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Abstract. In this paper, we prove the mean-convex neighborhood conjecture for neck singularities of the
mean curvature flow in Rn+1 for all n ≥ 3: we show that if a mean curvature flow {Mt} in Rn+1 has an S n−1×R

singularity at (x0, t0), then there exists an ε = ε(x0, t0) > 0 such that Mt ∩ B(x0, ε) is mean-convex for all
t ∈ (t0−ε

2, t0 +ε2). As in the case n = 2, which was resolved by the first three authors in [CHH], the existence
of such a mean-convex neighborhood follows from classifying a certain class of ancient Brakke flows that
arise as potential blowup limits near a neck singularity. Specifically, we prove that any ancient unit-regular
integral Brakke flow with a cylindrical blowdown must be either a round shrinking cylinder, a translating
bowl soliton, or an ancient oval. In particular, combined with a prior result of the last two authors [HW20],
we obtain uniqueness of mean curvature flow through neck singularities.

The main difficulty in addressing the higher dimensional case is in promoting the spectral analysis on
the cylinder to global geometric properties of the solution. Most crucially, due to the potential wide variety
of self-shrinking flows with entropy lower than the cylinder when n ≥ 3, smoothness does not follow from
the spectral analysis by soft arguments. This precludes the use of the classical moving plane method to
derive symmetry. To overcome this, we introduce a novel variant of the moving plane method, which we call
“moving plane method without assuming smoothness” - where smoothness and symmetry are established in
tandem.
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1. Introduction

The mean curvature flow is perhaps the most natural evolution equation for hypersurfaces in Rn+1.
Given a smooth hypersurface M0, its evolution {Mt}t≥0 is dictated by the equation

(1) ∂t x = H(x),

where H(x) denotes the mean curvature vector at x ∈ Mt. Because the equation is parabolic, one expects
the solution to improve with time. Once this “improvement” is understood well enough, one expects
that the mean curvature flow will become a central tool in the study of the geometry and the topology
of embedded hypersurfaces. Some successes of this methodology include [HS09, IW15, BHH21, Sch20,
BW18b, HK19, BW20a].

From a different perspective, the fact that solutions of the mean curvature flow equation improve should
mean that if a solution has existed for infinitely long time, it should be quite rigid.

Definition 1.1 (ancient). A mean curvature flow {Mt} is called ancient, if it defined for all t ∈ (−∞,T ),
where T ∈ (−∞,∞].

Ancient solutions of the mean curvature flow, as well as other parabolic equations, have been exten-
sively studied over the last 30 years. In particular, all singularity models (blowup limits) are ancient
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solutions, and thus the analysis of ancient solutions is crucial to understand the formation of singularities.

The simplest and most important kind of ancient solutions are the self-similarly shrinking ones: these
are solutions to the mean curvature flow that evolve by homotheties:

(2) Mt =
√
−tM−1.

One easily sees that M−1 is a time −1 slice of a self-similarly shrinking solution if and only if it satisfies

(3) H(x) +
x⊥

2
= 0,

in which case M−1 is called a shrinker.
In [Hui93], Huisken classified all smooth, mean-convex shrinkers in Rn+1: each such shrinker is (up to

a rotation) either a hyperplane through the origin, a round cylinder of the form

(4) S k
(√

2k
)
× Rn−k,

where k ∈ {1, . . . , n−1}, or the sphere S n
(√

2n
)
. More recently, without any curvature assumptions, Bren-

dle showed that every smooth, two-dimensional shrinker of genus 0 in R3 is either the round sphere, the
round cylinder or a flat plane [Bre16]. Those are by no means the only smooth, two-dimensional shrinkers
in R3, as examples constructed in [Ang92, KKM18, Ket16, EW] indicate.

Another important type of ancient (indeed, eternal) flows are translating solutions, i.e., solutions of the
form

(5) Mt = M0 + tv,

for some fixed vector v ∈ Rn+1. For n ≥ 2, there is a unique translator that is the graph of an entire,
rotationally invariant function on Rn [AW94, CSS07]. It is called the bowl soliton, a name suggestive
of its leading order paraboloidal shape. In [Wan11], Wang proved that (up to rigid motions) the bowl
soliton is the unique convex translator in R3 that is an entire graph. Wang also constructed convex, entire
graphical translators in higher dimensions that are not rotationally symmetric. In arbitrary dimension,
the second author [Has15] proved that the bowl soliton is the only uniformly two-convex, noncollapsed1

translating solution in Rn+1. A complete classification of graphical translators in R3, both collapsed and
noncollapsed, has been obtained in [HIMW19a], building on important prior work of Spruck-Xiao [SX20].
See [HMWb], [Ngu09], and [HMWa] for other examples of translators, and [HIMW19b] for a survey
article about translators.

Ancient solutions that are not self-similar are more challenging to construct and are even harder to
classify. This is mostly due to the fact that they do not satisfy any elliptic equation or variational principle.
In dimension one, a convex example resembling a paperclip was found by Angenent, and analogues col-
lapsed convex ancient solutions in Rn+1, so called ancient pancakes, were constructed in [Wan11, BLT17].
In [Whi03], the last author (see also [Ang13] and [HH16]) gave an example of a noncollapsed ancient,

1We recall that a mean-convex flow is α-noncollapsed [SW09, And12, HK17a] if at each point p ∈ Mt admits interior and
exterior balls tangent at p of radius α/H(p). Noncollapsed solutions are the most important ones for singularity analysis.
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static plane round shrinking sphere round shrinking cylinder

translating bowl ancient oval

Figure 1. The classification by Angenent-Daskalopoulos-Sesum and Brendle-Choi

compact, uniformly two-convex mean curvature flow in Rn+1 which for t → −∞ looks like a cylinder,
capped off by two bowl solitons, and for t → 0 becomes round. This solution is called an ancient oval.
In [DHS10], Daskalopoulos, Hamilton and Sesum showed that closed embedded ancient evolutions of
curves are either a family of round shrinking circles or Angenent’s paper-clip solution. A key a feature,
which is unique to the one dimensional case, is that the paper-clip solution is given by an explicit formula.
This allowed them to design monotone quantities that identify the paper-clip. The oval, on the other hand,
(and also, the bowl soliton) is not given by any explicit formula.

The classification of ancient solutions of the mean curvature flow, in particular in the most challeng-
ing situation without any self-similarity assumptions, has enjoyed recent significant developments by
Angenent-Daskalopoulos-Sesum and by Brendle-Choi. The combined results of their papers provide a
complete classification in the noncollapsed uniformly two-convex setting:2

Theorem 1.2 (classification of ancient noncollapsed uniformly two-convex smooth mean curvature flows
by Angenent-Daskalopoulos-Sesum [ADS19, ADS20] and Brendle-Choi [BC19, BC21]). Any ancient,
noncollapsed, uniformly two-convex, smooth mean curvature flow in Rn+1 is either

(i) a static hyperplane,

2We recall that a mean-convex mean curvature flow is called uniformly two-convex, if λ1 + λ2 ≥ βH for some β > 0, where
λ1, λ2 denotes the smallest two principal curvatures. This condition is preserved under mean curvature flow.
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(ii) a family of round shrinking spheres,
(iii) a family of round shrinking cylinders,
(iv) a translating bowl soliton, or
(v) an ancient oval.

These results answer fundamental questions regarding the precise nature of singularities and high cur-
vature regions of mean curvature flow starting from any closed two-convex hypersurface, c.f. [Whi03,
Conj. 1]. Moreover, the methods also turned out to be fundamental for the classification of high cur-
vature regions in three-dimensional Ricci flow [Bre20, ABDS19, BDS21], as conjectured by Perelman
[Per02, Per03]. On the other hand, even before these results, mean curvature flow with two-convex initial
conditions had reached almost full maturity, from the perspective of flowing through singularities, and
geometric and topological applications (as long as one applies it to one object at a time). In fact, a coarser
description of the behavior of such flows at high curvature regions turned out to be sufficient for the con-
struction of mean curvature flow with surgery by Huisken-Sinestrari [HS09], Brendle-Huisken [BH16]
and Haslhofer-Kleiner [HK17b]. It was therefore clear that more general classification results are needed
to gain new insights about the qualitative local behavior of mean curvature flow without two-convexity
assumption.

For n = 2, such a generalization has been obtained recently by the first three authors [CHH, Thm. 1.2],
who showed that any ancient low entropy flow in R3 (as introduced in [CHH, Def. 1.1] and reviewed be-
low in Section 1.2), must be one of the types (i)–(v) from above. In particular, this classification of ancient
low entropy flows in R3 was the key to confirm two fundamental conjectures for the mean curvature flow
in R3: The mean-convex neighborhood conjecture [CHH, Thm. 1.7], and the uniqueness conjecture for
mean curvature flow through cylindrical singularities [CHH, Thm. 1.9].

The goal of the present paper is to prove a classification result for ancient flows in Rn+1 for n ≥ 3, that
is general enough to facilitate conclusions about mean-convex neighborhoods and uniqueness.

As we will explain in Section 1.1, a suitable class of flows to consider for this purpose is the one of an-
cient asymptotically cylindrical flows (see Definition 1.4). Loosely speaking, this is the class of all ancient
Brakke flows that one potentially gets when one blows up near any neck singularity (see Definition 1.16)
by the scale of the neck . It turns out that for n = 2 the class of ancient low entropy flows, i.e. the class of
flows considered in [CHH], is essentially equivalent (after eliminating the trivial examples of static planes
and round shrinking spheres) to the class of ancient asymptotically cylindrical flows (see Section 1.2). In
stark contrast, for n ≥ 4 these classes of flows are most likely dramatically different (see Section 1.3).

Our main classification result (Theorem 1.5) proves that any ancient asymptotically cylindrical flow
in Rn+1, where n ≥ 3 is arbitrary, is either (i) a family of round shrinking cylinders, (ii) a translating
bowl soliton, or (iii) an ancient oval. Our main applications are a proof of the mean-convex neighborhood
conjecture for neck singularities in arbitrary dimension (Theorem 1.17), and a proof of the uniqueness
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conjecture for mean curvature flow through neck singularities in arbitrary dimension (Theorem 1.19).
Combined with a recent result by Colding-Minicozzi [CM20], we also obtain a classification result in
higher codimension (Corollary 1.20). These three applications will be discussed in Section 1.6.

As we shall see, there are many obstacles that only present themselves for n ≥ 3. To overcome them,
this paper contains several new ideas that are very different in nature from the ones in [CHH]. One of these
ideas, which we call “moving plane method without assuming smoothness” (see Section 1.4) is seemingly
novel to geometric analysis, and we hope it will find many future applications.

1.1. Ancient asymptotically cylindrical flows. Our main result described in this section is a classifica-
tion of ancient asymptotically cylindrical flows in Rn+1 for n ≥ 3, see Theorem 1.5. To get a classification
strong enough for our applications (see Section 1.6), we have to extend the class of smooth mean curvature
flows to a class with better compactness properties:

As in [Ilm94, Def. 6.2, 6.3] an n-dimensional integral Brakke flow in Rn+1 is given by a family of
Radon measuresM = {µt}t∈I in Rn+1 that is integer n-rectifiable for almost all times and satisfies

(6)
d
dt

∫
ϕ dµt ≤

∫ (
−ϕH2 + ∇ϕ ·H

)
dµt

for all test functions ϕ ∈ C1
c (Rn+1,R+), see Section 2 (preliminaries) for details. Of course, whenever

{Mt}t∈I is a classical solution of (1), then the associated family of area measures µt = HnxMt solves (6).
A somewhat silly quirk, coming from the very definition of Brakke flows via the inequality (6), is that
the flow can suddenly vanish without any cause. To prevent this to some extent, we often assume that the
flows are unit-regular as defined in [Whi05, SW20], i.e., that every backwardly regular point is regular.
All Brakke flows constructed via Ilmanen’s elliptic regularization [Ilm94] are integral and unit-regular,
and these properties are preserved under passing to weak limits, see Section 2 (preliminaries).

The coarse asymptotics of an ancient integral Brakke flow M = {µt}t∈(−∞,Te(M)], where Te(M) ≤ ∞
denotes the extinction time, are captured by a so-called blowdown limit (aka tangent flow at infinity). To
describe this, given any λ > 0, letDλ : Rn+1 × R→ Rn+1 × R be the parabolic dilation

(7) Dλ(x, t) = (λx, λ2t).

We denote byDλ(M) the Brakke flow that is obtained fromM by parabolically dilating by λ.3

Definition 1.3 (blowdown limit). A blowdown limit of an ancient Brakke flowM is any limit of the form

(8) M̌ = lim
j→0
Dλ j(M),

where λ j is a sequenece of positive numbers converging to zero.

3In more pedantic notation,Dλ(M) = {µλt }t∈(−∞,λ2T ) where µλt (A) = λnµλ−2t(λ−1A).
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Figure 2. The ancient ovals are an example of ancient asymptotically cylindrical flow.

In full generality, the limit in (8) has to be understood in the sense of Brakke flows. However, in
the important special case when M̌ is smooth with multiplicity one, then thanks to the local regularity
theorem [Bra78, Whi05] the convergence is actually smooth. It follows from Huisken’s monotonicity
formula [Hui90, Ilm95] and the Brakke compactness theorem [Bra78, Ilm94] that any ancient integral
Brakke flow with finite entropy has at least one blowdown limit, and furthermore that any such blowdown
limit M̌ is backwardly selfsimilar, i.e.,

(9) M̌t =
√
−tM̌−1.
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The case of interest for the analysis of neck singularities (see Definition 1.16) is when M̌ (after a suitable
orthogonal transformation of Rn+1) is a family of round shrinking cylinders as in (4) with k = n − 1:

Definition 1.4 (ancient asymptotically cylindrical flow). An ancient asymptotically cylindrical flow is
an ancient, unit-regular, integral Brakke flow in Rn+1 that has some blowdown limit consisting (up to a
rotation) of the round shrinking cylinders {S n−1(

√
−2(n − 1)t) × R}t<0.

Our main theorem provides a complete classification:

Theorem 1.5 (classification of ancient asymptotically cylindrical flows). For every n ≥ 3, any ancient
asymptotically cylindrical flow in Rn+1 is either

(i) a round shrinking cylinder,
(ii) a translating bowl soliton, or

(iii) an ancient oval.

The most important feature of Theorem 1.5, in stark contrast with the prior classification result (see The-
orem 1.2) from Angenent-Daskalopoulos-Sesum [ADS19, ADS20] and Brendle-Choi [BC19, BC21], is
that convexity, uniform two-convexity, noncollapsing, connectedness, smoothness, and curvature bounds
are implied by the theorem, rather than being its assumptions. This is crucial for the proof of the mean-
convex neighborhood conjecture for neck singularities (Theorem 1.17) and the proof of the uniqueness
conjecture for mean curvature flow through neck singularities (Theorem 1.19).

1.2. Relationship with prior classification results. In this section, we explain the relationship with the
prior classification results from [ADS19, ADS20, BC19, BC21] and [CHH].

1.2.1. Relationship with the classification of ancient noncollapsed uniformly two-convex smooth mean
curvature flows. If {Mt}t∈(−∞,T ) is an ancient noncollapsed uniformly two-convex smooth mean curvature
flow in Rn+1, then it easily follows from Huisken’s monotonicity formula [Hui90] and his classification
of mean-convex shrinkers (see the beginning of this introduction), combined with the two-convexity as-
sumption, that for t → −∞ we can take a blowdown limit which must be either (a) a static plane, (b) a
family of round shrinking spheres with radius

√
−2nt, or (c) a family of round shrinking cylinders of the

form

(10)
{
S n−1(

√
−2(n − 1)t) × R

}
t<0

.

In case (a) and (b), by the equality case of the monotonicity formula, the flow {Mt}t∈(−∞,T ) itself must be a
static plane or a family of round shrinking spheres, respectively. Hence, the only nontrivial case is (c), and
we see that Theorem 1.5 (classification of ancient asymptotically cylindrical flows) of course generalizes
Theorem 1.2 (classification of ancient noncollapsed uniformly two-convex smooth mean curvature flows).

A-posteriori, as a consequence of Theorem 1.5 we obtain:
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Corollary 1.6 (consequence of our main classification result). Every ancient asymptotically cylindrical
flow is convex, uniformly two-convex, noncollapsed, and smooth.

However, we emphasize that it is a-priori completely nonevident – and in fact completely nonevident
almost until the very end of our proof of Theorem 1.5 – whether or not ancient asymptotically cylindrical
flows are (mean) convex, uniformly two-convex, noncollapsed and smooth.

1.2.2. Relationship with the classification of ancient low entropy flows. Next, let us explain the relation-
ship with the classification result for ancient low entropy flows in R3 by the first three authors, which we
restate here for the reader’s convenience:4

Theorem 1.7 (classification of ancient low entropy flows in R3 from [CHH, Thm. 1.2]). Suppose thatM
is a an ancient, unit-regular, cyclic, integral Brakke flow in R3 that satisfies the low entropy assumption
Ent[M] ≤ Ent[S 1 ×R]. ThenM is either (i) a static plane, (ii) a family of round shrinking spheres, (iii) a
family of round shrinking cylinders, (iv) a translating bowl soliton, or (v) an ancient oval.

Entropy was introduced by Colding-Minicozzi [CM12], and is defined as follows: The entropy of a
Radon measure µ in Rn+1 (in particular of a hypersurface M via µ = HnxM) is defined as the supremum
of its Gaussian area over all centers and scales, namely

(11) Ent[µ] = sup
y∈Rn+1,λ>0

1
(4πλ)n/2

∫
e−
|x−y|2

4λ dµ(x).

The entropy of a Brakke flowM = {µt}t∈I is then defined as

(12) Ent[M] = sup
t∈I

Ent[µt].

Using Huisken’s monotonicity formula [Hui90, Ilm95] and the important classification result for low
entropy shrinkers in dimension n = 2 by Bernstein-Wang [BW17], one can easily check:

Proposition 1.8 (Essential equivalence for n = 2). Let M be an ancient unit-regular, cyclic, integral
Brakke flow in R3, and suppose thatM is not a static plane or a family of round shrinking spheres. Then
M is an ancient asymptotically cylindrical flow if and only ifM is an ancient low entropy flow.

In that sense, Theorem 1.5 (classification of ancient asymptotically cylindrical flows) generalizes to
arbitrary n ≥ 3, the prior classification of ancient low entropy flows in R3 (Theorem 1.7).

4For n = 2, since Ent[S 1 ×R] > 3/2, one needs the extra technical condition of being cyclic, as defined in [Whi09]. However,
for reading the present paper one can safely ignore this notion, since fortunately Ent[S n−1 × R] < 3/2 for n ≥ 3.
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1.3. The role of entropy in the study of ancient Brakke flows. In this section, we explain one of the
key difficulties that arises in the study of ancient asymptotically cylindrical flows in Rn+1 for n ≥ 3.

LetM be an ancient asymptotically cylindrical flow in Rn+1. It easily follows from Huisken’s mono-
tonicity formula [Hui90, Ilm95] that

(13) Ent[M] ≤ Ent[S n−1 × R].

For any X = (x, t) inM one can take a limit

(14) M̂X = lim
j→∞
Dλ j(M− X),

for some sequence λ j → ∞, and any such limit is backwardly selfsimilar. The flow M̂X is called a tangent
flow ofM at X, and is a key object in analyzing the singularity formation of the flow. Importantly,

(15) Ent[M̂X] ≤ Ent[M],

so combined with (13), in order to study partial regularity of ancient asymptotically cylindrical flows, one
is lead to study the class of self-similar flows with entropy less than Ent[S n−1 × R].

While the role of selfsimilar flows in the singularity analysis is well known, they also play an addi-
tional role in the analysis of ancient flows. Indeed, as is explained in [CHN13] and Section 4.3, through
quantitative differentiation one can quantify the equality case of the monotonicity formula to obtain that
ancient integral Brakke flows of bounded entropy must be almost selfsimilar away from a controlled num-
ber of scales. Ancient selfsimilar flows of entropy less than Ent[S n−1 × R] therefore provide invaluable
information, not only about the singularity formation, but also on the “history” of ancient asymptotically
cylindrical flows.

A crucial ingredient in [CHH] was the following important result by Bernstein-Wang:

Theorem 1.9 (low entropy shrinkers for n = 2 by Bernstein-Wang [BW17]). The only nontrivial smooth
two-dimensional shrinker Σ ⊂ R3 with Ent[Σ] < Ent[S 1 × R] is the round sphere.

In particular, this was used in [CHH, Sec. 5.1] to show that ancient low entropy flows in R3 are smooth
until they become extinct. However, the Bernstein-Wang classification is specifically for n = 2. Indeed,
their classification relies on Brendle’s classification of genus zero shrinkers in R3 [Bre16].

For n = 3, the best available structural result for low entropy shrinkers is the following:

Theorem 1.10 (structure of low entropy shrinkers for n = 3 by Bernstein-Wang [BW18b]). If Σ ⊂ R4 is
any three-dimensional shrinker with Ent[Σ] < Ent[S 2 × R] then it is either

• a compact shrinker diffeomorphic to S 3, or
• a noncompact asymptotically conical shrinker diffeomorphic to R3.

In particular, it is a very difficult open problem to determine whether or not there exist nontrivial asymp-
totically conical shrinkers with entropy less than the cylinder. To circumvent this problem, for their recent
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proof of the low entropy Schönflies conjecture in R4 [BW20a], Bernstein-Wang had to write a slew of
auxiliary papers [BW21b, BW21a, BW18a, BW19b, BW19a, BW20b] to deal with the potential scenario
of such asymptotically conical shrinkers.

For n ≥ 4, it is believed (but not yet known) that there are many shrinkers with entropy less than
the cylinder, and the geometry and topology of such low entropy shrinkers is only partially understood
[BW16, BW18b]. A complete classification would be no easier than classifying all minimal hypersurfaces
in S n with certain area bounds.5 Even for n = 3, such a classification seems no simpler than a variant of
the Willmore conjecture, where the equation is substituted by some implicit asymptotic information (a
classification requires, in particular, to get a lower area bound on the links of the asymptotic cones).

While many new ideas (see Section 1.7) are needed in order to overcome the lack of an analogues result
to [BW17] when n ≥ 3, the most interesting challenge is the following: Standard methods from geometric
analysis only imply that ancient asymptotically cylindrical flows are regular away from a set of parabolic
Hausdorff dimension at most n − 2 (see Section 4.1).6 Hence, fundamentally new ideas are needed to
establish smoothness. We will discuss them in the next two subsections.

1.4. Moving plane method without assuming smoothness. The moving plane method was introduced
by Alexandrov in [Ale62] to show that smooth, closed, embedded constant mean curvature surfaces are
spheres (see also Hopf’s lecture notes on “Differential geometry in the large” [Hop83]). From there on it
has been a fundamental method in showing that (not necessarily geometric) elliptic or parabolic problems
possess symmetries if they are closed, or if their boundaries or asymptotic behavior are symmetric: see
for instance [Ser71, GNN79, Sch83, CS88, CGS89, MSHS15, CHH], as well as the survey [Bre99].

The basic idea of the moving plane method is perhaps best illustrated by Alexandrov’s original proof
[Ale62]: Let M ⊂ R3 be smooth closed embedded constant mean curvature surface. Take any plane P
away from M, and start pushing it, parallel to its normal, towards M. Push P until it hits M, and then
push it further, for as long as M can be reflected across P without intersecting itself. A combination of the
strong maximum principle and the Hopf lemma shows that this process of pushing P will only stop once
M is reflection symmetric across P. Similarly, a classical example for the moving plane method in the
noncompact setting is Schoen’s uniqueness proof for the catenoid [Sch83].

5We thank Jacob Bernstein for a helpful conversation on this topic.
6This is seemingly an issue even when n = 2. See Section 1.7 (and in particular, the description of Section 6) for how

smoothness was established for n = 2.
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moving plane

Figure 3. Moving plane method without assuming smoothness

Traditionally, the moving plane method only works for smooth solutions. In our situation, however,
it does not seem possible to first establish smoothness by standard methods (see Section 1.3). To over-
come this, we develop a novel variant of the moving plane method, where smoothness and symmetry are
established in tandem. Loosely speaking, the method gives rise to the following general principle:

Principle 1.11 (Moving plane method without assuming smoothness). Smoothness and symmetry at in-
finity (or at the boundary) can be promoted to smoothness and symmetry in the interior.

More specifically, in the proof of Theorem 1.5, after many other steps, we will find ourselves in the
following situation: Outside of a cap of controlled size the flow Mt is smooth and paraboloidal, but inside
of the cap region it could be singular. This is illustrated schematically in Figure 3. More precisely, the
asymptotics are the ones summarized at the beginning of Section 7 (moving plane method without assum-
ing smoothness). We then show, using the new tools for Brakke flows that will be described in the next
subsection, that whenever the moving plane reaches a point, then, unless the moving plane has reached
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a plane of symmetry of Mt, the point must be a smooth point. Consequently, if the moving plane hasn’t
reached a plane of symmetry, we can push the moving plane further, just like in the smooth moving plane
method. In this way, symmetry and smoothness (away from the axis of symmetry) are derived in tandem.

To implement the moving plane method without assuming smoothness (Principle 1.11), we establish a
strong maximum principle for Brakke flows and a Hopf lemma for Brakke flows, where smoothness is a
consequence rather than being an assumption. This will be described in the next subsection.

Remark 1.12. The moving plane method without assuming smoothness (Principle 1.11) also has applica-
tions for other geometric problems. We will discuss some of them in [HHW20].

1.5. New tools for Brakke flows. In this section, we describe some new tools for Brakke flows. In addi-
tion to being key ingredients in the proof of Theorem 1.5, these tools are also of independent interest.

Denote by H ⊂ Rn+1 an open halfspace whose boundary n-plane contains the origin. Recall first that
the classical Hopf lemma says that if u1, u2 are smooth solutions of a second order parabolic equation,
defined in a parabolic ball P(0, 0, r) = Br(0) × (−r2, 0], such that u1(0, 0) = u2(0, 0), and u1(x, t) < u2(x, t)
for all x ∈ Br(0) ∩ H and t ∈ (−r2, 0], then u1 and u2 have distinct normal derivatives at (0, 0).

The first guess about how to generalize this for Brakke flows would be to infer that the tangent flows at
(0, 0) must be distinct. But actually we can do much better. In essence, we can use the fact that one flow
lies above the other one to conclude that (0, 0) must be a smooth point. Specifically, we prove:

Theorem 1.13 (Hopf lemma without assuming smoothness, c.f. Theorem 3.20). LetM1,M2 be integral
Brakke flows defined in the parabolic ball P(0, 0, r). If

(i) (0, 0) ∈ sptM1 ∩ sptM2 is a tame point for both flows,
(ii) ∂H is not the tangent flow to eitherM1 orM2 at (0, 0),

(iii) and reg M1
t ∩ H and reg M2

t ∩ H are disjoint for t ∈ (−r2, 0),

thenM1 andM2 are smooth at (0, 0), with distinct tangents.

For our Brakke flow version of the moving plane method, the case of particular interest is whenM2 is
the image ofM1 under reflection in the plane ∂H.

The most important feature of Theorem 1.13 (Hopf lemma without assuming smoothness) is that
smoothness is a conclusion rather than being an assumption. It is thus a fundamental new tool to es-
tablish smoothness for Brakke flows. Our new method also applies to other geometric problems.

Let us now explain the technical details of the statement of Theorem 1.13: IfM is an integral Brakke
flow then sptM denotes its support (i.e. all points with Gaussian density ≥ 1), and reg Mt denotes the
regular part of the time t slice of the support. A point X ∈ sptM is called a tame point if for each tangent
flow ofM at X, the time −1 slice is smooth with multiplicity one away from a set of (n − 1)-dimensional
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Hausdorff measure zero. This condition is sharp, since the statement clearly fails for triple-junctions. It is
easy to check that all ancient asymptotically cylindrical flows are tame (see Corollary 4.4).

We also prove a strong maximum principle for Brakke flows. While more general versions are possible,
for our purpose, the following version where one of the flows is assumed to be smooth is sufficient:

Theorem 1.14 (Strong maximum principle for Brakke flows, c.f. Theorem 3.4). Let M1 be a smooth
mean curvature flow defined in a parabolic ball P(X0, r) based at X0 ∈ sptM1, where r > 0 is small
enough such that sptM1 separates P(X0, r) into two open connected components,U andU′. LetM2 be
an integral Brakke flow defined in P(X0, r) with X0 ∈ sptM2. If X0 has Gaussian density ΘX0(M2) < 2,
and if

(16) sptM2 ⊆ U ∪ sptM1,

then X0 is a smooth point forM2 and there exists some ε > 0 such that

(17) sptM2 ∩ P(X0, ε) = sptM1 ∩ P(X0, ε).

Again, the important feature is that smoothness of M2 is not an assumption but a conclusion. While
the present paper is seemingly the first to discuss a singular strong maximum principle for mean curvature
flow, nonsmooth versions of the strong maximum principle for minimal surfaces have been extensively
studied [SW89, Sim87, Ilm96, Wic14b], and indeed Theorem 1.14 follows quite easily from the elliptic
result from Solomon-White [SW89]. On the other hand, we know of no geometric analytic instance of a
singular analogue of the Hopf lemma that has previously appeared.

1.6. Applications of our classification result. In this section, we discuss applications of Theorem 1.5
(classification of ancient asymptotically cylindrical flows) to mean curvature flow through singularities.

Central for this is the notion of a neck singularity. Some simple examples of neck singularities are
the classical neck-pinch, the degenerate neck-pinch and the doubly degenerate neck-pinch from [AAG95,
AV97]. However, the definitions below are much more general. At the first singular time, there are many
equivalent ways to describe this. One standard way to phrase the definition is that a mean curvature flow
M has neck singularity at X = (x,T ), if some tangent flow of M at X is the family of round shrinking
cylinders

(18)
{
S n−1(

√
−2(n − 1)t) × R

}
t<0

with multiplicity one. Recall that a tangent flow at X is any limit of the rescaled flowsDλ j(M− X) where
λ j → ∞. Cylindrical tangent flows are unique by an important result of Colding-Minicozzi [CM15].

IfM has a neck singularity at X = (x,T ), then by the mean-convex neighborhood conjecture for neck
singularities (see e.g. [Ilm03, CMP15, HW20], and also [AAG95]) it is expected that there is some space-
time neighborhood of X in which the flow is mean-convex (possibly after flipping orienation), i.e., that
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there is some ε = ε(X) > 0 such that

(19) Mt ∩ Bε(x) is mean-convex for all t ∈ (T − ε2,T + ε2).

We remark that more generally one can also ask whether S n−k(
√
−2(n − k)t) × Rk singularities have a

mean-convex neighborhood, but in the present paper we only deal with neck singularities, i.e. with the
case k = 1. For more extensive background on the mean-convex neighborhood conjecture, see [CHH].

Our main result below is Theorem 1.17 (mean-convex neighborhoods), where we establish the mean-
convex neighborhood conjecture for neck singularities at all times. A major difficulty, which we overcome
in our proof, is to exclude certain potential scenarios of nonconvex singularities that are not directly cap-
tured by the tangent flow. In particular, we rule out the potential scenario of a degenerate neckpinch with
a nonconvex cap, as well as the possibility of nonconvex caps slightly after the neck singularity.

For the sake of exposition, let us first state Theorem 1.17 in the special case of the first singular time:

Theorem 1.15 (mean-convex neighborhoods at the first singular time). Let M = {Mt}t∈[0,T ) be a mean
curvature flow of closed embedded hypersurfaces in Rn+1, where T is the first singular time. If the flow
has a neck singularity at X = (x,T ), then there exists an ε = ε(X) > 0 such that, possibly after flipping the
orientation, the flowM is mean-convex in the two-sided parabolic ball B(X, ε). Moreover, any nontrivial
special limit flow at X is either a round shrinking cylinder or a translating bowl soliton.7

Before stating our solution of the mean-convex neighborhood conjecture for neck singularities in arbi-
trary dimensions at all times, let us first recall some notions about mean curvature through singularities:
For any closed set K ⊂ Rn+1, its level set flow Ft(K) is the maximal family of closed sets starting at K
that satisfies the avoidance principle [ES91, CGG91, Ilm94]. Now, for any closed embedded hypersurface
M ⊂ Rn+1 there are at least three reasonable evolutions through singularities, c.f. [Ilm94, HW20], namely
its level set flow Ft(M), its outer flow Mt and its inner flow M′t . The latter two are defined as follows.
Let K be the compact domain bounded by M, and let K′ := Rn+1 \ K. Denote the corresponding level set
flows by

(20) Kt = Ft(K), and K′t = Ft(K′).

Let K and K ′ be their space-time tracks, namely

K = {(x, t) ∈ Rn+1 × R+ | x ∈ Kt}, and K ′ = {(x, t) ∈ Rn+1 × R+ | x ∈ K′t }.(21)

The outer flow of M and inner flow of M are then defined by

Mt = {x ∈ Rn+1 | (x, t) ∈ ∂K}, and M′t = {x ∈ Rn+1 | (x, t) ∈ ∂K ′}.(22)

Of course, as long as the evolution is smooth, Mt,M′t and Ft(M) coincide.

7It is easy to see that ancient ovals cannot arise as special limit flow at the first singular time, i.e. they cannot arise as limit of
any sequence of rescaled flowsDλ j (M− X j) where λ j → ∞ and X j = (x j, t j)→ X with t j ≤ T .
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Denote by Dλ(K − X) and Dλ(K ′ − X) the flows that are obtained from K and K ′, respectively, by
shifting X to the origin, and parabolically rescaling by λ. The following is the minimal and thus most
general definition capturing the formation of a neck singularity under weak mean curvature flow, and
simultaneously maintaining the notion of an “inside” and an “outside”:

Definition 1.16 (neck singularity). The evolution of a closed embedded hypersurface M ⊂ Rn+1 by mean
curvature flow has an inwards (respectively outwards) neck singularity at X ∈ Rn+1 × R+ if the rescaled
flow Dλ(K − X) (respectively Dλ(K ′ − X)) converges for λ → ∞ locally smoothly with multiplicity one
to a round shrinking solid cylinder {B̄n(

√
2(n − 1)|t|) × R}t<0, up to rotation.

The following result establishes the mean-convex neighborhood conjecture for neck singularities in
arbitrary dimension at all times, and thus generalizes the main result of [CHH] to higher dimensions:

Theorem 1.17 (mean-convex neighborhoods). Assume X = (x,T ) is a space-time point at which the
evolution of a closed embedded hypersurface M ⊂ Rn+1 by mean curvature flow has an inward neck
singularity. Then there exists an ε = ε(X) > 0 such that

(23) Kt2 ∩ B(x, ε) ⊆ Kt1 \ Mt1

for all T − ε2 < t1 < t2 < T + ε2. Similarly, if the evolution has an outward neck singularity at X, then
there exists some ε = ε(X) > 0 such that

(24) K′t2 ∩ B(x, ε) ⊆ K′t1 \ M′t1

for all T − ε2 < t1 < t2 < T + ε2. Furthermore, in both cases, any nontrivial limit flow at X is either a
round shrinking sphere, a round shrinking cylinder, a translating bowl soliton or an ancient oval.8

In fact, as a consequence of our proof of Theorem 1.17 (or alternatively as a consequence of the state-
ment of Theorem 1.17 combined with the prior classification from [ADS20, BC21]) we obtain a canonical
neighborhood theorem for neck singularites in arbitrary dimensions:

Corollary 1.18 (canonical neighborhoods). Assume X = (x,T ) is a space-time point at which the evolution
of a closed embedded hypersurface M ⊂ Rn+1 by mean curvature flow has a neck singularity. Then for
every ε > 0 there exists a δ = δ(X, ε) > 0 with the following significance. For any regular point9

X′ ∈ B(X, δ) the flow M′ = Dλ(M − X′) which is obtained from M by shifting X′ to the origin and
parabolically rescaling by λ = |H(X′)| is ε-close in Cb1/εc in B1/ε(0) × (−1/ε2, 0] to a round shrinking
sphere, a round shrinking cylinder, a translating bowl soliton or an ancient oval.

The conclusion of Corollary 1.18 gives a similar structure for singularities as in two-convex mean cur-
vature flow [HS09, BH16, HK17b, ADS19, ADS20, BC19, BC21] and in 3d Ricci flow [Per02, Per03,

8More generally, the theorem also holds for mean curvature flow in arbitrary ambient manifolds Nn+1.
9Choosing δ > 0 small enough, the singular set ofM∩ B(X, δ) has parabolic Hausdorff dimension at most 1. In particular,

all points are regular at almost every time.
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Bre20, Bre19, ABDS19, BDS21].10 However, for two-convex mean curvature flow and 3d Ricci flow
convexity is known a priori due to the convexity estimate [HS99, Whi03, HK17a] respectively [Ham95].
Namely, the crucial difference is that in Corollary 1.18 the convexity is not known a priori but comes as a
consequence of our main classification result of ancient asymptotically cylindrical flows (Theorem 1.5).

Our second main applications concerns uniqueness of mean curvature flow. It has been understood
since the 90s that the mean curvature evolution of a hypersurface M ⊂ Rn+1 through singularities in
general can be nonunique [Vel94, AIC95, Whi02]. To capture this, one considers the discrepancy time

(25) Tdisc = inf{t > 0 |Mt, M′t , and Ft(M) are not all equal},

which is the first time when the evolution becomes nonunique, c.f. [HW20].11 While the flow through
general singularities can be highly nonunique, it has been conjectured (see e.g. [AAG95, Whi02, HW20],
and also [ACK12, Car16, BK17]) that the flow through neck singularities should be unique. The following
result confirms this in arbitrary dimension:

Theorem 1.19 (uniqueness). If T ∈ (0,Tdisc], and if all the backward singularities of the outer flow {Mt}

at time T are neck singularities or spherical singularities, then T < Tdisc. In particular, mean curvature
flow through neck singularities and spherical singularities is unique.

Theorem 1.17 (mean-convex neighborhoods), Corollary 1.18 (canonical neighborhoods) and Theorem
1.19 (uniqueness) give a precise description of the mean curvature flow around any neck singularity.
Previously, the dynamics of mean curvature flow around neck singularities was successfully understood
only under additional assumptions, either by making the notion of neck more rigid, or by making fur-
ther assumptions on the initial hypersurface M. In [AAG95], Altschuler, Angenent and Giga gave a full
description of such dynamics, both backwards and forwards in time, in the case that M is rotationally sym-
metric. More recently, using highly sophisticated PDE methods, Gang [Gan17, Gan18], building upon his
earlier work with Knopf and Sigal [GK15, GKS18], was able to successfully analyze the backwards in
time behavior of a smooth mean curvature flow around certain nondegenerate neck singularities.

Our final application concerns mean curvature flow in higher codimension. In general, as the codimen-
sion increases the complexity of the parabolic system increases. However, combining our main classifica-
tion result (Theorem 1.5) with a recent result of Colding-Minicozzi [CM20, Thm. 0.9] we obtain:

Corollary 1.20 (classification of ancient asymptotically cylindrical mean curvature flows in higher codi-
mension). If Mn

t ⊂ R
N is an ancient smooth mean curvature flow in arbitrary codimension such that some

blowdown for t → −∞ is {S n−1(
√
−2(n − 1)t) × R}t<0, then Mt is contained in an (n + 1)-dimensional

subspace and is either a round shrinking cylinder, a translating bowl soliton, or an ancient oval.

10The classification of noncompact κ-solutions, as well as rotational symmetry of compact κ-solutions, has been obtained
in very important work by Brendle [Bre20, Bre19]. Using this, the classification in the compact case has been completed by
Angenent, Brendle, Daskalopoulos and Sesum [ABDS19, BDS21]. We also note that Bamler-Kleiner [BK21] later found an
alternative proof of rotational symmetry in the compact case, which uses results and ideas from [Bre20].

11In particular, no discrepancy implies no fattening. But the best way to capture nonuniqueness is via discrepency.
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Making Corollary 1.20 applicable for general limit flows would require removing the smoothness as-
sumption. To do so one would have to remove the smoothness assumption in [CM20, Thm. 0.9].

1.7. Outline of the proofs. The strategy of the proof of Theorem 1.5 (classification of ancient asymptot-
ically cylindrical flows) is related to the one of Theorem 1.7 (classification of ancient low entropy flows),
which was proved in [CHH], but there are many important differences. In order to avoid duplication, we
do not include proofs of claims where the argument is a straightforward adaptation of the one appearing
in [CHH]. The reader of the present paper will, therefore, have to consult [CHH] quite frequently. On the
other hand, we hope that in addition to succinctness, our choice of not spelling out easy adaptions of old
proofs will highlight the aspects of this paper that are genuinely new. Correspondingly, this outline will
concentrate on the new aspects in this work, and will draw comparisons to [CHH].

In Section 2, we set up the notation and collect some preliminaries.

In Section 3, we establish our new tools for Brakke flows. We first prove the strong maximum principle
for Brakke flows (Theorem 1.14) via reduction to its elliptic analogue [SW89]. The proof of the Hopf
Lemma without smoothness (Theorem 1.13) is more involved, and the idea is as follows:

We first derive a weak version of the Hopf lemma, saying that the (not necessarily smooth) tangents
toM1 andM2 are not the same, and are thus disjoint in the halfspace H. To do so, we show that if they
had the same (nonplanar) time −1 slice Σ, we could construct a positive solution to the linearization of
the renormalized mean curvature flow equation on Σ ∩ H, which is further bounded, independent of time,
on compact subsets of space. The existence of such a solution implies that Σ is stable in H, which by a
version of a theorem of Brendle [Bre16] implies that Σ is a hyperplane.

Once that is done, an adaptation of an argument of Brendle [Bre16] shows that the time −1 slices Σ1

and Σ2 of the tangent flows must both be planar. Roughly speaking, as Σ1 and Σ2 are critical points of the
Gaussian area functional,

(26) F[Σ] =

∫
Σ

e−|x|
2/4,

they act as barriers, so we can construct a hypersurface minimizing F between them. Such a hypersurface
is stable in H, and hence must be a halfplane. On the other hand the only two shrinkers which can fit a
halfplane between them are planes.

We remark here that since not only the flowsM1 andM2, but also their tangents are a priori singular,
quite a bit of geometric measure theoretic care is needed in proving Theorem 1.13 (Hopf lemma without
smoothness). Due to this reason (an in particular, issues relating to connectedness of the regular set in a
halfspace), the actual argument in Section 3 is organized in the reverse order of the one described above.
Namely, we first prove Bernstein-type theorems for singular shrinkers in a halfspace (Theorem 3.8 and
Theorem 3.11), and then run the Jacobi field argument afterwards. Interestingly, due to the presence of
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the Gaussian conformal factor, the argument works in all dimensions, and not just for n < 7.

In Section 4, we establish several coarse properties of ancient asymptotically cylindrical flows, which
we will use in later sections. This section, together with Section 3, contains the key features that allow us
to deal with shrinkers with entropy less than Ent[S n−1 × R]. In particular, it contains many new results,
which have no analogue in [CHH].

First, in Section 4.1, using ideas from [BW17] we prove a partial regularity result for ancient asymp-
totically cylindrical flows. In particular, we see that ancient asymptotically cylindrical flows are tame.

Based on that, in Section 4.2 we show that the flows possess a consistent notion of a domain they bound.
Next, in Section 4.3, we generalize and extend ideas from [BW16, BW18b] to give a structural result

(Proposition 4.8) for shrinkers Σ with entropy less than or equal to Ent[S n−1 × R]. Namely, we show that
there exists a uniform constant R0 < ∞ such that we have the following trichotomy:

(i) Σ is a round cylinder, or
(ii) Σ is compact and contained in B(0,R0), or

(iii) Σ is separating within B(0,R0).12

We then use this structural result in order to study the behavior of the flowM around any point X0 =

(x0, t0) ∈ M at dyadic scales r j = 2 j. Using quantitative differentiation, we see that there exists an N < ∞

such that for every X0 ∈ M and r0 > 0, there exists a scale r ∈ [r0, 2Nr0] such that Dr−1(M− X0) is very
close to the flow of one of those shrinkers Σ in B(0, 100R0) × [−2,−1]. If Σ is compact, this implies a
diameter bound on the connected component of Mt0 containing x0. If Σ is of separating type, this implies
thatM does not turn extinct prior to time t0+r2. The trichotomy of cylindrical behavior backwards in time,
bounded diameter at the present time or nonextinction in future time, turns out to be a sufficient substitute
to the precise classification of Bernstein-Wang in dimension two [BW17], which played a central role in
the arguments in [CHH].

Next, in Section 4.4, we use quantitative differentiation and the local regularity theorem to derive reg-
ularity estimates for flows that are trapped in a thin slab over many scales. This result is perhaps of some
independent interest.

Finally, in Section 4.5, similarly as in [CHH, Sec. 3.3], we record that the hypersurfaces Mt open up
slower than any cone of positive angle.

If Section 5, we carry out the fine neck analysis on the cylinder. Fortunately, the fine neck analysis from
[CHH, Sec. 4] easily generalizes to n ≥ 3 (with the only exception that the algebra of o(n) is a bit more
complicated than the one of o(2)), so let us only briefly describe the results.

Given X = (x0, t0) ∈ M, consider the renormalized mean curvature flow

(27) M̄X
τ = eτ/2(Mt0−e−τ − x0).

12Our notion of separating is very closely related to the notion of strongly noncollapsed from [BW16].
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Being asymptotic cylindrical implies that M̄X
τ is a graph of a function u in cylindrical coordinates around

the xn+1-axis (after rotation) in B(0, 100n), satisfying

(28) u(xn+1, θ, τ) =
√

2(n − 1) + o(1)

for τ → −∞. The spectral analysis implies the following dichotomy for any ancient asymptotically
cylindrical flowM, which is not the round shrinking cylinder. Either:

(I). Mt is compact for all t, or
(II). For −t sufficiently large, Mt is noncompact and (after suitable choice of ambient coordinates)

satisfies supp∈Mt
xn+1(p) = ∞ and

(29) ψ(t) := inf
p∈Mt

xn+1(p) > −∞.

In fact, Theorem 5.8 (fine neck theorem) implies that there exists some a = a(M) > 0 such that
in in B(0, 100n), the expansion (28) can be improved to

(30) u(xn+1, θ, τ) =
√

2(n − 1) + axn+1eτ/2 + o(eτ/2),

for −τ � log Z(X), where Z(X) denotes the cylindrical scale of the point X - the smallest scale at
which the flowM looks sufficiently cylindrical around X.

Whether an asymptotically cylindrical flowM falls into category (I) or (II) is completely determined by
which mode of the linearization of the renormalized mean curvature flow around the cylinder dominates.
Flows of category (I) – “the compact case” – correspond to the case where the neutral mode dominates,
while category (II) – “the noncompact case” – corresponds to the case where the plus mode dominates.

In Section 6, similarly as in [CHH, Sec. 5, Sec. 6.1], we show that in the noncompact case, the flow
M resembles a translating bowl solution outside of a cap region of controlled size. However, due to the
potential scenario of other shrinkers of entropy less than Ent[S n−1 × R], one needs to work more to gain
less. As in [CHH, Prop. 5.1], the starting point is of to show that the cylindrical scale of points p ∈ Mt

goes to infinity as xn+1(p) → ∞. In [CHH, Sec. 5.1], this and the classification of two-dimensional low
entropy shrinkers from [BW17] quickly gave a global curvature bound, and in particular, implied that tip
points, i.e. point p ∈ Mt with xn+1(p) = ψ(t), c.f. (29), move at bounded speed. In our current setting
where n ≥ 3, we use the cylindrical - bounded diameter - no extinction trichotomy of Section 4.3 to obtain
the much weaker conclusion that M is eternal (i.e. does not vanish at any finite time) and that its tip
position goes to infinity, i.e.

(31) lim
t→∞

ψ(t) = ∞.

As a substitute for the pointwise speed bounds we had in [CHH, Sec. 5.1], we prove a macroscopic speed
bound, according to which

(32) ψ(t) − ψ(t′) ≤ C(t − t′), provided that t ≥ t′ + 1.
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These ingredients turn out to be sufficient in order to show, as in [CHH, Sec. 5.2, Sec. 6.1], that, up
to scaling and shifting, ψ(t) = t + o(t), and that away from a ball of controlled radius C = C(M) < ∞
around a tip point pt, the hypersurface Mt is smooth, opens up like a paraboloid, and becomes more and
more rotationally symmetric as xn+1 − ψ(t) → ∞. Whether Mt is smooth (and of uniformly bounded
curvature) in B(pt,C) is still unknown at this stage, which is a key difference between our argument for
n ≥ 3 appearing here and the argument for n = 2 in [CHH, Sec. 5].

In Section 7, we show that the fine paraboloidal asymptotic expansion away from a cap of controlled
size, which was concluded in Section 6, implies genuine rotational symmetry ofM as well as smoothness
away from the axis of symmetry. We do so by implementing the moving plane method without assuming
smoothness, which was discussed already earlier in the introduction (see Section 1.4).

In Section 8.1, we conclude that in the noncompact caseM is the bowl. We first show thatM is smooth
across the axis of symmetry as well, and then conclude exactly as in [CHH].

In Section 8.2, we show that in the compact caseM is an ancient oval. The argument is based on the
one in [CHH], and in particular uses the classification in the noncompact case, which is already estab-
lished at this point of the argument. Some extra care is needed, however, as in higher dimensions we
cannot assume a priori that Mt is topologically a sphere, or even that it is connected or smooth. One
interesting feature of the high-dimensional treatment is that smoothness, mean-convexity, and sphericality
are proved simultaneously. Another interesting feature is that to prove connectedness we have to reinvoke
the cylindrical - bounded diameter - no extinction trichotomy from Section 4.3.

Finally, in Section 9, we show how our classification of ancient asymptotically cylindrical flow implies
the mean-convex neighborhood conjecture for neck singularities as well as the uniqueness conjecture for
mean curvature flow through neck singularities. As in [CHH], the first step in showing Theorem 1.17 is
to construct a unit-regular integral Brakke flow in some neighborhood of X, with the same support, for
which H does not vanish at regular points, and which has only cylindrical and spherical singularities in
that neighborhood. The argument we give here is different from the one in [CHH], which again relied on
the classification of low entropy shrinkers. Our new argument, in which we rescale such that we always
see the cylindrical neck far enough back in time, has advantages over the old one, even for n = 2: While
in [CHH] we classified all limit flows at neck singularities for n = 2, we were not able to relate the axis of
their asymptotic cylinder (or the direction of translation in the bowl case) to the axis of the neck singular-
ity. Our argument here shows that, as one may suspect, they are in fact the same. The rest of the proof of
Theorem 1.17 and Theorem 1.19 is the same as in [CHH].
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2. Preliminaries and notation

As in [Ilm94, Def. 6.2, 6.3], an n-dimensional integral Brakke flow in Rn+1 is a family of Radon
measuresM = {µt}t∈I in Rn+1 that is integer n-rectifiable for almost all times and satisfies

(33)
d
dt

∫
ϕ dµt ≤

∫ (
−ϕH2 + ∇ϕ ·H

)
dµt

for all test functions ϕ ∈ C1
c (Rn+1,R+). Here, d

dt denotes the limsup of difference quotients, and H denotes
the mean curvature vector of the associated varifold Vµt , which is defined via the first variation formula
and exists almost everywhere at almost all times. The integral on the right hand side is interpreted as
−∞ whenever it does not make sense literally. All Brakke flows that we encounter in the present paper
are unit-regular as defined in [Whi05, SW20]. Namely, every spacetime point of density one is a regular
point, i.e. the flow is smooth in a two-sided parabolic neighborhood.

Given any space-time point X0 = (x0, t0), by Huisken’s monotonicity formula [Hui90, Ilm95] we have13

(34)
d
dt

∫
ρX0(x, t) dµt(x) ≤ −

∫ ∣∣∣∣∣∣H(x, t) −
(x − x0)⊥

2(t − t0)

∣∣∣∣∣∣2 ρX0(x, t) dµt(x),

where

(35) ρX0(x, t) =
1

4π(t0 − t)
e−
|x−x0 |

2

4(t0−t) (t < t0).

The density ofM at X0 is defined by

(36) ΘX0(M) = lim
t↗t0

∫
ρX0(x, t) dµt(x).

By the local regularity theorem [Bra78, Whi05] any space-time point with density close to 1 is regular.

Given any X with ΘX(M) ≥ 1 and λi → ∞, let Mi
X be the Brakke flow which is obtained from M

by translating X to the space-time origin and parabolically rescaling by λi. By the compactness theorem
for Brakke flows [Ilm94] one can pass to a subsequential limit M̂X , which is called a tangent flow at X.
By the monotonicity formula, every tangent flow is backwardly selfsimilar, i.e. M̂X ∩ {t ≤ 0} is invariant
under parabolic dilationDλ(x, t) = (λx, λ2t). IfM is ancient, then for any λi → 0 one can also pass along
a subsequence to a backwardly selfsimilar limit M̌, which is called a tangent flow at infinity.

13Assuming say that our flow has finite area ratios, which follows from finite entropy, c.f. Proposition 4.1.
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The support of a Brakke flow, denoted by sptM, is the set of all space-time points X with ΘX(M) ≥ 1.
By upper-semicontinuity of the density the support is closed. We sometimes conflate the Brakke flowM
and its support in the notation. For any time t we let

(37) Mt = {x ∈ Rn+1|(x, t) ∈ sptM}.

The singular set S(M) is the set of all X ∈ sptM such that the flow is not smooth in any space-time
neighborhood of X. The singular set at time t is defined as

(38) S t(M) = {x ∈ Rn+1|(x, t) ∈ S(M)}.

3. New tools for Brakke flows

In this section, we develop several new tools for Brakke flows. We consider integral Brakke flows, and
we sometimes assume that their tangent flows have sufficiently small singular set:

Definition 3.1 (tame points and tame flows). Let M be an integral Brakke flow. A point X ∈ sptM is
called tame point if for each tangent flow of M at X, the time −1 slice is smooth with multiplicity one
away from a set of (n − 1)-dimensional Hausdorff measure zero. If every X ∈ sptM is a tame point, then
we callM a tame Brakke flow.

Remark 3.2. In particular, as we will see in Corollary 4.4 (tameness), every ancient asymptotically cylin-
drical flow (see Definition 1.4) is a tame Brakke flow (see Definition 3.1).

Throughout this section, H will denote an open halfspace in Rn+1 whose boundary n-plane contains the
origin.

3.1. Strong maximum principle for Brakke flows. We first recall the well-known strong maximum
principle for smooth flows.

Proposition 3.3 (Strong maximum principle for smooth flows). Let M1 and M2 be smooth mean cur-
vature flows defined in a parabolic ball14 P(X0, r) based at X0 ∈ sptM1 ∩ sptM2, where r > 0 is small
enough such that sptM1 separates P(X0, r) into two open connected components,U andU′. If

(39) sptM2 ⊆ U ∪ sptM1,

then there exists some ε > 0 such that

(40) sptM2 ∩ P(X0, ε) = sptM1 ∩ P(X0, ε).

Indeed, this easily follows by choosing ε > 0 small enough such that the flows are graphical, and
applying the strong maximum principle for parabolic partial differential equations. We now derive a
strong maximum principle, where smoothness of one of the flows is not an assumption but a conclusion.

14Recall that P(X0, r) = B(x0, r) × (t0 − r2, t0] denotes the parabolic ball with center X0 = (x0, t0) and radius r.



24 KYEONGSU CHOI, ROBERT HASLHOFER, OR HERSHKOVITS, BRIAN WHITE

Theorem 3.4 (Strong maximum principle for Brakke flows). Let M1 be a smooth mean curvature flow
defined in a parabolic ball P(X0, r) based at X0 ∈ sptM1, where r > 0 is small enough such that sptM1

separates P(X0, r) into two open connected components, U and U′. LetM2 be an integral Brakke flow
defined in P(X0, r) with X0 ∈ sptM2. If X0 has density ΘX0(M2) < 2, and if

(41) sptM2 ⊆ U ∪ sptM1,

then X0 is a smooth point forM2 and there exists some ε > 0 such that

(42) sptM2 ∩ P(X0, ε) = sptM1 ∩ P(X0, ε).

Proof. Let N be a tangent flow toM2 at X0 = (x0, t0), and let Σ be its time −1 slice. SinceM1 is smooth
in P(X0, r), from (41) we conclude that Σ is contained in the closure of some open half space H (the
boundary of which is the tangent hyperplane to M1

t0 at x0).
Observe that since ∂H and Σ are shrinkers, ∂H ∩ Σ , ∅.15 Thus from the elliptic strong maximum

principle from [SW89] and the hypothesis ΘX0(M2) < 2, we see that Σ is the multiplicity one hyperplane
∂H. Together with the local regularity theorem for Brakke flows [Bra78, Whi05], this yields that X0 is a
smooth point forM2.

Finally, (42) now follows from Proposition 3.3 (strong maximum principle for smooth flows). �

3.2. Singular shrinkers in a half space. The goal of this subsection is to prove two Bernstein-type theo-
rems (Theorem 3.8 and Theorem 3.11) for varifold shrinkers in a halfspace. For smooth (two-dimensional)
shrinkers such results have been proved by Brendle [Bre16], so the main point here is to generalize the
results to the (potentially) singular setting. As opposed to the rest of this paper, in this subsection, which
is more GMT heavy, we will keep the distinction between a varifold and its support explicit.

Definition 3.5 (varifold shrinker). A varifold shrinker in Rn+1 is an integral n-varifold V that has finite
entropy and that is stationary with respect to the F-functional.

Notation 3.6 (regular and singular part). If A ⊂ Rn+1 is any closed set, we denote by reg(A) the set of
points x ∈ A for which there is an r > 0 such that A ∩ B(p, r) is a smooth, embedded n-dimensional
manifold with boundary A ∩ ∂B(p, r). We let sing(A) = A \ reg(A).

We start with the following technical lemma.

Lemma 3.7. Suppose that Σ is the support of an n-dimensional varifold shrinker in Rn+1, and suppose
thatHn−1(sing(Σ)) = 0. Let S be a connected component of reg(Σ) ∩ H, and set M = S . Then

(1) Hn(M ∩ ∂H) = 0.
(2) reg(M ∩ H) is dense in M.
(3) F[M] < ∞.

15It seems to be well-known that the supports of any two n-dimensional varifold shrinkers in Rn+1 must intersect, but we
know of no reference. For the case at hand (when one of the shrinkers is planar), this follows from [Whi, Thm. 15.1]. See
Theorem 3.11 below for a related result.
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(4) supB(p,r)⊂Rn+1 r−nHn(M ∩ B(p, r)) < ∞.
(5) M ∩ H is the support of a varifold shrinker in H.16

Proof. Let Ŝ be the connected component of reg Σ that contains S . (In fact, it is possible to show that
reg Σ is connected, so Ŝ = reg Σ, but we do not need to use that.) Let Z be the set of points where Ŝ and
∂H intersect tangentially. By Hardt-Simon [HS89, Thm. 1.10], Z has Hausdorff dimension at most (n− 2)
and thus Hn(Z) = 0. Since (Ŝ \ Z) ∩ ∂H is an (n − 1)-dimensional manifold, it also has Hn-measure 0.
Since M ∩ ∂H is contained in the union of Z, (Ŝ \ Z) ∩ ∂H, and sing(Σ), we see thatHn(M ∩ ∂H) = 0.

Assertion ((2)) is trivially true.
Assertions ((3)) and ((4)) hold since our varifold shrinker has finite entropy (see Definition 3.5).
Invoking heavy GMT machinery [Wic14b, Wic14a], one can quickly prove assertion ((5)): Let C be

the connected component of Σ ∩ H that contains S . Since Hn−1(sing Σ) = 0, the maximum principle in
[Wic14b] implies that reg C is connected, and thus that S = reg C and C = S ∩ H = M ∩ H.

Alternatively, we can use the following elementary (and standard) argument: Let Y be a smooth vector-
field with compact support in H. Let ε > 0. Let D = sing(M ∩ H). SinceHn−1(sing Σ) = 0, we can cover
sing(Σ) by a locally finite collection of balls B(pi, ri) such that

(43)
∑

i

rn−1
i < ε.

By the density bound ((4)) and the co-area formula, for each i, we can find a ρi ∈ [ri, 2ri] such that

(44) Hn−1(M ∩ ∂B(pi, ρi)) ≤ Crn−1
i .

By adjusting the ρi slightly, we can assume that the spheres ∂B(pi, ρi) are transverse to each other and
to reg(Σ).

Thus if

(45) Mε := M \ ∪iB(pi, ρi),

then Mε (in the space H) is a manifold with piecewise smooth boundary, and

(46) Hn−1(H ∩ ∂Mε) ≤ Cε.

Thus ∫
Mε

DivM Y dHn = −

∫
Mε

H · Y dHn + O(Hn−1(spt Y ∩ ∂Mε))(47)

= −

∫
Mε

H · Y dHn + O(ε).(48)

Letting ε→ 0 gives

(49)
∫

M
DivM Y dHn = −

∫
M

H · Y dHn.

16This is not as obvious as it seems. Indeed, ((5)) is false if Σ is allowed to have triple-junction singularities. For example,
suppose that Σ ∩ H is the union of 3 minimal hypersurfaces that meet smoothly along their common boundary. Then the closure
of one component of the regular set will be a smooth minimal surface with nonempty boundary in H, and thus is not the support
of any singular shrinker.
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Since H(x) = −x⊥/2 on reg M, equation (49) is precisely the statement that the varifold in H associated to
M ∩ H is a varifold shrinker. This finishes the proof of the lemma. �

Theorem 3.8 (Bernstein-type theorem, first version). Suppose that M is a closed subset of H with the
following properties:

(1) The regular part reg(M∩H) of M∩H is an n-dimensional stable critical point of the F-functional.
(2) F[M] < ∞.
(3) reg(M ∩ H) is dense in M.
(4) Hn−1(sing(M ∩ H)) = 0.
(5) Hn(M ∩ ∂H) = 0.
(6) For every bounded subset Ω of Rn+1,

ωΩ := sup
p∈Ω, r≤1

r−nHn(M ∩ B(p, r)) < ∞.

Then M is a union of flat halfplanes.

By [Wic14a], the hypotheses imply that sing(M∩H) has Hausdorff dimension at most n−7 and therefore
that

(50) Hn−2(sing(M ∩ H)) = 0.

For the application of Theorem 3.8 in this paper, one could include (50) as a hypothesis here (and in
Theorem 3.11) and thus [Wic14a] would not be needed.

Brendle [Bre16] proved Theorem 3.8 when n = 2 and M is a smooth manifold-with-boundary. Here
we extend Brendle’s argument to the singular setting. The assumptions on M imply that reg(M ∩ H) is
orientable (see Corollary 3.19 below). Thus, the stability assumption ((1)) means that

(51) −

∫
M

f L f e−|x|
2/4 ≥ 0

for every smooth function f that is compactly supported in reg(M ∩ H), where L is the stability operator
for F on reg(M ∩ H):

(52) L = ∆ −
1
2

x⊥ · ∇ +
1
2

+ |A|2.

Observe that setting

(53) u(x) = dist(x, ∂H),

we have that

(54) Lu = |A|2u

on reg M. Hence if we could plug u into the stability inequality (51), we would obtain that |A| = 0 on
reg M \ ∂H and thus that M is flat. To justify such plugging in, we adapt the methods of Zhu [Zhu20, Sec.
5] and Brendle [Bre16] to produce suitable cutoff functions.
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Lemma 3.9. Under the hypotheses of Theorem 3.8, let Z be the union of sing(M ∩H) and M ∩ ∂H. Given
a bounded open subset Ω of Rn+1 and 0 < ε < 1, there is a smooth function φ = φε : Rn+1 → [0, 1] such
that

φ(x) = 1 if dist(x,Z ∩Ω) ≥ ε,(55)

φ vanishes on an open set containing Z ∩Ω,(56)

and

(57)
∫

M
(u|Dφ| + u2|D2φ|) < ε,

where u(x) = dist(x, ∂H).

Proof. Let 0 < δ < 1. By Assumption ((5)), we can cover M ∩ ∂H ∩ Ω by finitely many open balls
Bi = B(pi, ri) (where 1 ≤ i ≤ k) with pi ∈ ∂H and ri < 1 such that

(58)
∑
i≤k

rn
i < δ.

Thus, since ri = supBi
u,

(59)
∑
i≤k

(sup
Bi

u)rn−1
i =

∑
i≤k

(sup
Bi

u2)rn−2
i < δ.

Let K = sing(M ∩ H) ∩ Ω \ ∪i≤kBi. By (50), we can cover K by finitely many balls Bi = B(xi, ri) (where
k + 1 ≤ i ≤ `) with pi ∈ K and ri < 1 such that

(60)
∑
i>k

rn−2
i <

δ

supΩ(u + 1) + supΩ(u + 1)2 .

Thus

(61)
∑
i>k

(sup
Bi

u + sup
Bi

u2)rn−2
i < δ,

and therefore

(62)
∑
i>k

(
(sup

Bi

u)rn−1
i + (sup

Bi

u2)rn−2
i

)
< δ,

since ri < 1. Combining (59) and (62) gives

(63)
∑

i

(
(sup

Bi

u)rn−1
i + (sup

Bi

u2)rn−2
i

)
< 3δ.

Let ψi : Rn+1 → [0, 1] be smooth functions such that

ψi = 0 on B(pi, 2ri),(64)

ψi = 1 outside of B(pi, 3ri),(65)

|Dψi| ≤
c
ri
, and(66)

|D2ψi| ≤
c
r2

i

,(67)
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where c is a constant depending only on n. Let

ψ : Rn+1 → [0, 1], ψ(x) = inf
i
ψi(x).(68)

Note for almost every x that ψ(·) = ψi(·) on a neighborhood of x for some i. Thus

|Dψ| ≤
∑

i

c
ri

1B(xi,3ri),(69)

|D2ψ| ≤
∑

i

c
r2

i

1B(xi,3ri)(70)

almost everywhere. Now convolve ψ with a smooth mollifier supported very near the origin to get a
smooth function φ = φε. Then, for δ small enough, φ will have properties (55) and (56), and

|Dφ| ≤
∑

i

c
ri

1B(xi,4ri),(71)

|D2φ| ≤
∑

i

c
r2

i

1B(xi,4ri).(72)

Thus ∫
M∩Ω

(u|Dφ| + u2|D2φ|) ≤ C
∑

i

(sup
Bi

u)
1
ri

+ (sup
Bi

u2)
1
r2

i

Hn(Bi ∩ M)(73)

≤ Cω
∑

i

(
(sup

Bi

u)rn−1
i + (sup

Bi

u2)rn−2
i

)
(74)

≤ Cωδ(75)

by (63), where C < ∞ is a dimensional constant, and ω = ωΩ < ∞ is as in Theorem 3.8. This completes
the proof of Lemma 3.9. �

Corollary 3.10. Let f : Rm+1 → R be a smooth, compactly supported function such that f = 0 on ∂H.
Then, under the hypotheses of Theorem 3.8 (Bernstein-type theorem, first version) we have

(76)
∫

M
f L f e−|x|

2/4 ≤ 0.

Proof. First, note that by assumptions (4) and (5) of Theorem 3.8 (Bernstein-type theorem, first version)
L f is defined Hn-a.e. on M, so the integral on the left hand side of (76) makes sense. Now, multiplying
by a constant, we can assume that sup |D f | = 1 and thus (since f = 0 on ∂H) that | f | ≤ u ≤ |x|. Note that
if φ is any smooth function on Rn+1, then

(77)
|L(φ f ) − φL f | ≤ (2|D f | + |x|| f |)|Dφ| + f |D2φ|

≤ (2 + |x|2)|Dφ| + u|D2φ|.

Let Ω be a bounded open set containing the origin and the support of f . Let φε be as in Lemma 3.9. Since
|D f | ≤ 1 and | f | ≤ u ≤ |x|, we see from (77) that

(78)
∣∣∣φ2
ε f L f − φε f L(φε f )

∣∣∣ ≤ Q
(
u|Dφε| + u2|D2φε|

)
,
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where Q = 2 + supΩ |x|
2. Thus by Lemma 3.9, the integrals

(79)
∫

M
φε f L(φε f )e−|x|

2/4

and

(80)
∫

M
φ2
ε f L f e−|x|

2/4

differ by less than Qε. By stability, the integral (79) is nonpositive, so

(81)
∫

M
φ2
ε f L f e−|x|

2/4 ≤ Qε.

On the other hand, we claim that

(82) lim
ε→0

∫
M
φ2
ε f L f e−|x|

2/4 =

∫
M

f L f e−|x|
2/4

Indeed, observe that since M satisfies the shrinker equation on the regular part, the intrinsic Laplacian
∆ on M, satisfies the pointwise estimate

(83) |∆ f | ≤ |D2 f | + |x||D f |.

Thus,

(84)
∫

M

∣∣∣∣∣∣ f
(
∆ f −

1
2

x⊥ · ∇ f
)∣∣∣∣∣∣ e−|x|2/4 < ∞.

The fact that

(85)
∫

M
φ2
ε f

(
∆ f −

1
2

x⊥ · ∇ f
)

e−|x|/4 →
∫

M
f
(
∆ f −

1
2

x⊥ · ∇ f
)

e−|x|/4

therefore follows from the dominated convergence theorem, while

(86)
∫

M
φ2
ε

(
1
2

+ |A|2
)

f 2e−|x|
2/4 →

∫
M

(
1
2

+ |A|2
)

f 2e−|x|
2/4

follows from the monotone convergence theorem. This implies (82). Together with (81) this proves the
corollary. �

Proof of Theorem 3.8. As in Brendle [Bre16], let ψ : R → [0, 1] be a smooth, non-increasing cutoff

function with ψ = 1 on (−∞, 1
2 ] and ψ = 0 on [1,∞). For each k > 1, taking

(87) f = ψ

(
log |x|
log k

)
u

we get

(88) f L f = ψ2uLu + ψ2u2∆ψ + 2uψ∇u∇ψ −
1
2
ψu2x⊥ · ∇ψ.

Note that ∇ψ = ψ′ 1
log k

∇|x|
|x| and that

(89) ∆ψ = ψ′
1

log k
〈∆x, x〉
|x|2

− ψ′
1

log k
|∇x|2

|x|2
− ψ′

1
log k

|∇|x||2

|x|2
+ ψ′′

1
log2 k

|∇|x||2

|x|2
.
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Observe that the last three terms of the right hand side are O
(

1
log k

1
|x|2

)
, and that the first term is non-

negative, since ψ′ ≤ 0 and 〈∆x, x〉 = −1
2 |x
⊥|2 by the self-shrinker equation.

Similarly, we have that ∇ψ = O
(

1
log k

1
|x|

)
, and that x⊥ · ∇ψ is non-positive.

Putting all of this together with (88), and using the facts that u ≤ |x|, that |∇u| ≤ 1, and that ∇ψ and ∆ψ

are supported on
{
x :
√

k ≤ |x| ≤ k
}
, we get

(90) f L f ≥ ψ2uLu −
C

log k
1
{
√

k≤x≤k}.

Together with Corollary 3.10 we conclude that

(91) 0 ≥
∫

M
f L f e−|x|

2/4 ≥

∫
M∩{x:|x|≤

√
k}
|A|2u2e−|x|

2/4 −
C

log k

∫
M∩{x:

√
k≤|x|≤k}

e−|x|
2/4.

Thus, since F[M] < ∞, letting k → ∞ yields |A| ≡ 0. This proves the theorem. �

Theorem 3.11 (Bernstein-type theorem, second version). For i = 1, 2, let Σi be the support of an n-
dimensional varifold shrinker in Rn+1. Suppose thatHn−1(sing Σi) = 0. Let S i be a connected component
of (reg Σi) ∩ H, and let Mi = S i. Suppose that S 1 and S 2 do not intersect transversely at any point. Then

(i) M1 = M2, or
(ii) Σ1 and Σ2 are flat planes.

Proof. As with Theorem 3.8, we adapt an argument of Brendle [Bre16], who showed that Theorem 3.11
holds in case Σ1 and Σ2 are smooth two-dimensional surfaces.

If Y is an n-rectifiable set of locally finite n-dimensional Hausdorff measure, we let [Y] denote the
associated flat chain mod 2, as in [Whi09].

We will now show that if S 1 and S 2 intersect, then M1 and M2 must coincide. To this end, note
first that if x0 ∈ S 1 ∩ S 2, then since S 1 and S 2 do not intersect transversely by assumption, we have
Tx0S 1 = Tx0S 2. Write S 1 and S 2 locally as graphs of functions u1 and u2 over Ω := Tx0S 1 ∩ B(x0, ε), and
consider the difference w := u2 − u1. Suppose towards a contradiction that there are points x± ∈ Ω such
that sign(w(x±)) = ±. By Hardt-Simon [HS89, Thm. 1.10], the set

Z = {x ∈ Ω | w(x) = |∇w(x)| = 0}

has Hausdorff dimension at most (n − 2), so we can find a curve γ ⊂ Ω \ Z from x− to x+. Then, by
the intermediate value theorem, there exists a point p ∈ γ such that w(p) = 0. However, since p < Z, it
follows that S 1 and S 2 intersect transversely at p, contradicting the assumption of the theorem. Hence, w
does not change sign, and the strong maximum principle thus yields that w ≡ 0 in Ω. Since S 1 and S 2 are
connected, we conclude that S 1 = S 2, and thus M1 = M2.

Thus we may assume that S 1 and S 2 are disjoint. Let Γi = Mi ∩ ∂H and let Di = sing(Mi). Since S i

is a connected component of (reg Σi) ∩ H and Mi = S i, it follows that S i = reg(Mi), and hence reg(Mi) is
dense in Mi. Thus, since Di hasHn−1 measure 0 (it is a subset of sing Σi), we see that

(92) H \ Mi
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has two connected components, each of which contains Mi in its boundary. (See Lemma 3.18 below if
this is not clear.) Let Ω1 be the component of H \ M1 that contains S 2, and let Ω2 be the component of
H \ M2 that contains S 1. Let

(93) Q = Ω1 ∩Ω2.

(Intuitively, Q is the closed region in H between M1 and M2.)
Consider the class C of n-dimensional flat chains mod 2 in Q that have finite F-area and that have the

same boundary as [M1]. The class is nonempty since it contains [M1]. By the compactness theorem for
flat chains mod 2 (see e.g. [Whi09, Thm. 5.1]), we can find a minimizer. Furthermore, by the rectifiability
theorem [Zie62, Fle66, Whi99], any minimizer is rectifiable. Let M be the support of a flat chain mod 2
of least F-area in the class C.

By a general barrier principle (Corollary 3.17 below), if p < sing(Σ1) ∪ sing(Σ2), then there is an
r > 0 such that [M ∩ B(p, r)] is F-area-minimizing among all mod 2 chains in B(p, r) with boundary
∂[M ∩ B(p, r)]. (We apply Corollary 3.17 to a small open subset Ω of Rn+1 containing p and to relatively
closed regions N1 and N2 in Ω bounded by reg Σ1 and reg Σ2 and to the region H ∩Ω.)

Consequently,

(94) M \ (D1 ∪ D2 ∪ Γ1)

is smooth outside of a set X of Hausdorff dimension ≤ n − 7, c.f. [Sim68], and solves H(x) = −x⊥/2
classically in the complement of X. By the smooth strong maximum principle, M \ (X ∪ D1 ∪ D2 ∪ Γ1)
cannot touch ∂H, so M ∩ ∂H is contained in X ∪ D1 ∪ D2 ∪ Γ1 and thus

(95) Hn(M ∩ ∂H) = 0.

If B is a ball, then by the minimizing property of M we have

(96) F[M ∩ B] ≤
1
2

F[∂(B ∩ Q)].

If K is a compact set, then

(97) CK := sup
x,y∈K

e−|x|
2/4

e−|y|2/4
< ∞.

Thus if B ⊂ K, then by (96),

(98) Hn(M ∩ B) ≤
1
2

CKH
n(∂(B ∩ Q)).

Now

∂(B ∩ Q) ⊂ (B ∩ ∂H) ∪ (B ∩ M1) ∪ (B ∩ M2) ∪ ∂B(99)

and therefore by Lemma 3.7 we get

(100) Hn(∂(B ∩ Q)) ≤ ωrn,

where ω < ∞ may depend on M1 and M2. Thus

(101) Hn(M ∩ B(p, r)) ≤
1
2

CKωrn
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for B(p, r) ⊂ K.

The minimizing property of M implies that reg(M) is a stable critical point of the F-functional. Hence
by Theorem 3.8 (Bernstein-type theorem, first version), M is a n-dimensional halfplane and thus Γ1 is an
(n − 1)-plane in ∂H. Together with the fact that M1 ∩ H is the support of a varifold shrinker in H (by
Lemma 3.7((5))), applying [Whi, Thm. 15.1] we infer that M1 is a union of halfplanes. Since the S 1 is
connected, it follows that the M1 is a halfplane. Similarly, M2 is a halfplane.

If H ∩ reg Σ1 had another connected component S ′1, its closure would also be a flat halfplane (by
exactly the same argument). Thus we have shown: Σ1 ∩H is a union of disjoint halfplanes (with common
boundary). Applying [Whi, Thm. 15.1] again, it follows that Σ1 is a union of halfplanes. The regularity
hypothesis Hn−1(sing Σ1) = 0 then implies that Σ1 is a single plane. The same applies to Σ2. This
concludes the proof of the theorem. �

Corollary 3.12 (connectedness). If Σ is an n-dimensional varifold shrinker in Rn+1 with

(102) Hn−1(sing Σ) = 0,

then H∩ reg Σ is connected for every open halfspace H that contains points of reg Σ. In particular reg Σ is
connected.

Proof. This follows directly from Theorem 3.11. �

Corollary 3.13 (halfspace property). Let Σ be the support of an n-dimensional varifold shrinker in Rn+1

withHn−1(sing Σ) = 0. If Σ ⊆ {x1 ≥ 0}, then Σ = {x1 = 0}.

Proof. Suppose towards a contradiction that Σ * {x1 = 0}. Then, since reg Σ ⊆ Σ is dense, we can
find a halfspace H , {x1 ≥ 0} with 0 ∈ ∂H such that reg Σ ∩ H , ∅. We now consider Theorem 3.11
(Bernstein-type theorem, second version) with Σ1 = Σ, and Σ2 = {x1 = 0}, and with S 1 any connected
component of (reg Σ1)∩H. Since Σ2 is a hyperplane, but Σ1 is not, this yields that reg Σ intersects {x1 = 0}
transversely at some point (in H). But this implies Σ * {x1 ≥ 0}, a contradiction. Hence, we have shown
that Σ ⊆ {x1 = 0}. Using again that our varifold shrinker satisfiesHn−1(sing Σ) = 0 we can easily conclude
that Σ = {x1 = 0}. �

Corollary 3.14 (transverse intersection). If Σ1 , Σ2 are the supports of n-dimensional varifold shrinkers
in Rn+1 withHn−1(sing Σi) = 0, then there is a nonempty set along which reg Σ1 and reg Σ2 intersect each
other transversely.

Proof. By Corollary 3.13 (halfspace property), it follows that all but at most two open halfspace H contain
points of reg Σ1 and of reg Σ2. The result now follows from Theorem 3.11. �

Corollary 3.15 (improved conclusion). In the conclusion to Theorem 3.11, if M1 = M2, then Σ1 = Σ2.

Proof. Let p be a regular point in M1 and q be a point in Σ1. Since reg Σ1 is connected and dense in Σ1,
there is a path C in Σ1 joining p to q such that C \ {p, q} is in reg Σ1. Since Hn−1(sing Σ2) = 0 , we can
choose C so that C \ {p, q} is disjoint from sing Σ2. By unique continuation, C \ {p, q} lies in reg Σ2. Thus
q ∈ Σ2. Since q ∈ Σ1 is arbitrary, Σ1 ⊆ Σ2. Likewise, Σ2 ⊆ Σ1. �
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The following barrier principle was used in the proof of Theorem 3.11:

Lemma 3.16 (barrier principle). Let Ω be an (n+1)-dimensional Riemannian manifold and N be a closed
region in Ω whose boundary is a smooth minimal hypersurface. For p ∈ N, the following holds for all
sufficiently small r > 0:

if M is a hypersurface17 in B(p, r) with ∂M ⊂ N and if M minimizes area among all
hypersurfaces in B(p, r) having boundary ∂M, then M \ ∂M is contained in N ∩ B(p, r).

Proof. We may suppose p ∈ ∂N, as otherwise the result is trivially true. Choose R > 0 sufficiently small
that

(i) B(p,R) is compact,
(ii) ∂B(p, r) is smooth, strictly mean-convex, and transverse to ∂N for all r < R, and

(iii) (∂N) ∩ B(p,R) is strictly stable.

By the implicit function theorem, there is an open set U of Ω containing (∂N) ∩ B(p,R) and a foliation of
U by minimal hypersurfaces, one leaf of which is U ∩ ∂N.

Now suppose that r ∈ (0,R) is sufficiently small that B(p, r) is contained in U. Let M be a hypersurface
as in the statement of the lemma. By the strong maximum principle [SW89], the surface M \ ∂M does
not touch ∂B(p,R), nor can it touch a leaf of the foliation outside of N. Thus M \ ∂M is contained in
N ∩ B(p, r). �

Corollary 3.17. Suppose N1, . . . ,Nk are closed regions in Ω such that each boundary ∂Ni is a smooth
minimal hypersurface. For each p ∈ ∩Ni, the following holds for all sufficiently small r > 0: if ∂M ⊂

N ∩ B(p, r) and if M minimizes area in B(p, r) among all surfaces in B(p, r) with boundary ∂M, then
M \ ∂M is contained in N ∩ B(p, r).

We also used the following fairly standard topological fact:

Lemma 3.18 (separation). Let H be a simply connected (n + 1)-dimensional manifold, let D be a closed
subset with Hn−1(D) = 0, and let S be a smooth (open) n-dimensional manifold (without boundary)
properly embedded in H \ D. Then H \ (D ∪ S ) is the union of two disjoint open sets U1 and U2, the
boundary of each of which contains S . If S is connected, then U1 and U2 are also connected.

Corollary 3.19 (orientability). S has a smooth unit normal vectorfield.

Proof of Lemma 3.18. Since D is closed andHn−1(D) = 0, every curve or disk in H can be perturbed to

(i) miss D
(ii) intersect S transversally.

Fix a point p ∈ H \ (S ∪ D). Given q ∈ H \ (S ∪ D), by (i) and (ii) above, we can find a smooth curve
C in H \ D that joins p to q and that is transverse to S . By (i) and (ii) applied to disks, and by standard
intersection theory (see e.g. [Sam69]), the parity of the number of points in C ∩ S is independent of the

17For this paper, one should work in the class of flat chains mod 2. But the lemma and its proof hold in great generality (e.g.,
for rectifiable currents, normal currents, flat chains mod ν, etc.)
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the choice of curve C connecting p and q. We put q in U1 or U2 according to whether C intersects S in an
even or odd number of points.

Now suppose that S is connected. If H \ (D ∪ S ) had more than two connected components, then at
least one of those components would not touch S . That component would then be a connected component
of H \ D, which is impossible since H \ D is connected. �

3.3. Hopf lemma without assuming smoothness. As before, H ⊂ Rn+1 denotes an open halfspace
whose boundary n-plane contains the origin. The goal of this subsection is to prove the following the-
orem:

Theorem 3.20 (Hopf lemma without assuming smoothness). LetM1,M2 be integral Brakke flows defined
in the parabolic ball P((0, 0), r). If

(i) (0, 0) ∈ sptM1 ∩ sptM2 is a tame point for both flows,
(ii) ∂H is not the tangent flow to eitherM1 orM2 at (0, 0), and

(iii) reg M1
t ∩ H and reg M2

t ∩ H are disjoint for t ∈ (−r2, 0),

thenM1 andM2 are smooth at (0, 0), with distinct tangents.
More generally, the theorem remains true if we replace Rn+1 by an (n + 1)-dimensional smooth Rie-

mannian manifold N, the region H by an open region in N bounded by a smooth hypersurface, and the
origin by a point in this hypersurface.

Theorem 3.20 easily can be reduced to the following theorem for the renormalized mean curvature
flow:

Theorem 3.21. Suppose for i = 1, 2 that t ∈ [0,∞) 7→ Mi
t is a renormalized unit-regular MCF such that:

(i) Each subsequential limit of Mi
t as t → ∞ is nonempty and is smooth with multiplicity one away

from a closed set ofHn−1 measure 0.
(ii) Neither M1

t nor M2
t converges (as t → ∞) to the plane ∂H.

(iii) For each t < ∞, reg M1
t ∩ H and reg M2

t ∩ H are disjoint.

Then M1
t and M2

t converge to planes P1 and P2.

Recall also, by the local regularity theorem, that convergence of Mi
t to a plane P as t → ∞ is equivalent

to convergence of Mi
tk to P for some sequence tk → ∞.

Proof of Theorem 3.20 assuming Theorem 3.21. LetM1,M2 be as in Theorem 3.20, and denote the cor-
responding renormalized mean curvature flows around (0, 0) by M̂1

t and M̂2
t . It follows from conditions

(i)-(iii) of Theorem 3.20 forM1,M2 that conditions (i)-(iii) of Theorem 3.21 hold for M̂1
t , M̂

2
t . Therefore

M̂1
t and M̂2

t converge to planes. Thus, (0, 0) is a smooth point for bothM1 andM2. Finally, by condition
(iii) of Theorem 3.20 and the smooth Hopf lemma (see below), this implies that the tangent flows toM1

andM2 at (0, 0) are distinct planes. �

In the above proof, we used the following classical result:
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Lemma 3.22 (smooth Hopf lemma, c.f. [CHH, Lemma 6.7]). If u and v are smooth graphical solutions
of the mean curvature flow in P(0, ε)∩ {x1 ≤ 0}, such that u(0, 0) = v(0, 0) and u < v in P(0, ε)∩ {x1 < 0},
then ∂u

∂x1
(0, 0) > ∂v

∂x1
(0, 0).

Proof of Theorem 3.21. Let C be the collection of pairs (Σ1,Σ2) such that there is a sequence tk → ∞ for
which Mi

tk converges to Σi for i = 1, 2.
Suppose (Σ1,Σ2) ∈ C. Then Σi , ∂H by Hypothesis (ii), so reg Σi intersects ∂H transversely along a

nonempty set (by Corollary 3.14), and thus

(103) H ∩ reg Σi , ∅.

Since ∂B(0,
√

2n) is a shrinker, H ∩ reg Σi and H ∩ ∂B(0,
√

2n) have nonempty intersection by Theo-
rem 3.11, and thus

(104) W ∩ reg Σi , ∅,

where

(105) W = H ∩ B(0, 2
√

2n).

We claim that

(106) reg Σ1 and reg Σ2 have no transverse intersection points in H.

Otherwise, reg M1
tk and reg M2

tk would have transverse intersection points in H for all sufficiently large tk,
contrary to Hypothesis (iii).

By Theorem 3.11(Bernstein-type theorem, second version) and Corollary 3.15 (improved conclusion),
either Σ1 and Σ2 are both planes or Σ1 = Σ2. In the first case, we are done, so we can assume that

(107) Σ1 = Σ2 for all (Σ1,Σ2) in C.

If S is a subset of Rn+1 and p ∈ S , let R(S , p) be the regularity scale of S at p, i.e., the supremum of
r > 0 such that S ∩ B(p, r) is a smooth n-dimensional manifold (with no boundary in B(p, r)) properly
embedded in B(p, r) and such that the norm of the second fundamental form at each point of S ∩ B(p, r)
is ≤ 1/r. (If there is no such r, we let R(S , p) = 0.) We define

(108) f (S ) := sup {R(W ∩ S , p) : p ∈ W ∩ S } ,

where W is as in (105).

Claim 3.23. Let ηi = lim inft→∞ f (Mi
t). Then

(109) η := min{η1, η2} > 0.

(Using (107), it is not hard to show that η1 = η2, but we do not need that fact.)

Proof of claim. Choose tk → ∞ so that f (M1
tk ) → η1. By passing to a subsequence, we can assume that

M1
tk converges to a limit Σ. By (107), M2

tk converges to the same limit Σ. By (104),

(110) f (Σ) > 0.
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By the smooth convergence of M1
tk to Σ at the regular points of Σ (which follows from the local regularity

theorem),

(111) lim f (M1
tk ) = f (Σ).

Thus η1 > 0. Likewise, η2 > 0. This completes the proof of the claim. �

Choose T so that f (Mi
t) > η/2 for all t ≥ T and for i = 1, 2. For t ≥ T , let

(112) φ(t) = sup
{
dist(x,M2

t ) : x ∈ W ∩ M1
t and R(W ∩ M1

t , x) ≥ η/2
}
.

Note that, by definition, for every x ∈ M1
t ∩W one has R(W ∩M1

t , x) ≤ dist(x, ∂W), so the supremum will
be attained at some (not necessarily unique) point xt, with dist(xt, ∂W) ≥ η/2. Moreover, by (107), we
have limt→∞ φ(t) = 0. Now, for k ∈ N, choose tk ≥ k so that

(113) φ(tk) ≥ (1 − k−1) sup
t≥tk

φ(t).

By passing to a subsequence, we can assume that M1
tk converges to a limit Σ and that xtk converges to a

point p ∈ W ∩ reg Σ. By (107), M2
tk also converges to Σ. It also follows that

(114)
{(x, t) : t ∈ R, x ∈ Mi

tk+t} converges to Σ × R, with smooth

convergence on compact subsets of (Rn+1 \ sing Σ) × R.

Choose open subsets Ωk of H ∩ reg Σ such that

p ∈ Ω1 ⊂ Ω2 ⊂ . . . ,(115)

Ωk ⊂⊂ H ∩ reg Σ,(116)

∪kΩk = H ∩ reg Σ.(117)

Since H ∩ reg Σ is connected (by Corollary 3.12), we can choose the Ωk to be connected.
Let ν be a unit normal vectorfield on reg Σ. (Such a vectorfield exists by Corollary 3.19.) By the smooth

convergence of Mi
tk on the regular portion of Σ, we can, by passing to a subsequence, assume that there

are functions

(118) u1
k , u

2
k : Ωk × [−k, k]→ R

such that

{q + u1
k(q, t)ν(q) : q ∈ Ωk} ⊂ M1

tk+t,(119)

{q + u2
k(q, t)ν(q) : q ∈ Ωk} ⊂ M2

tk+t,(120)

and such that u1
k and u2

k converge to 0 smoothly on compact subsets of

(121) (H ∩ reg Σ) × R.

By relabelling, we can assume that u2
k > u1

k on Ωk. Consider the normalized difference

(122) wk :=
u2

k − u1
k

u2
k(pk, 0) − u1

k(pk, 0)
,
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where pk ∈ Ωk is such that pk + u1
k(pk, 0)ν(pk) = xtk . Since M1

t and M2
t evolve by renormalized mean

curvature flow, the function wk satisfies a linear second-order parabolic equation. The coefficients depend
on u1

k and u2
k , but for k → ∞ converge smoothly on compact subsets of (H ∩ reg Σ) × R to the coefficients

of the operator ∂t − L, where L is the stability operator (52) for the F-functional, since the renormalized
mean curvature flow is the gradient flow for F. Moreover, by (113) after passing to another subsequence
we have

(123) sup
t∈[0,k]

wk(p, t) ≤ 2, where p = lim
k→∞

xtk .

Therefore, applying the Harnack inequality [Lie96, Corollary 7.42] we infer that wk is uniformly bounded
on compact subsets of (H ∩ reg Σ) × R. Together with standard derivative estimates this implies that after
passing to another subsequence wk converges smoothly on compact subsets to a nonnegative solution

(124) φ : (H ∩ reg Σ) × R→ [0,∞)

of the linearized mean curvature flow equation

(125) (∂t − L)φ = 0.

Since wk(pk, 0) = 1, we see that φ(p, 0) = 1, so φ > 0 by the strong maximum principle. Morevoer, using
again (113), we see that

(126) sup
t≥0

φ(p, t) < ∞.

The existence of such a φ implies that H ∩ reg Σ is stable for the F-functional. (If that is not clear, see
Lemma 3.24 below.) Thus, by Theorem 3.8 (Bernstein-type theorem, first version), Σ ∩ H is a union of
halfplanes. By assumption (i) we haveHn−1(sing Σ) = 0, so Σ∩H is a single halfplane P∩H, where P is a
hyperplane in Rn+1. Applying Theorem 3.11(Bernstein-type theorem, second version) and Corollary 3.15
(improved conclusion) we conclude that Σ = P. �

Lemma 3.24. Let N be a smooth, connected Riemannian manifold without boundary and let L be a
second-order, self-adjoint, linear elliptic operator on N. Suppose that there is a smooth, everywhere
positive solution

(127) φ : N × [0,∞)→ R

of the parabolic equation ∂tφ = Lφ such that

(128) sup
t≥0

φ(p, t) < ∞

for some point p ∈ N. Then N is stable for L in the following sense: if U is a relatively open subset of N
with compact closure and if λ is the first Dirichlet eigenvalue of L on U, then λ ≥ 0.

Proof. Let U ⊂⊂ N be a connected open set containing p. It suffices to show (for every such U) that
the first eigenvalue λ of L on U is nonnegative. Let f be the corresponding eigenfunction. Then f is
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nonzero at all points of U. By multiplying by a constant, we can assume that 0 < f ≤ φ(·, 0). Thus by the
maximum principle,

(129) e−λt f (·) ≤ φ(·, t)

for all t ≥ 0 (since e−λt f (·) solves the same parabolic equation). In particular,

(130) e−λt f (p) ≤ φ(p, t) ≤ sup
t≥0

φ(p, t) < ∞.

for all t ≥ 0. Hence λ ≥ 0. �

4. Coarse properties of ancient asymptotically cylindrical flows

4.1. Partial regularity. In this subsection, we prove a partial regularity result for ancient asymptotically
cylindrical flows.

Recall that the entropy of a Radon measure µ in Rn+1 is defined as the supremum of the Gaussian area
over all centers and scales, namely

(131) Ent[µ] = sup
y∈Rn+1,λ>0

∫
1

(4πλ)n/2 e−
|x−y|2

4λ dµ(x),

and the entropy of an integral Brakke flowM = {µt}t∈I is defined as

(132) Ent[M] = sup
t∈I

Ent[µt].

Proposition 4.1 (entropy bound). Any ancient asymptotically cylindrical flowM satisfies

(133) Ent[M] ≤ Ent[S n−1 × R].

Proof. For any X0 = (x0, t0) ∈ Rn+1 × R and ρ ∈ (0,∞) consider the cutoff function

(134) χ(X0,ρ)(x, t) =

(
1 −
|x − x0|

2 + 2n(t − t0)
ρ2

)3

+

.

Then we have the localized monotonicity inequality

(135)
d
dt

∫
ρX0(x, t)χ(X0,ρ)(x, t) dµt(x) ≤ −

∫ ∣∣∣∣∣∣H(x, t) −
(x − x0)⊥

2(t − t0)

∣∣∣∣∣∣2 ρX0(x, t)χ(X0,ρ)(x, t) dµt(x).

Since M asymptotically cylindrical, and since X0 and ρ are arbitrary, it follows from (135) that M has
bounded area ratios. Hence, we can apply the monotonicity formula (34) without cutoff function, and use
again the assumption thatM is asymptotically cylindrical, to conclude that Ent[M] ≤ Ent[S n−1 × R]. �

Lemma 4.2 (stationary cones). Let µ be an integral 3-rectifiable Radon measure in R4 with Ent[µ] < 3/2.
If the associated varifold Vµ is a stationary cone, then µ = H3xP for some flat plane P.



ANCIENT ASYMPTOTICALLY CYLINDRICAL FLOWS AND APPLICATIONS 39

Proof. This is explained in [BW16, Lem. 4.1 and Footnote 1]. For the reader’s convenience, and since
part of this statement is only remarked upon in [BW16] as a footnote, we will include the proof here as
well.

Let us first show that there are no non-flat 2-dimensional stationary cones V2 in R3 with entropy less
than 3/2. Letting x ∈ spt(V2) − {0}, the tangent cone to V2 at x splits off a line in the x direction, and
therefore is of the form V1×R, where V1 is a stationary cone in R2. We have Ent[V1] < 3/2, so V1 is a line
and x is a regular point. Therefore, the link of the cone V2 is a smooth closed geodesic in S 2, and since
such a geodesic has to be a great circle, it follows that V2 is the plane.

In the three dimensional case, given µ, take x ∈ spt(µ) − {0}. The tangent cone to Vµ at x splits off a
line, and so it is of the form V2 × R for a stationary V2 with Ent[V2] < 3/2. As shown above, V2 must be
flat, and so x is a regular point. Thus, the link of Vµ is a smooth closed minimal surface Σ in S 3. By the
entropy assumption we have

(136)
Area(Σ)
Area(S 2)

=
Ent[µ]

Ent[R3]
<

3
2

On the other hand, it follows from the resolution of the Willmore conjecture [MN14, Thm. B] that if Σ is
not an equitorial sphere then

(137)
Area(Σ)
Area(S 2)

≥
2π2

4π
=
π

2
.

Thus, Σ is an equatorial 2-sphere, and µ = H3xP for some flat plane P. �

Theorem 4.3 (partial regularity). Let M be an ancient asymptotically cylindrical flow in Rn+1. Then
eitherM is a round shrinking cylinder, or:

(i) The space-time singular set S(M) has a parabolic Hausdorff dimension at most n − 2.
(ii) The singular set S t(M) at time t has Hausdorff dimension at most n − 3 at all times, and at most

n − 4 at almost every time.
(iii) All self-shrinkers Σ appearing as the time −1 slice of a tangent flow ofM are smooth away from

a set of Hausdorff dimension n − 4.

Proof. Considering the stratification of the singular set as in [Whi97] it is enough to rule out certain static,
quasi-static and shrinking tangent flows.

By Proposition 4.1 we have Ent[M] ≤ Ent[S n−1×R] < 3/2. Moreover, we may assume that the entropy
of any tangent flow M̂X at any X ∈ M is strictly less than Ent[S n−1 × R], since otherwise, by the equality
case of Huisken’s monotonicity formula,M would be a family of round shrinking cylinders.

If a tangent flow M̂X at a singular point X ∈ M is static or quasi-static, then its time −1 slice is a
stationary cone. Since X is singular, by Lemma 4.2 this cone can split off at most n − 4 lines; hence M̂X

can only contribute to the (n − 4)-stratum of S t(M) and to the (n − 2)-stratum of S(M).
Consider now the case where a tangent flow M̂X is a non-flat self-shrinker, and denote its time −1 slice

by Σ. Since Σ has entropy less than 3/2, and since Σ is stationary with respect to a metric conformal to
the Euclidean metric, any tangent cone to Σ is a stationary cone with entropy less than 3/2. Thus, using
Lemma 4.2 and dimension reduction it follows that Σ is smooth away from a set of Hausdorff dimension
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n − 4. Moreover, since Σ has entropy strictly less than S 2, by the classification of two-dimensional low
entropy shrinkers [BW17, Cor. 1.2], Σ cannot splits off n − 2 lines.

Combining the above facts with [Whi97, Thm. 9], the remaining assertions of the theorem follow. �

Corollary 4.4 (tameness). Any ancient asymptotically cylindrical flow is a tame Brakke flow (see Defini-
tion 3.1).

Proof. This follows from Theorem 4.3 (partial regularity). �

Corollary 4.5 (extinction time). IfM is an ancient asymptotically cylindrical flow then exactly one of the
following happens:18

(i) Te(M) = ∞, i.e. the flowM is eternal, or
(ii) Te(M) < ∞ andM is a round shrinking cylinder, or

(iii) Te(M) < ∞ and there exist a non-empty set E ⊆ Rn+1 of Hausdorff dimension at most n − 3 such
that Θ(x,Te(M))(M) ≥ 1 if and only if x ∈ E, or

(iv) Te(M) < ∞ and for every R < ∞ there exist T (R) < Te(M) such that B(0,R) ∩ Mt = ∅ for every
t ∈ (T (R),Te(M)].

Proof. Suppose that (i), (ii) and (iv) do not hold. Then, the set of points X such that ΘX(M) ≥ 1 has
an accumulation point (x̄,Te(M)). By upper semi-continuity of the density it follows that Θ(x̄,Te(M)) ≥ 1.
Define E ⊆ Rn+1 as the set of points x such that Θ(x,Te(M))(M) ≥ 1. Since x̄ ∈ E, the set E is non-empty.
Moreover, by the definition of a regular point (see Section 2) all x ∈ E are singular, since there is no
ε > 0 such that the flow is smooth in B(x, ε) × [Te(M) − ε2,Te(M) + ε2]. Hence by Theorem 4.3 (partial
regularity) the Hausdorff dimension of E is at most n − 3. �

4.2. Enclosed domain and comparison. The partial regularity result above allows us to effectively de-
fine the domain enclosed by the flow. To this end, viewM as a subset of space-time Rn+1,1 = Rn+1 × R

and defineU as the path connected component of Rn+1,1 \M that contains the solid asymptotic cylinder.

Proposition 4.6 (separation). Let X = (x, t) ∈ M be a regular point and let r > 0 be small enough such
thatM is smooth in the two-sided parabolic ball B(X, r) = B(x, r)× (t− r2, t + r2) and such thatM divides
B(X, r) it into two regions Ω+,Ω−. Then exactly one of Ω+ and Ω− is inU.

Proof. This is obviously true for the round shrinking cylinder. Assume nowM is not the round shrinking
cylinder. Then, by Theorem 4.3 (partial regularity), the singular set S(M) ofM has parabolic Hausdorff
dimension at most n−2, in particular Euclidean Hausdorff dimension at most n−2. Thus, there exists a set
M′ ⊆ M such thatM′ is a smooth open (n + 1)-dimensional manifold, such that Cl(M′) =M, and such
thatM−M′ has Euclidean Hausdorff dimension at most n − 2. Hence, any space-time curve connecting
Ω+ and Ω− can be perturbed such that it avoidsM−M′, and likewise any smooth disc bounding a closed
curve can be perturbed such that it avoidsM−M′ and meetsM′ transversally. By a standard intersection
theory argument (c.f. [BW16, Thm. 4.3], [Sam69])) this implies that at most one of Ω± is inU.

18We will show later that case (iv) actually cannot occur.



ANCIENT ASYMPTOTICALLY CYLINDRICAL FLOWS AND APPLICATIONS 41

Similarly, thanks again to the small singular set (and the small singular set of tangent flows), there
exists a path γ ⊆ M, connecting X to the asymptotic cylinder and passing solely through regular points.
Therefore, at least one of Ω± is inU. �

We set

(138) Ut = {x ∈ Rn+1 | (x, t) ∈ U},

and call

(139) Kt = Ut ∪ Mt

the domain enclosed by Mt.

Proposition 4.7 (comparison). Suppose {Nt}t∈[t0,t1] is a smooth mean curvature flow of compact hypersur-
faces. If Nt0 ⊆ Ut0 (resp. Nt0 ⊆ R

n+1 \ Kt0), then Nt ⊆ Ut (resp. Nt ⊆ R
n+1 \ Kt) for all t ∈ [t0, t1].

Proof. This follows directly from the avoidance principle [Ilm94, Sec. 10] applied to Mt and Nt. �

4.3. Almost self-similarity backwards in time. We start with the following structural result for low
entropy self-shrinkers, which is a refinement of the results in [BW16, Sec. 4].

Proposition 4.8 (structure of low entropy shrinkers). For every n ≥ 3 and ρ > 2n there exist constants
R0 = R0(n, ρ) ∈ [2ρ,∞) and c0 = c0(n, ρ) > 0, such that every (potentially singular) n-dimensional
self-shrinker Σ ⊆ Rn+1 with Ent[Σ] ≤ Ent[S n−1 × R] is one of the following:

(i) a round shrinking cylinder S n−1 × R,
(ii) a compact self-shrinker (potentially singular) contained in B(0,R0),

(iii) a noncompact self-shrinker with the property that there exists some y ∈ B(0,R0) ∩ Σ and s ∈
[2ρ,R0], such that Σ is smooth in B(y, s) with regularity bounded from below by c0, and such that
Σ separates B(y, s) into two connected components, both of which contain a ball of radius ρ.

Proof. Since Ent[S k] < 3/2 for k ≥ 2, it is enough to show by induction on n ≥ 2 that the assertion
holds for all n-dimensional shrinkers Σ satisfying the assumptions Ent[Σ] ≤ Ent[S n−1] and Ent[Σ] < 3/2.
For n = 2 by [BW17, Cor. 1.2] the only such two-dimensional shrinkers are the flat plane and the round
shrinking sphere.

Given n ≥ 3, assume that Σ is a non-compact n-dimensional shrinker with Ent[Σ] ≤ Ent[S n−1 × R].
Taking the corresponding self-shrinking flow N , it is easy to see that C = {x ∈ Rn+1 | Θ(x,0)(N) ≥ 1}
forms a nontrivial set-theoretic cone. Taking any 0 , p ∈ C, any tangent flow N̂(p,0) at (p, 0) splits off a
line. Denoting by Σ′ the time (−1) slice of N̂(p,0), we therefore have that Σ′ = Σ′n−1 × R, where Σ′n−1 is an
(n − 1)-dimensional shrinker with Ent[Σ′n−1] ≤ Ent[S n−1].

By the induction hypothesis, one of (i) - (iii) applies to Σ′n−1. By the entropy bound, Σ′n−1 can not be a
round shrinking cylinder S n−2×R. If Σ′n−1 is compact, then by [Zhu20, Thm. 2.5] it is the round shrinking
sphere S n−1. The equality case of the monotonicity formula therefore implies that Σ is the round shrinking
cylinder S n−1 × R. Finally, if Σ′n−1 satisfies (iii), the self-similarity of Σ (and N̂(p,0) being a tangent flow)
implies the existence of R0(Σ) and c0(Σ) as in (iii), which at this stage may depend on Σ.
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Now, suppose towards a contradiction there are compact Σi that are not contained in B(0, i). Since
every shrinker contains a point in B(0,

√
2n) and since the entropy is bounded, we can apply Allard’s

compactness theorem [All72] to pass to a subsequential limit Σ, which will be a noncompact shrinker with
Ent[Σ] ≤ Ent[S n−1 × R]. This shrinker can not be the cylinder, as the cylinder is isolated in the space
of shrinkers by [CIM15]. Hence, Σ is of type (iii). But by comparison with spheres of radius 2n (using
[BW16, Prop. 4.3]) for i large enough this contradicts the fact that Σi becomes extinct in a point at time 0.

Similarly, suppose towards a contradiction there is a sequence of Σi of type (iii) such that for every i,
we have R0(Σi) ≥ i (respectively c0(Σ) ≤ i−1). Pass to a subsequential limit Σ. Then, arguing as above,
Σ can not be the cylinder or compact. Hence, Σ is of type (iii). But then there are c > 0, R < ∞,
y ∈ Σ ∩ B(0,R) and s ≤ R such that Σ is smooth in B(y, s) with regularity scale bounded below by c, and
such that Σ separates B(y, r) into two components, both of which contain a ball of radius 4ρ. This gives a
contradiction for i large enough, and concludes the proof of the proposition. �

Convention 4.1. We now fix a small positive constant ε < (100R0)−1 where R0 is the constant from
Proposition 4.8 (structure of low entropy shrinkers) corresponding to ρ = 3n. We furthermore assume that
ε is small enough so that Proposition 4.10 (almost selfsimilarity) from below applies.

Given a Brakke flowM, a point X = (x, t) ∈ M, and a scale r > 0, we denote by

(140) MX,r = D1/r(M− X)

the Brakke flow which is obtained fromM by shifting X to the origin and parabolically rescaling by 1/r.
The following definition captures how closeMX,r is to a selfsimilar flow as in Proposition 4.8 (structure

of low entropy shrinkers). Since the selfsimilar solutions can be singular, we measure closeness in a hybrid
way (strong closeness in smooth regions and weak closeness in singular regions).

Definition 4.9 (almost selfsimilarity). We say that a Brakke flowM is

• ε-cylindrical around X at scale r ifMX,r is ε-close in Cb1/εc in B(0, 1/ε)×[−2,−1] to the evolution
of a round cylinder with radius

√
−2(n − 1)t and center at the origin.

• ε-compact around X at scale r if there is some compact shrinker Σ with Ent[Σ] ≤ Ent[S n−1 ×R],
such that for all t ∈ [−2,−1] we have that (MX,r)t ∩ B(0, 1/ε) ⊆ B(

√
−tΣ, ε).

• ε-separating around X at scale r if there are a noncompact shrinker Σ with Ent[Σ] ≤ Ent[S n−1 ×

R], a point y and a radius s as in item (iii) of Proposition 4.8 (structure of low entropy shrinkers),
such that for all t ∈ [−2,−1] we have that (MX,r)t ∩ B(0, 1/ε) ⊆ B(

√
−tΣ, ε) and that MX,r is

ε-close in Cb1/εc in {(x′, t′) ∈ Rn+1 × [−2,−1] | x′ ∈ B(
√
−t′y,

√
−t′s)} to

√
−tΣ.

We say thatM is ε-selfsimilar around X at scale r if it is ε-cylindrical, ε-compact, or ε-separating around
X at scale r.

Given any X = (x, t) ∈ M, we analyze the solution around X at the diadic scales r j = 2 j, where j ∈ Z.

Theorem 4.10 (almost selfsimilarity). For any small enough ε > 0 and any ancient asymptotically cylin-
drical flowM that is not the round shrinking cylinder the following holds:
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(i) There exists a positive integer N = N(ε) < ∞, such that for any integers j1, j2 with j2 − j1 ≥ N,
and any X ∈ M, there is some integer j with j1 ≤ j ≤ j2 such thatM is ε-selfsimilar around X
at scale r j.

(ii) For any X ∈ M there exists a largest integer J(X) ∈ Z such that

M is not ε-cylindrical around X at scale r j for all j < J(X),

and for all ε′ > 0 there exists a positive integer N′ = N′(ε, ε′) < ∞ such that

M is ε′-cylindrical around X at scale r j for all j ≥ J(X) + N′.

Proof. For integral Brakke flowsM = {µt} and N = {νt} with bounded entropy we consider their pseudo-
distance

(141) dB(M,N) =
∑
i, j

1
2i+ j

∣∣∣ ∫ φidµt j −
∫
φidνt j

∣∣∣
1 +

∣∣∣ ∫ φidµt j −
∫
φidνt j

∣∣∣ ,
where {φi} is dense set of functions in Cc(B(0, 2/ε)), and {t j} is a dense set of times in [−4,−1]. We recall
from [CHN13, Sec. 2.4] that dB is compatible with the convergence of integral Brakke flows and strictly
positive definite when restricted to selfsimilar solutions.

Now, by Huisken’s monotonicity formula and quantitative differentiation (see [CHN13, Sec. 3.1]), for
any ε̂ > 0 there exists an N̂(ε̂) < ∞ such that for any X ∈ M in our ancient asymptotically cylindrical
flow, and any j ∈ Z \ EX , where the set of exceptional scales EX satisfies |EX | ≤ N̂, we have that

(142) dB(MX,r j ,N) < ε̂

for some self-shrinker N with Ent[N] ≤ Ent[S n−1 × R].
Recall that the structure of such shrinkers N = {

√
−tΣ}t<0 is given by Proposition 4.8 (structure of

low entropy shrinkers). Using the local regularity theorem and the clearing out lemma [Bra78], the weak
ε̂-closeness to N from (142) can be upgraded to ε-selfsimilarity around X at scale r j (see Definition 4.9),
provided ε̂ = ε̂(ε) > 0 is small enough. This proves the first assertion.

The second assertion follows from a similar argument (c.f. [CHH, proof of Thm. 3.5]), but for con-
venience of the reader let us provide the details. First, note that since by [CIM15] the round shrinking
cylinder is isolated in the space of shrinkers, there exists some εCIM > 0 such that

(143) dB(N ,C) > εCIM

for any self-shrinker N with Ent[N] ≤ Ent[S n−1 × R] that is not a round shrinking cylinder C. Assume
from now on that ε � εCIM. If there was a sequence j → −∞ such thatM is ε-cylindrical around X at
scale r j, then it would follow that some tangent flow at X is a round shrinking cylinder. However, since
some tangent flow at −∞ is a round shrinking cylinder, by the equality case of Huisken’s monotonicity
formula this would yield that the flowM itself is a round shrinking cylinder, contradicting our assumption.
Hence, remembering again thatM is asymptotically cylindrical, it follows that there is a largest integer
J(X) ∈ Z such thatM is not ε-cylindrical around X at scale r j for all j < J(X). Now, using the definition
of ε-cylindrical we see that Huisken’s monotone quantity at scale rJ(X) satisfies

(144) ΘX(M, rJ(X)) ≥ Ent[S n−1 × R] − δ(ε),
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where δ(ε) → 0 as ε → 0. Fix a small constant ε0 � εCIM. Since on the other hand Ent[M] ≤
Ent[S n−1 × R], using Huisken’s monotonicity formula and quantitative rigidity (see [CHN13, Sec. 3.1]),
possibly after decreasing ε, we infer thatM is ε0-selfsimilar at scale r j for all j ≥ J(X). Remembering
(143), for sufficiently small ε this yields thatM is ε1-cylindrical at scale r j for all j ≥ J(X), where ε1 can
be made as small as we want by choosing ε0 sufficiently small.
Finally, the same argument as above together with quantitative differentiation (see [CHN13, Sec. 3.1])
yields that the quality of the necks in fact improves as we go further back in time, namely if M is ε1-
cylindrical at scale r j, then it is ε1/2-cylindrical at scale r j′ for all j′ ≥ j + N1, where N1 = N1(ε1) < ∞.
This implies the remaining assertion, and thus concludes the proof of the theorem. �

Definition 4.11 (cylindrical scale). The cylindrical scale of X ∈ M is defined by

(145) Z(X) = 2J(X).

We conclude this subsection by proving one more proposition that will be useful in Section 6.

Proposition 4.12 (ε-compact and ε-separating). LetM be an ancient asymptotically cylindrical flow, and
let X0 = (x0, t0) ∈ M. Then:

(i) IfM is ε-compact around X0 at scale r, then the connected component of Mt0 containing x0 is
contained in B(x0, r/ε).

(ii) IfM is ε-separating around X0 at scale r, then the extinction time satisfies Te(M) ≥ t0 + r2, and
there exists a point x ∈ B(x0, r/ε) such that (x, t0 + r2) ∈ M.

Proof. The first assertion follows from Proposition 4.8 (structure of low entropy shrinkers) and the choice
of ε (Convention 4.1) by the avoidance principle [Ilm94, Sec. 10].

Next, note that Proposition 4.8 (structure of low entropy shrinkers) and the choice of ε (Convention
4.1) imply that both Kt0−r2 ∩ B(x0, r/ε) and B(x0, r/ε) \Kt0−r2 contain a ball of radius 2nr. By comparison
(Corollary 4.7) this yields the second assertion. �

4.4. Regularity of trapped regions. In this section we prove that if some region of an ancient asymp-
totically cylindrical flow is trapped in a thin slab (either between two planes or between two cylindrical
shells) over many scales, then its regularity scale is bounded from below.

For a set A ⊂ Rn+1, a point x ∈ Rn+1, and a radius r > 0, we denote by Th(A, x, r) the infimum over all
w such that (A − x) ∩ B(0, r) after suitable rotation is contained in the slab {|xn+1| ≤ w}.

Lemma 4.13 (thickness of shrinkers). There exists a constant δ0 > 0, such that every nonplanar shrinker
Σ ⊂ Rn+1 with Ent[Σ] ≤ Ent[S n−1 × R] satisfies

(146) Th(Σ, 0, 2n) ≥ δ0.

Proof. Suppose towards a contradiction that there is a sequence Σi ⊂ R
n+1 of nonplanar shrinkers with

Ent[Σi] ≤ Ent[S n−1 × R] such that Th(Σi, 0, 2n) ≤ i−1. Since Σi ∩ B(0,
√

2n) , ∅ by comparison with
spheres, it follows from Allard’s compactness theorem [All72] that the Σi subconverge to a shrinker Σ
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with Ent[Σ] ≤ Ent[S n−1 × R] that satisfies Σ ∩ B(0,
√

2n) , ∅ and Σ ∩ B(0, 2n) ⊆ P for some hyperplane
P. By Theorem 4.3 (partial regularity), we haveHn−3(sing Σ) = 0, and hence in particular the regular set
of Σ is connected. Thus, choosing a regular point p ∈ Σ ∩ B(0, 2n) and using smooth unique continuation,
similarly as in the proof of Corollary 3.15, it follows that Σ = P. However, by the local regularity theorem,
the flat plane is isolated in the space of shrinkers (see e.g. [Whi05, Prop. 3.2]), so Σi cannot converge to
Σ. This gives the desired contradiction, and thus proves the lemma. �

Recall that the regularity scale R(X) is defined as the maximal radius r ≥ 0 such that |A| ≤ 1/r in the
parabolic ball P(X, r).

Proposition 4.14 (regions trapped between planes). There exist constants δ > 0 and c > 0 with the
following significance: If X0 = (x0, t0) ∈ M is a point on an ancient asymptotically cylindrical flow and if
r0 > 0 is such that

(147) Th(Mt0−r2 , x0, 2nr) ≤ δr

for every r ∈ [r0, 2Nr0], where N is the constant from Theorem 4.10 (almost selfsimilarity), then

(148) R(X0) ≥ cr0.

Proof. By Theorem 4.10 (almost selfsimilarity), there exists a scale r ∈ [r0, 2Nr0] at which M is ε-self
similar around X0 to a self-shrinker Σ. Taking δ = δ0/2 from the previous lemma (and tacitly assuming
that we fixed ε small enough), equation (147) implies that Σ is the hyperplane (we note that being ε-close
to a plane was included as special case of ε-separating in Definition 4.9). The bound (148) now follows
from White’s local regularity theorem [Whi05]. �

Proposition 4.15 (regions trapped between cylindrical shells). There exist constants σ > 0, c > 0 and
T > −∞ with the following significance. Suppose that M is an asymptotically cylindrical flow, with
(0, 0) ∈ M, and that t0 ≤ T . If for every t ≤ t0 and x ∈ Mt ∩ B(0,

√
4n|t|) we have

(149)
∣∣∣∣ √x2

1+...+x2
n

√
−t

−
√

2(n − 1)
∣∣∣∣ ≤ σ,

then for every t ≤ t0 and x ∈ Mt ∩ B(0,
√

3n|t|) we have

(150) R(x, t) ≥ c
√
−t.

Proof. Let σ be so small such that

(151)
2σ
δ
· 2N =

σ2/3

2n
,

where N is the constant from Theorem 4.10 and δ is the constant from Proposition 4.14. Consider the
increasing function

(152) g(r) =
r

√
−t + r2

,
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which measures the quotient between the scale of the cylinder and the scale measured from X = (x, t).
Letting r0 be such that g(r0) = 2σ

δ , we see that r0 � σ
δ

√
−t if |t| is sufficiently large. Therefore, by

Proposition 4.14, if the postulated bound does not hold, then there exists some r ∈ [r0, 2Nr0] such that

(153) Th(Mt−r2 , x, 2nr) ≥ δr.

Letting r1 to be such that g(r1) = σ2/3

2n we see that

(154) 2N =
g(r1)
g(r0)

=
r1

r0
·

√
−t + r2

0√
−t + r2

1

≤
r1

r0
,

so r ≤ r1. Thus, by the monotonicity of g

(155) 2nr = 2ng(r)
√
−t + r2 ≤ 2ng(r1)

√
−t + r2 = σ2/3

√
−t + r2,

so

(156) Th(Mt−r2 , x, 2nr) ≤ Th(Mt−r2 , x, σ2/3
√
−t + r2).

Similarly,

(157) δr = δg(r)
√
−t + r2 ≥ δg(r0)

√
−t + r2 = 2σ

√
−t + r2,

and so combining (153),(156), and (157), we obtain

(158) Th(Mt−r2 , x, σ2/3
√
−t + r2)) ≥ 2σ

√
−t + r2.

This is contradictory to the fact that for the unit sphere S n−1 and a point p ∈ S n−1,

(159) Th(S n−1, p, η) � η2

for η � 1 (indeed, instead of S n−1 we could have taken any smooth hypersurface of bounded geometry
and any point on it). �

4.5. Asymptotic cylindrical scale. LetM be an ancient asymptotically cylindrical flow which is not the
round shrinking cylinder. By Colding-Minicozzi [CM15] the axis of the asymptotic cylinder is unique.
We remark that Colding-Minicozzi only explicitly stated the results for blowups, but their proof also
applies for blowdowns (see also [GH20, Prop. 4.1] for a uniform axis-tilt estimate for blowdowns). We
can assume without loss of generality that the axis is in xn+1-direction. Moreover, after translating and
scaling, we can assume that (0, 0) ∈ M and Z(0, 0) ≤ 1.

Proposition 4.16 (asymptotic cylindrical scale). For every δ > 0 there exists Λ = Λ(δ) < ∞, such that
Z(p, 0) ≤ δ|p| for all p ∈ M0 with |p| ≥ Λ.

Proof. If the assertion fails for some δ > 0, then there is a sequenceMi of ancient asymptotically cylin-
drical flows with Z(0, 0) ≤ 1 and a sequence of points pi ∈ Mi

0 with |pi| → ∞ and Z(pi, 0) ≥ δ|pi|. Let
Mi := D1/|pi |(M

i) and pass to a subsequential limit M∞. By construction, M∞ is an ancient integral
Brakke flow with entropy at most Ent[S n−1 × R]. Moreover, applying Theorem 4.10 (almost selfsimilar-
ity) along the approximating sequence we infer that M∞ has a cylindrical singularity at the space-time
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origin. Hence, by the equality case of Huisken’s monotonicity formula,M∞ is a round shrinking cylinder
that becomes extinct at time 0. After passing to a subsequence we can assume that pi/|pi| converges to a
point q. If q lies on the xn+1-axis we obtain a contradiction with lim infi→∞

Z(pi,0)
|pi |

> 0, and if q does not
lie on the xn+1-axis we obtain a contradiction the fact that the cylinder becomes extinct at time 0. This
proves the proposition. �

Corollary 4.17 (barrier for the normalized flow). There exists an even smooth function ϕ : R → R+ with
limz→±∞ ϕ

′(z) = 0 such that, given X0 = (x0, t0) ∈ M, the normalized flow M̄X0
τ := e

τ
2 (M−e−τ − x0), where

τ = − log(t0 − t), satisfies

(160) M̄X0
τ ⊆

{√
x2

1 + . . . + x2
n ≤ ϕ(xn+1)

}
for τ ≤ T (Z(X0)), where T (Z(X0)) > −∞ is a constant that only depends on the cylindrical scale Z(X0).
In particular, any potential ends must be in direction xn+1 → ±∞.

Proof. This follows from Proposition 4.16 arguing similarly as in [CHH, Sec. 3.3]. �

5. Fine neck analysis for ancient asymptotically cylindrical flows

5.1. Setting up the fine neck analysis. Let M be an ancient asymptotically cylindrical flow, which is
not the round shrinking cylinder. Given any X0 = (x0, t0) ∈ M, we consider the normalized flow

(161) M̄X0
τ = e

τ
2
(
Mt0−e−τ − x0

)
.

By Theorem 4.10 and the uniqueness of the axis from Colding-Minicozzi [CM15] (see also [GH20,
Prop. 4.1]), we can assume that the rescaled flow converges for τ→ −∞ to the cylinder

(162) Σ =
{
x ∈ Rn+1 | x2

1 + . . . + x2
n = 2(n − 1)

}
.

Moreover, the convergence is uniform in X0 once we normalize such that Z(X0) ≤ 1, see again [CM15]
and [GH20, Prop. 4.1]. Hence, we can find universal functions σ(τ) > 0 and ρ(τ) > 0 with

(163) lim
τ→−∞

σ(τ) = 0, lim
τ→−∞

ρ(τ) = ∞, and − ρ(τ) ≤ ρ′(τ) ≤ 0,

such that M̄X0
τ is the graph of a function u(·, τ) over Σ ∩ B2ρ(τ)(0) with

(164) ‖u(·, τ)‖C4(Σ∩B2ρ(τ)(0)) ≤ σ(τ) ρ(τ)−1.

With the goal of deriving precise asymptotics for u, which capture the deviation from the exactly round
cylinder, we will now set up a fine neck analysis as in [ADS19, BC19, CHH].

In the following, we denote by C < ∞ and T > −∞ constants that can change from line to line, and
can depend on various other quantities, but are independent of the center point X0 with Z(X0) ≤ 1. We
also fix a nonnegative smooth function χ satisfying χ(z) = 1 for |z| ≤ 1

2 and χ(z) = 0 for |z| ≥ 1, and set

(165) û(x, τ) = u(x, τ)χ
(

xn+1

ρ(τ)

)
.
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We recall from Angenent-Daskalopoulos-Sesum that there are n-dimensional shrinkers

Σa = {hypersurface of revolution with profile r = ua(xn+1), 0 ≤ xn+1 ≤ a},(166)

Σ̃b = {hypersurface of revolution with profile r = ũb(xn+1), 0 ≤ xn+1 < ∞},

as illustrated in [ADS19, Fig. 1], see also [KM14] and [ADS19, Sec. 8] for a detailed description. These
shrinkers can be used for barrier arguments as well as for calibration arguments.

Proposition 5.1 (c.f. [CHH, Prop. 4.3], [BC19, Prop. 2.3], [BC21, Prop. 2.6], [ADS19, Lem. 4.7]). The
graph function u satisfies the integral estimates

(167)
∫

Σ∩{|xn+1 |≤L}
e−
|x|2
4 |∇u(x, τ)|2 ≤ C

∫
Σ∩{|xn+1 |≤

L
2 }

e−
|x|2
4 u(x, τ)2

and

(168)
∫

Σ∩{ L
2≤|xn+1 |≤L}

e−
|x|2
4 u(x, τ)2 ≤ CL−2

∫
Σ∩{|xn+1 |≤

L
2 }

e−
|x|2
4 u(x, τ)2

for all L ∈ [L0, ρ(τ)] and τ ≤ T , where L0 is a numerical constant.

Proof. SinceM is an ancient asymptotically cylindrical flow, Huisken’s monotonicity formula yields

(169)
∫

M̄
X0
τ

e−|x|
2/4 ≤

∫
Σ

e−|x|
2/4 .

Thus, using the shrinker foliation from (166) as a calibration as in [CHH, proof of Prop. 4.2] and applying
the divergence theorem we infer that

(170)
∫

Σ∩{|xn+1 |≥L}
e−|x|

2/4 ≤

∫
M̄τ∩{|xn+1 |≥L}

e−|x|
2/4 + CL−1

∫
Σ∩{|xn+1 |=L}

e−|x|
2/4u2,

where we also used Corollary 4.17 to ensure that the region under consideration is indeed foliated by the
family of shrinkers, provided L0 is large enough and T is negative enough. Let us justify in more detail
why the divergence theorem is indeed applicable in our possibly singular setting. Set

(171) K̄X0
τ = e

τ
2
(
Kt0−e−τ − x0

)
,

where Kt is the domain enclosed by Mt from (139), and let ν be the outward pointing normal on reg M̄X0
τ .

Denoting by Z the solid cylinder with ∂Z = Σ, we set ∆τ = ∆out
τ ∪ ∆in

τ , where

(172) ∆out
τ = Int(KX0

τ ) − Z, ∆in
τ = Z − Int(KX0

τ ).

By Theorem 4.3 (partial regularity) we have Hn(M̄X0
τ ) = 0. Thus, by [Fed78, Section 4, Condition (4)

implies condition (3)] for every R > 2L the set ∆out
τ ∩ {|xn+1 ≥ L|} ∩ {|x| ≤ R} (respectively ∆in

τ ∩ {|xn+1 ≥

L|} ∩ {|x| ≤ R}) and its boundary indeed satisfy the divergence theorem.
Having established (169) and (170), the rest of the proof is similar as in [BC21, proof of Prop. 2.6]. �

Since M̄τ moves by normalized mean curvature flow, the evolution of the graph function u is governed
by the linear operator

(173) L = ∆Σ −
1
2 xtan · ∇ + 1
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on the cylinder Σ. The nonlinear error can be estimated either pointwise, or in the Gaussian L2-norm

(174) ‖ f ‖G =

(∫
Σ

(4π)−
n
2 e−

|x|2
4 f 2

)1/2

.

More precisely, we have:

Lemma 5.2 (c.f. [CHH, Lem. 4.4, 4.5], [BC19, Lem. 2.4, 2.5]). The graph function u(x, τ) satisfies

(175) |(∂τ − L)u| ≤ Cσ(τ)ρ−1(τ) (|u| + |∇u|) (τ ≤ T ).

Moreover, the truncated graph function û(x, τ) = u(x, τ) χ
( xn+1
ρ(τ)

)
satisfies

(176) ‖(∂τ − L)û‖G ≤ Cρ−1 ‖û‖G (τ ≤ T ).

Proof. The first assertion simply follows from linearizing the normalized mean curvature flow over the
cylinder and using (164). Using this, the second assertion follows similarly as in [CHH, proof of Lem.
4.5], where we now use Proposition 5.1 to estimate the Gaussian L2-norm of the error terms. �

Let us recall a few facts from [BC21] about the operator L defined in (173). In cylindrical coordinates
this operator takes the form

(177) L f =
∂2

∂x2
n+1

f +
1
2

∆S n−1 f −
1
2

xn+1
∂

∂xn+1
f + f .

Denote by H the Hilbert space of all functions f on Σ such that ‖ f ‖G < ∞, where ‖ ‖G is the Gaussian
L2-norm defined in (174). Analysing the spectrum of L, the Hilbert spaceH can be decomposed as

(178) H = H+ ⊕H0 ⊕H−,

where H+ is spanned by the n + 2 positive eigenmodes 1, x1, . . . , xn+1 (here, x1, . . . , xn+1 denotes the
restriction of the Euclidean coordinate functions to Σ), andH0 is spanned by the n + 1 zero-modes x2

n+1 −

2, x1xn+1, . . . , xnxn+1. We have

〈L f , f 〉G ≥ 1
2 ‖ f ‖

2
G for f ∈ H+,

〈L f , f 〉G = 0 for f ∈ H0,(179)

〈L f , f 〉G ≤ − 1
n−1 ‖ f ‖

2
G for f ∈ H−.

Now, with the aim of splitting the fine neck analysis into two cases, we consider the functions

U+(τ) := ‖P+û(·, τ)‖2G,

U0(τ) := ‖P0û(·, τ)‖2G,(180)

U−(τ) := ‖P−û(·, τ)‖2G,
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where P+, P0, P− denote the orthogonal projections to H+,H0,H−, respectively. Using Lemma 5.2 we
obtain

d
dτ

U+(τ) ≥ U+(τ) −Cρ−1 (U+(τ) + U0(τ) + U−(τ)),∣∣∣∣ d
dτ

U0(τ)
∣∣∣∣ ≤ Cρ−1 (U+(τ) + U0(τ) + U−(τ)),(181)

d
dτ

U−(τ) ≤ −
2

n − 1
U−(τ) + Cρ−1 (U+(τ) + U0(τ) + U−(τ)).

Proposition 5.3 (c.f. [CHH, Sec. 4.1]). Either the plus mode is dominant, i.e.

(182) U− + U0 ≤ Cρ−1U+,

or the neutral mode is dominant, i.e.

(183) U+ + U− = o(U0).

Moreover, which of the two cases happens only depends onM, and not on X0 and ρ.

Proof. This follows from (181) by applying the Merle-Zaag ODE-lemma [MZ98] similarly as in [CHH,
Sec. 4.1]. �

5.2. Fine analysis in the plus mode. In this section, we assume that the plus mode is dominant. As
explained above this means that after fixing a center X0 ∈ M with Z(X0) ≤ 1, and a graphical scale
function ρ, we have that

(184) U− + U0 ≤ Cρ−1U+

for all τ ≤ T . As before, C < ∞ and T > −∞ denote constants that can change from line to line and are
independent of the point X0 ∈ M with Z(X0) ≤ 1. The main goal of this section is to prove Theorem 5.8,
which shows that all necks open up slightly in the xn+1-direction in a very specific way.

5.2.1. Graphical radius. To get started, using (181) and (184) we compute

d
dτ

U+ ≥ U+ −Cρ−1 U+.(185)

Integrating this differential inequality, for every µ > 0 we get

U+(τ) ≤ Ce(1−µ)τ(186)

for all τ ≤ T (µ). Recalling that U+ = ‖P+û‖2G and using (184) we infer that

(187) ‖û‖G ≤ Ce
(1−µ)τ

2 .

By interior estimates and interpolation this implies

||u(·, τ)||Cn+2(Σ∩{|xn+1 |≤10L0}) ≤ Ce
(1−µ)τ

2(188)

for all τ ≤ T (µ).
We will now show that the normalized flow is graphical over an exponentially large domain:
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Proposition 5.4 (c.f. [CHH, Prop. 4.10]). For τ ≤ T the normalized mean curvature flow M̄τ can be
written as graph of a function v(·, τ) over Σ ∩ {|xn+1| ≤ e−τ/10} with the estimate

(189) ||v||C6(Σ∩{|xn+1 |≤e−τ/10}) ≤ Ceτ/10.

Proof. First, thanks to (188) we can use the n-dimensional shrinkers from (166) as barriers similarly as in
[CHH, proof of Prof. 4.9] to infer that the rescaled mean curvature flow M̄τ satisfies the C0-estimate

(190) sup
M̄τ∩{|xn+1 |≤2e−

τ
10 }

∣∣∣x2
1 + . . . + x2

n − 2(n − 1)
∣∣∣ ≤ Ce

τ
10 .

The geometric meaning of (190) is that the normalized flow is trapped between two cylindrical shells.
Thus, the regularity scale of the normalized flow in this region clearly is bounded above. On the other
hand, thanks to Proposition 4.15 (regularity of trapped regions) the regularity scale of the normalized flow
in this region is also bounded below, i.e. we get

(191) C−1 ≤ R(p̄, τ) ≤ C

for |xn+1( p̄)| ≤ 3
2 e−

τ
10 , provided that τ is sufficiently negative.

Finally, having established (191), the C0-estimate (190) can be upgraded to a graphical C6-estimate by
the same argument as in [CHH, second half of the proof of Prop. 4.10]. �

We now repeat the process from Section 5.1 with improved functions ρ and σ. Namely, by Proposition
5.4 we can choose

(192) ρ(τ) = e−τ/20, σ(τ) = Ceτ/20,

and write Mτ as graph of a function u(·, τ) defined over the exponentially large domain Σ ∩ B2ρ(τ), such
that it satisfies the estimate (164) for τ ≤ T .

Proposition 5.5. For τ ≤ T the function û(x, τ) = u(x, τ)χ
(

xn+1
e−τ/20

)
satisfies the estimate

(193) ‖û‖G ≤ Ce
τ
2 .

In particular, we have

sup
M̄τ∩{|xn+1 |≤10L0}

|x2
1 + . . . + x2

n − 2(n − 1)| ≤ Ce
τ
2 .(194)

Proof. The argument from [CHH, proof of Prof. 4.11] works in any dimension. �

5.2.2. Constant functions cannot be dominant. It is useful to further decompose

(195) P+ = P1/2 + P1,

where P1/2 is the projection to the span of x1, · · · , xn+1, and P1 is the projection to multiples of 1. Accord-
ingly, we can decompose

(196) U+ := ‖P+û(·, τ)‖2G = ‖P1/2û(·, τ)‖2G + ‖P1û(·, τ)‖2G =: U1/2 + U1.
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Using the assumption that the plus mode is dominant, and Lemma 5.2, we obtain∣∣∣∣ d
dτ

U1/2 − U1/2

∣∣∣∣ ≤ Cρ−1(U1/2 + U1),(197) ∣∣∣∣ d
dτ

U1 − 2U1

∣∣∣∣ ≤ Cρ−1(U1/2 + U1).(198)

Hence, applying the Merle-Zaag ODE-lemma [MZ98] we infer that either the U1/2 is dominant, i.e.

(199) U1 = o(U1/2),

or the constant function 1 is dominant, i.e.

(200) U1/2 ≤ Cρ−1U1.

Proposition 5.6. It must be the case that U1 = o(U1/2).

Proof. The case (200) can be excluded similarly as in [CHH, proof of Prop. 4.12]. �

5.2.3. The fine neck theorem. By Proposition 5.5 and Proposition 5.6 we can now assume that

(201) U− + U0 ≤ Cρ−1U+,

and

(202) U1 = o(U1/2),

where ρ(τ) = e−τ/20. Recall in particular that Proposition 5.5 gives

(203) ‖û‖G ≤ Ce
τ
2 .

Moreover, using in addition equation (202) and the assumption that our solution is not the round shrinking
cylinder, we see that

(204) lim
τ→−∞

e−τU1/2 > 0.

Lemma 5.7 (c.f. [CHH, Lem. 4.13]). For τ ≤ T we have

(205) ||u(·, τ)||Cn(Σ∩{|xn+1 |≤10L0}) ≤ Ce
40
81 τ.

Proof. Since the C4-norm of u is small, this follows from (203) by linear parabolic estimates, similarly as
in [CHH, proof of Lem. 4.13]. �

We will now express P+û ∈ H+ as linear combination of the n + 2 eigenfunctions 1, x1, · · · , xn+1.
Namely, let

aX(τ) = 2
n−3

4 ( eπ
n−1 )

1
4 (n−1)|S n−1|−

1
2

∫
xn+1 ûX(x, τ)e−

|x|2
4 ,

bX
i (τ) = 2

n−3
4 (1 − 1

n )−
1
2 ( eπ

n−1 )
1
4 (n−1)|S n−1|−

1
2

∫
xi ûX(x, τ)e−

|x|2
4 ,(206)

cX(τ) = 2
n−1

4 ( eπ
n−1 )

1
4 (n−1)|S n−1|−

1
2

∫
ûX(x, τ)e−

|x|2
4 ,
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where 1 ≤ i ≤ n, and where the superscript X is to remind us that all these coefficients depend (a priori)
on X. Then, we have

P+ûX = aX xn+1 +

n∑
i=1

bX
i xi + cX .(207)

Moreover, UX
+ = ‖P+ûX‖2G is given by a sum of coefficients squared:

UX
+ = e−

n−1
2 π−

n−1
2 2−

n−3
2 (n − 1)

n−1
2 |S n−1|

(
|aX |2 + (1 − 1

n )
n∑

i=1

|bX
i |

2 + 1
2 |c

X |2
)
.(208)

Theorem 5.8 (Fine neck theorem, c.f. [CHH, Thm. 4.15]). Let M be an ancient asymptotically cylin-
drical flow that is not a round shrinking cylinder. If the plus mode is dominant, then there are constants
ā = ā(M) , 0, C = C(M) < ∞ and a decreasing function T : R+ → R− (depending on M) with the
following significance.

For every X ∈ M the graph function uX(·, τ) of the normalized flow M̄X
τ satisfies the estimates19

(209) ‖e−
τ
2 ûX(x, τ) − āxn+1 − b̄X

1 x1 − · · · − b̄X
n xn‖G ≤ Ce

τ
40 ,

and

sup
|xn+1 |≤10L0

∣∣∣e− τ2 uX(x, τ) − āxn+1 − b̄X
1 x1 − · · · − b̄X

n xn
∣∣∣ ≤ Ce

τ
160(210)

for τ ≤ T (Z(X)). Here, the constant ā is independent of X, and b̄X
i are numbers that may depend on X and

satisfy

(211) |b̄X
1 | + · · · + |b̄

X
n | ≤ C.

Proof. First, by analyzing the evolution ODEs for the coefficients defined in (206) similarly as in [CHH,
proof of Prop. 4.14], we infer that

(212) |e−
τ
2 aX(τ) − āX | +

n∑
i=1

|e−
τ
2 bX

i (τ) − b̄X
i | ≤ Ce

τ
20 , |cX(τ)| ≤ Ce

11
20 τ,

where āX , b̄X
1 , · · · , b̄

X
n are real numbers that might depend on X.

Consider the difference

(213) DX = û − e
τ
2
(
āxn+1 + b̄X

1 x1 + · · · + b̄X
n xn

)
Using (207) and (212) we see that

(214) |DX | ≤ |ûX − P+ûX | + C(1 + |xn+1|)e
11
20 τ.

Since by (201) and (203) we have

(215) U− + U0 ≤ Ce
21
20 τ,

it follows that

(216) ‖DX‖G ≤ Ce
21
40 τ,

19We remind the reader that L0 < ∞ is a large numerical constant that has been fixed in Proposition 5.1.
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which proves (209) modulo the claim about the coefficients.
Combining (203), (208) and (212) we see that

(217) |b̄X
i | ≤ C,

which proves (211).
We recall that e−

τ
2 u corresponds to the original scale. Hence, if instead of X = (x, t) we consider the

new origin X′ = (x′, t), where

(218) x′ = x +
√

2(n − 1)
n∑

i=1

b̄X
i ei,

then the estimate (216) simplifies to

(219) ‖ûX′(x, τ) − eτ/2āX xn+1‖G ≤ Ce
21
40 τ,

i.e. the estimate (209) holds with āX′ = āX , b̄X′ = 0, and c̄X′ = 0. If āX = 0, then (219) implies
‖ûX′‖2

H
≤ Ce

21
20 τ, contradicting (204). Here, we have used Proposition 5.3, as well as Proposition 5.6, to

show that, even after re-centering, the 1
2 mode dominates. Hence, āX , 0. Since the estimate (219) holds

for any X and since āX does not vanish for any X, we see that āX =: ā is independent of X.
It remains to prove the pointwise estimate (210). To this end, we start with

‖DX‖L2(Σ∩{|xn+1 |≤10L0}) ≤ C‖DX‖G ≤ Ce
21
40 τ.(220)

Next, combining Lemma 5.7 and inequality (217) yields

(221) ‖DX‖Hn(Σ∩{|xn+1 |≤10L0} ≤ Ce
41
80 τ.

Hence, applying Agmon’s inequality

(222) ‖u‖L∞ ≤ C‖u‖
1
2
L2‖u‖

1
2
Hn ,

we conclude that

(223) sup
|xn+1 |≤10L0

|DX | ≤ Ce
81
160 τ.

This finishes the proof of the theorem. �

After a change of coordinates we can assume without loss of generality that our ancient low entropy
flow M satisfies ā = ā(M) =

√
(n − 1)/2. Then, after recentering as above, the fine neck theorem

(Theorem 5.8) tells us that the graph uX(·, τ) of the rescaled flow M̄X
τ satisfies

sup
|xn+1 |≤10L0

∣∣∣e− τ2 uX(x, τ) −
√

(n − 1)/2 xn+1
∣∣∣ ≤ Ce

τ
160(224)

for τ ≤ T (Z(X)).
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Corollary 5.9 (c.f. [CHH, Cor. 4.16]). If the rescaled flow M̄X
τ = ∂K̄X

τ satisfies (224), then

K̄X
τ ∩ {xn+1 ≤ −L0} ⊆ {x2

1 + . . . x2
n ≤ 2(n − 1)},(225)

K̄X
τ ∩ {xn+1 ≥ +L0} ⊇ {x2

1 + . . . x2
n ≤ 2(n − 1)},(226)

and

inf
M̄X
τ

xn+1 ≤ −µe−τ/2(227)

for τ ≤ T (Z(X)), where µ > 0 is a numerical constant. In particular, the unrescaled mean curvature flow
M = {Mt} satisfies

(228) inf
p∈Mt

xn+1(p) > −∞, and sup
p∈Mt

xn+1(p) = ∞.

Proof. This follows from barrier arguments similarly as in [CHH, proof of Cor. 4.16]. �

5.3. Fine analysis in the neutral mode. In this section, we assume that the neutral mode is dominant.
The main goal is to prove Theorem 5.18 and Corollary 5.19, which show that the solution is compact with
a precise inwards quadratic expansion.

Given any center X0 ∈ M, there exists some functions σ and ρ satisfying (163), such that (164) holds,
and we have

U− + U+ = o(U0),
∣∣∣∂τU0

∣∣∣ ≤ o(U0)(229)

for τ ≤ T . In this subsection, C < ∞ and T > −∞ denote constants that can change from line to line, and
that may also depend on X0 ∈ M. To distinguish the initial choice of ρ, we set

(230) ρ0(z) = ρ(z).

We will later use improved scale functions, but ρ0 will never change.

5.3.1. Graphical radius. To begin with, we consider the positive function

(231) α(τ) =

(∫
Σ∩{|xn+1 |≤L}

u2(x, s)(4π)−
n
2 e−

|x|2
4

)1/2

.

Lemma 5.10 (c.f. [CHH, Lem. 4.17]). For L ∈ [L0, ρ(τ)], we have the estimate

α(τ)2 ≤

∫
Σ∩{|xn+1 |≤L}

u2(x, τ)(4π)−
n
2 e−

|x|2
4 ≤ Cα(τ)2.(232)

Proof. The proof is similar to [CHH, Lem. 4.17]. �
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Now, define an increasing continuous function by

(233) ᾱ(τ) = sup
σ≤τ

α(σ).

By standard interior estimates, we have

(234) |u|(x, τ) ≤ Cᾱ(τ)

for |xn+1| ≤ L0 and τ ≤ T .
For technical reasons, it will be best to work with a monotone function β, which simultaneously has

controlled derivatives. To this end, we define

(235) β(τ) = sup
σ≤τ

(∫
Σ

u2(x, σ)χ2( xn+1
ρ0(σ)

)
(4π)−

n
2 e−

|x|2
4

)1/2

,

where we recall that ρ0 is defined in (230) to be the original graphical scale. Clearly, β is a locally
Lipschitz, increasing function. By equation (229), we have β′ = o(β) at almost every time, so in particular

0 ≤ β′(τ) ≤ 1
5β(τ).(236)

Moreover, by Lemma 5.10 we have

(237) ᾱ(τ) ≤ β(τ) ≤ Cα(σ) ≤ Cᾱ(τ),

where σ is chosen such that the second inequality holds. To recapitulate, we have obtained

(238) ᾱ(τ) ≤ β(τ) ≤ Cᾱ(τ).

Proposition 5.11 (c.f. [CHH, Prop. 4.18]). There are constants c > 0 and C < ∞ such that

(239) |u|(x, τ) ≤ Cβ(τ)
1
2

whenever |xn+1| ≤ cβ(τ)−
1
4 and τ ≤ T .

Proof. The proof is similar to [CHH, Prop. 4.18]. �

Similarly as in Proposition 5.4, the C0-estimate from Proposition 5.11 can be upgraded to a C4-estimate.
Hence, we can now repeat the process from Section 5.1 with better functions ρ and σ. Namely, by we can
now choose

(240) ρ(τ) = β(τ)−
1
5 , and σ(τ) = β(τ)

1
5 ,

and write M̄τ as a graph of a function u over Σ ∩ B2ρ(τ) such that

(241) ‖u(·, τ)‖C4(Σ∩B2ρ(τ)(0)) ≤ ρ(τ)−2

for τ ≤ T . Note that by equation (236) the derivative ρ′ indeed satisfies

(242) − ρ(τ) ≤ ρ′(τ) ≤ 0,

as required by condition (163). From now on we work with the function

(243) û(x, τ) = u(x, τ)χ
(

xn+1

ρ(τ)

)
,

where ρ is the improved graphical radius from (240).
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Proposition 5.12 (c.f. [CHH, Prop. 4.19]). There are constants γ > 0 and c > 0 such that

(244) ρ(τ) ≥ c|τ|γ

holds for τ ≤ T .

Proof. The proof is similar to [CHH, Prop. 4.19]. �

5.3.2. Expansion in terms of neutral eigenfunctions. For the function

(245) û(x, τ) = u(x, τ)χ
( xn+1
ρ(τ)

)
,

where ρ is the improved graphical scale from (240), we let

U+ = ‖P+û‖2G, U0 = ‖P0û‖2G, U− = ‖P−û‖2G.(246)

By assumption (229) and Proposition 5.3 we have

(247) U+ + U− = o(U0).

Therefore, we can expand

(248) û =

n∑
I=0

αIψI + o(|~α|),

where

(249) ~α(τ) = (α0(τ), · · · , αn(τ))

are time dependent coefficients, and where ψ0, · · · , ψn are the n + 1 normalized zero eigenfunctions of L,
explicitly

ψ0 = 2
n−7

4 ( eπ
n−1 )

1
4 (n−1)|S n−1|−

1
2 (x2

n+1 − 2),(250)

ψi = 2
n−5

4 (1 − 1
n )−

1
2 ( eπ

n−1 )
1
4 (n−1)|S n−1|−

1
2 xixn+1,(251)

with 1 ≤ i ≤ n. Moreover, Lemma 5.10 and equation (247) yield that

(252) C−1α(τ) ≤ |~α|(τ) ≤ Cα(τ)

for τ ≤ T , where α(τ) is the function defined in equation (231).

In the following lemma we Taylor expand the normalized mean curvature flow to second order:

Lemma 5.13 (c.f. [CHH, Lemm. 4.20]). The function û(x, τ) = u(x, τ)χ
( xn+1
ρ(τ)

)
satisfies

(253) ∂τû = Lû − u2

2
√

2(n−1)
−

|∇u|2

2(n−1)
√

2(n−1)
− u∆u

(n−1)
√

2(n−1)
+ E,
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where the error term can be estimated by

|E| ≤Cχ(|u| + |∇u|)2(|u| + |∇u| + |∇2u|)

+ C|χ′|ρ−1(|∇u| + |xn+1||u|
)

+ C|χ′′|ρ−2|u|

+ Cχ(1 − χ)
(
|u|2 + |∇u|2 + |∇2u|2

)
.(254)

Proof. Consider the normalized mean curvature flow for graphs over the cylinder

∂τu =

[
1 +

|∇u|2

(
√

2(n−1)+u)2

]
∂2

xn+1
u − ∇

2
u(∇u,∇u)

(
√

2(n−1)+u)4 −
(∂xn+1 u)(∂xn+1 |∇u|2)

(
√

2(n−1)+u)2 −
|∇u|2

(
√

2(n−1)+u)3

1 + (∂xn+1u)2 + |∇u|2(
√

2(n − 1) + u)−2

+
∆u

(
√

2(n − 1) + u)2
−

n − 1
√

2(n − 1) + u
+

1
2

( √
2(n − 1) + u − xn+1∂xn+1u

)
,(255)

where ∇ denotes the Levi-Civita connection on S n−1, c.f. [GKS18, eqn. (A.3), (A.4)]. Hence,

∂τu = ∂2
xn+1

u − |∇u|2

(
√

2(n−1)+u)3 + ∆u
(
√

2(n−1)+u)2 −
n−1√

2(n−1)+u
+ 1

2

( √
2(n − 1) + u − xn+1∂xn+1u

)
+ E1,(256)

where

(257) |E1| ≤ C|∇u|2(|∇u| + |∇2u|).

Therefore,

(258) ∂τu = Lu + Q(u) + E2,

where

(259) Q(u) = − u2

2
√

2(n−1)
−

|∇u|2

2(n−1)
√

2(n−1)
− u∆u

(n−1)
√

2(n−1)
,

and

(260) |E2| ≤ C|∇u|2(|u| + |∇u| + |∇2u|) + C|u|2|∇2u| + C|u|3.

Next, using (242) we obtain

(261) |∂τû − Lû − χ(∂τu − Lu)| ≤ ρ−2|χ′′||u| + 2ρ−1|χ′|(|∇u| + |xn+1||u|).

Since χ only depends on xn+1, we also get

(262) |Q(û) − χQ(u)| = |χ2Q(u) − χQ(u)| = χ(1 − χ)|Q(u)|.

Putting everything together yields the desired result. �

Proposition 5.14 (c.f. [CHH, Prop. 4.21]). The error term E from Lemma 5.13 satisfies the estimate

(263) |〈E, ψI〉| ≤ Cβ(τ)2+ 1
5

for τ ≤ T .

Proof. The proof is similar to [CHH, proof of Prop. 4.21]. �
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5.3.3. The inwards quadratic neck theorem. The following proposition shows that the rotations, which
are captured by the coefficients α1, . . . , αn from the expansion (248), are rapidly decaying.

Proposition 5.15 (axis tilt decay, c.f. [CHH, Prop. 4.24]). There exists a constant η > 0 such that for all
τ ≤ T we have

(264) |∇̄u| ≤ e−η|τ|
γ

for all x ∈ Σ ∩ {|xn+1| ≤ c|τ|γ}.

Proof. The proof is similar as in [CHH, proof of Prop. 4.24], but we use the higher dimensional neck-
improvement theorem from [BC21] instead of the one from [BC19]. �

Corollary 5.16 (c.f. [CHH, Cor. 4.25]). The coefficients α1, · · · , αn from the expansion (248) satisfy

(265)
n∑

i=1

|αi| ≤ Ce−η|τ|
γ

,

for τ ≤ T .

Proof. Consider the average

(266) v(z) := (2(n − 1))−(n−1)/2 |S n−1|−1
∫

Σ∩{xn+1=z}
û.

Since

(267)
∫

Σ∩{xn+1=z}
vψi = 0,

using Proposition 5.15 we can estimate

(268) |αi| ≤ |〈û − v, ψi〉| ≤ ||û − v||H ≤ Ce−η|τ|
γ

.

This proves the corollary. �

The next proposition gives an ODE for the coefficient α0 from the expansion (248).

Proposition 5.17 (c.f. [CHH, Prop. 4.26]). The coefficient α0 from the expansion (248) satisfies

d
dτα0 = −Aα2

0 + o(β2) + O(e−η|τ|
γ

),(269)

where A = 1√
n−1

( 2eπ
n−1 )

1
4 (n−1)|S n−1|−

1
2 .

Proof. Using Lemma 5.13, Proposition 5.14, and ∇̄ψ0 = 0, we compute

d
dτα0 = 〈∂τû, ψ0〉(270)

=

〈
Lû − u2

2
√

2(n−1)
+

|∇u|2

2(n−1)
√

2(n−1)
−

divS n−1 (u∇u)
(n−1)

√
2(n−1)

+ E, ψ0

〉
(271)

=

〈
− u2

2
√

2(n−1)
+

|∇u|2

2(n−1)
√

2(n−1)
+ E, ψ0

〉
(272)

= − 1
2
√

2(n−1)
α2

0〈ψ
2
0, ψ0〉 + o(β2) + O(e−η|τ|

γ

),(273)
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where in the last step we used Proposition 5.14, Proposition 5.15 and Corollary 5.16. Hence,

(274)
∫

ψ3
0(4π)−

n
2 e−

|xn+1 |
2+2(n−1)
4 = 2

n+5
4 ( eπ

n−1 )
n−1

4 |S n−1|−
1
2 .

implies the assertion. �

Theorem 5.18 (Inwards quadratic neck theorem, c.f. [CHH, Thm. 4.28]). For τ ≤ T the coefficients from
the expansion (248) satisfy

α0(τ) =
−(n − 1)

1
2 ( 2eπ

n−1 )−
1
4 (n−1)|S n−1|

1
2 + o(1)

|τ|
,(275)

and
n∑

i=1

|αi| = o(|α0|).(276)

Proof. We can show lim supτ→−∞ |τ|
10β(τ) = ∞ as the proof of [CHH, Lem. 4.27]. Then, using Proposi-

tion 5.15 and Proposition 5.17, the proof is similar to [CHH, Thm. 4.28]. �

Corollary 5.19 (c.f. [CHH, Cor. 4.29 and Cor. 4.30]). For τ ≤ T we have

(277) K̄X0
τ ∩ {|xn+1| ≥ L0} ⊂ {x2

1 + . . . + x2
n ≤ 2(n − 1)}.

Moreover, Kt is compact for all t.

Proof. Using the inwards quadratic neck theorem (Theorem 5.18) and the barriers Σ̃b from (166), similarly
as in [CHH, proof of Cor. 4.29], we see that (277) holds. In particular, considering the unrenormalized
flow, given any X0 = (x0, t0) ∈ M, we can find some t1 ∈ (−∞, t0) and L < ∞ so that (Kt1−x0)∩{|xn+1| ≥ L}
is contained inside the solid cylinder of radius

√
2(t0 − t1). By [CHH, Lem. 4.31] and the comparison

principle any mean curvature flow that outside of a ball is contained in the cylinder must be compact after
the cylinder becomes extinct, namely Kt is compact for all t ≥ t0. Since X0 was arbitrary, this proves that
Kt is compact for all t. �

6. Immortality, cap size control and asymptotics

Throughout this section, M will always be an ancient asymptotically cylindrical flow where the plus
mode is dominant. We will frequently use the fine neck theorem (Theorem 5.8) and its corollary (Corollary
5.9). By an affine change of coordinates, we can assume without loss of generality that

(278) ā =

√
n − 1

2
,

that the axis of the asymptotic cylinder is the xn+1-axis, and that

(279) min
p∈M0

xn+1(p) = 0 is attained at the origin.
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6.1. Speed of the tip and immortality. Let us consider the height of the tip function

(280) ψ(t) := min
p∈Mt

xn+1(p).

The goal of this section is to derive certain estimates for ψ, and to show that the flowM is eternal, i.e. to
prove that Te(M) = ∞. To this end, we start with the following immediate observation.

Lemma 6.1 (c.f. [CHH, Lemma 5.7]). The function ψ is well-defined, strictly increasing, and satisfies

(281) lim
t→−∞

ψ(t) = −∞.

Proof. This follows directly from Corollary 4.17, Corollary 5.9, and the strong maximum principle. �

The following proposition shows that tip points have controlled cylindrical scale.

Proposition 6.2 (cylindrical scale of tip points). There exists a constant Q = Q(M) < ∞ such that every
p ∈ Mt with xn+1(p) = ψ(t) satisfies Z(p, t) ≤ Q.

Proof. The argument is based on the one in [CHH, proof of Prop. 5.8], but due to the lack of regular-
ity/curvature control one needs to be a bit more careful.

If the assertion fails, we can find a sequence X j = (p j, t j) ∈ M with xn+1(p j) = ψ(t j) such that
Z(X j) → ∞. Consider the parabolically rescaled flow M j = DZ(X j)−1(M − X j). Note that M j has
expansion parameter ā j = Z(X j)−1ā → 0. Up to a subsequence, we can pass to a limitM∞. It is easy to
see thatM∞ is an ancient asymptotically cylindrical flow.

We first observe thatM∞ is not a round shrinking cylinder. Indeed, if (0, 0) was on the axis of such a
round shrinking cylinder, this would contradict our scaling by the cylindrical scale. If on the other hand
(0, 0) was not on the axis, then the cylinder would become extinct at a strictly positive time, contradicting
the fact that M∞t is contained in a half-space for all t > 0.

Next, suppose towards a contradiction that M∞ has a dominant zero mode. Then, by the inwards
quadratic neck theorem (Theorem 5.18) at all sufficiently large scales the neck centered at (0, 0) bends
inwards. For j large, this contradicts the fine neck theorem (Theorem 5.8) forM j with center (0, 0).

By the above,M∞ must be an ancient asymptotically cylindrical flow with dominant plus mode. Hence,
by the fine neck theorem (Theorem 5.8), it has an expension parameter a∞ = a∞(M∞) , 0. However, it
follows from the fine neck theorem and its proof that ā j → a∞, contradicting ā j → 0. This finishes the
proof of the proposition. �

Proposition 6.3 (c.f. [CHH, Prop. 5.1]). For every Λ < ∞ there exists a ρ = ρ(M,Λ) < ∞ with the
following significance. If (p0, t0), (p1, t1) ∈ M are such that Z(p0, t0) ≤ Λ, t1 ∈ [t0 − 1, t0 + 1], and

(282) xn+1(p1) − xn+1(p0) ≥ ρ,

then

(283) Z(p1, t1) > Λ.

Proof. This follows from the fine neck theorem (Theorem 5.8) arguing similarly as in [CHH, proof of
Prop. 5.1]. �
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In contrast to [CHH, Sec. 5.2] we do not have any global curvature bound at our disposal at this stage.
The following simple, but crucial, lemma serves as a partial substitute:

Lemma 6.4 (Macroscopic speed limit). There exists a constant C = C(M) < ∞ such that

(284) ψ(t) − ψ(t′) ≤ C(t − t′ + 1)

for all t′ ≤ t < T (M).

Proof. For t0 < Te(M) let pt0 be a point at the tip at time t0. Consider a tip point pt1 at time t1 = t0 − 1.
By Proposition 6.2 (cylindrical scale of tip points) we have Z(pi, ti) ≤ Q, and so applying Proposition 6.3
with Λ = Q, we obtain that xn+1(pt0) − xn+1(pt1) ≤ ρ. Iterating this, we get that

(285) ψ(t) − ψ(t′) ≤ C(t − t′),

whenever t − t′ ≥ 1. Together with the monotonicity of ψ (see Lemma 6.1) this proves the assertion. �

Theorem 6.5 (immortality). The flow M is immortal, i.e. Te(M) = ∞. Moreover, the height of the tip
function satisfies limt→∞ ψ(t) = ∞.

Proof. Suppose towards a contradiction that Te(M) < ∞. Then, by the macroscopic speed limit lemma
(Lemma 6.4) we get that ψ(Te(M)) := limt→Te(M) ψ(t) < ∞. Let p ∈ Rn+1 be a “tip point” of M at its
finite extinction time, i.e. a point such that (p,Te(M)) ∈ M and ψ(Te(M)) = xn+1(p). By the fine neck
theorem (Theorem 5.8), there exists some t0 < Te(M) such that for every t ≤ t0 we see a fine-neck around
(p,Te(M)). Let N be the spatial connected component of Mt0 containing this fine neck. Note that N is
non-compact by Corollary 5.9. Consider the space-time points X = (x, t0) for x ∈ N. Proposition 4.12
impliesM is not ε-compact around X at any scale, and also thatM is not ε-separating around X at scales
larger than

√
Te(M) − t0. Thus, using also Proposition 4.8 and Theorem 4.10, we see that that Z(X) is

uniformly bounded from above over x ∈ N; this however contradicts Proposition 6.3, as N contains points
with arbitrarily large xn+1 by Corollary 5.9. Hence, the flowM is eternal, i.e. Te(M) = ∞.

Finally, suppose towards a contradiction that L := limt→∞ ψ(t) < ∞. Consider pairs of times t0 < t1
such that ψ(ti) ≥ L − 1, and denote by pti a tip point at time ti. By Proposition 6.2 (cylindrical scale of tip
points), and the fine neck theorem (Theorem 5.8), provided t1 − t0 is sufficiently large, at time t0 we see a
fine neck centered at (pt1 , t1). This contradicts the fact that pt0 is a tip point. �

6.2. Cap size control. Let M be an ancient asymptotically cylindrical flow with dominant plus mode,
normalized as in the previous subsection. For each t ∈ R select a point pt ∈ Mt with xn+1(pt) = ψ(t).

Theorem 6.6 (Cap size control, c.f. [CHH, Thm. 5.9]). There exists a constant C = C(M) < ∞, such
that for t ∈ R every point in Mt \ BC(pt) lies on a fine neck. In particular, Mt has exactly one end.

Moreover, Mt \ BC(pt) is the graph of a function r in cylindrical coordinates around the xn+1-axis
satisfying

(286) r(t, xn+1, ω) =
√

2(n − 1)(xn+1 − ψ(t)) + o
( √

xn+1 − ψ(t)
)
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for xn+1 ≥ ψ(t) + C, and the height of the tip function ψ satisfies

(287) ψ(t) = t + o(|t|).

Proof. Let p ∈ Mt. By Theorem 6.5 (immortality) there exists a time t∗ ≥ t such that ψ(t∗) = xn+1(p).
By Proposition 6.2 (cylindrical scale of tip points) we have Z(pt∗) ≤ Q. Moreover, using the macroscopic
speed limit lemma (Lemma 6.4), we infer that there is some c = c(M) > 0 such that

(288) t∗ − t ≥ c(xn+1(p) − ψ(t)),

provided that xn+1(p) − ψ(t) is sufficiently large. Hence, applying the fine neck theorem (Theorem 5.8)
and Proposition 5.4 with center (pt∗ , t∗) we see that if xn+1(p) − ψ(t) is sufficiently large, then p lies on
a fine neck. Together with Corollary 4.17, Corollary 5.9, and Theorem 6.5 (immortality), this proves the
existence of a constant C = C(M) < ∞ such that for all t ∈ R every p ∈ Mt \ BC(pt) lies on a fine neck.
In particular, this shows that Mt has exactly one end.

The expansion (286) now follows from integrating the fine neck estimate, and (287) follows from
comparison with scaled bowls (see [CHH, proof of Thm. 5.9] for how these two things are done). �

6.3. Fine expansion away from the cap. Let M be an ancient asymptotically cylindrical flow with
dominant plus mode, normalized as in the previous subsections. The goal of this subsection is to prove
Theorem 6.12, which shows that the cylindrical end becomes rotationally symmetric at very fast rate, and
also controls the distance of the cap from the xn+1-axis uniformly in time.

Given a point q ∈ Rn+1 and a direction w ∈ S n, we denote by {Rα : 1 ≤ α ≤ (n−1)n
2 } a normalized set

of rotation vector fields that corresponds to an orthonormal basis of the space of the rotations around the
axis W = {q + wt : t ∈ R}, namely

(289) Rα(x) = S JαS −1(x − q), where Jα =

Ĵα 0
0 0

 ∈ so(n + 1),

where S ∈ SOn+1 is any rotation matrix with S en+1 = w, and {Ĵα : 1 ≤ α ≤ (n−1)n
2 } is an orthonormal basis

of so(n).

Definition 6.7 (c.f. [BC21, Def. 4.3]). A point X = (x, t) ∈ M with H(X) > 0 is called δ-symmetric if
there exists a normalized set of rotation vector fields {Rα : 1 ≤ α ≤ (n−1)n

2 } such that

(290) max
α
|Rα(x)|H(X) ≤ 10n,

and

(291) max
α
|〈Rα, ν〉H| ≤ δ in the parabolic ball P(X, 10H−1(X)).

The following proposition shows thatM becomes δ-symmetric at a very fast rate if one moves away
from the cap.
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Proposition 6.8 (c.f. [CHH, Prop. 6.2]). There exist a constant C = C(M) < ∞, such that if X = (x, t) ∈
M is any point with

(292) xn+1 − ψ(t) ≥ C,

then

(293) X is (xn+1 − ψ(t))−300-symmetric.

Proof. This follows by combining the cylindrical expansion (286) from Theorem 6.6 with the neck-
improvement theorem from Brendle-Choi [BC21, Thm. 4.4], similarly as in [CHH, proof of Prop.
6.2]. �

Corollary 6.9 (strong symmetry, c.f. [CHH, Cor. 6.3]). There exist a constant C = C(M) < ∞ with the
following significance. If X = (x, t) ∈ M is any point with xn+1 − ψ(t) ≥ C, then there exist a direction
wX ∈ S n and a point qX ∈ R

n+1 with

(294) |wX − en+1| ≤
1

100 , 〈qX , en+1〉 = xn+1,

such that each normalized rotation vector field RX,α(y) = S X JαS −1
X (y − qX), where S X ∈ SOn+1 with

S Xen+1 = wX , satisfies the estimate

(295) sup
P(X,10H−1(X))

|〈RX,α, ν〉H| ≤ (xn+1 − ψ(t))−300 .

Proof. Since fine necks are very close to the asymptotic cylinder, we always have |wX − en+1| ≤
1

100 .
In addition, by moving qX along the axis W we can always arrange that 〈qX , en+1〉 = xn+1. Hence, the
corollary follows from the proposition. �

Definition 6.10. We call any triple (X,wX , qX) that satisfies the conclusion of Corollary 6.9 a strongly
symmetric triple.

The following lemma shows that nearby strongly symmetric triples at the same time align well with
each other.

Lemma 6.11 (alignment, c.f. [CHH, Lemm. 6.5]). There exists a constant C = C(M) < ∞ with the
following significance. If (X,wX , qX) and (Y,wY , qY ) are strongly symmetric triples with X = (x, t), Y =

(y, t) and |x − y|H(X) ≤ 1, then

(296) |wX − wY | ≤ C(xn+1 − ψ(t))−300,

and

(297)
n∑

i=1

|〈qX − qY , ei〉| ≤ C(xn+1 − ψ(t))−
599
2 .
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Proof. Without loss of generality, after suitable rotations and translations, we can assume that t = 0,
xn+1 = 0, wX = en+1, qX = 0, wY = − sinϕen + cosϕen+1 and

(298) S Y =


I 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 ,
where I is the (n − 1) × (n − 1) unit matrix and 0 ≤ ϕ ≤ 1

10 .

We expressM∩ P(X, 10H−1(X)) in cylindrical coordinates over the xn+1-axis, namely we parametrize
as

(299) (ω, xn+1, t) 7→
(
r(ω, xn+1, t)ω, xn+1

)
.

In these coordinates, one can directly compute that

ν =

(
ω − r−1∇S n−1

r,−rxn+1

)
√

1 + r−2|∇S n−1r|2 + |rxn+1 |
2
,(300)

which, using also wX = en+1 and qX = 0, yields

(301) 〈RX,α, ν〉 =
−〈Ĵαω,∇S n−1

r〉√
1 + r−2|∇S n−1r|2 + |rxn+1 |

2
.

Since {Ĵα : 1 ≤ αn−1)n
2 } is an orthonormal basis of so(n), at each point with ∇S n−1

r , 0 there exists a

unit vector λ = (λ1, · · · , λ
(n−1)n

2 ) ∈ R
(n−1)n

2 such that

(302)
∇S n−1

r
|∇S n−1r|

= λα Ĵαω.

Thus, we obtain

(303)
∣∣∣〈λαRX,α, ν〉

∣∣∣ =
|∇S n−1

r|√
1 + r−2|∇S n−1r|2 + |rxn+1 |

2
.

Since X is the center of a (fine) neck, we have

(304) r−2|∇S n−1
r|2 + |rxn+1 |

2 ≤ 10ε,

and

(305)
1 − ε

r
≤ H(X) ≤

1 + ε

r
.

Combining these equations with Corollary 6.9 (strong symmetry) we infer that

(306)
|∇S n−1

r|
r

≤ 2(−ψ(0))−300.

Together with Theorem 6.6 this yields the estimate

(307) |∇S n−1
r| ≤ Cr−599

in the parabolic ball P(X, 10H−1(X)).
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Now, choosing α of the special form (i, n), where 1 ≤ i ≤ n − 1, we consider J(i,n) = −ei ⊗ en + en ⊗ ei,
and the corresponding rotation vector field

(308) RY,(i,n)(x) = S Y J(i,n)S −1
Y (x − qY )

with center qY = (q1, · · · , qn+1) and axis wY = − sinϕ en + cosϕ en+1 as above. A direct computation
yields

(309) RY,(i,n)(x) = −
[
(xn − qn) cosϕ + (xn+1 − qn+1) sinϕ

]
ei

+ (xi − qi) cosϕen + (xi − qi) sinϕen+1.

Arguing as above, using Theorem 6.6 and Corollary 6.9 we obtain

(310) |〈RY,(i,n), ν〉| ≤ Cr−599

in the parabolic ball P(X, 8H−1(X)). In addition, we have the rough estimate

(311) |qY | ≤ 10r.

Now, from equation (309), using the estimates (304), (307), (310) and (311), we infer that

(312)
∣∣∣∣∣r−1xi

[
(xn − qn) cosϕ + (xn+1 − qn+1) sinϕ

]
− r−1xn(xi − qi) cosϕ + rz(x1 − q1) sinϕ

∣∣∣∣∣ ≤ Cr−599.

At time t = 0, considering a point with xi = r and xn = 0 equation (312) yields

(313) − qn cosϕ + (xn+1 − qn+1 + rz(r − q1)) sinϕ ≤ Cr−599.

In the case qn ≤ 0, we consider the points with xn+1 = 20r. Then, using also |qn+1| ≤ 10r and cosϕ ≥ 1
2 ,

we obtain

(314) 1
2 |qn| + (10r + rz(r − qi)) sinϕ ≤ Cr−599.

Moreover, since X lies on a (fine) neck, we have |rxn+1 | ≤ ε. Hence,

(315) 1
2 |qn| + 5r sinϕ ≤ Cr−599.

Since sinϕ ≥ 0, we infer that

|qn| ≤ Cr−599,(316)

and

| sinϕ| ≤ Cr−600.(317)

In the case qn ≥ 0, we obtain the same estimates by considering points with xn+1 = −20r.
Finally, considering points with xi = 0 and xn = r we obtain

(318) |qi| ≤ Cr−599.

Since |wX − wY | ≤ C| sinϕ|, these inequalities prove the lemma. �

Combining the above results now yields the main theorem of this subsection:
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Theorem 6.12 (fine asymptotics, c.f. [CHH, Thm. 6.6]). There exist a point q = (q1, · · · , qn, 0) ∈ Rn+1

and a constant C < ∞ (both depending onM) such that for all t ∈ R the hypersurface (Mt − q) ∩ {xn+1 −

ψ(t) ≥ C} can be expressed in cylindrical coordinates over the xn+1-axis with the estimate

(319)
∣∣∣∣∇S n−1

r
∣∣∣∣ (ω, xn+1, t) ≤ r(ω, xn+1, t)−100.

Proof. This follows from Corollary 6.9 (strong symmetry) and Lemma 6.11 (alignment), arguing similarly
as in [CHH, proof of Thm. 6.6]. �

7. Moving plane method without assuming smoothness

Let M be an ancient asymptotically cylindrical flow with dominant plus mode. We recall from (37)
and (139) that we denote by Mt the support at time t, and by Kt the domain enclosed by Mt.

By Theorem 6.6 (cap size control) and Theorem 6.12 (fine asymptotics), after suitable normalization
and space-time isometry, we know that for all t ∈ R we can express Mt ∩ {xn+1 − ψ(t) ≥ C} as a smooth
graph in cylindrical coordinates over the xn+1-axis such that

(320) r(ω, xn+1, t) =
√

2(n − 1)(xn+1 − ψ(t)) + o
( √

xn+1 − ψ(t)
)
,

and

(321)
∣∣∣∣∇S n−1

r
∣∣∣∣ (ω, xn+1, t) ≤ r(ω, xn+1, t)−100.

Here, the height of the tip function ψ (as defined in (280)) satisfies

(322) ψ(t) = |t| + o(|t|).

Moreover, using Theorem 6.6 (cap size control) again, an taking also into account Proposition 6.2 (cylin-
drical scale of tip points) and Corollary 4.17 (barrier for the rescaled flow), we see that, possibly after
increasing C = C(M) < ∞ a bit, the set Mt ∩ {xn+1 − ψ(t) < C} is contained in the ball

(323) B(t) := BC(0, . . . , 0, ψ(t)) ⊂ Rn+1.

In particular, any potential singularities at time t are contained in the ball B(t). We also recall that the
results from Section 3 (new tools for Brakke flows) are applicable, since M is a tame Brakke flow (see
Definition 3.1) thanks to Corollary 4.4 (tameness).

To set up the (parabolic variant of the) moving plane method for tame Brakke flows as above, given a
constant µ ≥ 0 we consider the sets

Mµ−
t = Mt ∩ {x1 < µ},(324)

Mµ+
t = Mt ∩ {x1 > µ}.(325)

Moreover, we denote by Mµ<
t the set that is obtained from Mµ+

t by reflection about the plane {x1 = µ},
namely

(326) Mµ<
t =

{
(2µ − x1, x2, . . . , xn+1) : x ∈ Mµ+

t

}
.
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Similarly, for the domain Kt enclosed by Mt we consider the regions

Kµ−
t = Kt ∩ {x1 < µ},(327)

Kµ+
t = Kt ∩ {x1 > µ},(328)

and

(329) Kµ<
t =

{
(2µ − x1, x2, . . . , xn+1) : x ∈ Kµ+

t

}
.

Definition 7.1. We say the moving plane can reach µ if for all µ̃ ≥ µ we have the inclusion Kµ̃<
t ⊆ Kµ̃−

t

for all t ∈ R.

The following proposition shows that the reflected region cannot touch at spatial infinity.

Proposition 7.2 (no contact at infinity, c.f. [CHH, Prop. 6.10]). For every µ > 0, there exists a constant
hµ < ∞ such that

(330) Kµ̃<
t ∩ {xn+1 ≥ ψ(t) + hµ} ⊆ Int(Kµ̃−

t )

for every µ̃ ≥ µ and t ∈ R.

Proof. Denote the position vector of Mt ∩ {xn+1 ≥ ψ(t) + C} by

(331) X(ω, xn+1, t) = (r(ω, xn+1, t)ω, xn+1) .

Given (x̄, t̄) with x̄n+1 − ψ(t̄) ≥ C, using Theorem 6.12 (fine asymptotics), we obtain

(332) |r(ω, x̄n+1, t̄) − r(ω̄, x̄n+1, t̄)| ≤
2π

r(ω̄, x̄n+1, t̄)100

for any ω ∈ S n−1, from which, given any µ > 0, we directly infer that

(333) Kµ̃<
t̄ ∩ {xn+1 = x̄n+1} ∩ {x1 ≤

1
2 µ̃} ⊆ Int(Kµ̃−

t̄ ),

for every µ̃ ≥ µ, provided that x̄n+1 − ψ(t̄) is sufficiently large, depending only on µ.
Now, let γ : [0, π/2]→ S n−1 be a unit speed geodesic starting from (1, 0, . . . , 0). Then

d
ds

(r(γ(s), x̄n+1, t̄) sin(s)) = sin(s)〈∇S n−1
r, γ′〉 + r cos(s) > 0(334)

whenever r cos(s) ≥ µ
4 , where the last inequality holds true by Theorem 6.12 (fine asymptotics) provided

x̄n+1 −ψ(t̄) is sufficiently large. Since r(γ(s), x̄n+1, t̄) sin(s) is the length of the projection of X(γ(s), x̄n+1, t̄)

on the {x1 = 0, xn+1 = x̄n+1} plane, it follows that M
µ
2 +

t̄ ∩ {xn+1 = x̄n+1} is a graph over the plane
{x1 = 0, xn+1 = x̄n+1}. This clearly implies that

(335) Kµ̃<
t̄ ∩ {xn+1 = x̄n+1} ∩ {x1 ≥

1
2 µ̃} ⊆ Int(Kµ̃−

t̄ )

for every µ̃ ≥ µ whenever x̄n+1 − ψ(t̄) is sufficiently large, and thus finishes the proof. �

Corollary 7.3 (start plane and start smoothness). There exists some µ < ∞, such that the moving plane
can reach µ, and such that all points inM∩ {x1 ≥ µ} are smooth.
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Proof. Recall from above that Mt \ B(t), with B(t) as in (323), is smooth and can be expressed as a graph
in cylindrical coordinates over the xn+1-axis satisfying (320) and (321). Applying Proposition 7.2 (no
contact at infinity) with µ = 2C, we get some h such that

(336) Kµ̃<
t ∩ {xn+1 ≥ ψ(t) + h} ⊆ Int(Kµ̃−

t )

for every µ̃ ≥ 2C and t ∈ R. Together with

(337) Kµ̃<
t ∩ {xn+1 ≤ ψ(t) + h} ⊆ B2C+2h(0, 0, . . . , ψ(t)),

this yields the assertion with µ = 2C + 2h. �

Proposition 7.4 (smoothness). If the moving plane can reach µ > 0, then all points inM∩ {x1 ≥ µ} are
smooth. Moreover, there exists Rµ > 0, such the regularity scale of M at every (p, t) ∈ M ∩ {x1 = µ}

satisfies

(338) R(p, t) ≥ Rµ.

Proof. Consider

(339) Iµ := {µ′ ≥ µ | all points inM∩ {x1 ≥ µ
′} are smooth}.

Note that Iµ ⊆ [µ,∞) is an interval, which by Corollary 7.3 (start plane and start smoothness) contains a
neighborhood of∞. Let

(340) µ∗ := inf Iµ.

We first claim that for every t we have

(341) Mµ∗−
t ∩ Mµ∗<

t = ∅.

Indeed, consider the halfspace H := {x1 < µ∗}, and letM1
H := {Mµ∗<

t } be the smooth mean curvature flow
which is obtained fromM by reflecting across {x1 = µ∗} and restricting to H, and letM2

H be the Brakke
flow with support Mµ∗−

t , which is obtained from M by restricting to H. If there was some intersection
point X0 = (x0, t0), then by the strong maximum principle for Brakke flows (Theorem 3.4) the flowsM1

H

and M2
H would coincide in P(X0, r) for some r > 0. Together with connectedness it would then follow

thatM1
H =M2

H. However, since µ∗ > 0 this would contradict Proposition 7.2 (no contact at infinity).
Next, we would like to apply Theorem 3.20 (Hopf lemma without assuming smoothness) to show that

all points inM∩ {x1 = µ∗} are regular. To this end, we consider the flowM1 that is obtained fromM by
reflection across {x1 = µ∗}, and setM2 :=M. Let x0 ∈ Mt0 ∩ {x1 = µ∗}. If ∂H is the tangent flow to either
M1 orM2 at (x0, t0), then (x0, t0) is a smooth point forM, and we are done. Hence, we can assume that
assumption (ii) of Theorem 3.20 is satisfied. Note that by Theorem 4.3 (partial regularity) and equation
(341) assumptions (i) and (iii) hold as well. Hence, Theorem 3.20 yields that (x0, t0) is a regular point for
M =M2. This shows that all the points inM∩ {x1 ≥ µ∗} are regular and consequently µ∗ ∈ Iµ.

Now, suppose towards a contradiction that µ∗ > µ. Then, there is a sequence (pi, ti) ∈ M ∩ {x1 = µ∗}

with regularity scale R(pi, ti) going to zero. Taking into account the structure of M, as reviewed at the
beginning of this section, we see that |pi−ψ(ti)en+1| is uniformly bounded. LetM be a subsequential limit
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of the flowsM−(ψ(ti)en+1, ti). Then, as above, Theorem 3.20 (Hopf lemma without assuming smoothness)
yields that all the points inM∩ {x1 = µ∗} are regular, which contradicts R(pi, ti)→ 0. Hence, µ∗ = µ.

Combining the above, we conclude that µ ∈ Iµ. The argument in the above paragraph also shows the
moreover part of the proposition, which complete its proof. �

Now, for hµ as in Proposition 7.2 and δ > 0 we define

Eµ
t = {xn+1 ≤ ψ(t) + hµ/2}, Eµ,δ

t = {x ∈ Eµ
t : d(x,Mt ∩ {x1 = µ}) ≥ δ}.(342)

The following lemma shows that if the moving plane can reach µ > 0, then δ-away from Mt ∩ {x1 = µ}

the distance between Mµ−
t and Mµ<

t is bounded below by a definite amount.

Lemma 7.5 (distance gap, c.f. [CHH, Lem. 6.12]). Suppose the moving plane can reach µ > 0. Then,
there exists a positive increasing function α : (0, δ0)→ R+ such that

(343) d(Mµ−
t ,Kµ<

t ∩ Eµ,δ
t ) ≥ α(δ) > 0

for all t ∈ R.

Proof. We will first show that

(344) Kµ<
t ⊆ Int(Kµ−

t )

for all t ∈ R. To this end, note that by assumption (see Definition 7.1) we have Kµ<
t ⊆ Kµ−

t for all t. If
(344) fails, then there must be some t0 ∈ R such that Mµ<

t0 ∩ Mµ−
t0 , ∅. By the strong maximum principle

for Brakke flows (Theorem 3.4), which is applicable thanks to Proposition 7.4 (smoothness), this yields a
contradiction with Proposition 7.2 (no contact at infinity), and thus proves (344).

Now, suppose towards a contradiction that for some δ > 0 we have

(345) inf
t∈R

d(Mµ−
t ,Kµ<

t ∩ Eµ,δ
t ) = 0.

Choose a sequence of space-time points (xi, ti) ∈ M such that xi ∈ Mµ<
ti ∩ Eµ,δ

ti and limi→∞ d(xi,K
µ−
ti ) = 0.

By Proposition 7.2 (no contact at infinity), Theorem 6.12 (fine asymptotics), and the uniform cap position
control (323), the distance between xi and the point ψ(ti)en+1 is uniformly bounded. Hence, we can take
subsequential limitsM and x̄ of the flowsM− (ψ(ti)en+1, ti) and points xi−ψ(ti)en+1. Applying the strong
maximum principle (Theorem 3.4) forM at the spacetime point (x̄, 0) we obtain a similar contradiction
as above. This proves the lemma. �

If the moving plane reaches µ > 0, then by Proposition 7.4 (smoothness) points in

(346) Mµ
t := Mt ∩ {x1 = µ}

have a well defined normal vector ν.

Lemma 7.6 (angle gap, c.f. [CHH, Lem. 6.13]). Suppose that the moving plane can reach µ > 0. Then,
there exists a positive constant θµ > 0 such that |〈ν(x, t), e1〉| ≥ θµ holds on Mµ

t ∩ Eµ
t for all t ∈ R.
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Proof. First, Proposition 7.4 (smoothness) and the Hopf lemma for smooth flows show that |〈ν(x, t), e1〉| ,

0.
Now, suppose towards a contradiction there is a sequence (xi, ti) ∈ M such that xi ∈ Mµ

ti ∩ Eµ
ti and

limi→∞ |〈ν(xi, ti), e1〉| = 0. Then, similarly as above, we can take subsequential limits M and x̄ of the
flows M − (ψ(ti)en+1, ti) and points xi − ψ(ti)en+1. Since for the flow M the moving plane can reach µ,
applying Proposition 7.4 (smoothness) we see that (x̄, 0) is a smooth point forM. Observing also that as
a consequence of Lemma 7.5 (distance gap) we in particular have

K
µ<

t ⊆ Int(K
µ−

t ),

we can thus apply Lemma 3.22 (smooth Hopf lemma) forM at the spacetime point (x̄, 0) to infer that

|〈ν(x̄, 0), e1〉| , 0.

However, since by the local regularity theorem [Whi05] the convergence near (x̄, 0) is smooth, this con-
tradicts limi→∞ |〈ν(xi, ti), e1〉| = 0, and thus proves the lemma. �

Theorem 7.7 (rotational symmetry). M is rotationally symmetric, and smooth away from the xn+1-axis.

Proof. By Proposition 7.4 (smoothness) it is enough to show that the moving plane can reach µ = 0.
Consider the interval

(347) I = {µ ≥ 0 : the moving plane can reach µ}

Note that I , ∅ by Corollary 7.3 (start plane). Let µ := inf I, and observe that µ ∈ I. Suppose towards a
contradiction that µ > 0.

First, by Proposition 7.2 (no contact at infinity) we have

(348) K
µ
2<
t ∩ (Eµ

t )c ⊆ K
µ
2−

t

for all t ∈ R, where we recall that

Eµ
t = {xn+1 ≤ ψ(t) + hµ/2}.

Next, by Lemma 7.6 (angle gap) and Proposition 7.4 (smoothness) there exists a δ1 ∈ (0,min{δ0,
µ
2 }) such

that for δ ∈ (0, δ1) we have

(349) K(µ−δ)<
t ∩ Eµ

t ∩ {x1 ≥ µ − 2δ1} ⊆ K(µ−δ)−
t

for all t ∈ R.
Finally, combining the above with Lemma 7.5 (distance gap) we conclude that every δ ∈ (0,min{δ1, α(δ1)})

we have

(350) K(µ−δ)<
t ⊆ K(µ−δ)−

t .

for all t ∈ R. Hence, the moving plane can reach µ − δ; a contradiction. This proves the theorem. �



72 KYEONGSU CHOI, ROBERT HASLHOFER, OR HERSHKOVITS, BRIAN WHITE

8. Classification of ancient asymptotically cylindrical flows

In this section, we conclude the proof of Theorem 1.5 (classification of ancient asymptotically cylin-
drical flows).

8.1. The noncompact case. Let M be an ancient asymptotically cylindrical flow that is not a round
shrinking cylinder. In this subsection we conclude the classification in the case where the plus mode is
dominant. We start with the following lemma.

Lemma 8.1 (regularity of symmetric shrinkers). Let Σ be an a priori potentially singular self-shrinker
with Ent[Σ] ≤ Ent[S n−1 × R], which is rotationally symmetric with respect to the xn+1-axis. Then Σ is
smooth.

Proof. For p ∈ Σ, let C be any tangent cone to Σ at p. Any such C must be a stationary cone with entropy at
most Ent[S n−1 ×R] < 3/2. If p does not lie on the xn+1-axis, then C splits off (n− 1) lines (corresponding
to the O(n) action). Thus, by Lemma 4.2 (stationary cones), C is a hyperplane, and consequently p is
regular. If p does lie on the xn+1-axis, then it follows that C is a rotationally symmetric stationary cone
with entropy less than 3/2. Hence, C is again a hyperplane, and p is regular. This proves the lemma. �

Proposition 8.2 (regularity). If the plus mode is dominant, thenM is smooth. More precisely, there exists
a constant c = c(M) > 0 such that the regularity scale satisfies R(X) ≥ c for every X ∈ M. Furthermore,
Mt is connected for every t.

Proof. From Section 6 we know thatM has a cap of controlled size and opens up like a parabola. From
Section 7 we know thatM is rotationally symmetric, and regular away from the axis of symmetry, which
we can take to be the xn+1-axis. SinceM is rotational symmetric, it follows that any tangent flow M̂X to
M at any point X = (0, . . . , 0, xn+1, t) is rotationally symmetric. By Lemma 8.1 (regularity of symmetric
shrinkers) and [KM14, Thm. 2], such a rotationally symmetric self-shrinking flow is either the round
shrinking sphere S n, the round shrinking cylinder S n−1 × R, the flat hyperplane Rn, or a shrinking torus
S n−1 × S 1. The possibility of the cylinder is excluded by the equality case of Huisken’s monotonicity
formula. The possibility of the torus is excluded by the entropy bound thanks to [CIMW13]. Hence, by
unit regularity, it follows thatM may only have spherical singularities.

Suppose, for the sake of contradiction, thatM has a spherical singularity at X0 = (x0, t0). For t1 < t0,
denote by N t1 the space time connected component of M ∩ {t1 ≤ t ≤ t0} that contains X0. Since M is
connected, and sinceM has a cap of controlled size, there exists some first t̄1 such thatN t̄1 is non-compact.
Moreover, t̄1 is a singular time of the flow, and St̄1(M) consists of finitely many spherical singularities,
St̄1(M) = {s1, . . . , sk}. Thus, there exists some uniform r > 0 such that M is ε-spherical around each
(si, t̄1) at scale r. This clearly contradicts the definition of t̄1. Thus, M had no spherical singularities to
begin with. Hence, Mt has no compact components and is connected for every t.

Finally, the uniform lower bound for the regularity scale follows from the above by a contradiction
argument, similarly as in Section 7. This finishes the proof of the proposition. �

Theorem 8.3. If the plus mode is dominant, thenM is the bowl soliton.
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Proof. From Section 6 we know thatM has a cap of controlled size and opens up like a parabola. Thanks
to Theorem 7.7 (rotational symmetry) and Proposition 8.2 (regularity) we know that M is rotationally
symmetric with regularity scale bounded from below. We can now run the same argument as in [CHH,
proof of Thm. 7.1] to show that M is a mean-convex, noncollapsed, translating soliton. Together with
the convexity estimate [HK17a, Thm. 1.10], and the asymptotic structure, we conclude that M is a
strictly convex rotationally symmetric translating soliton. Hence,M is the bowl soliton as constructed in
[AW94, CSS07]. �

8.2. The compact case. LetM be an ancient asymptotically cylindrical flow that is not a round shrinking
cylinder. In this subsection we conclude the classification in the case where the neutral mode is dominant.

Theorem 8.4. If the neutral mode is dominant, thenM is an ancient oval.

Proof. From Section 5.3 we know that all time slices of M = {Mt}t∈(−∞,Te(M)] are compact. We may
assume without loss of generality that Te(M) = 0 and that (0, 0) ∈ M. Since the blowdown for t → −∞
is a cylinder for t ≤ T there is a central neck Zt of length L0

√
−t. Denote by Dt the connected component

of Mt that contains the central neck Zt. Using Corollary 5.19 we see that Dt \ Zt has two connected
components, and that these components are contained in the upper and lower halfspace, respectively.

Consider the height of the tip functions

(351) ψ+(t) := max
p∈Dt

xn+1(p),

and

(352) ψ−(t) := min
p∈Dt

xn+1(p).

Since the blowdown for t → −∞ is a cylinder, we have

(353) lim
t→−∞

ψ±(t)
√
|t|

= ±∞.

We claim that there exists some C < ∞ such that for t sufficiently negative, for every tip point p±t ∈ Dt,
i.e. every p±t ∈ Dt with xn+1(p±t ) = ψ±(t), we have

(354) Z(p±t , t) ≤ C
√
|t|.

Indeed, if C ≥ 2N+1, where N is from Theorem 4.10 (almost selfsimilarity), then Z(p±t , t) > C
√
|t|

implies that M is ε-compact or ε-separating at some scale r ∈ [2
√
|t|, 2N+1 √|t|]. However, in the ε-

compact case, item (i) of Proposition 4.12 implies that Dt ⊆ B(0, 2N+1 √|t|/ε), contradicting (353), and in
the ε-seperating case, item (ii) of Proposition 4.12 implies that Te(M) > |t|, contradicting our assumption
that Te(M) = 0. This proves (354).

Combining (353) and (354) we see that for any choice of tip points p±t , we have

(355)
Z(p±t , t)
|ψ±(t)|

→ 0.
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Let p±t j
be a sequence of tip points at times t j → −∞. LetM j

± be the sequence of flows that is obtained
fromM by shifting (p±t j

, t j) to the origin and parabolically rescaling by Z(p±t j
, t j)−1, and pass to a subse-

quential limitM∞± . Applying Theorem 4.10 (almost selfsimilarity) along the approximating sequence we
see that the limitM∞± must be an ancient asymptotically cylindrical flow, whose axis is in xn+1-direction
since we tacitly chose coordinates forM as in (162). Arguing as in the proof of Proposition 6.2, we see
thatM∞± is not the cylinder. Thanks to (355) the limitM∞± is noncompact. Hence, by Corollary 5.19 and
Theorem 8.3 it is a translating bowl soliton. In particular, by the preservation of neck backwards in time
(see Section 4.3), there is a unique tip point p±t at time t ≤ T .

Fix t0 ≤ T . Denote by D±t0 the connected component of Dt0 \ Zt0 that contains p±t0 . Let us focus on D+
t0

(the argument for D−t0 is similar). Note that D+
t0 has the central neck Zt0 as a collar and also contains another

neck Z+
t0 bounding a convex cap Ct0 that is α-noncollapsed, say for α = 1

100n . Let Nt0 := Zt0 ∪ D+
t0 \ Ct0 ,

and set

(356) a = inf
p∈Nt0

xn+1(p), b = sup
p∈Nt0

xn+1(p).

Similarly to the proof of Proposition 8.2, for each t1 < t0 let N t1 the space-time conneted component of
Nt0 in

(357) M∩ {xn+1 ∈ [a, b]} ∩ {t ∈ [t1, t0]},

and denote by Nt1
t the time t slice ofN t1 . By the preservation of necks backwards in time (see Section 4.3)

the two necks Zt0 and Z+
t0 give rise to necks Zt and Z+

t in Nt1
t for all t ≤ t0. For t1 � t0, the entire domain

Nt1
t1 constitutes a single neck. Fix such a time t1 and denote N′t := Nt1

t for all t ∈ [t1, t0].

We next claim that if t∗ ≤ t0 is such that N′t is smooth on [t1, t∗), then N′t is mean-convex and non-
collapsed for all t ∈ [t1, t∗). To see this, first observe that using the planes {xn+1 = a} and {xn+1 = b}
as barriers, we get that N′t has no other boundary components except the the two collars. Therefore, the
parabolic maximum principle with boundary implies that the mean curvature satisfies

(358) H ≥ c(t1) > 0.

Moreover, the parabolic maximum principle for |A|/H, applied with two collar boundaries, yields

(359) |A| ≤ CH.

Now, suppose towards a contradiction there are times t j ∈ [t1, t∗) and points p j ∈ N′t j
at which the maximal

interior or exterior tangent ball is of radius

(360) r j ≤ j−1H(p j)−1.

Scale the flow around (p j, t j) by r−1
j and pass to a subsequential limitM. Since by (358) we have r j → 0,

and since the collar boundaries, as well as the neck at time t1, are noncollapsed, we infer that M is an
ancient mean-convex flow, defined on the entire space, which further satisfies the entropy condition

(361) Ent[M] ≤ Ent[S n−1 × R].
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We next observe that any tangent flow of M at (0, 0) is contained in a halfspace. Indeed, in the case of
interior noncollapsing, this is immediate from (360) and mean-convexity, while in the case of exterior non-
collapsing it follows using in addition Theorem 4.3 (partial regularity) and the classification mean-convex
shrinkers with small singular set from [Zhu20, Theorem 7.4]. Hence, by the local regularity theorem
[Whi05], the point (0, 0) is a regular point and thanks to (360) satisfies HM(0, 0) = 0. By the strong
maximum principle for the mean curvature together with the |A|/H-bound from (359) this implies that in
some small backwards parabolic ball centered at (0, 0) the flowM agrees with a static plane. In fact, since
by (361) and Theorem 4.3 (partial regularity) any space-time curve can be perturbed to avoid the singular
set, it follows that the entire backwards partM∩ {t ≤ 0} agrees with a static plane (note also that there
cannot be any other connected components since the entropy is less than two). For j large enough this
contradicts our assumption that r j was maximal, and thus establishes noncollapsing.

Next, suppose, for the sake of contradiction that there exists some first t′ ∈ [t1, t0] at which N′t is non-
smooth. If x′ ∈ N′t′ is a singular point, then by [HK17a] and the entropy assumption, the singularity at
(x′, t′) is spherical. This, however, contradicts N′t being an annulus for t < t′, and thus proves that N′t
is smooth and mean-convex annulus for all t ∈ [t1, t0]. This also shows that Nt0 = N′t0 . Similarly, by
the parabolic maximum principle for λ1+λ2

H , applied with two collar boundaries, the annulus Nt satisfies
λ1+λ2

H ≥ 1
4n for all t ∈ [t1, t0]. Now, adding the cap Ct0 , we get that D+

t0 is a smooth, mean-convex disk
and satisfies |A|/H ≤ 100 and λ1+λ2

H ≥ 1
1000n .The same argument applies to D−t0 . Thus, Dt0 is is a smooth,

mean-convex sphere and satisfies |A|/H ≤ 100 and λ1+λ2
H ≥ 1

1000n .
Since t0 ≤ T was arbitrary, we conclude that Dt is a smooth, mean-convex, uniformly two-convex

sphere and satisfies |A|/H ≤ 100 and λ1+λ2
H ≥ 1

1000n for t ≤ T . As above, the mean-convexity, the entropy
bound and the |A|/H bound imply that {Dt}t≤T is also α-noncollapsed for some α > 0. Moreover, asM is
connected in space-time, it follows that Mt = Dt for all t ≤ T . Therefore, by Angenent-Daskalopoulos-
Sesum [ADS20], we conclude thatM is an ancient oval. �

9. Applications

9.1. Mean-convex neighborhoods. The purpose of this subsection is to prove Theorem 1.17 (mean-
convex neighborhoods).

We will assume that we have an inwards neck singularity at (x,T ) (the argument for outward neck sin-
gularities is the same). We recall that given a closed embedded surface M ⊂ Rn+1, we denote by {Mt}t≥0

its outer flow. Observe that if x ∈ Mt is a regular point, then there exists a δ > 0 such that Mt ∩ B(x, δ)
splits B(x, δ) into two connected components: one in Int(Kt) and the other in Rn+1 \ Kt.

Theorem 1.17 (mean-convex neighborhoods for neck singularities) will follow from a similar argument
as in the proof of the mean-convex neighborhood conjecture for two-dimensional mean curvature flow in
[CHH, Sec. 8], after the following auxiliary proposition is established.
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Proposition 9.1 (auxiliary canonical neighborhood, c.f. [CHH, Prop. 8.2]). Under the assumption of
an inwards neck singularity in Theorem 1.17, there exists a constant δ = δ(X0) > 0 and a unit-regular,
integral Brakke flowM = {µt}t≥t0−δ whose support is {Mt}t≥t0−δ such that

(i) The tangent flow toM at X0 is a multiplicity one cylinder {S n−1(
√

2(n − 1)|t|) × R}t<0.
(ii) We have H , 0 at every regular point ofM in B̄(x0, 2δ) × [t0 − δ, t0 + δ].

(iii) The flowM has only multiplicity one neck and spherical singularities in B̄(x0, 2δ)× [t0−δ, t0 +δ].
(iv) The parabolic Hausdorff dimension of the set of singular points in B̄(x0, 2δ)× [t0 − δ, t0 + δ] is at

most one. In particular,M is smooth in B̄(x0, 2δ) for a.e. t ∈ [t0 − δ, t0 + δ] and is smooth outside
of a set of Hausdorff dimension 1 for every t ∈ [t0 − δ, t0 + δ].

(v) If Xi → X0 are regular points, then any subsequential limit ofMXi,R(Xi) is either a round shrinking
sphere, a round shrinking cylinder, a translating bowl, or an ancient oval.

(vi) There exist A < ∞ and c > 0 such that if X = (x, t) is a point ofM in B̄(x0, 2δ)×[t0−δ, t0 +δ] with
R(X) ≤ c, then M is smooth and connected in P(X, AR(X)) and there is a point X′ = (x′, t′) ∈
M ∩ P(X, AR(x)) with R(X′) ≥ 2R(X) and |x′ − x0| ≤ max{|x − x0| − cR(X′), δ/2}.

Proof. The argument is related to the one in [CHH, proof of Prop. 8.2], but the proof of (ii) and (iii)
requires additional ideas.

First, it follows from [HW20, Thm. B3] that there exists an outer Brakke flow starting from M, whose
support is {Mt}t≥0. In particular, this, together with monotonicity, implies that Ent[HnxMt] is uniformly
bounded. Thus, the neck singularity assumption implies that there exists t∗ < t0 such that

(362)
1

(4π(t0 − t∗))n/2

∫
exp

(−|x − x0|
2

4(t0 − t∗)

)
dHnxMt∗ < 2.

Therefore, applying [HW20, Thm. B3] once more, this time with the initial time t∗, we get a unit-regular
integral Brakke flowM := {µt}t≥t∗ whose support is {Mt}t≥t∗ . Together with the neck singularity assump-
tion and (362) it follows that M has the multiplicity one cylinder {S n−1(

√
2(n − 1)|t|) × R}t<0 as tangent

flow at (x0, t0). This proves (i).

To prove (ii), suppose towards a contradiction that there exist regular points Xi → X0 with H(Xi) = 0.
Since Xi → X0, and since X0 is a cylindrical singularity, we see that Z(Xi) < ∞ for i large enough, and
that there exists a sequence {ri}

∞
i=i0

with ri/Z(Xi) → ∞ such thatM remains ε-cylindrical around Xi at all
scales between Z(Xi) and ri. LetMi be the sequence of flows which is obtained fromM by shifting Xi to
the origin and parabolically rescaling by Z(Xi)−1. Remembering also Theorem 4.10 (almost selfsimilarity)
it follows thatMi subconverges to an ancient asymptotically cylindrical flowM∞ with Z(0, 0) = 1.

By Theorem 1.5 (classification of ancient asymptotically cylindrical flows) the limit M∞ is either a
round shrinking cylinder, a translating bowl, or an ancient oval. IfM∞ is the cylinder, then 0 cannot be
its time of extinction, since Z(0, 0) = 1. Therefore, if M∞ is either the cylinder or the bowl, it follows
that (0, 0) is a regular point of M∞. Hence, by the local regularity theorem, we infer that H(0, 0) = 0;
this is a contradiction to the fact that the bowl and the cylinder are mean-convex. If, on the other hand,
M∞ is an ancient oval, then it follows that for i large enough Mi

−1 is compact, smooth and convex. Since
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mean-convexity is preserved under mean curvature flow, this contradicts H(Xi) = 0. This proves (ii).

To prove (iii), first observe that there exists a C < ∞ and a two sided neighborhood of X0 such that

(363) Z(X) ≤ CR(X) or Z(X) ≤ CL(X),

for all points X (not necessarily regular) in it. Here, L(X) denotes the last ε-spherical scale, i.e. the
supremum over all r such thatMX,r is ε-close in Cb1/εc in B(0, 1/ε) × [−2,−1] to the evolution of a round
sphere with radius

√
−2nt and center at the origin (by convention L(X) = −∞ if there is no such r).

Indeed, suppose there is Xi → X0 for which neither alternative in (363) is satisfied with C = i. Letting
Mi be the flows obtained by shifting Xi to the origin and parabolically rescaling by Z(Xi)−1, remembering
Theorem 4.10 (almost selfsimilarity) we see thatMi subconverge to an ancient asymptotically cylindrical
flowM∞ with Z(0, 0) = 1. By Theorem 1.5 (classification of ancient asymptotically cylindrical flows) the
limitM∞ is either a round shrinking cylinder, a translating bowl, or an ancient oval. As (363) holds for
all such flows, this leads to a contradiction.

Now, suppose that X is a singular point in that neighborhood. Then, since R(X) = 0, from (363) we
infer that either Z(X) = 0 or L(X) > 0. In the first case, it follows thatM has a neck singularity at X. In
the second case, it follows thatM has a spherical singularity at X. This proves (iii).

Assertion (iv) follows from (iii) and standard stratification, see e.g. [Whi97].

Suppose Xi → X0 are regular points and M̂ is a limit of MXi,R(Xi). If there is a C < ∞ such that
Z(Xi) ≤ CR(Xi) for all i, then remembering again Theorem 4.10 (almost selfsimilarity) we see that M̂ is
an ancient asymptotically cylindrical flow, and hence, by Theorem 1.5 (classification of ancient asymp-
totically cylindrical flows), a round shrinking cylinder, a translating bowl or an ancient oval. If there is no
such C, then M̂ is a (nontrivial) blowup limit of an ancient asymptotically cylindrical flow, which only
adds the round shrinking sphere to the list of possibilities. This proves (v).

Finally, observe by inspection of the three asymptotically cylindrical flows and the sphere, that there
exist A,C < ∞ such that if X = (x, t) is a point on such a flow M∞, then for every unit vector v, there
exists a point in X′ ∈ P(X, AR(X)) ∩ {y : (y − x) · v ≥ R(X)} ∩M∞ with

(364) 4R(X) ≤ R(X′) ≤ CR(X).

Using this, assertion (vi) follows from (v). �

Proof of Theorem 1.17. Using Proposition 9.1 (auxiliary canonical neighborhood), the proof of Theorem
1.17 (mean-convex neighborhoods for neck singularities) now follows from the same argument as in
[CHH, Sec. 8], by first showing that H does not change sign on regular points near X0 (as H , 0 in such a
neighborhood, this is a statement about connectedness within this neighborhood), and then showing that
Kt moves in one direction even if singular, similarly as in [HW20, Thm. 3.5]. �
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9.2. Uniqueness of weak flows. In this subsection, we prove that mean curvature flow through neck
singularities and spherical singularities is unique.

Proof of Theorem 1.19 (nonfattening). If T ≤ Tdisc then, by definition, the outer flow {Mt}t∈[0,T ] agrees
with the level set flow {Ft(M)}t∈[0,T ] and the inner flow {M′t }t∈[0,T ]. In particular, if (x0,T ) is a neck
singularity (respectively spherical singularity) of {Mt}t∈[0,T ], then either KX,λ or K ′X,λ converges for λ →
0 locally smoothly with multiplicity one to a round shrinking solid cylinder {B̄n(

√
2(n − 1)|t|) × R}t<0

(respectively a round shrinking solid ball {B̄n+1(
√

2n|t|)}t<0).
The result now follows from combining the main theorem of Hershkovits-White [HW20], which estab-

lishes that T < Tdisc assuming the existence of mean-convex neighborhoods a priori, and Theorem 1.17
(mean-convex neighborhoods), which proves the existence of such mean-convex neighborhoods. �
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