HA/DR) arti-

cles covering 21 disaster types collected from Re-

liefWeb, an HA/DR news article aggregator spon-

sored by the United Nations. To mitigate over-

whelming label imbalances during anchoring, we

both restrict ourselves to documents in English with

one label, and randomly subsample 2,000 articles

from each of the largest disaster type labels. This

leaves us with a corpus of 18,943 articles.2

We accompany these articles with an HA/DR lex-

icon of approximately 34,000 words and phrases.

The lexicon was curated by first gathering 40–60

seed terms per disaster type from HA/DR domain

experts and CrisisLex. This term list was then ex-

panded by creating word embeddings for each dis-

aster type, and taking terms within a specified co-

sine similarity of the seed words. These lists were

then filtered by removing names, places, non-ASCII

characters, and terms with fewer than three charac-

ters. Finally, the extracted terms were audited using

CrowdFlower, where users rated the relevance of the

terms on a Likert scale. Low relevance terms were

dropped from the lexicon. Of these terms 11,891

types appear in the HA/DR articles.

Our second dataset consists of 1,237 deidentified

clinical discharge summaries from the Informatics

for Integrating Biology and the Bedside (i2b2) 2008

Obesity Challenge.3 These summaries are labeled

by clinical experts with 15 conditions frequently

associated with obesity. For these documents, we

leverage a text pipeline that extracts common med-

ical terms and phrases (Dai et al., 2008; Chapman

et al., 2001), which yields 3,231 such term types.

2HA/DR articles and accompanying lexicon available at

http://dx.doi.org/10.7910/DVN/TGOPRU
3Data available upon data use agreement at https://

www.i2b2.org/NLP/Obesity/

For both sets of documents, we use their respective

lexicons to break the documents down into bags of

words and phrases.

We also make use of the 20 Newsgroups dataset,

as provided and preprocessed in the Scikit-Learn li-

brary (Pedregosa et al., 2011).

4.2 Evaluation

CorEx does not explicitly attempt to learn a genera-

tive model and, thus, traditional measures such as

perplexity are not appropriate for model compari-

son against LDA. Furthermore, it is well-known that

perplexity and held-out log-likelihood do not neces-

sarily correlate with human evaluation of semantic

topic quality (Chang et al., 2009). Therefore, we

measure the semantic topic quality using Mimno et

al.’s (2011) UMass automatic topic coherence score,

which correlates with human judgments.

We also evaluate the models in terms of multi-

class logistic regression document classification (Pe-

dregosa et al., 2011), where the feature set of each

document is its topic distribution. We perform all

document classification tasks using a 60/40 training-

test split.

Finally, we measure how well each topic model

does at clustering documents. We obtain a cluster-

ing by assigning each document to the topic that oc-

curs with the highest probability. We then measure

the quality within clusters (homogeneity) and across

clusters (adjusted mutual information). The highest

possible value for both measures is one. We do not

report clustering metrics on the clinical health notes

because the documents are multi-label and, in that

case, the metrics are not well-defined.

4.3 Choosing Anchor Words

We wish to systematically test the effect of anchor

words given the domain-specific lexicons. To do so,

we follow the approach used by Jagarlamudi et al.

(2012) to automatically generate anchor words: for

each label in a data set, we find the words that have

the highest mutual information with the label. For

word w and label L, this is computed as

I(L : w) = H(L)−H(L | w), (11)

where for each document of label L we consider if

the word w appears or not.
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Figure 2: Baseline comparison of CorEx to LDA with

respect to topic coherence and document classification

and clustering on three different datasets as the number

of topics vary. Points are the average of 30 runs of a topic

model. Confidence intervals are plotted but are so small

that they are not distinguishable. CorEx is trained using

binary data, while LDA is trained on count data. Ho-

mogeneity is not well-defined on the multi-label clinical

health notes, so it is omitted.

5 Results

5.1 LDA Baseline Comparison

We compare CorEx to LDA in terms of topic coher-

ence, document classification, and document clus-

tering across three datasets. CorEx is trained on bi-

nary data, while LDA is trained on count data. While

not reported here, CorEx consistently outperformed

LDA trained on binary data. In doing these compar-

isons, we use the Gensim implementation of LDA

(Řehůřek and Sojka, 2010). The results of compar-

ing CorEx to LDA as a function of the number of

topics are presented in Figure 2.

Across all three datasets, we find that the topics

produced by CorEx yield document classification re-

sults that are on par with or better than those pro-

duced by LDA topics. In terms of clustering, CorEx

consistently produces document clusters of higher

Rank Disaster Relief Topic

1

drought, farmers, harvest, crop,

livestock, planting, grain, maize,

rainfall, irrigation

3

eruption, volcanic, lava, crater,

eruptions, volcanos, slopes, volcanic

activity, evacuated, lava flows

8

winter, snow, snowfall, temperatures,

heavy snow, heating, freezing, warm

clothing, severe winter, avalanches

23

military, armed, civilians, soldiers,

aircraft, weapons, rebel, planes, bombs,

military personnel

Rank 20 Newsgroups Topic

3
team, game, season, player, league,

hockey, play, teams, nhl

14
car, bike, cars, engine, miles, road,

ride, riding, bikes, ground

26
nasa, launch, orbit, shuttle, mission,

satellite, gov, jpl, orbital, solar

39

medical, disease, doctor, patients,

treatment, medicine, health, hospital,

doctors, pain

Rank Clinical Health Notes Topic

12

vomiting, nausea, abdominal pain,

diarrhea, fever, dehydration, chill,

clostridium difficile, intravenous fluid,

compazine

19

anxiety state, insomnia, ativan,

neurontin, depression, lorazepam,

gabapentin, trazodone, fluoxetine,

headache

27

pain, oxycodone, tylenol, percocet,

ibuprofen, morphine, osteoarthritis,

hernia, motrin, bleeding

Table 1: Examples of topics learned by the CorEx topic

model. Words are ranked according to mutual informa-

tion with the topic, and topics are ranked according to the

amount of total correlation they explain. Topic models

were run with 50 topics on the Reliefweb and 20 News-

groups datasets, and 30 topics on the clinical health notes.

homogeneity than LDA. On the disaster relief arti-

cles, the CorEx clusters are nearly twice as homoge-

neous as the LDA clusters.

CorEx outperforms LDA in terms of topic coher-

ence on two out of three of the datasets. While LDA
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Figure 3: Comparison of anchored CorEx to other semi-

supervised topic models in terms of document clustering

and topic coherence. For each dataset, the number of top-

ics is fixed to the number of document labels. Each dot is

the average of 30 runs. Confidence intervals are plotted

but are so small that they are not distinguishable.

produces more coherent topics for the clinical health

notes, it is particularly striking that CorEx is able

to produce high quality topics while only leverag-

ing binary count data. Examples of these topics are

shown in Table 1. Despite the binary counts limi-

tation, CorEx still finds meaningfully coherent and

competitive structure in the data.

5.2 Anchored CorEx Analysis

We now examine the effects and benefits of guiding

CorEx through anchor words. In doing so, we also

compare anchored CorEx to other semi-supervised

topic models.

5.2.1 Anchoring for Topic Separability

We are first interested in how anchoring can be

used to encourage topic separability so that docu-

ments cluster well. We focus on the HA/DR articles

and 20 newsgroups datasets, since traditional clus-

tering metrics are not well-defined on the multi-label

clinical health notes. For both datasets, we fix the

Rank Anchored Disaster Relief Topic

1

harvest, locus, drought, food crisis,

farmers, crops, crop, malnutrition,

food aid, livestock

4

tents, quake, international federation,

red crescent, red cross, blankets,

earthquake, richter scale, societies,

aftershocks

12

climate, impacts, warming, climate

change, irrigation, consumption,

household, droughts, livelihoods,

interventions

19

storms, weather, winds, coastal,

tornado, meteorological, tornadoes,

strong winds, tropical, roofs

Rank Anchored 20 Newsgroups Topic

5

government, congress, clinton, state,

national, economic, general, states,

united, order

6
bible, christian, god, jesus, christians,

believe, life, faith, world, man

15
use, used, high, circuit, power, work,

voltage, need, low, end

20
baseball, pitching, braves, mets,

hitter, pitcher, cubs, dl, sox, jays

Table 2: Examples of topics learned by CorEx when

simultaneously anchoring many topics with anchoring

parameter β = 2. Anchor words are shown in bold.

Words are ranked according to mutual information with

the topic, and topics are ranked according to the amount

of total correlation they explain. Topic models were run

with 21 topics on the Reliefweb articles and 20 topics on

the 20 Newsgroups dataset.

number of topics to be equal to the number of doc-

ument labels. It is in this context that we compare

anchored CorEx to two other semi-supervised topic

models: z-labels LDA and must/cannot link LDA.

Using the method described in Section 4.3, we au-

tomatically retrieve the top five anchors for each dis-

aster type and newsgroup. We then filter these lists

of any words that are ambiguous, i.e. words that

are anchor words for more than one document label.

For anchored CorEx and z-labels LDA we simulta-

neously assign each set of anchor words to exactly

one topic each. For must/cannot link LDA, we cre-

ate must-links within the words of the same anchor
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group, and create cannot-links between words of dif-

ferent anchor groups.

Since we are simultaneously anchoring to many

topics, we use a weak anchoring parameter β = 2
for anchored CorEx. Using the notation from their

original papers, we use η = 1 for z-labels LDA,

and η = 1000 for must/cannot link LDA. For both

LDA variants, we use α = 0.5, β = 0.1 and take

2,000 samples, and estimate the models using code

implemented by the original authors.

The results of this comparison are shown in Fig-

ure 3, and examples of anchored CorEx topics are

shown in Table 2. Across all measures CorEx and

anchored CorEx outperform LDA. We find that an-

chored CorEx always improves cluster quality ver-

sus CorEx in terms of homogeneity and adjusted

mutual information. Compared to CorEx, multiple

simultaneous anchoring neither harms nor benefits

the topic coherence of anchored CorEx. Together

these metrics suggest that anchored CorEx is find-

ing topics that are of equivalent coherence to CorEx,

but more relevant to the document labels since gains

are seen in terms of document clustering.

Against the other semi-supervised topic models,

anchored CorEx compares favorably. The document

clustering of anchored CorEx is similar to, or bet-

ter than, that of z-labels LDA and must/cannot link

LDA. Across the disaster relief articles, anchored

CorEx finds less coherent topics than the two LDA

variants, while it finds similarly coherent topics as

must/cannot link LDA on the 20 newsgroup dataset.

5.2.2 Anchoring for Topic Representation

We now turn to studying how domain knowledge

can be anchored to a single topic to help an other-

wise dominated topic emerge, and how the anchor-

ing parameter β affects that emergence. To discern

this effect, we focus just on anchored CorEx along

with the HA/DR articles and clinical health notes,

datasets for which we have a domain expert lexicon.

We devise the following experiment: first, we de-

termine the top five anchor words for each docu-

ment label using the methodology described in Sec-

tion 4.3. Unlike in the previous section, we do not

filter these lists of ambiguous anchor words. Sec-

ond, for each document label, we run an anchored

CorEx topic model with that label’s anchor words

anchored to exactly one topic. We compare this an-
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Figure 4: Effect of anchoring words to a single topic for

one document label at a time as a function of the anchor-

ing parameter β. Light gray lines indicate the trajectory

of the metric for a given disaster or disease label. Thick

red lines indicate the pointwise average across all labels

for fixed value of β.

chored topic model to an unsupervised CorEx topic

model using the same random seeds, thus creating a

matched pair where the only difference is the treat-

ment of anchor words. Finally, this matched pairs

process is repeated 30 times, yielding a distribution

for each metric over each label.

We use 50 topics when modeling the ReliefWeb

articles and 30 topics when modeling the i2b2 clin-

ical health notes. These values were chosen by ob-

serving diminishing returns to the total correlation

explained by additional topics.

In Figure 4 we show how the results of this ex-

periment vary as a function of the anchoring pa-

rameter β for each disaster and disease type in the

two data sets. Since there is heavy variance across

document labels for each metric, we also examine a

more detailed cross section of these results in Fig-

ure 5, where we set β = 5 for the clinical health

notes and set β = 10 for the disaster relief arti-

cles. As we show momentarily, disaster and disease

types that benefit the most from anchoring were un-
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Figure 5: Cross-section results of the anchoring metrics from fixing β = 5 for the clinical health notes, and β = 10 for

the disaster relief articles. Disaster and disease types are sorted by frequency, with the most frequent document labels

appearing at the top. Error bars indicate 95% confidence intervals. The color bars provide context for each metric:

topic overlap pre-anchoring, proportion of topic model runs where the anchored topic was the most predictive topic,

and F1 score pre-anchoring.

derrepresented pre-anchoring. Document labels that

were well-represented prior to anchoring achieve

only marginal gain. This results in the variance seen

in Figure 4.

A priori we do not know that anchoring will cause

the anchor words to appear at the top of topics. So,

we first measure how the topic overlap, the propor-

tion of the top ten mutual information words that ap-

pear within the top ten words of the topics, changes

before and after anchoring. From Figure 4 (row

1) we see that as β increases, more of these rel-

evant words consistently appear within the topics.

For the disaster relief articles, many disaster types

see about two more words introduced, while in the

clinical health notes the overlap increases by up to

four words. Analyzing the cross section in Fig-

ure 5 (column 1), we see many of these gains come

from disaster and disease types that appeared less

in the topics pre-anchoring. Thus, we can sway the

topic model towards less dominant themes through

anchoring. Document labels that occur the most

frequently are those for which the topic overlap

changes the least.

Next, we examine whether these anchored topics

are more coherent topics. To do so, we compare the

coherence of the anchored topic with that of the most

predictive topic pre-anchoring, i.e. the topic with the

largest corresponding coefficient in magnitude of the

logistic regression, when the anchored topic itself is

most predictive. From Figure 4 (row 2), we see these

results have more variance, but largely the anchored

topics are more coherent. In some cases, the coher-

ence is 1.5 to 2 times that of pre-anchoring. Fur-

thermore, by colors of the central panel of Figure 5,

we find that the anchored topics are, indeed, often

the most predictive topics for each document label.

Similar to topic overlap, the labels that see the least

improvement are those that appear the most and are

already well-represented in the topic model.

Finally, we find that the anchored, more coherent

topics can lead to modest gains in document clas-

sification. For the disaster relief articles, Figure 4

(row 3) shows that there are mixed results in terms

of F1 score improvement, with some disaster types

performing consistently better, and others perform-

ing consistently worse. The results are more consis-

tent for the clinical health notes, where there is an

average increase of about 0.1 in the F1 score, and
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some disease types see an increase of up to 0.3 in

F1. Given that we are only anchoring 5 words to the

topic model, these are significant gains in predictive

power.

Unlike the gains in topic overlap and coherence,

the F1 score increases do not simply correlate with

which document labels appeared most frequently.

For example, we see in Figure 5 (column 3) that

Tropical Cyclone exhibits the largest increase in pre-

dictive performance, even though it is also one of the

most frequently appearing document labels. Simi-

larly, some of the major gains in F1 for the disease

types, and major losses in F1 for the disaster types,

do not come from the most or least frequent docu-

ment labels. Thus, if using anchoring single topics

within CorEx for document classification, it is im-

portant to examine how the anchoring affects pre-

diction for individual document labels.

5.2.3 Anchoring for Topic Aspects

Finding topics that revolve around a word, such

as a name or location, or a group of words can aid

in understanding how a particular subject or event

has been framed. We finish with a qualitative ex-

periment where we disambiguate aspects of a topic

by anchoring a set of words to multiple topics within

the CorEx topic model. Note, must/cannot link LDA

cannot be used in this manner, and z-labels LDA

would require us to know these aspects beforehand.

We consider tweets containing #Ferguson (case-

insensitive), which detail reactions to the shooting

of Black teenager Michael Brown by White po-

lice officer Darren Wilson on August 9th, 2014 in

Ferguson, Missouri. These tweets were collected

from the Twitter Gardenhose, a 10% random sam-

ple of all tweets, over the period August 9th, 2014 to

November 30th, 2014. Since CorEx will seek max-

imally informative topics by exploiting redundan-

cies, we remove duplicates of retweets, leaving us

with 869,091 tweets. We filter these tweets of punc-

tuation, stop words, hyperlinks, usernames, and the

‘RT’ retweet symbol, and use the top 20,000 word

types.

In the wake of both the shooting and the eventual

non-indictment of Darren Wilson, several protests

occurred. Some onlookers supported and encour-

aged such protests, while others characterized the

protests as violent “riots.” To disambiguate these

Topic Aspects of “protest”

1
protest, protests, peaceful, violent, continue,

night, island, photos, staten, nights

2

protest, protests, #hiphopmoves, #cole,

hiphop, nationwide, moves, fo, anheuser,

boeing

3
protest, protests, st, louis, guard, national,

county, patrol, highway, city

4

protest, protests, paddy, covering, beverly,

walmart, wagon, hills, passionately,

including

5
protest, protests, solidarity, march, square,

rally, #oakland, downtown, nyc, #nyc

Topic Aspects of “riot”

6
riot, riots, unheard, language, inciting,

accidentally, jokingly, watts, waving, dies

7
riot, black, riots, white, #tcot, blacks, men,

whites, race, #pjnet

8
riot, riots, looks, like, sounds, acting, act,

animals, looked, treated

9
riot, riots, store, looting, businesses,

burning, fire, looted, stores, business

10
gas, riot, tear, riots, gear, rubber, bullets,

military, molotov, armored

Table 3: Topic aspects around “protest” and “riot” from

running a CorEx topic model with 55 topics and anchor-

ing “protest” and “protests” together to five topics and

“riot” and “riots” together to five topics with β = 2. An-

chor words are shown in bold. Note, topics are not or-

dered by total correlation.

different depictions, we train a CorEx topic model

with 55 topics, anchoring “protest” and “protests”

together to five topics, and “riot” and “riots” to-

gether to five topics with β = 2. These anchored

topics are presented in Table 3.

The anchored topics reflect different aspects of

the framing of the “protests” and “riots,” and are

generally interpretable, despite the typical difficulty

of extracting coherent topics from short documents

using LDA (Tang et al., 2014). The “protest” topic

aspects describe protests in St. Louis, Oakland, Bev-

erly Hills, and parts of New York City (topics 1,

3, 4, 5), resistance by law enforcement (topics 3

and 4), and discussion of whether the protests were

peaceful (topic 1). Topic 2 revolves around hip-hop

artists who marched in solidarity with protesters.
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The “riot” topic aspects discuss racial dynamics of

the protests (topic 7) and suggest the demonstrations

are dangerous (topics 8 and 9). Topic 10 describes

the “riot” gear used in the militarized response to

the Ferguson protesters, and Topic 7 also hints at

aspects of conservatism through the hashtags #tcot

(Top Conservatives on Twitter) and #pjnet (Patriot

Journalist Network).

As we see, anchored CorEx finds several in-

teresting, non-trivial aspects around “protest” and

“riot” that could spark additional qualitative inves-

tigation. Retrieving topic aspects through anchor

words in this manner allows the user to explore dif-

ferent frames of complex issues, events, or discus-

sions within documents. As with the other anchor-

ing strategies, this has the potential to supplement

qualitative research done by researchers within the

social sciences and digital humanities.

6 Discussion

We have introduced an information-theoretic topic

model, CorEx, that does not rely on any of the gener-

ative assumptions of LDA-based topic models. This

topic model seeks maximally informative topics as

encoded by their total correlation. We also derived

a flexible method for anchoring word-level domain

knowledge in the CorEx topic model through the in-

formation bottleneck. Anchored CorEx guides the

topic model towards themes that do not naturally

emerge, and often produces more coherent and pre-

dictive topics. Both CorEx and anchored CorEx

consistently produce topics that are of comparable

quality to LDA-based methods, despite only making

use of binarized word counts.

Anchored CorEx is more flexible than previous

attempts at integrating word-level information into

topic models. Topic separability can be enforced by

lightly anchoring disjoint groups of words to sepa-

rate topics, topic representation can be promoted by

assertively anchoring a group of words to a single

topic, and topic aspects can be unveiled by anchor-

ing a single group of words to multiple topics. The

flexibility of anchoring through the information bot-

tleneck lends itself to many other possible creative

anchoring strategies that could guide the topic model

in different ways. Different goals may call for dif-

ferent anchoring strategies, and domain experts can

shape these strategies to their needs.

While we have demonstrated several advantages

of the CorEx topic model to LDA, it does have some

technical shortcomings. Most notably, CorEx re-

lies on binary count data in its sparsity optimiza-

tion, rather than the standard count data that is used

as input into LDA and other topic models. While

we have demonstrated CorEx performs at the level

of LDA despite this limitation, its effect would be

more noticeable on longer documents. This can be

partly overcome if one chunks such longer docu-

ments into shorter subdocuments prior to running

the topic model. Our implementation also requires

that each word appears in only one topic. These lim-

itations are not fundamental limitations of the the-

ory, but a matter of computational efficiency. In

future work, we hope to remove these restrictions

while preserving the speed of the sparse CorEx topic

modeling algorithm.

As we have demonstrated, the information-

theoretic approach provided via CorEx has rich po-

tential for finding meaningful structure in docu-

ments, particularly in a way that can help domain

experts guide topic models with minimal interven-

tion to capture otherwise eclipsed themes. The

lightweight and versatile framework of anchored

CorEx leaves open possibilities for theoretical ex-

tensions and novel applications within the realm of

topic modeling.
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