Manuscript Details

Manuscript number	EARTH_2018_550_R1
Title	Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation
Article type	Invited review article

Abstract

The study of ancient DNA (aDNA) from sediments (sedaDNA) offers great potential for paleoclimate interpretation, and has recently been applied as a tool to characterise past marine life and environments from deep ocean sediments over geological timescales. Using sedaDNA, palaeo-communities have been detected, including prokaryotes and eukaryotes that do not fossilise, thereby revolutionising the scope of marine micropalaeontological research. However, many studies to date have not reported on the measures taken to prove the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly fragmented and degraded and extremely sensitive to contamination by non-target environmental DNA. Contamination risks are particularly high on research vessels, drilling ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, and due consideration needs to be given to sample processing and analysis following aDNA guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and highlights the urgency behind adopting new standards for marine sedaDNA research, with a focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into International Ocean Discovery Program (IODP) operations. Currently available installations aboard drilling ships and platforms are reviewed, improvements suggested, analytical approaches detailed, and the controls and documentation necessary to support the authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical considerations, concepts relevant to the study of past marine biodiversity based on aDNA, and the applicability of the new guidelines to the study of other contamination-susceptible environments (permafrost and outer space) are discussed.

Keywords	ancient DNA; marine sediments; deep biosphere; phytoplankton; contamination; seafloor; IODP; biomarkers; Mars
Corresponding Author	Linda Armbrecht
Order of Authors	Linda Armbrecht, Marco Coolen, Franck Lejzerowicz, Simon George, Karita Negandhi, Yohey Suzuki, Jennifer Young, Nicole Foster, Leanne Armand, Alan Cooper, Martin Ostrowski, amaranta focardi, Michael Stat, John Moreau, Laura Weyrich
Suggested reviewers	Fumio Inagaki, Mikkel Winther Pedersen, Chris McKay, Jill Banfield

Submission Files Included in this PDF

File Name [File Type]

Coverletter_LA_et_al_Marine_aDNA_review_R1.pdf [Cover Letter]

Response_to_reviewers_R1.docx [Response to Reviewers]

Armbrecht-et-al_aDNA_Review_R1_highlights.docx [Revised Manuscript with Changes Marked]

Abstract_R1.docx [Abstract]

Armbrecht-et-al_aDNA_Review_R1.docx [Manuscript File]

Fig.1.pdf [Figure]

Fig.2_IODP_CoringSystems.pdf [Figure]

Submission Files Not Included in this PDF

File Name [File Type]

Table1.xlsx [Table]

Table2.xlsx [Table]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given: No data was used for the research described in the article

Prof. Ian Candy Mr Timothy J. Horscroft Editorial Office Earth-Science Reviews

30.05.2019

Dear Prof. Candy and Mr Horscroft,

We herewith re-submit our invited review manuscript entitled "Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation" to Earth-Science Reviews (EARTH_2018_550).

The manuscript has been revised according to the reviewer's suggestions, and all changes are detailed in the "Response to Reviewers" document.

Our review now includes a 250-word abstract, 9,146 words of main text (including Acknowledgements and Funding Sources), two figures, two tables and 142 references. I declare that all co-authors have agreed to the submission.

Yours sincerely,

L. tubrelt

Dr Linda Armbrecht

Reviewer 1 - Comments	Author's response
The paper by Ambrecht et al. "Ancient DNA from	
marine sediments: precautions and considerations for	
seafloor	
coring, sample handling and data generation" aims at	
presenting the review of state-of-the-art practices in	
ancient DNA studies of marine sediments, as well as	
providing general guidelines for sampling and lab	
protocols, which should be applied in future, in	
particular in IODP missions.	
In general, the topic of ancient DNA is of the highest	We disagree with the reviewer's comment. This review
interest. However, in the present form, it may be more	forms the base of any future study in the emerging
suitable for a journal of narrower scope. The	discipline of marine sedimentary ancient DNA, which is
manuscript would benefit a lot if it would be focused	interdisciplinary in its core, and thus highly applicable
not only on technical aspects of coring, sampling etc.	to earth, marine, geo- and climate scientists. As
but also if it would provide a review of aDNA	Reviewer 2 also acknowledges, commonly used modern
applications in various marine environments, time	marine genomics techniques have been mis-applied to
ranges, taxon groups etc. There are many recent	this new field, demonstrating the urgency to raise
studies (many of them included in the reference list)	awareness amongst earth and marine scientists that
showing the potential of ancient DNA in the progress of	appropriate ancient DNA techniques must be used if
science. Although several valuable reviews have been	the aim is to acquire authentic ancient DNA; therefore,
published during the last several years (e.g. Torti et al.	this manuscript is ideally suited to ESR and its
2015, Rawlence et al. 2014, Pedersen et al. 2015), there	readership.
are still many issues, which could be covered –	Our focus is on contamination and best-practise
including the specific character of the marine	techniques, and we specifically point out in this review
environment. DNA-related	that many studies to date fail to provide adequate
problems revealed by the recent studies incorporate	records of negative controls. Therefore, a review of
the limits of applications, the challenges, not only	currently reported taxonomic groups and age estimates
related to sampling and contamination, but also to	is impossible and we do not provide further details than
bioinformatics, identification of taxonomic units,	already given.
qualitative vs quantitative approaches etc.	However, we agree with the reviewer that more
	information can be provided on bioinformatics,
	identification of faxonomic units and approaches, and
	nave expanded our data-analysis section accordingly.
vioreover, some of the chapters related to planetary	We have shortened this section in the revised version.
exploration, although intriguing, are so far away	However, we would prefer to retain this section and
rom the main topic of the paper that they should be	not entirely remove it, as in our opinion the marine
removed or shortened.	aDNA research guidelines are relevant to other low
	biomass environments such as permatrost and other
20 20 "The study of ancient DNA between the	planets.
1. 30 - 37 The sludy of ancient DNA has recently	we agree with the reviewer and have removed
been applied as a tool to characterize past and modern	modern me from this sentence.
me in deep ocean sediments". First of all, the study of	
ancient DNA does not neip in the characterization of	
modern life (we use modern DNA for that). Second,	we agree with the reviewer, nowever, this review
ancient DNA is studied and used for palaeoclimate etc.	rocuses on the marine environment, which is
not only in oceanic sediments (see for instance	Introduced in this first sentence.
numerous studies on ancient DNA in lake sediments).	
I. 89, I. 92-93 and elsewhere in the manuscript -	vve removed plankton in this context, and only refer to
"plankton" – here, and also later on in the manuscript,	planktonic organisms where previous studies have
the authors focus only on plankton or deep biosphere.	focused on those in particular.
How about benthic organisms, which are also of	
importance and are used as indicatory species (e.g.	
toraminitera)? The aDNA of active swimmers (fish) may	

60	also be preserved and should not be neglected	
61	completely.	
62	I.128-132 – the authors refer to a paper by Kirkpatrick	We acknowledge that Kirkpatrick et al. have taken
63	et al 2016, reporting retrieval of 1.4 million years old	utmost care that samples are not contaminated, certain
64	DNA and underlying that the "origin of DNA must be	precautions were not taken. For example, while
65	carefully considered". Later on in the text (l. 139-141).	sampling was undertaken immediately following core
66 66	the authors list "to date the oldest authenticated aDNA	retrieval on the catwalk of the IODP research shin RV
67	records" and do not take into account the one by	loides Resolution there is no mention of core liner
68	Kirkpatrick at al (2016). It sooms that the outbors do	decontamination before cutting thus potential
60	not find the finding by Kirknetrick et al. (2016) to be	contamination before cutting, thus potential
70	not find the finding by Kirkpatrick et al. (2010) to be	containing to the inner core during cutting callion
70	confirmed. I would expect much more detail	be excluded. The authors also describe that PFTS (a
70	information about this case – what was found in	chemical tracer) were run and below detection limit,
72	original paper and what was wrong in the opinion of	however, it is unclear whether these low PFI
73	the authors and why. Such a case is very interesting and	concentrations were only measured at the centre of the
74 75	important in terms of making progress in science, as the	core or also on the periphery (the latter would be a sign
75	scientific community may learn from potential failures.	of unsuccessful tracer delivery to the core). All
77	Giving reasons for not recognizing the results obtained	laboratory work was conducted in laminar flow hoods,
70	by Kirkaptrick et al. may give also a chance for them to	these create air movement and are not as suitable as
70	address the constructive critics in the future	special ultra-low background DNA (ancient DNA)
80	correspondence or papers.	facilities; it is also not mentioned whether previous
81		work on marine organisms has been performed in this
82		hood. PCR was used to amplify the 16S V4 and V5 gene
83		regions (each >100bp, thus surprising as aDNA is
84		typically <100bp), then subtracting all but chloroplast
85		derived sequences. We provide detailed information in
86		this review on the biases of PCR and its unsuitability to
87		study aDNA. We acknowledge that the decrease in
88		cpDNA with depth measured by Kirkpatrick et al. is a
89		good indicator for a realistic result, however, the
90		possibility remains that the cpDNA signal might be
91		derived from contaminating seawater DNA. The major
92		diatom taxa detected, Thalassiosira and Chaetoceros,
93		are indeed important contributors to the fossil record,
94		but also highly represented in the water column. Better
95		indicators for ancient DNA authenticity are, for
96		example, DNA fragment size and degradation.
97	I.157 "2.1" is missing	Corrected.
98	I. 160 "where the DNA was not initially preserved for	We changed this to: 'aDNA research involves the
99	later analysis" – I am not sure what the authors mean.	biomolecular study of non-modern genetic material
100	The same expression is used also in table 1. How could	preserved in a broad range of biological samples'.
101	be DNA initially preserved for being analysed as ancient	
102	DNA?	
103	I. 170 – 182 definitions. The authors try to make an	Both Reviewer 1 and 2 commented on the terminology
104	order in a number of similar terms used in literature	and definitions of PalEnDNA aDNA sedaDNA and
105	find it very useful However after reading this	marine aDNA Reviewer 2 suggests PalEnDNIA to be
106	naragraph find some confusing statements First of	superfluous while Reviewer 1 criticises the use of
107	all the authors contrast $aDNA$ and $PalFnDNA$ (1 171-	'marine aDNA' as both marine and freshwater
108	(172) while they seem to overlap as also stated by the	environments can be influenced by freshwater and
109	authors later on (1 179-180) I suggest presenting the	marine DNA sources respectively. We agree that in
110	ranges of application of particular terms in form of	regions characterised by brackish waters our term
111	figure (see for instance somehow similar figure in Torti	marine aDNA might indeed be too parrow as such we
112	et al. 2015) Lalso think that it is not necessary to add a	have adjusted our terminology and use an extension of
113	new term 'marine aDNA'. This term is well covered by	the evisting term sedoDNA ('marine sodoDNA') for
114	the existing term (sedimentary aDNA) If the authors	ancient DNA from marine environments on which this
115	find it pocossary to define a new term then they should	ancient DNA nom marine environments, on which this
116	nnu it necessary to definition. Does this torre refer only	appropriate and do not see the need to definitions
117	provide a precise definition. Does this term refer only	appropriate and do not see the need to display the
118	LO DINA OF MARINE ORGANISMS? THE DNA POOL MAY	definitions in a figure, heither did Reviewer 2.

119	contain also terrigenous DNA delivered with rivers etc	
120	(see for instance Torti et al. 2015 and references	
121	therein). On the other hand, some processes, e.g.	
122	tsunami, may deliver and deposit marine sediments	
123	containing DNA of marine organisms on land (e.g.	
124	Szczucinski et	
125	al 2016). Is the analysis of marine sediments so	
126	different from lake sediments to create a specific term?	
127	Please note that for instance in case of well-studied	
128	Black Sea, some of its older sediments were formed in	
129	lake conditions, not in marine. So, shall we use two	
130	separate terms in that case?	
131	1 186 – chapter 2 21 – this chapter should be in my	We have rewritten this naragraph to integrate the
132	oninion much better illustrated (table/figure). It is one	reviewers' comment on the retrieval of aDNA from
133	of the chapters, which potentially may attract attention	avygonated sodiments, and outlining the limits of
134	also of non aDNA specialists. Particularly interacting	maring and DNA research with regard to
135	also of non-adina specialists. Particularly interesting	marine seudDNA research with regard to
136	(1, 201, 202), that is well expresented door see	environmental characteristics and age retrieval.
137	(i. 201-202), that in well-oxygenated deep-sea	However, we have not added a table or ligure as
138	seuments adma was also preserved. However, it was	neutier would not add any information, and solely be a
139	also preserved in much less suitable settings as for	repeution of the text in the manuscript.
140	instance coastal marshes (tsunami deposits mentioned	
141	above).	
142	l. 195 – 'extremely small grain size offer a high	We agree and modified this sentence.
143	adsorption surface' – I do not think that it is extremely	
144	small grain size that matters, it is the high surface area	
145	(ratio of surface to volume).	
146	l. 259 – 'geological' – actually it is a biomechanical	We replaced 'geological' with 'biomechanical'.
147	process	
1 - 7 /	•	
148	l.280 – chapter 2.26 – it is the next chapter worth to be	We expanded this section according to the reviewer's
148 149	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure
148 149 150	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in
148 149 150 151	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published
148 149 150 151 152	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-
148 149 150 151 152 153	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of
148 149 150 151 152 153 154	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies.	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding
148 149 150 151 152 153 154 155	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies.	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on
148 149 150 151 152 153 154 155 156	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies.	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure
148 149 150 151 152 153 154 155 156 157	I.280 – chapter 2.26 – it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies.	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)).
148 149 150 151 152 153 154 155 156 157 158	I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies.	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)).
148 149 150 151 152 153 154 155 156 157 158 159	I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies.	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms which
148 149 150 151 152 153 154 155 156 157 158 159 160	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following
148 149 150 151 152 153 154 155 156 157 158 159 160 161	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for doop
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. It is much easier to it is the total the state the total state. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re-illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. It is much easier to include these three points in the text. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. It is much easier to include these three points in the text. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. It is much easier to include these three points in the text. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter may be difficult to follow for not specialists - consider 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter may be difficult to follow for not specialists - consider representing the coring systems and the differences 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334- 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter may be difficult to follow for not specialists - consider representing the coring systems and the differences between them on a figure. The authors claim that the 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334 - 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter may be difficult to follow for not specialists - consider representing the coring systems and the differences between them on a figure. The authors claim that the paper is to be used by researchers working also in 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334 - 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter may be difficult to follow for not specialists - consider representing the coring systems and the differences between them on a figure. The authors claim that the paper is to be used by researchers working also in permafrost and other planets - make it accessible for 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	 I.280 - chapter 2.26 - it is the next chapter worth to be extended. For instance issue of comparison of various records (micropaleontological and DNA). The problem of quantification of aDNA record. The mentioned results from the Black Sea could be represented by a combined figure showing an example of the application of various proxies. I. 314 - chapter 3.1 - I wonder if the specific chapter only about IODP is really necessary. I. 324 - table 2 is not necessary. It is much easier to include these three points in the text. I. 334 - 348 - provide at least the project title. I. 350 - chapter 3.2 on drilling strategies. Various details of coring systems are discussed. However, the chapter may be difficult to follow for not specialists - consider representing the coring systems and the differences between them on a figure. The authors claim that the paper is to be used by researchers working also in permafrost and other planets - make it accessible for them. 	We expanded this section according to the reviewer's suggestion. However, we are unsure what type of figure the reviewer is requesting here - a timeline of events in the Black Sea, or a hybrid of figure of already published Black Sea results? In either case, we believe that re- illustrating Black Sea results/data exceeds the scope of this review, and have therefore decided against adding another figure in this context. (Instead we focused on refining Figure 1 (sedaDNA workflow) and adding Figure 2 (coring systems)). We shortened this chapter considerably, keeping only information on available coring platforms, which provides important context for the following descriptions of drilling strategies suitable for deep seafloor aDNA recovery. We removed this table. We shortened this section and project titles are no longer applicable. We have included a new figure showing the differences in coring systems.

178	l. 444 -447 - It is not clear why the authors expect the	We added an explanation in the text.	
179	freezing to affect DNA leaching.		
180	l. 546 - 'quantitative' - it is not clear what do the	We removed 'quantitative' in this context.	
181	authors mean. A number of sequences?		
182	l. 615 - chapter 5. This chapter is poorly linked with the	We have shortened this section in the revised version.	
183	main topic of the paper and in fact, could be shortened	However, we would prefer to retain this section and	
184	to a single paragraph. This paper introduces marine	not entirely remove it, as in our opinion the marine	
185	aDNA guidelines (which are not yet established), and in	aDNA research guidelines are relevant to other low	
186	this chapter an extensive description of its potential	biomass environments such as permafrost and other	
187	applications are discussed for non-marine settings. In	planets.	
188	particular for planetary exploration - very attractive		
189	topic, however in situation, when we are not sure if		
190	there is any life on other planets, not to mention if it is		
191	DNA-based, I do not find useful to discuss if suggested		
192	coring techniques, contaminant treatments for marine		
193	settings etc. may be useful in planetary exploration on		
194	Mars and other planets and moons. In fact, the chapter		
195	5.1 reveals more on applications of experience in		
197	studies of aDNA in permafrost for marine settings (630-		
198	635) than vice versa.		
199	The manuscript could be also enriched in figures (there	We added a figure showing coring systems.	
200	is only a single figure, so far). A good picture is worth a		
201	thousand words.		
202	The references need to be rechecked throughout –	We corrected the reference list.	
203	many cited references are not in the reference list (over		
204	20!) and		
205	vice versa. I have listed below some of the references		
206	cited in the text and not included in the reference list		
207	but it		
208	needs to be rechecked once more. Also, the alphabetic		
209	order in the references is not followed, in particular in		
210	cases		
211	of the same first author.		
212	The references cited in the text and missing in the		
213	references:		
214	I. 84. Ambrecht et al. 2018		
210	1.86 Loucaides et al. 2011		
210	I. 89 Castaneda et al. 2011 (do you mean Castaneda and		
217	Schouten?)		
219	I. 134 Coolen et al. 2011		
220	1.107 Boere et al. 1008 (Should be 2009?)		
221	1. 171 (SHOULD DE LYOFT?)		
222	1.241 LEVY-DUULI EL dl. 2007		
223	I. 291 Calvert et al. 1987; Hay 1988		
224	1.292 Major et al. 2006		
225	1.303 Lyra et al 2013		
226	1. 338 Fruen-Green – be consistent in writing the name		
227	Will the relevance ist		
228	I. JIZ DIVINEITON ET AL 2012 (SNOUID DE 2013?)		
229	I. J47 Mappenback et al 2001		
230	1. 022 DUSSETIKUTEL AT 2012		
231	1.025 Giller et al. 2014 1.621 Nogbandhi at al 2014		
232	I. 031 Neghanuni et al 2010		
233			
234	1.001 Grotzinger et al 2012		
235	i. 1179 (Table 1) - van Everdingen 1998, Fry et al. 2003		
236			

237	l.1186 (Table 3) - Haile et al. 2012, Leite et al. 2014,	
238	Bidle et al 2007	
239	Reviewer 2 - Comments	Author's response
240	I think this is a nice and timely review in the field of	- ·
241	ancient DNA (aDNA) research in marine sediments.	
242	Although Lam not particularly expert in marine and	
243	freshwater sediments I have good knowledge of aDNA	
244	studies in terrestrial sediments and the two aDNA	
245	research fields suffer of similar contamination	
246	problems. As also the authors suggest, many aDNA	
247	studies recently have not succeeded in reporting exact	
248	measures taken to prove authenticity of results	
249	narticularly studies dealing with environmental DNA	
250	(eDNA) extracted from sediments and studies to	
251	investigate ancient microbiome communities. It is true	
252	that modern bacteria and other microorganism are	
253	present nearly in every part of our environments from	
254	onen research fields to modern clean laboratories. It is	
255	also true that in many cases common and standard	
256	molecular laboratories have been used in such studies	
257	for extracting DNA from ancient sediments and prenare	
258	samples for sequencing and that procedures for	
259	subsampling from cores have not been documented	
260	and reported carefully. This review is therefore very	
261	welcome and honefully will encourage researchers	
262	dealing with aDNA data from marine environments to	
263	take all necessary precautions during sediment coring	
264	sample handling and data generation.	
200	I have only some minor comments that hopefully the	
267	authors will take into consideration before publication.	
268	In general I agree with most of the suggestions	We refined section 3.5 "Marine aDNA sample
269	provided by the authors and with most of their	processing and analysis" according to the reviewer's
270	statements. However, I would give more importance to	suggestion.
271	contamination that often occur in the laboratories	
272	during DNA extraction and PCR/library preparations	
273	rather than in the field during coring when is really hard	
274	to avoid it. Contamination is never possible to reduce to	
275	zero and will unfortunately always occurs. However it is	
276	possible to minimize and to monitor it during all steps.	
277	Therefore, rather than insisting on the importance of	
278	performing coring in sterilized conditions, which is	
279	indeed crucial but very hard to do especially on ships, I	
280	would stress much more the importance of avoiding	
281	contamination during subsampling and during analyses	
282	in the laboratories, as here it is indeed possible to work	
283	efficiently to minimize it. No matter how clean we work	
284	on the ship and during coring it is very likely that	
200	contamination will occur from the modern environment	
200	during sampling. What is crucial therefore is to clean	
288	samples as much as	
289	possible prior to analyses and especially during	
290	subsampling to remove the outer part of the samples	
291	using sterilized tools, wearing lab mask, lab coats,	
292	gloves etc. In order to sample the internal	
293	uncontaminated part of the core it is therefore	
294	preferable to use larger rather than smaller corers in	
295	order to get as much material as possible. A second	

296	important step to minimize and monitor contamination	
297	is the use of negative controls during DNA extraction	
298	and PCR/library preparation. Both types of controls, as	
299	also mentioned by the authors, should always be	
300	processed in parallel with sediment samples from PCR,	
301	to DNA sequence and to bioinformatic analyses. It is	
302	not enough to measure the DNA amount and even if	
303	this is zero, controls must be analyzed all the way along	
304	all steps.	
305	There is one paper on which I have strong doubts about	We agree with the reviewer and do not cite this paper.
306	authenticity (Inagaki et al. 2005) I don't think it is	
307	nossible that the authors have extracted and analyzed	
308	DNA from a continental core 108 million years old Such	
309	results are very likely created by contaminants and	
310	therefore not authentic and should therefore not be	
311	used to support any statement in this paper. This is	
312	aspecially true since the authors cay correctly that at	
313	especially true since the authors say correctly that at	
314	the moment the oldest authenticated DNA sequences	
315	comes fro remains that are ca 700 kyr (Orlando et al.	
316	2013).	
317	Please notice that on line 225 the reference is not	There are two different publications, Inagaki et al. 2005
318	correct (Inagaki et al. 2015 should be 2005), therefore I	and Inagaki et al. 2015. The latter study reports on
319	would not call this as a 'recent' study.	slow-growing live microbes in 2.5km deep ocean
320		sediments, and is cited in our manuscript. There is no
321		reference to Inagaki et al., 2005 (reporting on 100 Mio.
322		years old ancient microbes).
323	Line 160. Maybe I miss something here but I don't	We have changed this sentence to:
324	understand the meaning of the sentence: 'where the	"aDNA research involves the biomolecular study of non-
325	DNA was not initially preserved for later analyses'.	modern genetic material preserved in a broad range of
326		biological samples."
327	Line 170. The term PalEnDNA is in my opinion	We agree with the reviewer that the term PalEnDNA is
328	superfluous. In literature we have already several	somewhat superfluous, and have re-written this
329	established acronyms (aDNA for ancient DNA, eDNA for	paragraph to give this term less emphasis. However, as
330	environmental DNA, sedaDNA or sedDNA for	it has been used in the literature to describe ancient
331	sedimentary ancient DNA, see Pedersen et al. 2015.	DNA from a variety of environmental samples, we
332	Ficetola et al. 2015. Parducci et al. 2017). My	decided to retain a brief explanation of this term in the
333	suggestion is to use only: aDNA, eDNA, sedaDNA and	text and Table 1. Additionally, in response to this
334	marine aDNA.	comment and the comment made by reviewer 1
335		regarding the terminology we now use the term
336		'marine sedaDNA' throughout the text
337	Line 178. Some of these references are not correctly	We adjusted this sentence ("Modern sequencing
338	cited Giguet Covey Pansu and Alsos papers are about	technologies and highformatic tools asso the analysis
339	lake and imports and investigate mainly plants, but also	of these complex environmental aDNA complex and of
340	arized arousing around lakes and therefore in	of these complex environmental adma samples and of
341	animals growing around lakes and therefore in	the biological responses to numan or climate change,
342	terrestrial environments.	with investigations having focussed on terrestrial
343		settings (Jørgensen et al., 2012; Giguet-Covex et al.,
344		2014; Willerslev et al., 2014; Alsos et al., 2015; Pansu et
345		al., 2015).")
346	Line 191, I am a bit uncertain wether Lindhal paper	We removed this statement.
347	suggests that hydrostatic pressure contribute to DNA	
348	preservation. Are the authors sure of this statement?	
349	Line 201: well-oxygenated is misspelled.	Corrected.
350	Line 266: There is no leaching in lake sediments	We agree with the reviewer and have mentioned this in
351	(Parducci et al. 2017 New Phyt). There should not be	the text (section 2.2.5). However, in terrestrial non-
352	either leaching occurring in marine sediments in my	frozen sediments leaching has been found to be a
353	opinion.	factor (Haile et al., 2007), and as no studies exist that
354		

355		investigate potential leaching in marine environments,	
356		its possibility cannot be excluded to date.	
357	Lines 296-298 I don't agree with this statement	We have changed this sentence, however, as	
358	especially because based on Inagaki et al. 2005 on	mentioned above we only refer to Inagaki et al. (2015),	
359	which I have doubts.	only (not Inagaki et al., 2005).	
360	Line 358: I don't know what a drill-ship is exactly. Do	We have modified this sentence, to clarify that we are	
361	the authors mean from a stable platform like MSP or	referring to a ship that is capable of performing drilling	
362	from a ship? Maybe this can be explained for non-	operations.	
363	experts.		
364	Lines 486-490: I am not sure about the statement that	We removed this statement.	
365	samples from the top part of the cores should be		
366	subsampled and processed in a non-aDNA laboratory.		
367	In these samples DNA even if more abundant is always		
368	fragmented and damaged and therefore ancient;		
369	contamination risk remains therefore high. If the		
370	authors means instead that this increase the risk for		
3/1	'cross-contamination among samples then I only		
372	partially agree since cross-contamination must be		
3/3	always avoided regardless of the amount of DNA		
374	present in the ancient samples.		
376	Lines 498-501: this depends also on the approach used:	We added this information to the text.	
377	metabarcoding or shotgun sequencing. Using the latter		
378	in combination with capture technique may increase		
379	ability of detecting rare samples/species, particularly if		
380	these are present in the reference database.		
381	Lines 533-534: I think it is very good that this review	We added a sentence of the end of this paragraph to	
382	brings up this problem, which is indeed serious. I would	stress again the importance of strictly using aDNA	
383	strength even more the importance of using strict	facilities and methodologies as suggested by the	
384	aDNA methodologies and facilities in this field.	reviewer.	
385	In chapter 4.2 I would add one point here on the	We welcome this suggestion by the reviewer and have	
386	importance of negative controls and that these must be	added this point to the 'future priorities' list.	
387	always processed and sequenced (and result shown)		
388	along with sediment samples.		
389	Figure 1 is a too simplified and lacks important details. I	We updated this figure and added some more details	
390	suggest the authors to provide more details and	on controls to be taken.	
391	improve the figure as well as the legend as this is an		
392	important figure for this review.		
393			

Highlights corresponding to changes indicated in 'Response to Reviewers'

Title:

Ancient DNA from marine sediments: precautions and considerations for seafloor coring,
sample handling and data generation

7 Authors:

Linda H. Armbrecht^{1*}, Marco J.L. Coolen², Franck Lejzerowicz³, Simon C. George⁴, Karita
Negandhi⁵, Yohey Suzuki⁶, Jennifer Young⁷, Nicole R. Foster⁸, Leanne K. Armand⁹, Alan
Cooper^{1,10}, Martin Ostrowski^{11,12}, Amaranta Focardi¹², Michael Stat¹³, John W. Moreau¹⁴,
Laura S. Weyrich^{1,10}

13 Affiliations:

¹ Australian Centre for Ancient DNA, School of Biological Sciences, Faculty of Sciences,

15 The University of Adelaide, North Terrace, South Australia 5005, Australia

Western Australian Organic and Isotope Geochemistry Centre (WA-OIGC), School of
 Earth and Planetary Sciences, Curtin University, Kent Street, Bentley WA 6102, Australia

³ Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
 92093-0403, USA

⁴ Department of Earth and Planetary Sciences and MQMarine Research Centre,
 Macquarie University, North Ryde NSW 2109, Australia

⁵ NSW Office of Environment and Heritage, 10 Valentine Avenue, Parramatta NSW
23 2150, Australia

Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan Advanced DNA, Identification and Forensic Facility, The Environment Institute, Faculty of Sciences, University of Adelaide, Adelaide SA 5005, Australia School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide SA 5005, Australia Australian and New Zealand IODP Consortium, Research School of Earth Sciences, The Australian National University, Acton ACT 2601, Australia Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences, Faculty of Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia Climate Change Cluster, Faculty of Science, University of Technology Sydney, Chippendale NSW 2007, Australia Department of Molecular Sciences and MQMarine Research Centre, Macquarie University, North Ryde NSW 2109, Australia School of Environmental and Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia School of Earth Sciences, The University of Melbourne, Parkville VIC 3010, Australia * Corresponding author: linda.armbrecht@adelaide.edu.au Abstract The study of ancient DNA (aDNA) from sediments (sedaDNA) offers great potential for paleoclimate interpretation, and has recently been applied as a tool to characterise past marine life and environments from deep ocean sediments over geological timescales. Using

sedaDNA, palaeo-communities have been detected, including prokaryotes and eukaryotes that do not fossilise, thereby revolutionising the scope of marine micropalaeontological research. However, many studies to date have not reported on the measures taken to prove the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly fragmented and degraded and extremely sensitive to contamination by non-target environmental DNA. Contamination risks are particularly high on research vessels, drilling ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, and due consideration needs to be given to sample processing and analysis following aDNA guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and highlights the urgency behind adopting new standards for marine sedaDNA research, with a focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into International Ocean Discovery Program (IODP) operations. Currently available installations aboard drilling ships and platforms are reviewed, improvements suggested, analytical approaches detailed, and the controls and documentation necessary to support the authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical considerations, concepts relevant to the study of past marine biodiversity based on aDNA, and the applicability of the new guidelines to the study of other contamination-susceptible environments (permafrost and outer space) are discussed. **Keywords:** ancient DNA; marine sediments; deep biosphere; phytoplankton; contamination; seafloor; IODP; biomarkers; Mars Abbreviations: aDNA, ancient DNA; APC, Advanced Piston Corer; HLAPC, Half-Length

71 Advanced Piston Corer; IODP, International Ocean Discovery Program; mbsf, metres below 72 seafloor; MSP, Mission Specific Platforms; NGS, Next generation Sequencing; PCR,

 polymerase chain reaction; PFT, perfluorocarbon tracer; PMCH, perfluoromethylcyclohexane;
 PFMD, perfluoromethyldecalin; *seda*DNA, sedimentary ancient DNA

75 1 Introduction

Past marine environments have generally been investigated using a suite of methodological approaches and interdisciplinary research fields, such as geology, organic and inorganic geochemistry, paleoceanography and micropaleontology. Discoveries in all of these disciplines have contributed greatly to our understanding of the climatic history of Earth and the evolution and responses of its inhabitants. However, to date, it has not been possible to achieve a detailed picture of all living organisms that have occupied global oceans in the past, restricting estimates of past environmental conditions and climate. The techniques that have traditionally been applied to reconstruct marine palaeo-communities are limited, such as microscopy to investigate the microfossil record (e.g., Winter et al., 2010; Armbrecht et al., 2018). Due to dissolution and degradation of phytoplankton and microzooplankton while sinking to the seafloor post-mortem, only the most robust skeletons and shells are preserved within a complex geological record (Loucaides et al., 2011). Often, these microfossils are broken, altered by chemical processes and unrecognizable. In the absence of well-preserved diagnostic morphological features, lipid biomarkers can provide supplementary information on biological sources in sediment records (Volkman et al., 1998; Coolen et al., 2004; Sinninghe Damste et al., 2004; Brocks et al., 2011), however, the majority of plankton members do not possess highly diagnostic biomarkers.

New marine metagenomic approaches have allowed the routine characterisation of the
diversity of both living hard- and soft-bodied plankton communities in the water column and
sub-seafloor. Large-scale "omics" studies, such as the Tara Oceans project (a global sampling
program to characterise pro- and eukaryotes of the surface ocean), have shed a new light on
our understanding of modern (present day) marine ecosystems and diversity (de Vargas et
al., 2015; Sunagawa et al., 2015; Carradec et al., 2018). The deep sea and sub-seafloor have

also been targeted with high-resolution metagenomic surveys revealing new insights into the abundance and composition of organisms existing in these largely unexplored environments (e.g., Zinger et al., 2011; Bienhold et al., 2016; Inagaki et al., 2015; Morono and Inagaki, 2016; Orsi et al., 2017, respectively). Such comprehensive studies on living marine communities are continually improving genome reference databases for the hundreds of thousands of pro- and eukaryotic organisms present in the marine environment (Sunagawa et al., 2015; Klemetsen et al., 2017). As a consequence, modern marine metagenomics has not only inspired marine palaeo-research, but also created a means of identifying ancient taxa from marine sediments over geological timescales.

In the last decade, marine palaeo-research has been reinvigorated by genomic techniques that enable the analysis of ancient DNA (aDNA) molecules from long-dead organisms. Past prokaryotic and eukaryotic plankton communities have been reconstructed using aDNA sequencing approaches (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2008; 2013; Bissett et al., 2005; D'Andrea et al., 2006; Boere et al., 2009; Lejzerowicz et al., 2013; Hou et al., 2014; Randlett et al., 2014; More et al., 2018). These studies have confirmed that phyto- and zooplankton are good targets for aDNA-based studies, while also being particularly relevant for ecosystem-climate reconstructions. It is reasonable to assume that obligate photosynthetic plankton (phytoplankton) and/or zooplankton do not survive and reproduce after burial in deep sediments, and represent uncommon lab contaminants (e.g., Lejzerowicz et al., 2013; Hou et al., 2014; More et al., 2018). aDNA analysis has shown that even after their voyage through the water column plankton-derived particles that had settled on the seafloor still reflect the global biogeographic patterns of living species (Morard et al., 2017). Notably, the reconstruction of past marine communities using aDNA is possible using just a few grams of sediment, facilitating sediment sample collection, transport and storage for the purpose of aDNA analyses.

The marine aDNA archive extends back to the Pleistocene, as shown by studies of genomic,
 125 18S rRNA gene markers targeting various eukaryotic groups. For example, aDNA has been

recovered from various eukaryotic plankton taxa in 43,000-year-old Arabian Sea sediments (More et al., 2018). Taxon-specific approaches targeting small, degraded DNA fragments allowed the retrieval of foraminiferal aDNA from ~800-year-old fjord sediments (Pawlowska et al., 2014) and ~30,000-year-old deep-sea sediments with the additional benefit of enabling the detection of rare taxa (Lejzerowicz et al., 2013). However, if a targeted approach is used, the origin and fate of the DNA in question must be carefully considered, especially for very old claims, such as the retrieval of 1.4 million years old DNA from chloroplasts (Kirkpatrick et al., 2016), which are subject to kleptoplasty (sequestration and maintenance of chloroplasts; Bernhard and Bowser, 1999). While Kirkpatrick et al. (2016) used thorough contamination control, the finding of >1 million years old DNA remains to be replicated using adapted control measures (e.g., sediment core decontamination and metagenomic sequencing, as outlined in this review). Most studies to date have involved well-dated sediment records and used a cross-validation through paired analysis of aDNA and diagnostic lipid biomarkers as well as geochemical proxies (e.g., Coolen et al., 2006; 2009). Yet, the absence of modern contaminants in analysed samples was not always verified through sequencing analysis of negative sampling and/or extraction controls, which is crucial for the interpretation of aDNA data even if DNA values measured following amplification (by polymerase chain reaction; PCR) are zero (as DNA may be present but simply be below detection limit). To date, the oldest authenticated aDNA records are from ~400,000-year-old cave sediments (Willerslev et al., 2003) and ~700,000-year-old permafrost mammal bones (Orlando et al., 2013).

146

Despite technologies now being available to rapidly extract and sequence aDNA from marine sediments, and the enormous potential of aDNA research to improve palaeo-oceanographic, -ecosystem and -climate models, marine sedaDNA studies remain scarce. This is mainly due to the difficulties and high costs associated with deep-sea aDNA material, for which rarity and hence value justify the deployment of state-of-the-art practices. We review current problems and pitfalls incurred in ship-board sediment sampling, laboratory processing and computational analysis. We suggest solutions to improve sediment coring and sampling

strategies so that aDNA research can become a well-established staple in marine biogeosciences. The focus is on sampling protocols within the framework of the International Ocean Discovery Program (IODP) "Biosphere Frontiers" theme, which is dedicated to understanding sub-seafloor communities. Our guidelines for deep-ocean sedaDNA isolation are applicable to any low-biomass and setting, including permafrost regions or planet Mars.

2 Definitions and pre-sampling considerations

160 2.1 Ancient DNA (aDNA), sedimentary ancient DNA (sed aDNA), and palaeo-environmental
161 DNA (PalEnDNA)

aDNA research involves the biomolecular study of non-modern genetic material preserved in a broad range of biological samples (Shapiro und Hofreiter, 2012; Table 1). When an organism dies, mechanisms that ensure DNA repair in the cell are no longer active, leaving the DNA to degrade over time (Allentoft et al., 2012). Eventually, DNA from dead specimens becomes ancient. aDNA is highly fragmented to an average length of less than 100 base pairs (bp), for example, an average length of 48 bp has been determined in the oldest microbial genome assembled to date - from a 48,000-year-old Neandertal (Weyrich et al., 2017). aDNA is affected by post-mortem oxidative and deamination damage, such as thymine enrichment at the end of DNA sequences (Briggs et al., 2007; Ginolhac et al., 2011). Both fragmentation and damage patterns can be used to authenticate aDNA, and damage can even be used to predict its age in certain scenarios (Kistler et al., 2017).

aDNA research mainly focuses on organismal DNA extracted from some tissue remnants of a wide range of single specimen (e.g., tooth, bone, hair, eggshell, feather). In contrast, environmental DNA (eDNA) focuses on disseminated genetic material found in environmental samples such as soil, sediment, water and ice (Taberlet et al., 2012a). Such samples contain complex mixtures of DNA from taxonomically diverse organisms (e.g., bacteria, archaea, plants, animals). In addition to aDNA and eDNA, the term sedimentary aDNA (sedaDNA) has been coined to describe aDNA that is exclusively recovered from sediments (Willerslev et al.,

2003; Jørgensen et al., 2012). The term fossil DNA has also been used in pioneer studies where sedimentary plankton DNA and lipid biomarkers (i.e., "chemical fossils") derived from the same historical source organisms were analysed in parallel to validate the ancient DNA results (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004). To a lesser degree, 'palaeo-environmental DNA' (PalEnDNA) has also been used to describe disseminated genetic material in a broad range of ancient environmental samples including sediments as well as soil, paleosols, coprolites, water and ice (Rawlence et al., 2014). Modern sequencing technologies and bioinformatic tools ease the analysis of these complex environmental aDNA samples and of the biological responses to human or climate change, with investigations having focussed on terrestrial settings (Jørgensen et al., 2012; Giguet-Covex et al., 2014; Willerslev et al., 2014; Alsos et al., 2015; Pansu et al., 2015). In this review, we use the term 'marine sedaDNA', which specifically refers to aDNA recovered from ocean sediments. A detailed list of terms frequently used in aDNA research and their definitions is given in Table 1. 2.2 Authenticity of marine aDNA 2.2.1 Environments favourable for marine aDNA preservation Organic-rich sediments deposited in the deep, cold ocean under stratified and anoxic conditions present several favourable characteristics for the preservation of aDNA (e.g.,

Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2013; Boere et al., 2011). Oxidative and deamination damage is reduced in the absence of oxygen (Lindahl, 1993). The absence of irradiation (Lyon et al. 2010), the generally low temperatures (Willerslev et al., 2004), and the high concentration of borate (Furukawa et al., 2013) further contribute to DNA preservation. Additionally, the typically high mud content of deep-sea sediment offers a particularly well-suited matrix for the preservation and accumulation of DNA (Torti et al., 2015). The high surface:volume ratio of extremely small clay minerals in clay-rich sediments offer a high adsorption surface onto which DNA molecules can bind and remain sheltered from the

473		
474 475		
476	207	activity of nucleases (Dell'Anno et al., 2002; Corinaldesi et al., 2008, 2011, 2014, 2018).
477 478	208	However, although the above listed properties have been reported to positively impact on DNA
479 480	209	preservation, locations with other characteristics that seem less ideal might still be suitable for
481 482	210	aDNA research. For example, well-oxygenated Atlantic deep-sea sediments and sand-rich
483 484	211	coastal paleo-tsunami deposits have been used to extract and characterise aDNA from
485	212	foraminifera (Lejzerowicz et al., 2013; Szczuciński et al., 2016, respectively). In conclusion,
487	213	the preservation of aDNA in marine settings appears to be variable depending on regional
400	214	environmental characteristics with less favourable to favourable conditions retaining aDNA
490 491	215	between a few thousand to, at least, a few ten thousand years. More research is needed to
492 493	216	estimate how far back in time authentic marine sedaDNA can be detected, which could be
494 495	217	achieved, for example, by investigating sediment records from various deep seafloor locations
496 497 498	218	over geological timescales.
499 500 501	219	
502 503	220	2.2.2 Marine sedaDNA degradation and fragment length
504 505	221	18S rRNA gene fragments of past dinoflagellates, diatoms, and haptophytes as long as 500
506 507	222	bp in length have been amplified and sequenced (e.g., Coolen et al., 2004), after DNA was
508 509	223	isolated from sediments exhibiting characteristics favourable for aDNA preservation (Section
510 511	224	2.2.1). Up to 20% of genomic DNA from haptophyte algae has been reported to still be of high
512 513	225	molecular weight after 2,700 years of deposition in Black Sea sediments, and the ratio
514 515	226	between 500 bp-long haptophyte 18S rDNA fragments and the concentration of haptophyte-
516 517	227	diagnostic long-chain alkenones did not vary substantially for at least 7,500 years after
518	228	deposition, indicative that both types of biomolecules from the same plankton source were
519 520	229	equally well preserved (Coolen et al., 2006). This contradicts the generalised view that aDNA
521 522	230	is characterised by fragment lengths of <100bp. Nevertheless, studies that report the recovery
523 524	231	of exceedingly long aDNA fragments should be viewed with scepticism especially in the
525 526	232	absence of sampling and extraction controls, where there is no indication on whether the data
527 528	233	might reflect modern signals. However, to date, no data are available on average aDNA
529 530		

fragment length for deep-sea sediments, which could be obtained from metagenomic shotgun sequencing. Gaining insights into the latter should be the focus of future research as this information will ultimately help to choose the most suitable and efficient aDNA extraction and sequencing library preparation techniques for degraded sedaDNA (see Section 3.5).

2.2.3 Contamination sources by modern DNA

Key to the viability of marine sedaDNA studies is the capability to differentiate between true ancient signals (representative that lived at a particular time-period in the past) and modern contamination (introduced through the sampling and analysis process, or naturally by the environment). Microorganisms and their DNA coat nearly every part of this planet (Weyrich et al., 2015) and a recent study has shown that slow-growing microbes even occur in marine sediments up to 2.5 km deep (Inagaki et al., 2015). The DNA of active deep-biosphere organisms is likely to blur the aDNA signal, as would be the case for microorganisms introduced to ancient sediment samples through the drilling process (see Section 3.2). Moreover, microbial DNA is widely present in laboratory environments and reagents, including in those labelled DNA-free (Salter et al., 2014). If PCR is applied to amplify aDNA, the DNA from modern microorganisms may amplify preferentially over damaged, fragmented aDNA and obscure the true aDNA signals within the sample (Willerslev and Cooper, 2005). Therefore, utmost care must be taken to control and account for contaminants and background DNA throughout the whole process of collecting, processing and sequencing aDNA, e.g., by including negative controls in every step of the analysis process (Fig. 1).

2.2.4 Intracellular vs. extracellular DNA

One approach to separating ancient from modern DNA in sediments has been to differentiate between intracellular and extracellular DNA. Intracellular DNA is defined as DNA contained within living cells, structurally intact dead cells and intact resting stages (e.g., bacterial spores,

or other cyst-forming plankton). Extracellular DNA is defined as DNA that has been released from cells and preserved for substantial periods of time through mineral and/or microfossil adsorption or within clay aggregates (Levy-Booth et al., 2007). Extracellular DNA represent an archive of taxa that were autochthonous at the time of deposition (Cornaldesi et al., 2008; 2011). DNA extraction methods have been developed to target either of these DNA fractions (Corinaldesi et al., 2005; Taberlet et al., 2012b; Alawi et al., 2014). However, it is difficult to prove at what time in the past the organism died, and its DNA became extracellular. Furthermore, the extra- and intracellular DNA pool may not always be clearly distinguishable as genetic material present in the environment might have been taken up by competent bacteria (Demanèche et al., 2001; Dell'Anno et al., 2004) and even by eukaryotes (Overballe-Petersen and Willerslev, 2014). It is also important to note that if only the extracellular pool was to be studied, the paleontological value of dormant yet ancient DNA (e.g., from cysts deposited far back in time) will be lost. Due to these issues, extraction techniques targeting only the extracellular portion are currently not recommended for marine sedaDNA studies. Alternatively, bioinformatics approaches that can clearly identify ancient signals (Ginolhac et al., 2011; Kistler et al., 2017) are preferred options for authenticating aDNA sequences (Jónsson et al., 2013).

277

278 2.2.5 Vertical DNA movement in marine sediment cores

Three major processes are associated with the vertical movement of DNA in sediment cores: DNA leaching, bioturbation and migration. Bioturbation is a biomechanical process that results in the multidirectional re-organisation of sediments primarily in the upper 10 cm of the sub-seafloor (Boudreau, 1998). DNA leaching is a passive process describing the downward movement of DNA across sediment layers (Haile et al., 2007), without a lowermost boundary. The mixing of sediment layers, and consequently of modern and ancient DNA, can lead to misinterpretations of genomic data. Experimental trials to assess DNA leaching through terrestrial sediments exist (Ceccherini et al., 2007; Poté et al., 2007), with initial results

indicating that the extent of leaching depends on the taxonomic source (Haile et al., 2007). In Previous studies from lake sediments have shown that leaching is not a factor (Parducci et al., 2017), and in seafloor sediments DNA it seems to play a minor role as aDNA and lipid biomarkers derived from the same microbial source were found to co-exist or to be both below detection limit in marine sediments just centimetres apart (Boere et al., 2009; Coolen et al., 2006; 2009; 2013). In the latter studies it therefore appears that the pore size of the laminated sediments was too small for intracellular DNA to migrate, and that all extracellular plankton DNA was adsorbed to the mineral matrices. Recent studies showing upwards vertical pore fluid movement also demonstrate the potential for vertical migration of relict or intact DNA within sediments (Torres et al., 2015), and should likewise be considered. Vertical migration of relict or intact DNA is expected to be especially a concern in sediments with micron scale pore sizes and/or a low clay content and a poor capacity to adsorb extracellular DNA. Future experimental research is required to quantify DNA leaching and/or migration through marine sediments, acknowledging the challenge of replicating a complex environmental system varying widely in hydrodynamics and sediment type.

684 303 2.2.6 Cross validation of marine aDNA and palaeo-environmental proxies

In addition to using proper contamination controls, downcore changes in past plankton compositions inferred from marine sedaDNA can be validated through a complementary analysis of independent biological (e.g., microfossils, lipid biomarkers) and geochemical proxies (indicative of the prevailing paleoenvironmental conditions) (Boere et al., 2009; Coolen et al., 2004; 2006; 2013; Hou et al., 2014; More et al., 2018). The most detailed comparison between past ecosystem changes using marine sedaDNA and the paleo-depositional environment to date has been performed on Holocene sediments from the permanently anoxic and sulfidic Black Sea (Coolen, 2011; Coolen et al., 2006; 2009; 2013; Giosan et al., 2012; Manske et al., 2008). The anoxic and laminated sediments of this semi-isolated sea are devoid of bioturbation and form high-resolution archives of climate-driven hydrological and

environmental changes (Calvert et al., 1987; Hay, 1988). Episodes of postglacial sea-level rise ~9,000 years ago (Major et al., 2006) and sea surface salinity increase ~5,200 years ago (Giosan et al., 2012) have been associated based on sedaDNA with freshwater to brackish/marine planktonic community transitions (Coolen et al., 2013). For example, the gradual increase in sea surface salinity coincided with the arrival of marine copepods (Calanus euxinus), which could only be identified through sedaDNA analysis (Coolen et al., 2013) as these important zooplankton members generally do not leave other diagnostic remains in the fossil record besides difficult to distinguish resting eggs (Marcus et al., 1996).

Vice versa, paleoenvironmental conditions inferred from more traditional geochemical and micropaleontological proxies have been verified from parallel sedaDNA analysis. By way of example, Black Sea sediments deposited since the last 2,500 years contain coccoliths from the calcified marine haptophyte Emiliania huxleyi whereas haptophyte-derived diagnostic long chain alkenones in the absence of coccoliths were abundant in up to 7,500-year-old sediments (Hay et al., 1991; Coolen et al., 2009). Paired analysis of long-chain alkenones and sedaDNA analysis (18S rRNA) revealed that that the first haptophytes that colonized the Black Sea \sim 7,500 years ago were initially a mixture of *E. huxleyi* and a highly diverse suite of previously overlooked non-calcified haptophytes related to alkenone-producing brackish Isochrysis species. E. huxleyi remained the only alkenone producer after 5,200 years BP when salinity reached modern day levels (Coolen et al., 2009). It was concluded that while calcite dissolution prevented the preservation of *E. huxleyi* coccoliths in sediments older than 2,500 years ago, their molecular fossils (DNA fragments and long-chain alkenones) survived much longer and showed that in reality this marine haptophyte entered the Black Sea already shortly after the marine reconnection which occurred ~9,000 years ago (Coolen et al., 2009; 2013). Even more detailed analyses of E. huxleyi (targeting 250-bp-long mitochondrial cytochrome oxidase subunit I; mtCOI) indicate a series of transitions from possibly low-salinity to high-salinity adapted strains of E. huxleyi in the Black Sea (7.5 – 5.2 ka BP), to a different suite of strains during the most marine stage (5.2 - 2.5 ka BP), returning to low salinity strains after 2.5 ka BP. The latter transition coincides with the onset of the cold and wet Subatlantic climate

(Coolen, 2011) when the Black Sea experienced re-freshening from 32 to 18 ppt (Van der Meer et al., 2011; Giosan et al., 2012; Coolen et al., 2013). The analysis of similar length preserved sequences of viral major capsid protein (mcp) genes revealed a continuous co-existence of E. huxleyi and coccolithoviruses in the Black Sea since the last 7,000 years and that the same E. huxleyi strains, which occurred shortly after the marine reconnection returned with the same viral strains after the re-freshening during the Subatlantic climate thousands of years later (Coolen, 2011). More recently, detailed sedimentary 18S rDNA profiling targeting the shorter (130 bp) V9 region revealed that long-term expansion of past oxygen minimum zones (OMZ) created isolated habitats for unicellular eukaryotes (protists) capable of sustaining oxygen depletion either by adapting a parasitic life cycle (e.g., apicomplexans) or by establishing mutualistic connections with others (e.g., radiolarians and mixotrophic dinoflagellates). These examples show that sed aDNA can be used to identify biological sources of lipid biomarkers, to verify the reliability of paleoenvironmental information inferred from more traditional proxies, and to reconstruct past ecosystems at multiple trophic levels.

The reconstruction of subseafloor prokaryote communities is more complicated since the DNA may be derived from living intact cells in the sediment (see Section 2.2.4). However, 16S rRNA gene profiling from total (intracellular and extracellular) sedimentary DNA has revealed useful insights into sub-seafloor microbial indicators of the palaeo-depositional environment. For example, microbiomes in 20 million years-old coalbeds underlying 2 km of marine sediments were shown to resemble forest soil communities (Inagaki et al., 2015). Variations in bacterial communities found in Baltic Sea sediments have been linked to palaeo-salinity changes (Lyra et al., 2013). Orsi et al. (2017) showed that the genomic potential for denitrification correlated with past proxies for oxygen minimum zone strength in up to 43 ka-old Arabian Sea sediments. The presence of fermentation pathways and their correlation with the depth distribution of the same denitrifier groups, however, suggests that these microbes were possibly alive upon burial, but low postdepositional selection criteria may explain why they nevertheless formed a long-term genomic archive of past environmental conditions

spanning the last glacial-interglacial cycle (Orsi et al., 2017). Further studies are required to determine as to how far the persistence of this phenomenon extends with increased depth in the biosphere. Nevertheless, these examples show that the complementary analysis of marine sedaDNA-inferred past plankton composition and biological and geochemical proxies is a powerful tool to reconstruct palaeo-environments. aDNA research in the International Ocean Discovery Program (IODP) framework **IODP** infrastructure 3.1 IODP is the global community's longest marine geoscience program, operating for 51 years. Its scientific strategy has been to answer globally-significant research questions about the Earth's structure, and the processes that have, and continue to, shape our planet and its climatic history. More recently, additional focus has been cast on biological evolution and limits, particularly in the sub-seafloor environment, under the new Biosphere Frontiers theme (Bickle et al., 2011). This theme has been inspired by the rapidly evolving knowledge and technical capabilities across the multiple merging fields of molecular biology, microbiology, organic and inorganic geochemistry, and micropalaeontology and includes scope for the integration of marine sedaDNA research. IODP is currently serviced through three platforms, the United States of America's research vessel JOIDES Resolution, Japan's Chikyu and by the European consortium's Mission Specific Platforms (MSP). In recent years, the laboratories and storage facilities on the ships were modified, or purpose built, to ensure addressing Deep Biosphere questions was possible. As a result, the latest IODP decadal plan considered options to enable access to uncontaminated samples, their processing and preservation on-board. The latter has led to new coring technologies such as the Half-Length Advanced Piston Corer (HLAPC) allowing a coring depth extension of the conventionally used Advanced Piston Corer (APC), and the use of chemical contamination tracers such as perfluorocarbon tracers (PFTs) (see Sections 3.2 and 3.3, respectively). Particularly useful to aDNA studies may be

the development of remotely controlled instruments allowing sediment sampling at ambient pressure (MeBo; Pape et al., 2017) and a rock-drilling device (RD2; Früh-Green et al., 2015). Notable achievements under the new Deep Biosphere theme include the finding of millions of years old active microbial community from coal beds buried at 2.5 km below the seafloor (Inagaki et al., 2015), and the preservation of an imprint of the Chicxulub impact catastrophe (Cockell et al., 2017). A lot remains to be understood before this theme and its challenges are satisfactorily addressed and it is clear that scientists engaging in Biosphere Frontiers will push methodological, technological and multidisciplinary studies.

404 3.2 Coring strategies suitable for marine *seda*DNA retrieval

Ideally, marine sedaDNA sampling involves multiple spatial replicates to ensure that the biodiversity captured is representative of a particular site and time period. However, the ability to collect multiple deep ocean sediment cores to characterise palaeo-plankton is hindered by high costs and logistical issues associated with drilling operations. Thorough planning and collaboration to maximise the use of expensive expeditions and precious deep ocean sediment core material are indispensable in marine sedaDNA research. To date, several coring strategies exist that differ in machinery as well as sub-seafloor depth that can be reached, and their application is largely dependent on which drilling platform is used (ship or MSP), and what type of sediment is to be cored/drilled (soft sediment or hard rock). This review concentrates on describing piston coring strategies, which are generally better suited to retrieve sediments for aDNA analysis due to relatively low contamination risks. Rotary core barrel systems are required to drill some sedimentary and most igneous rocks, and as they operate with drill-heads and drilling fluids (e.g., seawater) the risk of contamination is dramatically increased (see Section 3.3, Fig. 2).

Piston coring, referred to as Advanced Piston Coring (APC) or Hydraulic Piston Coring System
 (HPCS), is used to sample unconsolidated or poorly consolidated (i.e., softer) marine

sediments. Briefly, these instruments are pushed into the sediment while a piston inside the core pipe creates a vacuum so that the collected sediment remains in the pipe during retrieval. Sediments obtained by piston coring preserve laminated sediments well, are associated with a relatively low risk of environmental contamination and the preferred method to obtain sediments for aDNA analysis (Lever et al., 2006; Smith et al., 2000; More et al., 2018; Fig. 2). Using the piston coring approach, a successive recovery of marine sediments has been achieved to a depth of ~490 m below seafloor (mbsf) (Tada et al., 2013). If only a few metres long (soft) sediment cores are required, gravity-based coring systems, such as a Kasten-, or a Multicorer provide a good alternative (Coolen et al., 2004; 2009). Progress has also been made towards modifying piston coring instruments so that contamination-free sampling is possible, at least for short (<4 m) sediments (Feek et al., 2011). For example, the 'Mk II sampler' uses an air and water-tight piston coring system with a pointed aluminium head, preventing contamination of the sampled sediment from smearing or water infiltration (Feek et al., 2011). However, to date this corer has only been used in shallow waters, thus it remains to be tested whether use of such an instrument would be feasible during coring operations in deeper waters and which modifications may be required.

437

982 438 3.3 Contamination tracing during coring

Deep ocean coring requires the lowering of coring instruments through hundreds to thousands of metres of seawater before the seafloor is reached, hence exposes the instruments to contamination by modern DNA (Fig. 1). This unavoidable issue has called for the development of methods for environmental DNA contaminant tracing during coring operations. One approach has been to compare biological material found in the contaminating source material (e.g., seawater, drilling fluid) to that of sub-seafloor communities, and to exclude all signals occurring in either from the final analyses (e.g., Expedition 330 Scientists, 2012; Cox et al., 2018). This approach can be implemented for either piston coring or rotary core barrel drilling, provided other sampling constraints associated with these coring systems can be

accommodated. However, this procedure does not account for potential "false negative" DNA signals that might indeed occur in both ancient sediments and modern contaminating material. However, in some cases, the microbial community structure of modern contamination (e.g., drilling "mud") can be resolved, particularly if functional genes are being targeted in sediment samples (Cox et al., 2018).

Another approach has been the introduction of fluorescent microspheres, which are particulate tracers of 0.2 - 1.0 mm in diameter physically mimicking contaminating organisms. The microspheres have been introduced near the coring head, i.e., where the sediment enters the corer and coring pipe, spreading across the outside of the core (inside the pipe) while drilling, simulating particle movement (Expedition 330 Scientists, 2012; Orcutt et al., 2017). Microscopy has been used to quantify the number of microspheres at the periphery and in the centre of the core to assess contamination (Expedition 330 Scientists, 2012; Orcutt et al., 2017). Similar methods using other perfluorocarbon tracers (PFT's) including perfluoromethylcyclohexane (PMCH) have been developed for the USA drilling vessel JOIDES Resolution (Smith et al., 2000) already in the early phases of IODP. Later, PMCH-based contamination tracing has also been applied during riser drilling on the *Chikyu* (Inagaki et al., 2015). During the IODP Expedition 357 (Atlantis Massif Serpentinization and Life), the PMCH tracer delivery system was further developed to fit the seafloor-based drilling systems MeBO (Pape et al., 2017) and RD2 (Früh-Green et al., 2015) (see Section 3.1). PMCH is highly volatile which can lead to false positive measurements in uncontaminated samples, therefore, more recent investigations during IODP expeditions have moved to the use of the heavier chemical tracer perfluoromethyldecalin (PFMD, 512.09 g mol-1) (e.g., Fryer et al., 2018).

1055 472 3.4 Subsampling after core acquisition

Key to enable interdisciplinary sampling and correlations of independent measurements is a detailed sampling plan, specifying sample types as well as the sequence in which these samples are to be collected. Sampling for aDNA is time-sensitive (to avoid exposure to oxygen, high temperatures and contamination), thus should be conducted immediately after core retrieval on an untreated core-half (i.e., prior to any type of scanning such as by X-Rav). The laboratory in which subsampling for aDNA is carried out should be clean and workbenches and surfaces decontaminated with bleach (considered to be most efficient at removing contaminating DNA) and, if applicable, ethanol (to prevent corrosion of metal after bleach-treatment). Detailed records on whether molecular and amplification techniques (i.e., PCR) have been employed in on-board laboratories and which organisms were targeted should be kept on record within IODP to ensure sampling for aDNA can be spatially separated from these laboratories. While most vessels are not currently equipped for complete DNA decontamination, such records may be invaluable for post-expedition aDNA data analyses.

Two sampling approaches are the most feasible on board IODP ships and MSP's: cutting whole round cores or direct subsampling after core cutting into 1.5 m long sections. The choice of approach needs to be made on a case-by-case basis, and depends on the specific facilities, consumables, chemicals and researcher expertise available during each mission. It is recommended that cutting or subsampling are performed under filtered air, e.g., a portable type of a horizontal laminar flow clean air system as described in Morono and Inagaki (2016). Additionally, subsampling should be conducted from the bottom to the top of the core (ancient to modern), using clean (e.g., bleach and ethanol treated) sampling tools for each sample to avoid any form of cross-contamination. Most commonly, soft sediments acquired by piston coring are used for *seda*DNA analyses, therefore, we focus on subsampling procedures of the latter here, subsequently briefly outlining sampling recommendations for hard rock material.

1114 498

1116 499 If the sampling decision is in favour of whole round core samples, the newly acquired core
1117
1118 500 sections are cut into 5 - 50 cm sections (preferably under cold conditions), which should be

501 packed in sterile bags or wrap and transferred directly into a fridge or freezer. Although quick 502 and providing a large amount of material for later sub-sampling, this approach has the 503 disadvantage that a lot of freezer space is required, and post-expedition transport can be 504 costly due to the high sample volume and weight.

An alternative to whole round core cutting is direct subsampling immediately after core cutting. either directly from the centre of the top or bottom of each unsplit core section (usually 1.5 m long), or after or splitting the core sections into two halves. In any case the core liner should be cleaned with bleach to remove potential contamination from seawater, and core cutters and splitting-wires, usually metal and sensitive to bleach should be cleaned with ethanol. If sampling from uncut sections, surface material (~0.5 cm) should be removed with bleach and ethanol-treated scrapers before sampling, which is most easily done with sterile cut-tip syringes, placed into sterile plastic bags and stored frozen.

- If sampling is undertaken on split core halves, simultaneous visual sedimentological assessments are possible that enable more targeted sampling at specific depths of interest. Using DNA-clean tools, the top 0.5 cm of the core surface should be scraped off perpendicular to the core pipe using sterile scrapers (from bottom to top of the core). Alternatively, the core half to be sampled can be covered with plastic wrap, followed by powdered dry ice, which will result in the top 0.5 cm to become solid frozen. After 5 min, the frozen outer sediment layer can be lifted at one edge with a sterile scalpel creating a contaminant-free surface, from which subsamples can be taken (Coolen and Overmann, 1998). Then, subsampling should be undertaken using sterile (e.g., gamma-irradiated) plastic syringes or centrifuge tubes (e.g., capacity of ~15 mL). Cut-tip syringes have the advantage that more sediment can be collected as no pressure builds up when pushing the syringe into the sediment (the filled syringe should be placed into a sterile plastic bag immediately, e.g., Whirl-Pak[®]). Alternatively, sterile centrifuge tubes can be used as is to collect 'plunge-samples', usually providing ~1 - 3 cc of sediment material. The outside of the 'mini-cores' should be cleaned with bleach and placed

into sterile plastic bags to avoid cross-contamination between samples. For subsamples, storage at -20 °C or -80 °C is recommended as freezing has been shown to facilitate phytoplankton cell-lysis during DNA extractions (Armbrecht et al., in prep.). Sub-samples can also be collected by transferring a small amount of sediment into a sterile microcentrifuge tube using clean metal or disposable spatulas (particular care needs to be taken to avoid cross-contamination when using the same sampling tool for different samples). The latter approach may be a good solution when only a few small samples are required, e.g., to supplement other scientific questions of an ongoing expedition. For replication purposes it is recommended that duplicate samples are taken at each depth.

1201 538

If the material is hard rock or similar, subsamples are most easily collected from whole round or split cores. The same decontamination procedures as outlined above should be considered throughout the subsampling procedure (i.e., decontamination of work-surfaces and sampling tools with bleach and ethanol, sampling under cold conditions and filtered or low air-flow, packing of samples into sterile bags before storage). A de-contaminated metal cutter or a hammer and chisel are best used to remove the outer layer of the exposed sediment, at least at those depths where subsampling is anticipated.

546

547

548 3.5 Marine aDNA sample processing and analysis

Marine aDNA samples should be processed in a specialised aDNA laboratory to prevent contamination with modern DNA. Such a laboratory is generally characterised by creating a low-DNA environment, with a clear separation of no-DNA (e.g., buffer preparation) and DNA-containing (e.g., DNA extraction) workflows, regular and thorough sterilisation procedures, positive air pressure, and protective clothing of the analyst (lab coat/suit, gloves, facemask, visor). Details on optimised laboratory set-up, techniques and workflows have been reviewed before (Cooper and Poinar, 2000; Pedersen et al., 2015). The introduction of aDNA samples

into such facilities is relatively straight-forward, as the outer packaging and surface of the
 sample can be easily sterilised (e.g., using bleach and/or UV).

As on-board subsampling, DNA extractions should be carried out from the most ancient to most recent samples, to prevent modern DNA indivertibly being carried to ancient samples. The amount of sediment used in DNA extractions should capture a representative picture of the biota present in a sample. Despite suggestions that bulk DNA extractions from up to 10 g of material can improve detection of taxa and better represent the diversity of the area of interest (e.g., Taberlet et al., 2012b; Coolen et al., 2013), using such large volumes of sediment is often not practical and can be quite costly in this field where typically many samples are processed. Instead, numerous studies have used replicate extractions of a smaller sample size (e.g., 0.25 g; Table 2) to increase the likelihood of yielding aDNA from rare taxa, as well as successive DNA extractions from a single 0.25 g sediment sample (e.g., Willerslev et al., 2003). Post-extraction, the use of RNA-probe based enrichment approaches coupled with shotgun sequencing, a common technique in aDNA research, may furthermore

¹²⁷⁰ 570 drastically improve the detection of rare taxa (Horn et al., 2012).

While it would be ideal to find one extraction method that will yield the best quality data and enable standardisation across ancient marine sediment studies, the type of sediment or target organisms may require some adjustments of standard protocols (Hermans et al., 2018). Extraction methods can bias the diversity observed due to differential resilience of taxa to the cell-lysis method (Zhou et al., 1996; Young et al., 2015) and DNA binding capacities of different soil and sediment types (Lorenz and Wackernagel, 1994; Miller et al., 1999). As a result, the aDNA extraction efficiency can be poor and the detection of an aDNA signal lost. To date, a variety of commercial kits have been successfully used to isolate aDNA from sediments (Table 3). To further increase the yield of very low amounts of highly fragmented aDNA several studies have been utilising extraction protocols that include a liquid-silica DNA binding step (e.g., Brotherton et al., 2013 and Weyrich et al., 2017 for non-sediment samples) or ethylenediaminetetraacetic acid (EDTA) cell-lysis step (Slon et al., 2017; utilising cave-

sediment samples). Other studies have replaced the Bead Solution in the DNeasy extraction kits (Qiagen; Table 2) by 1M sodium phosphate pH 9 - 10 and 15 vol% ethanol to efficiently release clay-adsorbed DNA, and to prevent DNA released from intact cells from adsorbing to clay minerals during the extraction (Direito et al., 2012; Orsi et al., 2017; More et al., 2018). The latter is especially important when working with low organic, high carbonate rocks and sediments (Direito et al., 2012).

Two points are particularly important to prevent contamination during extractions. Firstly, as with the samples themselves, it is crucial that all tools and reagents undergo rigorous sterilisation procedures before utilisation, such as by bleach and UV treatment of any packing material before entering ancient DNA facilities. Secondly, blank controls should be included for every step of the laboratory process, i.e., extraction/library preparation blank controls, sequencing and bioinformatic analysis controls (Ficetola et al., 2016). Controlling and monitoring contamination is particularly important when analysing bacterial diversity due to their presence in all laboratory environments and reagents (Weyrich et al., 2015). Optimally, extraction blanks are included in a 1:5 ratio (Willerslev and Cooper, 2005), with a bare minimum of one control with each set of extractions. Aside from bioinformatically removing any organisms determined in such extraction blanks from the investigated sample material. the contaminants should be tracked within a laboratory, and contaminant lists published alongside the data for reasons of data transparency and authenticity.

Post-extraction, many marine aDNA studies have employed methods that are routinely used for modern marine DNA analysis. Although modern DNA work is not exempt from precautions, there are several issues with aDNA work: (i) as outlined in Sections 2.1. and 2.2. aDNA is highly fragmented and degraded and any small amount of modern DNA present in the sample (from reagents, labs or living cells that were present in the sediment sample) will amplify over the aDNA; (ii) sampling and extraction controls are often not included in the sequencing sample; (iii) PCRs are often inhibited due to the co-extraction of humic substances, pigments and heavy metals along with DNA (Webster et al., 2003 and references therein), requiring

adequate removal of these impurities (e.g., Coolen et al., 2009); (iv) successful PCRs are prone to bias due to random amplification in reactions that contain very low amounts of DNA template, thus PCR drift (stochastic variation in the first PCR cycles) can occur (Wagner et al., 1994; Polz and Cavanaugh, 1998; Webster et al., 2003). More importantly, the number of, e.g., bacterial 16S and eukaryotic 18S rRNA operons can greatly vary between per genome and per cell and can cause a biased representation of the past community structure (e.g., Klappenbach et al., 2001). The above biases can be reduced and the detection limit lowered when PCR approaches selectively, amplifying particular groups of organisms indicative of environmental changes, are paired with independent geochemical proxies (e.g., Coolen et al., 2004; 2006; 2009). However, we strongly advocate for the use of strict aDNA methodologies and facilities in order to achieve the generation of authentic marine sedaDNA data, following the guidelines in this review.

Shotgun metagenomics are currently widely accepted and the least biased method to analyse the broad diversity of ancient environmental samples (e.g., Slon et al., 2017). Although only a small portion of the generated sequence data might be attributable to the ancient organism in guestion (Morard et al., 2017), next generation sequencing (NGS) generates large guantities of data that enable meaningful statistics, with the additional benefit of preserving the relative proportion of detected taxa. To analyse aDNA sequence data, robust bioinformatic pipelines (e.g., Paleomix, Schubert et al., 2014) have been developed and are available for the application to marine sedaDNA, integrating damage detection algorithms (e.g., Ginolhac et al. 2011; Kistler et al., 2017) that enable the distinction between ancient and modern signals. Determining the extent of cytosine residues deamination (C to T and G to A, Weyrich et al. 2017) should also be considered to assess authenticity of aDNA sequences, especially when the data was generated from mixed communities, such as from marine sedaDNA. It is furthermore crucial to carefully screen sequencing data for any low-complexity reads, which may get incorrectly assigned to taxa during alignments against genetic databases, as well as ensuring that taxonomic assignments in the database of choice are correct. Bioinformatic

pipelines removing such misidentification-derived errors do not currently exist and should be
 the focus of future research, as well as the comparison of shotgun and amplicon marine
 *seda*DNA data to accurately determine biases and analysis strategies best suited to this new
 discipline.

642 4 Future marine aDNA sampling considerations

643 4.1 Equipment and installations required aboard IODP platforms

³⁰ 644 In addition to the recent upgrades and investments IODP has made to enable sediment
 ³⁸ 645 sampling suitable for Biosphere Frontiers theme (Section 3.1) we suggest the following items
 ⁴⁰ 646 to facilitate contamination-free sediment sampling and the tracing of contaminants.

(i) Laboratories in which sampling for aDNA is undertaken should be carefully chosen to minimise contamination. Rapid transport of the core from the deck to the lab, thorough decontamination measures (see Section 3.4), and easy access to fridges or freezers are crucial. While a positively air-pressured lab (standard for aDNA laboratories) may not be feasible, air-flow can be reduced by keeping all doors shut and fans off during aDNA sampling. Contamination by human DNA from analysts can be greatly reduced by wearing adequate protective clothing (gloves, facemask, freshly laundered/disposable lab coat/overall). A detailed record or any molecular work undertaken in ship-board labs should be maintained by IODP, and under no circumstances should aDNA sampling be conducted in labs used previously to run PCRs (see Section 3.4). Alternatively, the equipment of a shipping container exclusively dedicated to aDNA sampling could be a good solution to spatially separate aDNA sampling aboard drilling-platforms and installation could be as required during expeditions that involve aDNA sampling.

660 (ii) DNA is likely to behave quite different from chemical tracers and microspheres currently
 70
 71 661 used to track contamination. With constantly advancing technologies in the field of synthetic

1476		
1477		
1478 1479	662	biology, the possibility arises to develop 'non-biological DNA' with known sequences. Such
1480 1481	663	non-viable DNA tags are already used in the oil industry, where a different tag is introduced
1482 1483	664	into oil pipes monthly to monitor when and where leaks occur (Forecast Technology Ltd).
1484 1485	665	Using such tags during seafloor coring operations instead of chemical tracers should enable
1486 1487	666	a precise assessment of contamination by environmental DNA, where bioinformatics pipelines
1488 1489	667	could be adjusted to detect and quantify the amount of tags present in the final sequencing
1490 1491	668	data.
1492 1493 1494	669	
1495 1496	670	4.2 Ground-truthing marine aDNA research and data
1497 1498	671	To ground-truth marine aDNA studies and to ensure the generation of authentic aDNA data
1499 1500 1501	672	we suggest future research in this field to focus on the following aspects:
1502 1503	673	(i) The establishment of a public record of common contaminants. This can be achieved, for
1504 1505	674	example, through an inter-lab comparison focused on analysing the same samples and
1506 1507	675	integrating extraction blanks to trace contaminants associated with particular coring
1508 1509	676	equipment, ship- and land- based laboratories.
1510 1511	677	(ii) Investigation of factors that might considerably bias marine <i>seda</i> DNA data. This might
1512 1513	678	include information on sediment-type and environmental condition dependent aDNA
1514 1515	679	preservation, taxon-specific DNA degradation rates, average aDNA fragment length, and
1516 1517	680	shotgun and amplification-based aDNA data comparisons.
1510 1519 1520	681	(iii) Ongoing enrichment of genetic reference databases for modern marine plankton, to enable
1520 1521	682	taxonomic assignment of the hundreds of thousands of ancient sequences expected to be
1522 1523 1524	683	found in marine sediments.
1525 1526	684	(iv) The inclusion of negative controls during extractions, library preparations and in
1527 1528	685	sequencing runs, and the publication of the results in the context of independent multiproxy
1529 1530 1531	686	biological and environmental metadata obtained from the same sediment interval.
1532		
1533		
1004		
(iv) Once (i) - (iv) are addressed, the development of a dedicated aDNA coring proposal is encouraged, in which sediment cores are collected using the above outlined, best-suited coring strategies, sampling and analysis procedures. During such an expedition, basic questions such as optimal on-board contamination tracing techniques, feasible work-flows, spatial replication required to achieve representative community data, and age to which marine sedaDNA can be determined should be addressed. Such baseline data is missing to date and remains the most important step towards the generation of authentic aDNA data from marine sediments.

696 5 Application of marine sedaDNA research guidelines to other contamination 697 susceptible environments

698 5.1 Permafrost

Permafrost molecular biological studies provide the opportunity to study living organisms that have successfully adapted to extremely cold environments and comprise an analogous cryogenic environment to that found on other planets, such as Mars (Amato et al., 2010). Molecular investigations have focussed on humans (Rasmussen et al., 2010), plants (Willerslev et al., 2003), megafauna (Boessenkool et al. 2012), fungi (Bellemain et al., 2013) and microbes (Willerslev et al., 2004). Permafrost top layers are characterised by a more abundant and diverse microbial community compared to the deeper soil (Gittel et al. 2014). To overcome the hurdle of distinguishing between the modern and ancient DNA signal, metatranscriptomics have been applied to identify the active community only (e.g., Coolen and Orsi, 2015). Despite the challenges in experimental approaches, such as rapid community shifts after thawing even at nearly ambient conditions (Negandhi et al. 2016), studies of permafrost environments have advanced our understanding of feedback loops associated with the response of extremophiles to warming, ultimately informing modelling studies including marine palaeo-environments.

Sampling for ice and permafrost in polar regions is challenging in terms of logistics and minimising contamination risks for both the sample and the sampled environment. For example, permafrost soil samples are, like marine sediment cores, retrieved through drilling, which can introduce microbial contaminants to the deeper permafrost soil layers as the drill head and liquid pass through the top active soil layer (Bang-Andreasen et al., 2017). Additionally, the cryosphere has been accumulating industrial chemicals and metals since the 1850's (McConnell et al., 2007), so that the present-day microbial community is now capable of degrading industrial contaminants, thereby representing an anthropogenically-adapted rather than an original pristine community (Hauptmann et al., 2017). With both these newly adapted anthropogenic and drilling fluid communities containing characteristics for heavy metal degradation, distinguishing indigenous ice core or permafrost communities from drilling fluid communities will become more difficult in the future (Miteva et al., 2014). Therefore, the described guidelines in this review for distinguishing ancient from modern and contaminant signals, as well as the need for aseptic sampling procedures, are highly applicable to permafrost environments and, more generally, the cryosphere.

¹⁶²⁶ 728

1629 729 5.2 Planetary exploration

The methodologies advocated in this review that enable aDNA in marine sediments to be distinguished from modern DNA are also applicable to the search for life on other planets or moons. Astrobiologists are especially interested in the possibility of detection of Life 2.0, where the life has an independent genesis to that on Earth. The search for life beyond Earth has been potentially possible since the 1970s, with the two Viking lander missions to Mars, but there are other possible targets in our solar system, notably some of the moons around Jupiter and Saturn (e.g., Europa, Titan). Space technology has now reached the point where the detection of life, if it exists or existed elsewhere in the solar system, is becoming a realistic possibility in the next 50 years. There have been several rovers that have carried out successful exploration of the surface of Mars, including Curiosity, the Mars Science Laboratory

that in 2018 is mid-way through its predicted mission (Grotzinger et al., 2014). The rover Mars 2020 is being designed at present to test for evidence of life in the near-surface environment. It will drill, collect and cache samples from the Martian surface, which will then be returned to Earth for more detailed analysis (Beaty et al., 2015). Sample return from Mars to Earth is planned for the end of the 2020's (Foust, 2018). Active planning is also ongoing for possible missions to land and analyse materials from the surfaces of moons such as Europa and Titan. by both NASA and the European Space Agency. For example, Europa (a moon of Jupiter) is known to have a global saltwater ocean below its icy crust, as well as a rocky seafloor, so is one of the highest priority targets in the search for present-day life beyond Earth (Hand et al., 2017). A key concern with this solar system exploration is planetary protection, which is governed by the United Nations Outer Space Treaty (United Nations Office for Disarmament Affairs, 2015) and the Committee on Space Research (COSPAR) of the International Committee for Science. There are two important categories of planetary protection. The first is "forward contamination", where Earth-derived microbial life hitches a ride on spacecraft and contaminates parts of a planetary surface being explored. The second is "backward contamination', where life from an explored planet or moon is inadvertently returned to Earth, maybe in a spacecraft or within a rock sample. The relevance to aDNA analytical protocols is in forward contamination (i.e., the risk of contaminating sample material that could lead to data misinterpretations, and/or generally introducing Earth contaminants to other planets; Rummel and Conley, 2017). It should be noted that if indeed there is or was life on other planetary bodies, it may well not be based on a genetic code composed of DNA and RNA. Independently originated Life 2.0 would be highly unlikely to have evolved exactly the same nucleic acid genetic code as life on Earth (e.g., Rummel and Conley, 2017). Indeed, it has been postulated that an alternative biosphere could exist as a "shadow biosphere" on Earth (Davies et al., 2009). If DNA or RNA-based extant life is found on Mars, for example, then it is most likely that it would represent either past natural exchange of rocks between the two planets (panspermia), or anthropogenic forward contamination. Therefore, the procedures used for distinguishing indigenous life in planetary exploration will need broadening to include the

possibility of life with a different genetic code. The protocols developed for aDNA sampling of marine sediments on Earth, including the ability to distinguish from modern DNA, have relevance for the designing of methods to look for past life on Mars or outer solar system moons using molecular biology techniques (Beaty et al., 2015; Hand et al., 2017).

Conclusions

Ancient DNA in marine deep-sea sediments holds the potential to open a new era of marine palaeo-environment and -climate reconstruction. However, anti-contamination measures central to all aDNA research have logistical constraints and are particularly poorly-suited to shipboard sediment sampling and processing. For example, sterile coring equipment and ultra-clean laboratories are usually not available on any type of drilling platform. Current and future IODP drilling vessels are aware of the increasing need for improved and innovative solutions to coring, non-contaminant drill fluids and appropriate laboratories and storage facilities. Such logistical advances should go hand-in-hand with the establishment of new criteria and standards to ensure the acquisition and preservation of sediment cores with minimal environmental contaminants. Complementary genetic and geochemical information currently available to date suggests that, realistically, environmental reconstructions based on marine sedaDNA from past plankton can be achieved for at least the last glacial-interglacial cycle, and potentially back to ~400,000 years. These guidelines can be applied in other scientific areas to facilitate and optimise research conducted in extremely remote locations, contamination-susceptible environmental samples, and even during the future exploration of other planets.

Acknowledgements:

This work is the outcome of a workshop on "Ancient DNA in marine sediments", held at Macquarie University, Australia in December 2017. We thank Prof. Ian Paulsen for insightful discussions around the topic, and Mrs Kelly-Anne Lawler and Ms Louise Fleck for their support with the organisation and running of the workshop.

798 Funding sources:

The above-named workshop was supported by the Macquarie University Marine Research Centre (MQMarine), the Department of Biological Sciences, and the Faculty of Science and Engineering, Macquarie University, North Ryde, Australia. LA was supported by the Australia-New Zealand IODP Consortium (ANZIC) 2017 Special Analytical Funding and MQMarine. MJLC was supported by the Australian Government through the Australian Research Council's (ARC) Discovery Projects DP160102587 and DP18100982 as well as by Australian and New Zealand legacy IODP funding (ANZIC 364 post cruise funding). LKA and SCG were supported by the ARC LIEF funding scheme LE160100067 provided to ANZIC. MO was supported by an ARC Discovery Project DP15012326. MO and AF were supported by an ARC Laureate Fellowship FL14010021 to Ian Paulsen. MS acknowledges the support of ARC Linkage Project LP160100839. JWM acknowledges the support of ARC Discovery Project DP110103668. AC is supported by ARC Laureate Fellowship (FL140100260) and LSW by ARC Future Fellowship (FT180100407), both AC and LSW are also supported by the ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH; CE170100015). NRF was funded by the University of Adelaide RTP scholarship. FL is supported by an Early Postdoc Mobility fellowship from the Swiss National Science Foundation.

815 Figures:

Figure 1: Schematic showing the key steps involved in acquiring deep marine sediment
 cores, subsampling, DNA extraction, aDNA preparation for sequencing and data generation.
 Indicated are sources of potential contamination and reduction in data quality, as well as

recommended precautions to be considered and/or controls to be taken. An impact score (1-3 stars) is given to indicate the severity of potential contamination or the impact that impaired data would have on the results at each step in the process. Schematic graphics are not to scale. Figure 2: Overview of IODP coring systems. A) Advanced piston coring system (APC), shown before and after stroking; only small volumes of drill fluid can enter the space between the core barrel and collar from above after stroking, greatly reducing the risk of contamination. B) Extended core barrel system (XCB) and C) Rotary core barrel system (RCB); both containing circulation jets at the bottom of the core barrel through which drill-fluid enters and removes coring debris by transporting it upwards within the drill hole to the surface. D) Comparison of rotary and piston cored sediments demonstrating the well-preserved lamination in Piston cored material. Figure adapted from Sun et al. (2018)and IODP (iodp.tamu.edu/tools/index.html). Table 1: Terms commonly used in marine aDNA research and their definition. aDNA terms are listed hierarchically, all other terms are listed alphabetically.
 Table 2: Commonly used DNA extraction kits in aDNA studies to date.
 References: Alawi, M., Schneider, B. and Kallmeyer, J. (2014). A procedure for separate recovery of extra-and intracellular DNA from a single marine sediment sample. Journal of microbiological methods 104, 36-42.

Allentoft, M.E., Collins, M., Harker, D., Haile, J., Oskam, C.L., Hale, M.L., Campos, P.F., Samaniego, J.A., Gilbert, M.T.P., Willerslev, E. and Zhang, G. (2012). The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society of London B: Biological Sciences, p.rspb20121745. Alsos, I. G., P. Sjögren, M. E. Edwards, J. Y. Landvik, L. Gielly, M. Forwick, E. Coissac, A. G. Brown, L. V. Jakobsen, M. K. Føreid, and M. W. Pedersen (2015). Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. The Holocene 26, 627-642. Amato, P., Doyle, S.M., Battista, J.R. and Christner, B.C. (2010). Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10, 789-798. Armbrecht, L. H., Lowe, V., Escutia, C., Iwai, M., McKay, R. and Armand, L. K. (2018). Variability in diatom and silicoflagellate assemblages during mid-Pliocene glacial-interglacial cycles determined in Hole U1361A of IODP Expedition 318, Antarctic Wilkes Land Margin. Marine Micropaleontology 139, 28-41. Armbrecht, L.H. et al (in prep). Assessing four methods for the extraction of ancient phytoplankton DNA from marine sediments. Bang-Andreasen, T., Schostag, M., Priemé, A., Elberling, B. and Jacobsen, C.S. (2017). Potential microbial contamination during sampling of permafrost soil assessed by tracers. Scientific reports 7, 43338. Beaty, D.W., Hays, L.E., Williford, K. and Farley, K. (2015). Sample Science Input to Landing Site Selection for Mars 2020: An In-Situ Exploration and Sample Caching Rover. Meteoritics and Planetary Science 50(S1), Art-No. 5340 Bellemain, E., Davey, M.L., Kauserud, H., Epp, L.S., Boessenkool, S., Coissac, E., Geml, J., Edwards, M., Willerslev, E., Gussarova, G. and Taberlet, P. (2013). Fungal palaeodiversity

revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environmental microbiology 15, 1176-1189. Bernhard, J.M. and Bowser, S.S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews 46, 149-165. Bienhold, C., Zinger, L., Boetius, A. and Ramette, A. (2016). Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS One 11, e0148016. Bickle, M., Arculus, R., Barrett, P., DeConto, R., Camoin, G., Edwards, K., Fisher, F., et al. (2011). Illuminating Earth's Past, Present and Future—The Science Plan for the International Ocean Discovery Program 2013–2023: Washington, DC (Integrated Ocean Drilling Program). Available at: http://www.iodp.org/about-iodp/iodp-science-plan-2013-2023. Bidle, K.D., Lee, S., Marchant, D.R., Falkowski, P.G. (2007). Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences of the United States of America 104, 13455-13460. Bissett, A., Gibson, J.A.E., Jarman, S.N., Swadling, K.M., and Cromer, L. (2005). Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnology and Oceanography - Methods 3, 533-542. Blaser, M.J., Cardon, Z.G., Cho, M.K., Dangl, J.L., Donohue, T.J., Green, J.L., Knight, R., Maxon, M.E., Northen, T.R., Pollard, K.S., and Brodie, E.L. (2016). Toward a predictive understanding of Earth's microbiomes to address 21st century challenges. mBio 7(3):e00714-16. Boere, A.C., Abbas, B., Rijpstra, W.I.C., Versteegh, G.J.M., Volkman, J.K., Damste, J.S.S. and Coolen, M.J.L. (2009). Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and palynomorphs. Geobiology 7, 265-281.

2007		
2008		
2003	892	Boere, A.C., Rijpstra, W.I.C., De Lange, G.J., Sinninghe Damsté, J.S. and Coolen, M.J.L.
2011 2012	893	(2011). Preservation potential of ancient plankton DNA in Pleistocene marine sediments.
2013 2014 2015	894	Geobiology 9, 377-393.
2016	895	Boessenkool, S., Epp, L.S., Haile, J., Bellemain, E.V.A., Edwards, M., Coissac, E.,
2017	896	Willerslev, E., Brochmann, C. (2012). Blocking human contaminant DNA during PCR allows
2019 2020	897	amplification of rare mammal species from sedimentary ancient DNA. Molecular ecology 21,
2021 2022	898	1806-1815.
2023	000	
2024 2025	899 900	Boudreau, B.P. (1998). Mean mixed depth of sediments: the wherefore and the why.
2026 2027	901	Limnology and Oceanography 43, 524-526.
2028		
2029 2030	902	Briggs, A.W., Stenzel, U., Johnson, P.L., Green, R.E., Kelso, J., Prüfer, K., Meyer, M., Krause,
2031 2032	903	J., Ronan, M.T., Lachmann, M. and Pääbo, S. (2007). Patterns of damage in genomic DNA
2033	904	sequences from a Neandertal. Proceedings of the National Academy of Sciences 104, 14616-
2035 2036	905	14621.
2037 2038	906	Brocks, J.J. and Grice, K. (2011). Biomarkers (Molecular Fossils). Encyclopedia of
2039 2040	907	Geobiology. Reitner, J. and Thiel, V. Dordrecht, Springer Netherlands, pp. 147-167.
2041 2042 2043	908	Brotherton, P., Haak, W., Templeton, J., Brandt, G., Soubrier, J., Adler, C.J., Richards, S.M.,
2040	909	Der Sarkissian, C., Ganslmeier, R., Friederich, S. and Dresely, V. (2013). Neolithic
2045	910	mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nature
2047 2048 2049	911	communications 4, 1764.
2050 2051	912	Calvert, S.E., Vogel, J.S. and Southon, J.R. (1987). Carbon accumulation rates and the origin
2052 2053	913	of the Holocene sapropel in the Black Sea. Geology 15, 918-921.
2054	914	Carradec, Q., Pelletier, E., Da Silva, C., Alberti, A., Seeleuthner, Y., Blanc-Mathieu, R., Lima-
2056	915	Mendez, G., Rocha, F., Tirichine, L., Labadie, K. and Kirilovsky, A. (2018). A global ocean
2058 2059 2060	916	atlas of eukaryotic genes. Nature communications 9, 373.
2061		
2062		
2064 2065		

Ceccherini, M.T., Ascher, J., Pietramellara, G., Vogel, T. M. and Nannipieri, P. (2007). Vertical advection of extracellular DNA by water capillarity in soil columns. Soil Biology and Biochemistry 39, 158-163. Cockell, C.S., Coolen, M., Schaefer, B., Grice, K., Gulick, S.P.S., Morgan, J.V., Kring, D.A., Osinski, G. (2017). Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor. American Geophysical Union, Fall Meeting 2017, abstract #P23H-06. http://adsabs.harvard.edu/abs/2017AGUFM.P23H..06C. Coolen, M.J.L. and Overmann, J. (1998). Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology 64, 4513-4521. Coolen, M.J.L. and Overmann, J. (2007). 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environmental Microbiology 9, 238-249. Coolen, M.J., Muyzer, G. Rijpstra, W.I.C., Schouten, S., Volkman, J.K. and Damsté, J.S.S. (2004). Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth and Planetary Science Letters 223, 225-239. Coolen, M.J., Boere, A., Abbas, B., Baas, M., Wakeham, S.G. and Sinninghe Damsté, J.S. (2006). Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, PA1005. Coolen, M.J.L., Talbot, H.M., Abbas, B.A., Ward, C., Schouten, S., Volkman, J. K. and Damste, J.S.S. (2008). Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environmental Microbiology 10, 1783-1803. Coolen, M.J.L., Saenz, J.P., Giosan, L., Trowbridge, N.Y., Dimitrov, P., Dimitrov, D. and Eglinton, T.I. (2009). DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene. Earth and Planetary Science Letters 284, 610-621.

2126		
2127 2128	942	Coolen, M.J. (2011). 7000 years of <i>Emiliania huxleyi</i> viruses in the Black Sea. Science 333,
2129 2130	943	451-452.
2131 2132	944	Coolen, M.J., Orsi, W.D., Balkema, C., Quince, C., Harris, K., Sylva, S.P., Filipova-Marinova,
2133 2134	945	M. and Giosan, L. (2013). Evolution of the plankton paleome in the Black Sea from the
2135	946	Deglacial to Anthropocene. Proceedings of the National Academy of Sciences 110, 8609-
2137 2138 2139	947	8614.
2140 2141	948	Coolen, M.J. and Orsi, W.D. (2015). The transcriptional response of microbial communities in
2142 2143	949	thawing Alaskan permafrost soils. Frontiers in Microbiology 6, 197.
2144 2145	950	Cooper, A. and Poinar, H.N. (2000). Ancient DNA: do it right or not at all. Science 289, 1139-
2146 2147	951	1139.
2140 2149 2150	952	Corinaldesi, C., Danovaro, R. and Dell'Anno, A. (2005). Simultaneous recovery of extracellular
2151 2152	953	and intracellular DNA suitable for molecular studies from marine sediments. Applied and
2153 2154	954	Environmental Microbiology 71, 46-50.
2155 2156	955	Corinaldesi, C., Beolchini, F. and Dell'Anno, A. (2008). Damage and degradation rates of
2157 2158	956	extracellular DNA in marine sediments: implications for the preservation of gene sequences.
2159 2160 2161	957	Molecular Ecology 17, 3939-3951.
2162 2163	958	Corinaldesi, C., Barucca, M., Luna, G.M. and Dell'Anno, A. (2011). Preservation, origin and
2164 2165	959	genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Molecular
2166 2167	960	Ecology 20, 642-654.
2168 2169	961	Corinaldesi, C., Tangherlini, M., Luna, G.M. and Dell'Anno, A. (2014). Extracellular DNA can
2170	962	preserve the genetic signatures of present and past viral infection events in deep hypersaline
2172	963	anoxic basins. Proceedings of the Royal Society of London B: Biological Sciences 281,
2174 2175 2176	964	20133299.
2177 2178		
2179 2180		
2181		
2183		

965	Corinaldesi, C., Tangherlini, M., Manea, E. and Dell'Anno, A. (2018). Extracellular DNA as a
966	genetic recorder of microbial diversity in benthic deep-sea ecosystems. Scientific Reports 8,
967	1839.
968	Cox, T.L., Gan, H.M. and Moreau, J.W. (2018) Deep seawater recirculation sustains an aero-
969	tolerant population of sulfate-reducing bacteria in the sub-seafloor. Geobiology, in press.
970	D'Andrea, W. J., M. Lage, J. B. H. Martiny, A. D. Laatsch, L. A. Amaral-Zettler, M. L. Sogin
971	and Y. Huang (2006). Alkenone producers inferred from well-preserved 18S rDNA in
972	Greenland lake sediments. Journal of Geophysical Research 111, G0313.
973	Davies, P.C., Benner, S.A., Cleland, C.E., Lineweaver, C.H., McKay, C.P. and Wolfe-Simon,
974	F. (2009). Signatures of a shadow biosphere. Astrobiology 9, 241-249.
975	Dell'Anno, A., Stefano, B. and Danovaro, R. (2002). Quantification, base composition, and
976	fate of extracellular DNA in marine sediments. Limnology and Oceanography 47, 899-905.
977	Dell'Anno, A., Corinaldesi, C. and Anno, A.D. (2004). Degradation and turnover of extracellular
978	DNA in marine sediments: ecological and methodological considerations. Applied and
979	environmental microbiology 70, 4384–4386.
980	Demanèche, S., Bertolla, F., Buret, F., Nalin, R., Sailland, A., Auriol, P., Vogel, T.M. and
981	Simonet, P., (2001). Laboratory-scale evidence for lightning-mediated gene transfer in soil.
982	Applied and environmental microbiology 67, 3440-3444.
983	De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C.,
984	Le Bescot, N., Probert, I. and Carmichael, M. (2015). Eukaryotic plankton diversity in the sunlit
985	ocean. Science 348, 1261605.
986	Direito, S.O., Marees, A. and Röling, W.F. (2012). Sensitive life detection strategies for low-
987	biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars
988	analogue minerals. FEMS microbiology ecology 81, 111-123.
	965 966 967 968 970 971 972 973 974 975 976 977 978 977 978 979 980 981 982 981 982 983 981 982 983 984 985 985

2243		
2244 2245 2246	989	Expedition 330 Scientists (2012). Methods. In Koppers, A.A.P., Yamazaki, T., Geldmacher,
2247 2248	990	J., and the Expedition 330 Scientists, Proc. IODP, 330: Tokyo (Integrated Ocean Drilling
2249 2250	991	Program Management International, Inc.). doi:10.2204/iodp.proc.330.102.2012.
2251	992	Feek, D. T., Horrocks, M., Baisden, W. T., and Flenley, J. (2011). The Mk II sampler: a device
2255 2255	993	to collect sediment cores for analysis of uncontaminated DNA. Journal of Paleolimnology 45,
2255 2256 2257	994	115-119.
2258 2259	995	Ficetola, G.F., Taberlet, P. and Coissac, E. (2016). How to limit false positives in
2260 2261 2262	996	environmental DNA and metabarcoding? Molecular Ecology Resources 16, 604-607.
2263	997	Foust, J. (2018). ESA awards Mars sample return study contracts as international cooperation
2265	998	plans take shape. Spacenews July 8 2018. Available at: https://spacenews.com/esa-awards-
2267 2268	999	mars-sample-return-study-contracts-as-international-cooperation-plans-take-shape/
2269 2270	1000	Früh-Green, G., Orcutt, B. and Green, S., 2015. Expedition 357 Scientific Prospectus: Atlantis
2271 2272	1001	Massif Serpentinization and Life. International Ocean Discovery Program.
2273 2274	1002	http://dx.doi.org/10.14379/iodp.sp.327.2015
2275	1003	Fry, J.C., Parkes, R.J., Cragg, B. A., Weightman, A. J., Webster, G. (2008). Prokaryotic
2277	1004	biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiology Ecology 66,
2279 2280	1005	181–196.
2281 2282 2283	1006	Fryer, P., Wheat, C.G., Williams, T., Albers, E., Bekins, B., Debret, B.P.R., Deng, J., Dong,
2284 2285	1007	Y., Eickenbusch, P., Frery, E.A., Ichiyama, Y., Johnson, K., Johnston, R.M., Kevorkian, R.T.,
2286 2287	1008	Kurz, W., Magalhaes, V., Mantovanelli, S.S., Menapace, W., Menzies, C.D., Michibayashi, K.,
2288 2289	1009	Moyer, C.L., Mullane, K.K., Park, JW., Price, R.E., Ryan, J.G., Shervais, J.W., Sissmann,
2290 2291	1010	O.J., Suzuki, S., Takai, K., Walter, B., and Zhang, R. (2018) Expedition 366 methods.
2292 2293	1011	Proceedings of the International Ocean Discovery Program Volume 366,
2294 2295 2296 2297	1012	publications.iodp.org, https://doi.org/10.14379/iodp.proc.366.102.2018.
2298		

- Furukawa, Y., Horiuchi, M. and Kakegawa, T. (2013). Selective stabilization of ribose by borate. Origins of Life and Evolution of Biospheres 43, 353-361. Giguet-Covex, C., J. Pansu, F. Arnaud, P. J. Rey, C. Griggo, L. Gielly, I. Domaizon, E. 2309 1015 Coissac, F. David, P. Choler, J. Poulenard, and P. Taberlet (2014). Long livestock farming 2311 1016 history and human landscape shaping revealed by lake sediment DNA. Nature 2313 1017 2315 1018 Communications 5, 3211. Giosan, L., Coolen, M.J., Kaplan, J.O., Constantinescu, S., Filip, F., Filipova-Marinova, M., Kettner, A.J. and Thom, N. (2012). Early anthropogenic transformation of the Danube-Black Sea system. Scientific Reports 2 582. 2324 1022 Ginolhac, A., Rasmussen, M., Gilbert, M.T.P., Willerslev, E. and Orlando, L. (2011). mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27, **1023** ₂₃₂₈ 1024 2153-2155. Gittel, A., Bárta, J., Kohoutova, I., Schnecker, J., Wild, B., Čapek, P., Kaiser, C., Torsvik, V.L., Richter, A., Schleper, C., Urich, T. (2014). Site-and horizon-specific patterns of microbial 2334 1027 community structure and enzyme activities in permafrost-affected soils of 2336 1028 Greenland. Frontiers in microbiology 5, 541. Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P.G., DesMarais, D., Farmer, J., Siebach, K., Calef, F., Hurowitz, J., McLennan, S.M., Ming, D., Vani- man, D., Crisp, J., Vasavada, A., Edgett, K.S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R.C., Maurice, S., Grant, J.A., Wilson, S., Anderson, R.C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R.S., Rice, M., Bell, J., Griffes, J., Ehl- mann, B., Anderson, R.B., Bristow, T.F., Dietrich, W.E., Dro- mart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L.A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres,
- ²³⁵⁶ 1038 S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R. and Yingst, A. (2014). A 2357

2362	
2363 2364 1039	habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343,
2365 2366 2367	1242777.
2368 1041	Haile, J., Holdaway, R., Oliver, K., Bunce, M., Gilbert, M. T., Nielsen, R., Munch, K., Ho, S. Y.,
2370 1042 2371	Shapiro, B. and Willerslev., E. (2007). Ancient DNA chronology within sediment deposits: are
2372 1043 2373	paleobiological reconstructions possible and is DNA leaching a factor? Molecular biology and
2374 1044 2375	evolution 24, 982-989.
2376 2377 1045	Haile, J. (2012) Ancient DNA Extraction from Soils and Sediments. In: Ancient DNA, Methods
²³⁷⁸ 1046 2379	and Protocols (2012). Eds. Shapiro, B., Hofreiter, M. Springer New York, Dordrecht,
2380 1047 2381	Heidelberg, London, pp. 57-64.
2383 1048	Hand, K.P., Murray, A.E., Garvin, J.B., Brinckerhoff, W.B., Christner, B.C., Edgett, K.S.,
2385 1049	Ehlmann, B.L., German, C.R., Hayes, A.G., Hoehler, T.M., Horst, S.M., Lunine, J.I., Nealson,
2387 1050	K.H., Paranicas, C., Schmidt, B.E., Smith, D.E., Rhoden, A.R., Russell, M.J., Templeton, A.S.,
2389 1051	Willis P.A., Yingst, R.A., Phillips, C.B., Cable, M.L., Craft, K.L., Hofmann, A.E., Nordheim,
2390 2391 1052	T.A., Pappalardo, R.P. and the Project Engineering Team (2017). Report of the Europa Lander
2392 2393 2394	Science Definition Team. National Aeronautics and Space Administration.
2395 1054 2396	Hauptmann, A.L., Sicheritz-Pontén, T., Cameron, K.A., Bælum, J., Plichta, D.R., Dalgaard, M.
2397 1055 2398	and Stibal, M. (2017). Contamination of the Arctic reflected in microbial metagenomes from
2399 1056 2400	the Greenland ice sheet. Environmental Research Letters 12, 074019.
2401 2402 1057	Hay, B.J. (1988). Sediment accumulation in the central western Black Sea over the past 5,100
2403 2404 2405	years. Paleoceanography 3, 491-508.
2406 1059 2407	Hermans, S.M., Buckley, H.L. and Lear, G. (2018). Optimal extraction methods for the
2408 1060 2409	simultaneous analysis of DNA from diverse organisms and sample types. Molecular Ecology
2410 1061 2411 2412 2413 2414 2415	Resources 18, 557-569.
2416 2417	
- • • •	

- 2418
- 2419

2422
24231062Horn, S. (2012) Target enrichment via DNA hybridization capture; In: Ancient DNA, Methods2424
24251063and Protocols (2012). Eds. Shapiro, B., Hofreiter, M. Springer New York, Dordrecht,2426
24271064Heidelberg, London, pp. 177-188.

Hou, W., Dong, H., Li, G., Yang, J., Coolen, M.J., Liu, X., Wang, S., Jiang, H., Wu, X., Xiao,
H. and Lian, B. (2014). Identification of photosynthetic plankton communities using
sedimentary ancient DNA and their response to late-Holocene climate change on the Tibetan
Plateau. Scientific Reports 4, 6648.

Inagaki, F., Hinrichs, K.U., Kubo, Y., Bowles, M.W., Heuer, V.B., Hong, W.L., Hoshino, T., Ijiri,
A., Imachi, H., Ito, M. and Kaneko, M. (2015). Exploring deep microbial life in coal-bearing
sediment down to ~2.5 km below the ocean floor. Science 349, 420-424.

Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P.L. and Orlando, L. (2013).
 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters.
 Bioinformatics 29, 1682-1684.

Jørgensen, T., Kjaer,K.H., Haile, J., Rasmussen, M., Boessenkool, S., Andersen, K., Coissac,
Jørgensen, T., Kjaer,K.H., Haile, J., Rasmussen, M., Boessenkool, S., Andersen, K., Coissac,
E., Taberlet, P., Brochmann, C., Orlando, L., Gilbert, M.T. and Willerslev, E. (2012). Islands
in the ice: detecting past vegetation on Greenlandic nunataks using historical records and
sedimentary ancient DNA meta-barcoding. Molecular Ecology 21, 1980-1988.

Kirkpatrick, J. B., Walsh, E. A. and D'Hondt, S. (2016). Fossil DNA persistence and decay in
marine sediment over hundred-thousand-year to million-year time scales. Geology 44, 615–
1081 618.

Kistler, L., Ware, R., Smith, O., Collins, M. and Allaby, R.G. (2017). A new model for ancient
DNA decay based on paleogenomic meta-analysis. Nucleic acids research 45, 6310-6320.

2469
24701084Klappenbach, J. A., Saxman, P. R., Cole, J. R., & Schmidt, T. M. (2001). rrndb: the ribosomal2471
24721085RNA operon copy number database. Nucleic acids research 29, 181-184.

2480		
2481 2482	1086	Klemetsen, T., Raknes, I.A., Fu, J., Agafonov, A., Balasundaram, S.V., Tartari, G., Robertsen,
2483 2484	1087	E. and Willassen, N.P. (2017). The MAR databases: development and implementation of
2485 2486	1088	databases specific for marine metagenomics. Nucleic acids research 46, D692-D699.
2487 2488 2489	1089	Leite, D., Leitão, A., Schaan, A. P., Marinho, A. N., Souza, S., Rodrigues-Carvalho, C.,
2490	1090	Cardoso, F., Ribeiro-dos-Santos, Â. (2014). Paleogenetic studies in Guajajara skeletal
2491 2492 2493	1091	remains, Maranhão state, Brazil. Journal of Anthropology, Article ID 729120.
2494 2495	1092	Lejzerowicz, F., Esling, P., Majewski, W., Szczuciński, W., Decelle, J., Obadia, C., Arbizu,
2496 2497	1093	P.M. and Pawlowski, J. (2013). Ancient DNA complements microfossil record in deep-sea
2498 2499	1094	subsurface sediments. Biology Letters 9, 20130283.
2500 2501 2502	1095	Lever, M.A., Alperin, M., Engelen, B., Inagaki, F., Nakagawa, S., Steinsbu, B.O., and Teske,
2503	1096	A. (2006). Trends in basalt and sediment core contamination during IODP Expedition 301.
2504 2505 2506	1097	Geomicrobiology Journal 23, 517-530.
2507 2508	1098	Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell, J. R., Klironomos, J.
2509 2510	1099	N., Pails, P., Swanton, C.J., Trevorsa, J.T., Dunfield, K. E. (2007). Cycling of extracellular DNA
2511 2512	1100	in the soil environment. Soil Biology and Biochemistry, 39(12), 2977-2991.
2513 2514 2515	1101	Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709.
2516 2517	1102	Lorenz, M.G. and Wackernagel, W. (1994). Bacterial gene transfer by natural genetic
2518 2519	1103	transformation in the environment. Microbiological reviews 58, 563-602.
2520 2521	1104	Loucaides, S., Van Cappellen, P., Roubeix, V., Moriceau, B. and Ragueneau, O. (2011).
2522 2523	1105	Controls on the recycling and preservation of biogenic silica from biomineralization to burial.
2524 2525 2526	1106	Silicon 4, 7-22.
2527 2528	1107	Lyon, D.Y., Monier, J.M., Dupraz, S., Freissinet, C., Simonet, P. and Vogel, T.M. (2010).
2529 2530	1108	Integrity and biological activity of DNA after UV exposure. Astrobiology 10, 285-292.
2531 2532	1109	Lyra, C., Sinkko, H., Rantanen, M., Paulin, L. and Kotilainen, A. (2013) Sediment bacterial
2533 2534 2535	1110	communities reflect the history of a sea basin. PLoS One 8, e54326.
2536 2537		

Major, C.O., Goldstein, S.L., Ryan, W.B., Lericolais, G., Piotrowski, A.M. and Hajdas, I. (2006). The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews 25, 2031-2047. 2547 1114 Manske, A.K., Henssge, U. Glaeser, J. and Overmann, J. (2008). Subfossil 16S rRNA gene 2549 1115 sequences of green sulfur bacteria in the Black Sea and their implications for past photic zone 2551 1116 anoxia. Applied and Environmental Microbiology 74, 624-632. McConnell, J.R., Edwards, R., Kok, G.L., Flanner, M.G., Zender, C.S., Saltzman, E.S., Banta, J.R., Pasteris, D.R., Carter, M.M., Kahl, J.D. (2007). 20th-century industrial black carbon ²⁵⁵⁷ 1119 emissions altered arctic climate forcing. Science 317, 1381-1384. 2560 1120 Miller, D.N., Bryant, J.E., Madsen, E.L. and Ghiorse, W.C. (1999). Evaluation and optimization 2562 1121 of DNA extraction and purification procedures for soil and sediment samples. Applied and **1122** environmental microbiology 65, 4715-4724. Miteva, V., Sowers, T. and Brenchley, J. (2014). Penetration of fluorescent microspheres into the NEEM (North Eemian) Greenland ice core to assess the probability of microbial 2570 1125 contamination. Polar biology 37, 47-59. Morard, R., Leizerowicz, F., Darling, K.F., Lecrog-Bennet, B., Pedersen, M.W., Orlando, L., **1126** Pawlowski, J., Mulitza, S., De Vargas, C. and Kucera, M. (2017). Planktonic foraminifera-derived environmental DNA extract. Biogeosciences 14, 2741-2754. Marcus, N.H. (1996) Ecological and evolutionary significance of resting eggs in marine 2581 1130 copepods: past, present, and future studies. Hydrobiologia 320, 141-152. More, K.D., Orsi, W.D., Galy, V., Giosan, L., He, L., Grice, K. and Coolen, M.J. (2018). A 43 ₂₅₈₄ 1131 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth and Planetary Science Letters 496, 248-256.

2597 2598	
2599 2599 1134	Morono, Y. and Inagaki, F. (2016). Chapter Three - Analysis of Low-Biomass Microbial
2600 2601 1135	Communities in the Deep Biosphere, pp. 149-178. In: S. Sariaslani and G. Michael Gadd
2602 2603 1126	(Editore) Advances in Applied Microbiology, Academic Press
2604 2605	(Eutors), Advances in Applied Microbiology, Academic Press.
2606 1137	Negandhi, K., Laurion, I., Lovejoy, C. (2016). Temperature effects on net greenhouse gas
2608 1138	production and bacterial communities in arctic thaw ponds. FEMS Microbiology Ecology 92,
2609 2610 1139 2611	fiw117.
2612 2613 1140	Orcutt, B.N., Bergenthal, M., Freudenthal, T., Smith, D., Lilley, M.D., Schnieders, L., Green,
2614 2615 1141	S. and Früh-Green, G.L. (2017). Contamination tracer testing with seabed drills: IODP
2616 1142 2617	Expedition 357. Scientific Drilling 23, 39-46.
2618 2619 1143	Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M.,
2621 1144	Cappellini, E., Petersen, B., Moltke, I. and Johnson, P.L. (2013). Recalibrating Equus evolution
2622 2623 1145 2624	using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74-78.
2625 1146 2626	Orsi, W.D., Coolen, M.J., Wuchter, C., He, L., More, K.D., Irigoien, X., Chust, G., Johnson, C.,
2627 1147 2628	Hemingway, J.D., Lee, M. and Galy, V. (2017). Climate oscillations reflected within the
2629 1148 2630	microbiome of Arabian Sea sediments. Scientific Reports 7, 6040.
2631 2632 1149	Overballe-Petersen, S., and Willerslev, E. (2014). Horizontal transfer of short and degraded
2633 2634 1150	DNA has evolutionary implications for microbes and eukaryotic sexual reproduction.
2635 2636 1151 2637	Bioessays 36, 1005–1010.
2638 1152 2639	Pansu, J., Giguet-Covex, C., Ficetola,G. F., Gielly, L., Boyer, F., Zinger, L., Arnaud, J.
2640 1153 2641	Poulenard, P. Taberlet and Choler, P. (2015). Reconstructing long-term human impacts on
2642 1154 2643	plant communities: an ecological approach based on lake sediment DNA. Molecular Ecology
2644 1155 2645	24, 1485-1498.
2646 2647 1156	Pape, T., Hohnberg, H.J., Wunsch, D., Anders, E., Freudenthal, T., Huhn, K. and Bohrmann,
2648 2649 1157	G. (2017). Design and deployment of autoclave pressure vessels for the portable deep-sea
2650 2651 2652 2653 2654 2655	drill rig MeBo (Meeresboden-Bohrgerät). Scientific Drilling 23, 29-37.

2657		
2658 2659	1159	Parducci, L., Bennett, K.D., Ficetola, G. F., Alsos, I.G., Suyama, Y., Wood, J.R., Pedersen,
2660 2661	1160	M.W. (2017). Ancient plant DNA in lake sediments. New Phytologist, 214(3), 924-942
2663 2664	1161	Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C.,
2665 2666	1162	Weightman, A.J. and Harvey, S.M. (1994). Deep bacterial biosphere in Pacific-Ocean
2667 2668	1163	sediments. Nature 371, 410–413.
2669 2670	1164	Pawłowska, J., Lejzerowicz, F., Esling, P., Szczuciński, W., Zajączkowski, M. and Pawlowski,
2671 2672	1165	J. (2014). Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last
2673 2674	1166	millennium. Geobiology 12, 277-288.
2675 2676 2677	1167	Pedersen, M.W., Overballe-Petersen, S., Ermini, L., Der Sarkissian, C., Haile, J., Hellstrom,
2678 2679	1168	M., Spens, J., Thomsen, P.F., Bohmann, K., Cappellini, E. and Schnell, I.B. (2015). Ancient
2680 2681	1169	and modern environmental DNA. Philosophical Transactions of the Royal Society B 370,
2682 2683	1170	20130383.
2684 2685	1171	Polz, M.F. and Cavanaugh, C.M. (1998). Bias in template-to-product ratios in multitemplate
2686 2687	1172	PCR. Applied and environmental Microbiology 64, 3724-3730.
2689 2690	1173	Poté, J., Rosselli, W., Wigger, A. and Wildi, W. (2007). Release and leaching of plant DNA in
2691 2692	1174	unsaturated soil column. Ecotoxicology and environmental safety 68, 293-298.
2693 2694	1175	Randlett, M.E., Coolen, M.J.L., Stockhecke, M., Pickarski, N., Litt, T., Balkema, C., Kwiecien,
2695 2696	1176	O., Tomonaga, Y., Wehrli, B. and Schubert, C.J. (2014). Alkenone distribution in Lake Van
2697 2698	1177	sediment over the last 270 ka: influence of temperature and haptophyte species composition.
2699 2700 2701	1178	Quaternary Science Reviews 10, 53-62.
2701 2702 2703	1179	Rasmussen, M., Li, Y., Lindgreen, S., Pedersen, J.S., Albrechtsen, A., Moltke, I., Metspalu,
2704 2705	1180	M., Metspalu, E., Kivisild, T., Gupta, R. and Bertalan, M. (2010). Ancient human genome
2706 2707	1181	sequence of an extinct Palaeo-Eskimo. Nature 463, 757.
2708		
2709		
2710		
2712		
2713		
<i>L</i> / 14		

2715	
2716	
2717 2718 1182	Rawlence, N.J., Lowe, D.J., Wood, J.R., Young, J.M., Churchman, G.J., Huang, Y.T. and
2719 2720 1183	Cooper, A., (2014). Using palaeoenvironmental DNA to reconstruct past environments:
2721 2722 2723	progress and prospects. Journal of Quaternary Science 29, 610-626.
2724 1185	Rummel, J.D. and Conley, C.A. (2017). Four Fallacies and an Oversight: Searching for Martian
2726 1186 2727	Life. Astrobiology 17, 971-974.
2728 2729 1187	Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner, P.,
2730 2731 1188	Parkhill, J., Loman, N.J. and Walker, A.W. (2014). Reagent and laboratory contamination can
2732 1189 2733 2734	critically impact sequence-based microbiome analyses. BMC biology 12:87.
2735 1190	Sinninghe Damsté, J.S., Muyzer, G., Abbas, B., Rampen, S.W., Masse, G., Allard, W.G., Belt,
2737 1191	S.T., Robert, J.M., Rowland, S.J., Moldowan, J.M., Barbanti, S.M., Fago, F.J., Denisevich,
2738 2739 1192	P., Dahl, J., Trindade, L.A.F., and Schouten, S. (2004). The rise of the rhizosolenid diatoms.
2740 2741 1193 2742	Science 304, 584-587.
2743 1194 2744	Szczuciński, W., Pawłowska, J., Lejzerowicz, F., Nishimura, Y., Kokociński, M., Majewski, W.,
2745 1195 2746	Nakamura, Y and Pawlowski, J. (2016). Ancient sedimentary DNA reveals past tsunami
2747 1196 2748	deposits. Marine Geology 381, 29-33.
2749 2750 1197	Schubert, M., Ermini, L., Sarkissian, C.D., Jónsson, H., Ginolhac, A., Schaefer, R., Martin,
2751 2752 1198	M.D., Fernández, R., Kircher, M., McCue, M., Willerslev, E., and Orlando, L. (2014).
2753 2754 1199	Characterization of ancient and modern genomes by SNP detection and phylogenomic and
2755 2756 1200 2757	metagenomic analysis using PALEOMIX. Nature Protocols 9, 1056-82.
2758 1201 2759	Shapiro, B. and Hofreiter, M. (2012). Preface, pp. v-vii. In: Ancient DNA, methods and
2760 1202	protocols, Shapiro, B. and Hofreiter, M. (Eds), Springer New York, Dordrecht, Heidelberg,
2762 1203 2763	London.
2764 2765 1204	Slon, V., Hopfe, C., Weiß, C.L., Mafessoni, F., De la Rasilla, M., Lalueza-Fox, C., Rosas, A.,
2766 2767 1205	Soressi, M., Knul, M.V., Miller, R. and Stewart, J.R. (2017). Neandertal and Denisovan DNA
2768 2769 2770 2771 2772 2773	from Pleistocene sediments. Science 356, 605-608.

2774	
2775	
2776 2777 1207	Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A. and Staudigel, H. (2000). Tracer-based
2778 2779 1208	estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiology
2780 2781 2782	Journal 17, 207-219.
2783 1210 2784	Stat, M., Huggett, M.J., Bernasconi, R., DiBattista, J.D., Berry, T.E., Newman, S.J., Harvey,
2785 1211	E.S. and Bunce, M. (2017). Ecosystem biomonitoring with eDNA: metabarcoding across the
2787 1212 2788	tree of life in a tropical marine environment. Scientific Reports 7, 12240.
2789 2790 1213	Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the
2791 2792 1214	Expedition 367/368 Scientists, 2018. South China Sea Rifted Margin. Proceedings of
2793 2794 1215	the International Ocean Discovery Program, 367/368: College Station, TX
2795 2796 1216	(International Ocean Discovery Program). <u>https://doi.org/10.14379/</u>
2797 2798 1217 2799	iodp.proc.367368.2018
2800 2801 1218	Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G.,
2802 2803 1219	Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A. and Cornejo-Castillo, F.M. (2015).
2804 2805 2806	Structure and function of the global ocean microbiome. Science 348, 1261359.
2807 1221 2808	Szczuciński, W., Pawłowska, J., Lejzerowicz, F., Nishimura, Y., Kokociński, M., Majewski,
2809 1222 2810	W., Nakamura, Y., Pawlowski, J. (2016). Ancient sedimentary DNA reveals past tsunami
2811 1223 2812	deposits. Marine Geology 381, 29–33.
2813 1224 2814 1225	Taberlet, P., Coissac, E., Hajibabaei, M. and Rieseberg, L.H. (2012a). Environmental DNA.
2815 2816 1226 2817	Molecular Ecology 21, 1789-1793.
2818 2819 1227	Taberlet, P., Prud'homme, S.M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L.,
2820 1228 2821	Rioux, D., Choler, P., and Clément, J.C. (2012b). Soil sampling and isolation of extracellular
2822 1229 2823	DNA from large amount of starting material suitable for metabarcoding studies. Molecular
2824 1230 2825	Ecology 21, 1816-1820.
2827 1231	Tada, R., Murray, R., Alvarez Zarikian, C., Anderson Jr, W., Bassetti, M., Brace, B., Clemens,
2829 1232 2830 2831 2832	S., da Costa Gurgel, M., Dickens, G. and Dunlea, A. (2013). Asian Monsoon: onset and

2834	
2835 2836 1233	evolution of millennial-scale variability of Asian monsoon and its possible relation with
²⁸³⁷ 2838 2820	Himalaya and Tibetan Plateau uplift. IODP Scientific Prospectus 346, 1-111.
2840 1235	Torres, M.E., Cox, T.L., Hong, WL., McManus, J., Sample, J.C., Destrigneville, C., Gan, H.M.
2842 1236	and Moreau, J.M. (2015). Crustal fluid and ash alteration impacts on the biosphere of Shikoku
2844 1237 2845	Basin sediments, Nankai Trough, Japan. Geobiology 13, 562-580.
2846 2847 1238	Torti, A., Lever, M.A. and Jørgensen, B.B. (2015). Origin, dynamics, and implications of
²⁸⁴⁸ 1239 2849	extracellular DNA pools in marine sediments. Marine Genomics 24, 185-196.
2850 2851 1240	United Nations Office for Disarmament Affairs (2015). Treaty on Principles Governing the
2852 2853 1241	Activities of States in the Exploration and Use of Outer Space, including the Moon and Other
2855 1242	Celestial Bodies, Article IX, version 2015, signed by almost all nation states, including all the
2857 1243	current and aspiring space-faring nation states. Available online at http://
2859 1244 2860	disarmament.un.org/treaties/t/outer_space.
2861 1245 2862	Van Everdingen, R.O. (Ed.). (1998). Multi-Language Glossary of Permafrost and Related
2863 1246 2864	Ground-Ice Terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish,
2865 1247 2866	Romanian, Russian, Spanish, and Swedish. International Permafrost Association,
2867 1248 2868	Terminology Working Group.
2869 2870 1249	Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L., and Gelin, F. (1998).
2871 2872 1250	Microalgal biomarkers: A review of recent research developments. Organic Geochemistry 29,
2874 2875 2875	1163-1179.
2876 1252 2877	Wagner, A., Blackstone, N., Cartwright, P., Dick, M., Misof, B., Snow, P., Wagner, G.P.,
2878 1253 2879	Bartels, J., Murtha, M. and Pendleton, J. (1994). Surveys of gene families using polymerase
2880 1254 2881	chain reaction: PCR selection and PCR drift. Systematic Biology 43, 250-261.
2882 2883 1255	Webster, G., Newberry, C.J., Fry, J.C. and Weightman, A.J. (2003). Assessment of bacterial
2884 2885 1256	community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a
2886 2887 2888 2889 2890 2891	cautionary tale. Journal of Microbiological Methods 55, 155-164.

2898

2904

2909

2911

2913

2927

2933

- Weyrich, L.S., Dobney, K. and Cooper, A. (2015). Ancient DNA analysis of dental calculus.
 Journal of human evolution 79, 119-124.
- Weyrich, L.S., Duchene, S., Soubrier, J., Arriola, L., Llamas, B., Breen, J., Morris, A.G., Alt,
 K.W., Caramelli, D. and Dresely, V. (2017). Neanderthal behaviour, diet, and disease inferred
 from ancient DNA in dental calculus. Nature 544, 357.
- Willerslev, E. and Cooper, A. (2005). Ancient DNA. Proceedings of the Royal Society of
 London B: Biological Sciences 272, 3-16.
- 2910 1265 Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E., Lorenzen, E.D.,
- 2912 1266 Vestergård, M., Gussarova, G., Haile, J., Craine, J., Gielly, L., Boessenkool, S., Epp, L.S.,
- 2914 1267 Pearman, P.B., Cheddadi, R., Murray, D., Brathen, K.A., Yoccoz, N., Binney, H., Cruaud, C.,
- 2915 2916 1268 Wincker, P. ,Goslar, T. , Alsos, I.G., Bellemain, E., Brysting, A.K., Elven, R., Sonstebo, J.H.,
- ²⁹¹⁷ 2918 1269 Murton, J., Sher, A., Rasmussen, M., Ronn, R., Mourier, T., Cooper, A., Austin, J., Moller, P.,
- 2919 2920 1270 Froese, D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V., Tikhonov, A., Savvinov, G.,
- Roberts, R.G., MacPhee, R.D., Gilbert, M.T., Kjaer, K.H., Orlando, L., Brochmann, C., and
 Taberlet, P. (2014). Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506,
 1273 47-51.
- Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., Bunce,
 M., Wiuf, C., Gilichinsky, D. A., and Cooper, A. (2003). Diverse plant and animal genetic
 records from Holocene and Pleistocene sediments. Science 300, 791-795.
- Willerslev, E., Hansen, A. J., and Poinar, H. N. (2004). Isolation of nucleic acids and cultures
 from fossil ice and permafrost. Trends in Ecology and Evolution 19, 141–147.
- Winter, D., Sjunneskog, C. and Harwood, D. (2010). Early to mid-Pliocene environmentally
 constrained diatom assemblages from the AND-1B drillcore, McMurdo Sound, Antarctica.
 Stratigraphy 7, 207-227.
- 2944 2945
- 2946
- 2947
- 2948
- 2949 2950

2951		
2952		
2953 2954	1282	Young, J.M., Weyrich, L.S., Clarke, L.J. andCooper, A. (2015). Residual soil DNA extraction
2955 2956	1283	increases the discriminatory power between samples. Forensic Science Medicine and
2957 2958 2959	1284	Pathology 11, 268–72.
2959 2960	1285	Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch,
2961	1286	D.B.M., Martiny, J.B., Sogin, M., Boetius, A. and Ramette, A. (2011). Global patterns of
2963 2964 2965	1287	bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6, e24570.
2966 2967	1288	Zhou, J., Bruns, M.A. and Tiedje, J.M. (1996). DNA recovery from soils of diverse composition.
2968 2969	1289	Applied and environmental microbiology 62, 316-322.
2970		
2971		
2972		
2973		
2975		
2976		
2977		
2978		
2979		
2980		
2981		
2982		
2983		
2904		
2986		
2987		
2988		
2989		
2990		
2991		
2992		
2993		
2994		
2996		
2997		
2998		
2999		
3000		
3001		
3002		
3004		
3005		
3006		
3007		
3008		
3008		

Abstract

The study of ancient DNA (aDNA) from sediments (sedaDNA) offers great potential for paleoclimate interpretation, and has recently been applied as a tool to characterise past marine life and environments from deep ocean sediments over geological timescales. Using sedaDNA, palaeo-communities have been detected, including prokaryotes and eukaryotes that do not fossilise, thereby revolutionising the scope of marine micropalaeontological research. However, many studies to date have not reported on the measures taken to prove the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly fragmented and degraded and extremely sensitive to contamination by non-target environmental DNA. Contamination risks are particularly high on research vessels, drilling ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, and due consideration needs to be given to sample processing and analysis following aDNA guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and highlights the urgency behind adopting new standards for marine sedaDNA research, with a focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into International Ocean Discovery Program (IODP) operations. Currently available installations aboard drilling ships and platforms are reviewed, improvements suggested, analytical approaches detailed, and the controls and documentation necessary to support the authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical considerations, concepts relevant to the study of past marine biodiversity based on aDNA, and the applicability of the new guidelines to the study of other contamination-susceptible environments (permafrost and outer space) are discussed.

Title:

Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation

Authors:

Linda H. Armbrecht^{1*}, Marco J.L. Coolen², Franck Leizerowicz³, Simon C. George⁴, Karita Negandhi⁵, Yohey Suzuki⁶, Jennifer Young⁷, Nicole R. Foster⁸, Leanne K. Armand⁹, Alan Cooper^{1,10}, Martin Ostrowski^{11,12}, Amaranta Focardi¹², Michael Stat¹³, John W. Moreau¹⁴, Laura S. Weyrich^{1,10}

Affiliations:

Australian Centre for Ancient DNA, School of Biological Sciences, Faculty of Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia

Western Australian Organic and Isotope Geochemistry Centre (WA-OIGC), School of

Earth and Planetary Sciences, Curtin University, Kent Street, Bentley WA 6102, Australia

Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0403, USA

Department of Earth and Planetary Sciences and MQMarine Research Centre, Macquarie University, North Ryde NSW 2109, Australia

NSW Office of Environment and Heritage, 10 Valentine Avenue, Parramatta NSW 2150, Australia

Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Advanced DNA, Identification and Forensic Facility, The Environment Institute, Faculty of Sciences, University of Adelaide, Adelaide SA 5005, Australia School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide SA 5005, Australia Australian and New Zealand IODP Consortium, Research School of Earth Sciences, The Australian National University, Acton ACT 2601, Australia Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences, Faculty of Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia Climate Change Cluster, Faculty of Science, University of Technology Sydney, Chippendale NSW 2007, Australia Department of Molecular Sciences and MQMarine Research Centre, Macquarie University, North Ryde NSW 2109, Australia School of Environmental and Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia School of Earth Sciences, The University of Melbourne, Parkville VIC 3010, Australia Corresponding author: linda.armbrecht@adelaide.edu.au Abstract The study of ancient DNA (aDNA) from sediments (sedaDNA) offers great potential for paleoclimate interpretation, and has recently been applied as a tool to characterise past marine life and environments from deep ocean sediments over geological timescales. Using sedaDNA, palaeo-communities have been detected, including prokaryotes and eukaryotes that do not fossilise, thereby revolutionising the scope of marine micropalaeontological

research. However, many studies to date have not reported on the measures taken to prove the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly fragmented and degraded and extremely sensitive to contamination by non-target environmental DNA. Contamination risks are particularly high on research vessels, drilling ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, and due consideration needs to be given to sample processing and analysis following aDNA guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and highlights the urgency behind adopting new standards for marine *seda*DNA research, with a focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into International Ocean Discovery Program (IODP) operations. Currently available installations aboard drilling ships and platforms are reviewed, improvements suggested, analytical approaches detailed, and the controls and documentation necessary to support the authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical considerations, concepts relevant to the study of past marine biodiversity based on aDNA, and the applicability of the new guidelines to the study of other contamination-susceptible environments (permafrost and outer space) are discussed.

Keywords: ancient DNA; marine sediments; deep biosphere; phytoplankton; contamination;
seafloor; IODP; biomarkers; Mars

Abbreviations: aDNA, ancient DNA; APC, Advanced Piston Corer; HLAPC, Half-Length Advanced Piston Corer; IODP, International Ocean Discovery Program; mbsf, metres below seafloor; MSP, Mission Specific Platforms; NGS, Next generation Sequencing; PCR, polymerase chain reaction; PFT, perfluorocarbon tracer; PMCH, perfluoromethylcyclohexane; PFMD, perfluoromethyldecalin; sedaDNA, sedimentary ancient DNA

1 Introduction

Past marine environments have generally been investigated using a suite of methodological approaches and interdisciplinary research fields, such as geology, organic and inorganic geochemistry, paleoceanography and micropaleontology. Discoveries in all of these disciplines have contributed greatly to our understanding of the climatic history of Earth and the evolution and responses of its inhabitants. However, to date, it has not been possible to achieve a detailed picture of all living organisms that have occupied global oceans in the past. restricting estimates of past environmental conditions and climate. The techniques that have traditionally been applied to reconstruct marine palaeo-communities are limited, such as microscopy to investigate the microfossil record (e.g., Winter et al., 2010; Armbrecht et al., 2018). Due to dissolution and degradation of phytoplankton and microzooplankton while sinking to the seafloor post-mortem, only the most robust skeletons and shells are preserved within a complex geological record (Loucaides et al., 2011). Often, these microfossils are broken, altered by chemical processes and unrecognizable. In the absence of well-preserved diagnostic morphological features, lipid biomarkers can provide supplementary information on biological sources in sediment records (Volkman et al., 1998; Coolen et al., 2004; Sinninghe Damste et al., 2004; Brocks et al., 2011), however, the majority of plankton members do not possess highly diagnostic biomarkers.

New marine metagenomic approaches have allowed the routine characterisation of the diversity of both living hard- and soft-bodied plankton communities in the water column and sub-seafloor. Large-scale "omics" studies, such as the Tara Oceans project (a global sampling program to characterise pro- and eukaryotes of the surface ocean), have shed a new light on our understanding of modern (present day) marine ecosystems and diversity (de Vargas et al., 2015; Sunagawa et al., 2015; Carradec et al., 2018). The deep sea and sub-seafloor have also been targeted with high-resolution metagenomic surveys revealing new insights into the abundance and composition of organisms existing in these largely unexplored environments (e.g., Zinger et al., 2011; Bienhold et al., 2016; Inagaki et al., 2015; Morono and Inagaki, 2016;

Orsi et al., 2017, respectively). Such comprehensive studies on living marine communities are continually improving genome reference databases for the hundreds of thousands of pro- and eukaryotic organisms present in the marine environment (Sunagawa et al., 2015; Klemetsen et al., 2017). As a consequence, modern marine metagenomics has not only inspired marine palaeo-research, but also created a means of identifying ancient taxa from marine sediments over geological timescales.

In the last decade, marine palaeo-research has been reinvigorated by genomic techniques that enable the analysis of ancient DNA (aDNA) molecules from long-dead organisms. Past prokaryotic and eukaryotic plankton communities have been reconstructed using aDNA sequencing approaches (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2008; 2013; Bissett et al., 2005; D'Andrea et al., 2006; Boere et al., 2009; Lejzerowicz et al., 2013; Hou et al., 2014; Randlett et al., 2014; More et al., 2018). These studies have confirmed that phyto- and zooplankton are good targets for aDNA-based studies, while also being particularly relevant for ecosystem-climate reconstructions. It is reasonable to assume that obligate photosynthetic plankton (phytoplankton) and/or zooplankton do not survive and reproduce after burial in deep sediments, and represent uncommon lab contaminants (e.g., Leizerowicz et al., 2013; Hou et al., 2014; More et al., 2018). aDNA analysis has shown that even after their voyage through the water column plankton-derived particles that had settled on the seafloor still reflect the global biogeographic patterns of living species (Morard et al., 2017). Notably, the reconstruction of past marine communities using aDNA is possible using just a few grams of sediment, facilitating sediment sample collection, transport and storage for the purpose of aDNA analyses.

The marine aDNA archive extends back to the Pleistocene, as shown by studies of genomic, 18S rRNA gene markers targeting various eukaryotic groups. For example, aDNA has been recovered from various eukaryotic plankton taxa in 43,000-year-old Arabian Sea sediments (More et al., 2018). Taxon-specific approaches targeting small, degraded DNA fragments allowed the retrieval of foraminiferal aDNA from ~800-year-old fjord sediments (Pawlowska et

al., 2014) and ~30,000-year-old deep-sea sediments with the additional benefit of enabling the detection of rare taxa (Lejzerowicz et al., 2013). However, if a targeted approach is used, the origin and fate of the DNA in guestion must be carefully considered, especially for very old claims, such as the retrieval of 1.4 million years old DNA from chloroplasts (Kirkpatrick et al., 2016), which are subject to kleptoplasty (sequestration and maintenance of chloroplasts; Bernhard and Bowser, 1999). While Kirkpatrick et al. (2016) used thorough contamination control, the finding of >1 million years old DNA remains to be replicated using adapted control measures (e.g., sediment core decontamination and metagenomic sequencing, as outlined in this review). Most studies to date have involved well-dated sediment records and used a cross-validation through paired analysis of aDNA and diagnostic lipid biomarkers as well as geochemical proxies (e.g., Coolen et al., 2006; 2009). Yet, the absence of modern contaminants in analysed samples was not always verified through sequencing analysis of negative sampling and/or extraction controls, which is crucial for the interpretation of aDNA data even if DNA values measured following amplification (by polymerase chain reaction; PCR) are zero (as DNA may be present but simply be below detection limit). To date, the oldest authenticated aDNA records are from ~400,000-year-old cave sediments (Willerslev et al., 2003) and ~700,000-year-old permafrost mammal bones (Orlando et al., 2013).

144

Despite technologies now being available to rapidly extract and sequence aDNA from marine sediments, and the enormous potential of aDNA research to improve palaeo-oceanographic, -ecosystem and -climate models, marine sedaDNA studies remain scarce. This is mainly due to the difficulties and high costs associated with deep-sea aDNA material, for which rarity and hence value justify the deployment of state-of-the-art practices. We review current problems and pitfalls incurred in ship-board sediment sampling, laboratory processing and computational analysis. We suggest solutions to improve sediment coring and sampling strategies so that aDNA research can become a well-established staple in marine biogeosciences. The focus is on sampling protocols within the framework of the International Ocean Discovery Program (IODP) "Biosphere Frontiers" theme, which is dedicated to

understanding sub-seafloor communities. Our guidelines for deep-ocean sedaDNA isolation are applicable to any low-biomass and setting, including permafrost regions or planet Mars.

Definitions and pre-sampling considerations

2.1 Ancient DNA (aDNA), sedimentary ancient DNA (sed aDNA), and palaeo-environmental DNA (PalEnDNA)

aDNA research involves the biomolecular study of non-modern genetic material preserved in a broad range of biological samples (Shapiro und Hofreiter, 2012; Table 1). When an organism dies, mechanisms that ensure DNA repair in the cell are no longer active, leaving the DNA to degrade over time (Allentoft et al., 2012). Eventually, DNA from dead specimens becomes ancient. aDNA is highly fragmented to an average length of less than 100 base pairs (bp), for example, an average length of 48 bp has been determined in the oldest microbial genome assembled to date - from a 48,000-year-old Neandertal (Weyrich et al., 2017). aDNA is affected by post-mortem oxidative and deamination damage, such as thymine enrichment at the end of DNA sequences (Briggs et al., 2007; Ginolhac et al., 2011). Both fragmentation and damage patterns can be used to authenticate aDNA, and damage can even be used to predict its age in certain scenarios (Kistler et al., 2017).

aDNA research mainly focuses on organismal DNA extracted from some tissue remnants of a wide range of single specimen (e.g., tooth, bone, hair, eggshell, feather). In contrast, environmental DNA (eDNA) focuses on disseminated genetic material found in environmental samples such as soil, sediment, water and ice (Taberlet et al., 2012a). Such samples contain complex mixtures of DNA from taxonomically diverse organisms (e.g., bacteria, archaea, plants, animals). In addition to aDNA and eDNA, the term sedimentary aDNA (sedaDNA) has been coined to describe aDNA that is exclusively recovered from sediments (Willerslev et al., 2003; Jørgensen et al., 2012). The term fossil DNA has also been used in pioneer studies where sedimentary plankton DNA and lipid biomarkers (i.e., "chemical fossils") derived from the same historical source organisms were analysed in parallel to validate the ancient DNA

results (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004). To a lesser degree, 'palaeo-environmental DNA' (PalEnDNA) has also been used to describe disseminated genetic material in a broad range of ancient environmental samples including sediments as well as soil, paleosols, coprolites, water and ice (Rawlence et al., 2014). Modern sequencing technologies and bioinformatic tools ease the analysis of these complex environmental aDNA samples and of the biological responses to human or climate change, with investigations having focussed on terrestrial settings (Jørgensen et al., 2012; Giguet-Covex et al., 2014; Willerslev et al., 2014; Alsos et al., 2015; Pansu et al., 2015). In this review, we use the term 'marine sedaDNA', which specifically refers to aDNA recovered from ocean sediments. A detailed list of terms frequently used in aDNA research and their definitions is given in Table 1.

192

441 193 2.2 Authenticity of marine aDNA

443 194 2.2.1 Environments favourable for marine aDNA preservation444

Organic-rich sediments deposited in the deep, cold ocean under stratified and anoxic conditions present several favourable characteristics for the preservation of aDNA (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2013; Boere et al., 2011). Oxidative and deamination damage is reduced in the absence of oxygen (Lindahl, 1993). The absence of irradiation (Lyon et al. 2010), the generally low temperatures (Willerslev et al., 2004), and the high concentration of borate (Furukawa et al., 2013) further contribute to DNA preservation. Additionally, the typically high mud content of deep-sea sediment offers a particularly well-suited matrix for the preservation and accumulation of DNA (Torti et al., 2015). The high surface:volume ratio of extremely small clay minerals in clay-rich sediments offer a high adsorption surface onto which DNA molecules can bind and remain sheltered from the activity of nucleases (Dell'Anno et al., 2002; Corinaldesi et al., 2008, 2011, 2014, 2018). However, although the above listed properties have been reported to positively impact on DNA preservation, locations with other characteristics that seem less ideal might still be suitable for

aDNA research. For example, well-oxygenated Atlantic deep-sea sediments and sand-rich coastal paleo-tsunami deposits have been used to extract and characterise aDNA from foraminifera (Lejzerowicz et al., 2013; Szczuciński et al., 2016, respectively). In conclusion, the preservation of aDNA in marine settings appears to be variable depending on regional environmental characteristics with less favourable to favourable conditions retaining aDNA between a few thousand to, at least, a few ten thousand years. More research is needed to estimate how far back in time authentic marine sedaDNA can be detected, which could be achieved, for example, by investigating sediment records from various deep seafloor locations over geological timescales.

217

496 218 2.2.2 Marine *seda*DNA degradation and fragment length 497

18S rRNA gene fragments of past dinoflagellates, diatoms, and haptophytes as long as 500 bp in length have been amplified and sequenced (e.g., Coolen et al., 2004), after DNA was isolated from sediments exhibiting characteristics favourable for aDNA preservation (Section 2.2.1). Up to 20% of genomic DNA from haptophyte algae has been reported to still be of high molecular weight after 2,700 years of deposition in Black Sea sediments, and the ratio between 500 bp-long haptophyte 18S rDNA fragments and the concentration of haptophyte-diagnostic long-chain alkenones did not vary substantially for at least 7,500 years after deposition, indicative that both types of biomolecules from the same plankton source were equally well preserved (Coolen et al., 2006). This contradicts the generalised view that aDNA is characterised by fragment lengths of <100bp. Nevertheless, studies that report the recovery of exceedingly long aDNA fragments should be viewed with scepticism especially in the absence of sampling and extraction controls, where there is no indication on whether the data might reflect modern signals. However, to date, no data are available on average aDNA fragment length for deep-sea sediments, which could be obtained from metagenomic shotgun sequencing. Gaining insights into the latter should be the focus of future research as this

information will ultimately help to choose the most suitable and efficient aDNA extraction and sequencing library preparation techniques for degraded sedaDNA (see Section 3.5).

2.2.3 Contamination sources by modern DNA

Key to the viability of marine sedaDNA studies is the capability to differentiate between true ancient signals (representative that lived at a particular time-period in the past) and modern contamination (introduced through the sampling and analysis process, or naturally by the environment). Microorganisms and their DNA coat nearly every part of this planet (Weyrich et al., 2015) and a recent study has shown that slow-growing microbes even occur in marine sediments up to 2.5 km deep (Inagaki et al., 2015). The DNA of active deep-biosphere organisms is likely to blur the aDNA signal, as would be the case for microorganisms introduced to ancient sediment samples through the drilling process (see Section 3.2). Moreover, microbial DNA is widely present in laboratory environments and reagents, including in those labelled DNA-free (Salter et al., 2014). If PCR is applied to amplify aDNA, the DNA from modern microorganisms may amplify preferentially over damaged, fragmented aDNA and obscure the true aDNA signals within the sample (Willerslev and Cooper, 2005). Therefore, utmost care must be taken to control and account for contaminants and background DNA throughout the whole process of collecting, processing and sequencing aDNA, e.g., by including negative controls in every step of the analysis process (Fig. 1).

2.2.4 Intracellular vs. extracellular DNA

One approach to separating ancient from modern DNA in sediments has been to differentiate between intracellular and extracellular DNA. Intracellular DNA is defined as DNA contained within living cells, structurally intact dead cells and intact resting stages (e.g., bacterial spores, or other cyst-forming plankton). Extracellular DNA is defined as DNA that has been released from cells and preserved for substantial periods of time through mineral and/or microfossil
adsorption or within clay aggregates (Levy-Booth et al., 2007). Extracellular DNA represent an archive of taxa that were autochthonous at the time of deposition (Cornaldesi et al., 2008; 2011). DNA extraction methods have been developed to target either of these DNA fractions (Corinaldesi et al., 2005; Taberlet et al., 2012b; Alawi et al., 2014). However, it is difficult to prove at what time in the past the organism died, and its DNA became extracellular. Furthermore, the extra- and intracellular DNA pool may not always be clearly distinguishable as genetic material present in the environment might have been taken up by competent bacteria (Demanèche et al., 2001; Dell'Anno et al., 2004) and even by eukaryotes (Overballe-Petersen and Willerslev, 2014). It is also important to note that if only the extracellular pool was to be studied, the paleontological value of dormant yet ancient DNA (e.g., from cysts deposited far back in time) will be lost. Due to these issues, extraction techniques targeting only the extracellular portion are currently not recommended for marine sedaDNA studies. Alternatively, bioinformatics approaches that can clearly identify ancient signals (Ginolhac et al., 2011; Kistler et al., 2017) are preferred options for authenticating aDNA sequences (Jónsson et al., 2013).

275

626 276 2.2.5 Vertical DNA movement in marine sediment cores

Three major processes are associated with the vertical movement of DNA in sediment cores: DNA leaching, bioturbation and migration. Bioturbation is a biomechanical process that results in the multidirectional re-organisation of sediments primarily in the upper 10 cm of the sub-seafloor (Boudreau, 1998). DNA leaching is a passive process describing the downward movement of DNA across sediment layers (Haile et al., 2007), without a lowermost boundary. The mixing of sediment layers, and consequently of modern and ancient DNA, can lead to misinterpretations of genomic data. Experimental trials to assess DNA leaching through terrestrial sediments exist (Ceccherini et al., 2007; Poté et al., 2007), with initial results indicating that the extent of leaching depends on the taxonomic source (Haile et al., 2007). In Previous studies from lake sediments have shown that leaching is not a factor (Parducci et

al., 2017), and in seafloor sediments DNA it seems to play a minor role as aDNA and lipid biomarkers derived from the same microbial source were found to co-exist or to be both below detection limit in marine sediments just centimetres apart (Boere et al., 2009; Coolen et al., 2006; 2009; 2013). In the latter studies it therefore appears that the pore size of the laminated sediments was too small for intracellular DNA to migrate, and that all extracellular plankton DNA was adsorbed to the mineral matrices. Recent studies showing upwards vertical pore fluid movement also demonstrate the potential for vertical migration of relict or intact DNA within sediments (Torres et al., 2015), and should likewise be considered. Vertical migration of relict or intact DNA is expected to be especially a concern in sediments with micron scale pore sizes and/or a low clay content and a poor capacity to adsorb extracellular DNA. Future experimental research is required to quantify DNA leaching and/or migration through marine sediments, acknowledging the challenge of replicating a complex environmental system varying widely in hydrodynamics and sediment type.

680 301 2.2.6 Cross validation of marine aDNA and palaeo-environmental proxies681

In addition to using proper contamination controls, downcore changes in past plankton compositions inferred from marine sedaDNA can be validated through a complementary analysis of independent biological (e.g., microfossils, lipid biomarkers) and geochemical proxies (indicative of the prevailing paleoenvironmental conditions) (Boere et al., 2009; Coolen et al., 2004; 2006; 2013; Hou et al., 2014; More et al., 2018). The most detailed comparison between past ecosystem changes using marine sedaDNA and the paleo-depositional environment to date has been performed on Holocene sediments from the permanently anoxic and sulfidic Black Sea (Coolen, 2011; Coolen et al., 2006; 2009; 2013; Giosan et al., 2012; Manske et al., 2008). The anoxic and laminated sediments of this semi-isolated sea are devoid of bioturbation and form high-resolution archives of climate-driven hydrological and environmental changes (Calvert et al., 1987; Hay, 1988). Episodes of postglacial sea-level rise ~9,000 years ago (Major et al., 2006) and sea surface salinity increase ~5,200 years ago

(Giosan et al., 2012) have been associated based on sedaDNA with freshwater to brackish/marine planktonic community transitions (Coolen et al., 2013). For example, the gradual increase in sea surface salinity coincided with the arrival of marine copepods (Calanus euxinus), which could only be identified through sedaDNA analysis (Coolen et al., 2013) as these important zooplankton members generally do not leave other diagnostic remains in the fossil record besides difficult to distinguish resting eggs (Marcus et al., 1996).

Vice versa, paleoenvironmental conditions inferred from more traditional geochemical and micropaleontological proxies have been verified from parallel sedaDNA analysis. By way of example, Black Sea sediments deposited since the last 2,500 years contain coccoliths from the calcified marine haptophyte Emiliania huxleyi whereas haptophyte-derived diagnostic long chain alkenones in the absence of coccoliths were abundant in up to 7,500-year-old sediments (Hay et al., 1991; Coolen et al., 2009). Paired analysis of long-chain alkenones and sedaDNA analysis (18S rRNA) revealed that the first haptophytes that colonized the Black Sea \sim 7,500 years ago were initially a mixture of *E. huxleyi* and a highly diverse suite of previously overlooked non-calcified haptophytes related to alkenone-producing brackish Isochrysis species. E. huxleyi remained the only alkenone producer after 5,200 years BP when salinity reached modern day levels (Coolen et al., 2009). It was concluded that while calcite dissolution prevented the preservation of *E. huxleyi* coccoliths in sediments older than 2,500 years ago, their molecular fossils (DNA fragments and long-chain alkenones) survived much longer and showed that in reality this marine haptophyte entered the Black Sea already shortly after the marine reconnection which occurred ~9,000 years ago (Coolen et al., 2009; 2013). Even more detailed analyses of E. huxleyi (targeting 250-bp-long mitochondrial cytochrome oxidase subunit I; mtCOI) indicate a series of transitions from possibly low-salinity to high-salinity adapted strains of *E. huxleyi* in the Black Sea (7.5 – 5.2 ka BP), to a different suite of strains during the most marine stage (5.2 – 2.5 ka BP), returning to low salinity strains after 2.5 ka BP. The latter transition coincides with the onset of the cold and wet Subatlantic climate (Coolen, 2011) when the Black Sea experienced re-freshening from 32 to 18 ppt (Van der Meer et al., 2011; Giosan et al., 2012; Coolen et al., 2013). The analysis of similar length

preserved sequences of viral major capsid protein (mcp) genes revealed a continuous co-existence of E. huxleyi and coccolithoviruses in the Black Sea since the last 7,000 years and that the same *E. huxleyi* strains, which occurred shortly after the marine reconnection returned with the same viral strains after the re-freshening during the Subatlantic climate thousands of years later (Coolen, 2011). More recently, detailed sedimentary 18S rDNA profiling targeting the shorter (130 bp) V9 region revealed that long-term expansion of past oxygen minimum zones (OMZ) created isolated habitats for unicellular eukaryotes (protists) capable of sustaining oxygen depletion either by adapting a parasitic life cycle (e.g., apicomplexans) or by establishing mutualistic connections with others (e.g., radiolarians and mixotrophic dinoflagellates). These examples show that sed aDNA can be used to identify biological sources of lipid biomarkers, to verify the reliability of paleoenvironmental information inferred from more traditional proxies, and to reconstruct past ecosystems at multiple trophic levels.

The reconstruction of subseafloor prokaryote communities is more complicated since the DNA may be derived from living intact cells in the sediment (see Section 2.2.4). However, 16S rRNA gene profiling from total (intracellular and extracellular) sedimentary DNA has revealed useful insights into sub-seafloor microbial indicators of the palaeo-depositional environment. For example, microbiomes in 20 million years-old coalbeds underlying 2 km of marine sediments were shown to resemble forest soil communities (Inagaki et al., 2015). Variations in bacterial communities found in Baltic Sea sediments have been linked to palaeo-salinity changes (Lyra et al., 2013). Orsi et al. (2017) showed that the genomic potential for denitrification correlated with past proxies for oxygen minimum zone strength in up to 43 ka-old Arabian Sea sediments. The presence of fermentation pathways and their correlation with the depth distribution of the same denitrifier groups, however, suggests that these microbes were possibly alive upon burial, but low postdepositional selection criteria may explain why they nevertheless formed a long-term genomic archive of past environmental conditions spanning the last glacial-interglacial cycle (Orsi et al., 2017). Further studies are required to determine as to how far the persistence of this phenomenon extends with increased depth in

the biosphere. Nevertheless, these examples show that the complementary analysis of marine
 *seda*DNA-inferred past plankton composition and biological and geochemical proxies is a
 powerful tool to reconstruct palaeo-environments.

3 aDNA research in the International Ocean Discovery Program (IODP) framework

374 3.1 IODP infrastructure

IODP is the global community's longest marine geoscience program, operating for 51 years. Its scientific strategy has been to answer globally-significant research questions about the Earth's structure, and the processes that have, and continue to, shape our planet and its climatic history. More recently, additional focus has been cast on biological evolution and limits, particularly in the sub-seafloor environment, under the new Biosphere Frontiers theme (Bickle et al., 2011). This theme has been inspired by the rapidly evolving knowledge and technical capabilities across the multiple merging fields of molecular biology, microbiology, organic and inorganic geochemistry, and micropalaeontology and includes scope for the integration of marine *seda*DNA research. IODP is currently serviced through three platforms, the United States of America's research vessel JOIDES Resolution, Japan's Chikyu and by the European consortium's Mission Specific Platforms (MSP). In recent years, the laboratories and storage facilities on the ships were modified, or purpose built, to ensure addressing Deep Biosphere questions was possible. As a result, the latest IODP decadal plan considered options to enable access to uncontaminated samples, their processing and preservation on-board. The latter has led to new coring technologies such as the Half-Length Advanced Piston Corer (HLAPC) allowing a coring depth extension of the conventionally used Advanced Piston Corer (APC), and the use of chemical contamination tracers such as perfluorocarbon tracers (PFTs) (see Sections 3.2 and 3.3, respectively). Particularly useful to aDNA studies may be the development of remotely controlled instruments allowing sediment sampling at ambient pressure (MeBo; Pape et al., 2017) and a rock-drilling device (RD2; Früh-Green et al., 2015).

Notable achievements under the new Deep Biosphere theme include the finding of millions of years old active microbial community from coal beds buried at 2.5 km below the seafloor (Inagaki et al., 2015), and the preservation of an imprint of the Chicxulub impact catastrophe (Cockell et al., 2017). A lot remains to be understood before this theme and its challenges are satisfactorily addressed and it is clear that scientists engaging in Biosphere Frontiers will push methodological, technological and multidisciplinary studies.

401

402 3.2 Coring strategies suitable for marine *seda*DNA retrieval

Ideally, marine sedaDNA sampling involves multiple spatial replicates to ensure that the biodiversity captured is representative of a particular site and time period. However, the ability to collect multiple deep ocean sediment cores to characterise palaeo-plankton is hindered by high costs and logistical issues associated with drilling operations. Thorough planning and collaboration to maximise the use of expensive expeditions and precious deep ocean sediment core material are indispensable in marine sedaDNA research. To date, several coring strategies exist that differ in machinery as well as sub-seafloor depth that can be reached, and their application is largely dependent on which drilling platform is used (ship or MSP), and what type of sediment is to be cored/drilled (soft sediment or hard rock). This review concentrates on describing piston coring strategies, which are generally better suited to retrieve sediments for aDNA analysis due to relatively low contamination risks. Rotary core barrel systems are required to drill some sedimentary and most igneous rocks, and as they operate with drill-heads and drilling fluids (e.g., seawater) the risk of contamination is dramatically increased (see Section 3.3, Fig. 2).

Piston coring, referred to as Advanced Piston Coring (APC) or Hydraulic Piston Coring System (HPCS), is used to sample unconsolidated or poorly consolidated (i.e., softer) marine sediments. Briefly, these instruments are pushed into the sediment while a piston inside the core pipe creates a vacuum so that the collected sediment remains in the pipe during retrieval.

Sediments obtained by piston coring preserve laminated sediments well, are associated with a relatively low risk of environmental contamination and the preferred method to obtain sediments for aDNA analysis (Lever et al., 2006; Smith et al., 2000; More et al., 2018; Fig. 2). Using the piston coring approach, a successive recovery of marine sediments has been achieved to a depth of ~490 m below seafloor (mbsf) (Tada et al., 2013). If only a few metres long (soft) sediment cores are required, gravity-based coring systems, such as a Kasten-, or a Multicorer provide a good alternative (Coolen et al., 2004; 2009). Progress has also been made towards modifying piston coring instruments so that contamination-free sampling is possible, at least for short (<4 m) sediments (Feek et al., 2011). For example, the 'Mk II sampler' uses an air and water-tight piston coring system with a pointed aluminium head, preventing contamination of the sampled sediment from smearing or water infiltration (Feek et al., 2011). However, to date this corer has only been used in shallow waters, thus it remains to be tested whether use of such an instrument would be feasible during coring operations in deeper waters and which modifications may be required.

435

436 3.3 Contamination tracing during coring

Deep ocean coring requires the lowering of coring instruments through hundreds to thousands of metres of seawater before the seafloor is reached, hence exposes the instruments to contamination by modern DNA (Fig. 1). This unavoidable issue has called for the development of methods for environmental DNA contaminant tracing during coring operations. One approach has been to compare biological material found in the contaminating source material (e.g., seawater, drilling fluid) to that of sub-seafloor communities, and to exclude all signals occurring in either from the final analyses (e.g., Expedition 330 Scientists, 2012; Cox et al., 2018). This approach can be implemented for either piston coring or rotary core barrel drilling, provided other sampling constraints associated with these coring systems can be accommodated. However, this procedure does not account for potential "false negative" DNA signals that might indeed occur in both ancient sediments and modern contaminating material.

However, in some cases, the microbial community structure of modern contamination (e.g.,
drilling "mud") can be resolved, particularly if functional genes are being targeted in sediment
samples (Cox et al., 2018).

Another approach has been the introduction of fluorescent microspheres, which are particulate tracers of 0.2 - 1.0 mm in diameter physically mimicking contaminating organisms. The microspheres have been introduced near the coring head, i.e., where the sediment enters the corer and coring pipe, spreading across the outside of the core (inside the pipe) while drilling, simulating particle movement (Expedition 330 Scientists, 2012; Orcutt et al., 2017). Microscopy has been used to quantify the number of microspheres at the periphery and in the centre of the core to assess contamination (Expedition 330 Scientists, 2012; Orcutt et al., 2017). Similar methods using other perfluorocarbon tracers (PFT's) includina perfluoromethylcyclohexane (PMCH) have been developed for the USA drilling vessel JOIDES Resolution (Smith et al., 2000) already in the early phases of IODP. Later, PMCH-based contamination tracing has also been applied during riser drilling on the *Chikyu* (Inagaki et al., 2015). During the IODP Expedition 357 (Atlantis Massif Serpentinization and Life), the PMCH tracer delivery system was further developed to fit the seafloor-based drilling systems MeBO (Pape et al., 2017) and RD2 (Früh-Green et al., 2015) (see Section 3.1). PMCH is highly volatile which can lead to false positive measurements in uncontaminated samples, therefore, more recent investigations during IODP expeditions have moved to the use of the heavier chemical tracer perfluoromethyldecalin (PFMD, 512.09 g mol⁻¹) (e.g., Fryer et al., 2018).

- **469**

470 3.4 Subsampling after core acquisition

471 Key to enable interdisciplinary sampling and correlations of independent measurements is a
 1054 472 detailed sampling plan, specifying sample types as well as the sequence in which these
 1056 473 samples are to be collected. Sampling for aDNA is time-sensitive (to avoid exposure to

oxygen, high temperatures and contamination), thus should be conducted immediately after core retrieval on an untreated core-half (i.e., prior to any type of scanning such as by X-Ray). The laboratory in which subsampling for aDNA is carried out should be clean and workbenches and surfaces decontaminated with bleach (considered to be most efficient at removing contaminating DNA) and, if applicable, ethanol (to prevent corrosion of metal after bleach-treatment). Detailed records on whether molecular and amplification techniques (i.e., PCR) have been employed in on-board laboratories and which organisms were targeted should be kept on record within IODP to ensure sampling for aDNA can be spatially separated from these laboratories. While most vessels are not currently equipped for complete DNA decontamination, such records may be invaluable for post-expedition aDNA data analyses.

Two sampling approaches are the most feasible on board IODP ships and MSP's: cutting whole round cores or direct subsampling after core cutting into 1.5 m long sections. The choice of approach needs to be made on a case-by-case basis, and depends on the specific facilities, consumables, chemicals and researcher expertise available during each mission. It is recommended that cutting or subsampling are performed under filtered air, e.g., a portable type of a horizontal laminar flow clean air system as described in Morono and Inagaki (2016). Additionally, subsampling should be conducted from the bottom to the top of the core (ancient to modern), using clean (e.g., bleach and ethanol treated) sampling tools for each sample to avoid any form of cross-contamination. Most commonly, soft sediments acquired by piston coring are used for sedaDNA analyses, therefore, we focus on subsampling procedures of the latter here, subsequently briefly outlining sampling recommendations for hard rock material.

If the sampling decision is in favour of whole round core samples, the newly acquired core sections are cut into 5 - 50 cm sections (preferably under cold conditions), which should be packed in sterile bags or wrap and transferred directly into a fridge or freezer. Although quick and providing a large amount of material for later sub-sampling, this approach has the

disadvantage that a lot of freezer space is required, and post-expedition transport can be costly due to the high sample volume and weight.

An alternative to whole round core cutting is direct subsampling immediately after core cutting, either directly from the centre of the top or bottom of each unsplit core section (usually 1.5 m long), or after or splitting the core sections into two halves. In any case the core liner should be cleaned with bleach to remove potential contamination from seawater, and core cutters and splitting-wires, usually metal and sensitive to bleach should be cleaned with ethanol. If sampling from uncut sections, surface material (~0.5 cm) should be removed with bleach and ethanol-treated scrapers before sampling, which is most easily done with sterile cut-tip syringes, placed into sterile plastic bags and stored frozen.

If sampling is undertaken on split core halves, simultaneous visual sedimentological assessments are possible that enable more targeted sampling at specific depths of interest. Using DNA-clean tools, the top 0.5 cm of the core surface should be scraped off perpendicular to the core pipe using sterile scrapers (from bottom to top of the core). Alternatively, the core half to be sampled can be covered with plastic wrap, followed by powdered dry ice, which will result in the top 0.5 cm to become solid frozen. After 5 min, the frozen outer sediment layer can be lifted at one edge with a sterile scalpel creating a contaminant-free surface, from which subsamples can be taken (Coolen and Overmann, 1998). Then, subsampling should be undertaken using sterile (e.g., gamma-irradiated) plastic syringes or centrifuge tubes (e.g., capacity of ~15 mL). Cut-tip syringes have the advantage that more sediment can be collected as no pressure builds up when pushing the syringe into the sediment (the filled syringe should be placed into a sterile plastic bag immediately, e.g., Whirl-Pak[®]). Alternatively, sterile centrifuge tubes can be used as is to collect 'plunge-samples', usually providing ~1 - 3 cc of sediment material. The outside of the 'mini-cores' should be cleaned with bleach and placed into sterile plastic bags to avoid cross-contamination between samples. For subsamples, storage at -20 °C or -80 °C is recommended as freezing has been shown to facilitate

phytoplankton cell-lysis during DNA extractions (Armbrecht et al., in prep.). Sub-samples can also be collected by transferring a small amount of sediment into a sterile microcentrifuge tube using clean metal or disposable spatulas (particular care needs to be taken to avoid cross-contamination when using the same sampling tool for different samples). The latter approach may be a good solution when only a few small samples are required, e.g., to supplement other scientific questions of an ongoing expedition. For replication purposes it is recommended that duplicate samples are taken at each depth.

If the material is hard rock or similar, subsamples are most easily collected from whole round or split cores. The same decontamination procedures as outlined above should be considered throughout the subsampling procedure (i.e., decontamination of work-surfaces and sampling tools with bleach and ethanol, sampling under cold conditions and filtered or low air-flow. packing of samples into sterile bags before storage). A de-contaminated metal cutter or a hammer and chisel are best used to remove the outer layer of the exposed sediment, at least at those depths where subsampling is anticipated.

544

545

546 3.5 Marine aDNA sample processing and analysis

Marine aDNA samples should be processed in a specialised aDNA laboratory to prevent contamination with modern DNA. Such a laboratory is generally characterised by creating a low-DNA environment, with a clear separation of no-DNA (e.g., buffer preparation) and DNA-containing (e.g., DNA extraction) workflows, regular and thorough sterilisation procedures, positive air pressure, and protective clothing of the analyst (lab coat/suit, gloves, facemask, visor). Details on optimised laboratory set-up, techniques and workflows have been reviewed before (Cooper and Poinar, 2000; Pedersen et al., 2015). The introduction of aDNA samples into such facilities is relatively straight-forward, as the outer packaging and surface of the sample can be easily sterilised (e.g., using bleach and/or UV).

As on-board subsampling, DNA extractions should be carried out from the most ancient to most recent samples, to prevent modern DNA indivertibly being carried to ancient samples. The amount of sediment used in DNA extractions should capture a representative picture of the biota present in a sample. Despite suggestions that bulk DNA extractions from up to 10 g of material can improve detection of taxa and better represent the diversity of the area of interest (e.g., Taberlet et al., 2012b; Coolen et al., 2013), using such large volumes of sediment is often not practical and can be quite costly in this field where typically many samples are processed. Instead, numerous studies have used replicate extractions of a smaller sample size (e.g., 0.25 g; Table 2) to increase the likelihood of yielding aDNA from rare taxa, as well as successive DNA extractions from a single 0.25 g sediment sample (e.g., Willerslev et al., 2003). Post-extraction, the use of RNA-probe based enrichment approaches coupled with shotgun sequencing, a common technique in aDNA research, may furthermore drastically improve the detection of rare taxa (Horn et al., 2012).

While it would be ideal to find one extraction method that will yield the best quality data and enable standardisation across ancient marine sediment studies, the type of sediment or target organisms may require some adjustments of standard protocols (Hermans et al., 2018). Extraction methods can bias the diversity observed due to differential resilience of taxa to the cell-lysis method (Zhou et al., 1996; Young et al., 2015) and DNA binding capacities of different soil and sediment types (Lorenz and Wackernagel, 1994; Miller et al., 1999). As a result, the aDNA extraction efficiency can be poor and the detection of an aDNA signal lost. To date, a variety of commercial kits have been successfully used to isolate aDNA from sediments (Table 3). To further increase the yield of very low amounts of highly fragmented aDNA several studies have been utilising extraction protocols that include a liquid-silica DNA binding step (e.g., Brotherton et al., 2013 and Weyrich et al., 2017 for non-sediment samples) or ethylenediaminetetraacetic acid (EDTA) cell-lysis step (Slon et al., 2017; utilising cave-sediment samples). Other studies have replaced the Bead Solution in the DNeasy extraction kits (Qiagen; Table 2) by 1M sodium phosphate pH 9 - 10 and 15 vol% ethanol to efficiently

release clay-adsorbed DNA, and to prevent DNA released from intact cells from adsorbing to
 clay minerals during the extraction (Direito et al., 2012; Orsi et al., 2017; More et al., 2018).
 The latter is especially important when working with low organic, high carbonate rocks and
 sediments (Direito et al., 2012).

Two points are particularly important to prevent contamination during extractions. Firstly, as with the samples themselves, it is crucial that all tools and reagents undergo rigorous sterilisation procedures before utilisation, such as by bleach and UV treatment of any packing material before entering ancient DNA facilities. Secondly, blank controls should be included for every step of the laboratory process, i.e., extraction/library preparation blank controls, sequencing and bioinformatic analysis controls (Ficetola et al., 2016). Controlling and monitoring contamination is particularly important when analysing bacterial diversity due to their presence in all laboratory environments and reagents (Weyrich et al., 2015). Optimally, extraction blanks are included in a 1:5 ratio (Willerslev and Cooper, 2005), with a bare minimum of one control with each set of extractions. Aside from bioinformatically removing any organisms determined in such extraction blanks from the investigated sample material, the contaminants should be tracked within a laboratory, and contaminant lists published alongside the data for reasons of data transparency and authenticity.

Post-extraction, many marine aDNA studies have employed methods that are routinely used for modern marine DNA analysis. Although modern DNA work is not exempt from precautions, there are several issues with aDNA work: (i) as outlined in Sections 2.1. and 2.2. aDNA is highly fragmented and degraded and any small amount of modern DNA present in the sample (from reagents, labs or living cells that were present in the sediment sample) will amplify over the aDNA; (ii) sampling and extraction controls are often not included in the sequencing sample; (iii) PCRs are often inhibited due to the co-extraction of humic substances, pigments and heavy metals along with DNA (Webster et al., 2003 and references therein), requiring adequate removal of these impurities (e.g., Coolen et al., 2009); (iv) successful PCRs are prone to bias due to random amplification in reactions that contain very low amounts of DNA

template, thus PCR drift (stochastic variation in the first PCR cycles) can occur (Wagner et al., 1994; Polz and Cavanaugh, 1998; Webster et al., 2003). More importantly, the number of, e.g., bacterial 16S and eukaryotic 18S rRNA operons can greatly vary between per genome and per cell and can cause a biased representation of the past community structure (e.g., Klappenbach et al., 2001). The above biases can be reduced and the detection limit lowered when PCR approaches selectively, amplifying particular groups of organisms indicative of environmental changes, are paired with independent geochemical proxies (e.g., Coolen et al., 2004; 2006; 2009). However, we strongly advocate for the use of strict aDNA methodologies and facilities in order to achieve the generation of authentic marine sedaDNA data, following the guidelines in this review.

Shotgun metagenomics are currently widely accepted and the least biased method to analyse the broad diversity of ancient environmental samples (e.g., Slon et al., 2017). Although only a small portion of the generated sequence data might be attributable to the ancient organism in question (Morard et al., 2017), next generation sequencing (NGS) generates large quantities of data that enable meaningful statistics, with the additional benefit of preserving the relative proportion of detected taxa. To analyse aDNA sequence data, robust bioinformatic pipelines (e.g., Paleomix, Schubert et al., 2014) have been developed and are available for the application to marine sedaDNA, integrating damage detection algorithms (e.g., Ginolhac et al. 2011; Kistler et al., 2017) that enable the distinction between ancient and modern signals. Determining the extent of cytosine residues deamination (C to T and G to A, Weyrich et al. 2017) should also be considered to assess authenticity of aDNA sequences, especially when the data was generated from mixed communities, such as from marine sedaDNA. It is furthermore crucial to carefully screen sequencing data for any low-complexity reads, which may get incorrectly assigned to taxa during alignments against genetic databases, as well as ensuring that taxonomic assignments in the database of choice are correct. Bioinformatic pipelines removing such misidentification-derived errors do not currently exist and should be the focus of future research, as well as the comparison of shotgun and amplicon marine

*seda*DNA data to accurately determine biases and analysis strategies best suited to this newdiscipline.

4 Future marine aDNA sampling considerations

⁾ 641 4.1 Equipment and installations required aboard IODP platforms

642 In addition to the recent upgrades and investments IODP has made to enable sediment
 643 sampling suitable for Biosphere Frontiers theme (Section 3.1) we suggest the following items
 644 to facilitate contamination-free sediment sampling and the tracing of contaminants.

(i) Laboratories in which sampling for aDNA is undertaken should be carefully chosen to minimise contamination. Rapid transport of the core from the deck to the lab, thorough decontamination measures (see Section 3.4), and easy access to fridges or freezers are crucial. While a positively air-pressured lab (standard for aDNA laboratories) may not be feasible, air-flow can be reduced by keeping all doors shut and fans off during aDNA sampling. Contamination by human DNA from analysts can be greatly reduced by wearing adequate protective clothing (gloves, facemask, freshly laundered/disposable lab coat/overall). A detailed record or any molecular work undertaken in ship-board labs should be maintained by IODP, and under no circumstances should aDNA sampling be conducted in labs used previously to run PCRs (see Section 3.4). Alternatively, the equipment of a shipping container exclusively dedicated to aDNA sampling could be a good solution to spatially separate aDNA sampling aboard drilling-platforms and installation could be as required during expeditions that involve aDNA sampling.

(ii) DNA is likely to behave quite different from chemical tracers and microspheres currently
used to track contamination. With constantly advancing technologies in the field of synthetic
biology, the possibility arises to develop 'non-biological DNA' with known sequences. Such
non-viable DNA tags are already used in the oil industry, where a different tag is introduced

into oil pipes monthly to monitor when and where leaks occur (Forecast Technology Ltd). Using such tags during seafloor coring operations instead of chemical tracers should enable a precise assessment of contamination by environmental DNA, where bioinformatics pipelines could be adjusted to detect and quantify the amount of tags present in the final sequencing data. 4.2 Ground-truthing marine aDNA research and data To ground-truth marine aDNA studies and to ensure the generation of authentic aDNA data we suggest future research in this field to focus on the following aspects: (i) The establishment of a public record of common contaminants. This can be achieved, for example, through an inter-lab comparison focused on analysing the same samples and integrating extraction blanks to trace contaminants associated with particular coring equipment, ship- and land- based laboratories. (ii) Investigation of factors that might considerably bias marine sedaDNA data. This might include information on sediment-type and environmental condition dependent aDNA preservation, taxon-specific DNA degradation rates, average aDNA fragment length, and shotgun and amplification-based aDNA data comparisons. (iii) Ongoing enrichment of genetic reference databases for modern marine plankton, to enable taxonomic assignment of the hundreds of thousands of ancient sequences expected to be found in marine sediments. (iv) The inclusion of negative controls during extractions, library preparations and in sequencing runs, and the publication of the results in the context of independent multiproxy biological and environmental metadata obtained from the same sediment interval. (iv) Once (i) - (iv) are addressed, the development of a dedicated aDNA coring proposal is encouraged, in which sediment cores are collected using the above outlined, best-suited

coring strategies, sampling and analysis procedures. During such an expedition, basic questions such as optimal on-board contamination tracing techniques, feasible work-flows, spatial replication required to achieve representative community data, and age to which marine sedaDNA can be determined should be addressed. Such baseline data is missing to date and remains the most important step towards the generation of authentic aDNA data from marine sediments.

1553
15546945Application of marine sedaDNA research guidelines to other contamination1555
1556695susceptible environments

1558 696 5.1 Permafrost

Permafrost molecular biological studies provide the opportunity to study living organisms that have successfully adapted to extremely cold environments and comprise an analogous cryogenic environment to that found on other planets, such as Mars (Amato et al., 2010). Molecular investigations have focussed on humans (Rasmussen et al., 2010), plants (Willerslev et al., 2003), megafauna (Boessenkool et al. 2012), fungi (Bellemain et al., 2013) and microbes (Willerslev et al., 2004). Permafrost top layers are characterised by a more abundant and diverse microbial community compared to the deeper soil (Gittel et al. 2014). To overcome the hurdle of distinguishing between the modern and ancient DNA signal, metatranscriptomics have been applied to identify the active community only (e.g., Coolen and Orsi, 2015). Despite the challenges in experimental approaches, such as rapid community shifts after thawing even at nearly ambient conditions (Negandhi et al. 2016), studies of permafrost environments have advanced our understanding of feedback loops associated with the response of extremophiles to warming, ultimately informing modelling studies including marine palaeo-environments.

Sampling for ice and permafrost in polar regions is challenging in terms of logistics and
 minimising contamination risks for both the sample and the sampled environment. For

example, permafrost soil samples are, like marine sediment cores, retrieved through drilling, which can introduce microbial contaminants to the deeper permafrost soil layers as the drill head and liquid pass through the top active soil layer (Bang-Andreasen et al., 2017). Additionally, the cryosphere has been accumulating industrial chemicals and metals since the 1850's (McConnell et al., 2007), so that the present-day microbial community is now capable of degrading industrial contaminants, thereby representing an anthropogenically-adapted rather than an original pristine community (Hauptmann et al., 2017). With both these newly adapted anthropogenic and drilling fluid communities containing characteristics for heavy metal degradation, distinguishing indigenous ice core or permafrost communities from drilling fluid communities will become more difficult in the future (Miteva et al., 2014). Therefore, the described guidelines in this review for distinguishing ancient from modern and contaminant signals, as well as the need for aseptic sampling procedures, are highly applicable to permafrost environments and, more generally, the cryosphere.

1625 727 5.2 Planetary exploration

The methodologies advocated in this review that enable aDNA in marine sediments to be distinguished from modern DNA are also applicable to the search for life on other planets or moons. Astrobiologists are especially interested in the possibility of detection of Life 2.0, where the life has an independent genesis to that on Earth. The search for life beyond Earth has been potentially possible since the 1970s, with the two Viking lander missions to Mars, but there are other possible targets in our solar system, notably some of the moons around Jupiter and Saturn (e.g., Europa, Titan). Space technology has now reached the point where the detection of life, if it exists or existed elsewhere in the solar system, is becoming a realistic possibility in the next 50 years. There have been several rovers that have carried out successful exploration of the surface of Mars, including Curiosity, the Mars Science Laboratory that in 2018 is mid-way through its predicted mission (Grotzinger et al., 2014). The rover Mars 2020 is being designed at present to test for evidence of life in the near-surface environment.

It will drill, collect and cache samples from the Martian surface, which will then be returned to Earth for more detailed analysis (Beaty et al., 2015). Sample return from Mars to Earth is planned for the end of the 2020's (Foust, 2018). Active planning is also ongoing for possible missions to land and analyse materials from the surfaces of moons such as Europa and Titan, by both NASA and the European Space Agency. For example, Europa (a moon of Jupiter) is known to have a global saltwater ocean below its icy crust, as well as a rocky seafloor, so is one of the highest priority targets in the search for present-day life beyond Earth (Hand et al., 2017). A key concern with this solar system exploration is planetary protection, which is governed by the United Nations Outer Space Treaty (United Nations Office for Disarmament Affairs, 2015) and the Committee on Space Research (COSPAR) of the International Committee for Science. There are two important categories of planetary protection. The first is "forward contamination", where Earth-derived microbial life hitches a ride on spacecraft and contaminates parts of a planetary surface being explored. The second is "backward contamination', where life from an explored planet or moon is inadvertently returned to Earth, maybe in a spacecraft or within a rock sample. The relevance to aDNA analytical protocols is in forward contamination (i.e., the risk of contaminating sample material that could lead to data misinterpretations, and/or generally introducing Earth contaminants to other planets; Rummel and Conley, 2017). It should be noted that if indeed there is or was life on other planetary bodies, it may well not be based on a genetic code composed of DNA and RNA. Independently originated Life 2.0 would be highly unlikely to have evolved exactly the same nucleic acid genetic code as life on Earth (e.g., Rummel and Conley, 2017). Indeed, it has been postulated that an alternative biosphere could exist as a "shadow biosphere" on Earth (Davies et al., 2009). If DNA or RNA-based extant life is found on Mars, for example, then it is most likely that it would represent either past natural exchange of rocks between the two planets (panspermia), or anthropogenic forward contamination. Therefore, the procedures used for distinguishing indigenous life in planetary exploration will need broadening to include the possibility of life with a different genetic code. The protocols developed for aDNA sampling of marine sediments on Earth, including the ability to distinguish from modern DNA, have

relevance for the designing of methods to look for past life on Mars or outer solar system moons using molecular biology techniques (Beaty et al., 2015; Hand et al., 2017).

Conclusions

Ancient DNA in marine deep-sea sediments holds the potential to open a new era of marine palaeo-environment and -climate reconstruction. However, anti-contamination measures central to all aDNA research have logistical constraints and are particularly poorly-suited to shipboard sediment sampling and processing. For example, sterile coring equipment and ultra-clean laboratories are usually not available on any type of drilling platform. Current and future IODP drilling vessels are aware of the increasing need for improved and innovative solutions to coring, non-contaminant drill fluids and appropriate laboratories and storage facilities. Such logistical advances should go hand-in-hand with the establishment of new criteria and standards to ensure the acquisition and preservation of sediment cores with minimal environmental contaminants. Complementary genetic and geochemical information currently available to date suggests that, realistically, environmental reconstructions based on marine sedaDNA from past plankton can be achieved for at least the last glacial-interglacial cycle, and potentially back to ~400,000 years. These guidelines can be applied in other scientific areas to facilitate and optimise research conducted in extremely remote locations. contamination-susceptible environmental samples, and even during the future exploration of other planets.

- Acknowledgements:

This work is the outcome of a workshop on "Ancient DNA in marine sediments", held at Macquarie University, Australia in December 2017. We thank Prof. Ian Paulsen for insightful

discussions around the topic, and Mrs Kelly-Anne Lawler and Ms Louise Fleck for their supportwith the organisation and running of the workshop.

Funding sources:

The above-named workshop was supported by the Macquarie University Marine Research Centre (MQMarine), the Department of Biological Sciences, and the Faculty of Science and Engineering, Macquarie University, North Ryde, Australia. LA was supported by the Australia-New Zealand IODP Consortium (ANZIC) 2017 Special Analytical Funding and MQMarine. MJLC was supported by the Australian Government through the Australian Research Council's (ARC) Discovery Projects DP160102587 and DP18100982 as well as by Australian and New Zealand legacy IODP funding (ANZIC 364 post cruise funding). LKA and SCG were supported by the ARC LIEF funding scheme LE160100067 provided to ANZIC. MO was supported by an ARC Discovery Project DP15012326. MO and AF were supported by an ARC Laureate Fellowship FL14010021 to Ian Paulsen. MS acknowledges the support of ARC Linkage Project LP160100839. JWM acknowledges the support of ARC Discovery Project DP110103668. AC is supported by ARC Laureate Fellowship (FL140100260) and LSW by ARC Future Fellowship (FT180100407), both AC and LSW are also supported by the ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH; CE170100015). NRF was funded by the University of Adelaide RTP scholarship. FL is supported by an Early Postdoc Mobility fellowship from the Swiss National Science Foundation.

B15 813 Figures:

1017814Figure 1: Schematic showing the key steps involved in acquiring deep marine sediment1818815cores, subsampling, DNA extraction, aDNA preparation for sequencing and data generation.1820816Indicated are sources of potential contamination and reduction in data quality, as well as1823817recommended precautions to be considered and/or controls to be taken. An impact score (1-18258183 stars) is given to indicate the severity of potential contamination or the impact that impaired

data would have on the results at each step in the process. Schematic graphics are not to scale. Figure 2: Overview of IODP coring systems. A) Advanced piston coring system (APC), shown before and after stroking; only small volumes of drill fluid can enter the space between the core barrel and collar from above after stroking, greatly reducing the risk of contamination. B) Extended core barrel system (XCB) and C) Rotary core barrel system (RCB); both containing circulation jets at the bottom of the core barrel through which drill-fluid enters and removes coring debris by transporting it upwards within the drill hole to the surface. D) Comparison of rotary and piston cored sediments demonstrating the well-preserved lamination in Piston cored material. Figure adapted from Sun (2018)and IODP et al. (iodp.tamu.edu/tools/index.html). Table 1: Terms commonly used in marine aDNA research and their definition. aDNA terms are listed hierarchically, all other terms are listed alphabetically.
 Table 2: Commonly used DNA extraction kits in aDNA studies to date.
 References: Alawi, M., Schneider, B. and Kallmeyer, J. (2014). A procedure for separate recovery of extra-and intracellular DNA from a single marine sediment sample. Journal of microbiological methods 104, 36-42. Allentoft, M.E., Collins, M., Harker, D., Haile, J., Oskam, C.L., Hale, M.L., Campos, P.F., Samaniego, J.A., Gilbert, M.T.P., Willerslev, E. and Zhang, G. (2012). The half-life of DNA in

- bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society of London B: Biological Sciences, p.rspb20121745. Alsos, I. G., P. Sjögren, M. E. Edwards, J. Y. Landvik, L. Gielly, M. Forwick, E. Coissac, A. G. Brown, L. V. Jakobsen, M. K. Føreid, and M. W. Pedersen (2015). Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. The Holocene 26, 627-642. Amato, P., Doyle, S.M., Battista, J.R. and Christner, B.C. (2010). Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10, 789-798. Armbrecht, L. H., Lowe, V., Escutia, C., Iwai, M., McKay, R. and Armand, L. K. (2018). Variability in diatom and silicoflagellate assemblages during mid-Pliocene glacial-interglacial cycles determined in Hole U1361A of IODP Expedition 318, Antarctic Wilkes Land Margin. Marine Micropaleontology 139, 28-41. Armbrecht, L.H. et al (in prep). Assessing four methods for the extraction of ancient phytoplankton DNA from marine sediments. Bang-Andreasen, T., Schostag, M., Priemé, A., Elberling, B. and Jacobsen, C.S. (2017). Potential microbial contamination during sampling of permafrost soil assessed by tracers. Scientific reports 7, 43338. Beaty, D.W., Hays, L.E., Williford, K. and Farley, K. (2015). Sample Science Input to Landing Site Selection for Mars 2020: An In-Situ Exploration and Sample Caching Rover. Meteoritics and Planetary Science 50(S1), Art-No. 5340 Bellemain, E., Davey, M.L., Kauserud, H., Epp, L.S., Boessenkool, S., Coissac, E., Geml, J., Edwards, M., Willerslev, E., Gussarova, G. and Taberlet, P. (2013). Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environmental microbiology 15, 1176-1189.

1948		
1949		
1950 1951	868	Bernhard, J.M. and Bowser, S.S. (1999). Benthic foraminifera of dysoxic sediments:
1952 1953 1954	869	chloroplast sequestration and functional morphology. Earth-Science Reviews 46, 149-165.
1955 1956	870	Bienhold, C., Zinger, L., Boetius, A. and Ramette, A. (2016). Diversity and biogeography of
1957 1958	871	bathyal and abyssal seafloor bacteria. PLoS One 11, e0148016.
1959 1960	872	Bickle, M., Arculus, R., Barrett, P., DeConto, R., Camoin, G., Edwards, K., Fisher, F., et al.
1961 1962	873	(2011). Illuminating Earth's Past, Present and Future—The Science Plan for the International
1963 1964	874	Ocean Discovery Program 2013–2023: Washington, DC (Integrated Ocean Drilling Program).
1965 1966 1967	875	Available at: http://www.iodp.org/about-iodp/iodp-science-plan-2013-2023.
1968	876	Bidle, K.D., Lee, S., Marchant, D.R., Falkowski, P.G. (2007). Fossil genes and microbes in the
1970 1971	877	oldest ice on Earth. Proceedings of the National Academy of Sciences of the United States of
1971 1972 1973	878	<i>America</i> 104, 13455-13460.
1974 1975	879	Bissett, A., Gibson, J.A.E., Jarman, S.N., Swadling, K.M., and Cromer, L. (2005). Isolation,
1976 1977	880	amplification, and identification of ancient copepod DNA from lake sediments. Limnology and
1978 1979	881	Oceanography - Methods 3, 533-542.
1981	882	Blaser, M.J., Cardon, Z.G., Cho, M.K., Dangl, J.L., Donohue, T.J., Green, J.L., Knight, R.,
1983	883	Maxon, M.E., Northen, T.R., Pollard, K.S., and Brodie, E.L. (2016). Toward a predictive
1985	884	understanding of Earth's microbiomes to address 21st century challenges. mBio 7(3):e00714-
1986 1987 1988	885	16.
1989 1990	886	Boere, A.C., Abbas, B., Rijpstra, W.I.C., Versteegh, G.J.M., Volkman, J.K., Damste, J.S.S.
1991 1992	887	and Coolen, M.J.L. (2009). Late-Holocene succession of dinoflagellates in an Antarctic fjord
1993 1994	888	using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and
1995 1996	889	palynomorphs. Geobiology 7, 265-281.
1997	890	Boere, A.C., Rijpstra, W.I.C., De Lange, G.J., Sinninghe Damsté, J.S. and Coolen, M.J.L.
1999 2000	891	(2011). Preservation potential of ancient plankton DNA in Pleistocene marine sediments.
2001 2002 2003 2004 2005 2006	892	Geobiology 9, 377-393.

2007 2008		
2009 2010	893	Boessenkool, S., Epp, L.S., Haile, J., Bellemain, E.V.A., Edwards, M., Coissac, E.,
2011 2012	894	Willerslev, E., Brochmann, C. (2012). Blocking human contaminant DNA during PCR allows
2013 2014	895	amplification of rare mammal species from sedimentary ancient DNA. Molecular ecology 21,
2015 2016	896	1806-1815.
2017 2018 2019	897 898	Boudreau, B.P. (1998). Mean mixed depth of sediments: the wherefore and the why.
2020 2021	899	Limnology and Oceanography 43, 524-526.
2022 2023	900	Briggs, A.W., Stenzel, U., Johnson, P.L., Green, R.E., Kelso, J., Prüfer, K., Meyer, M., Krause,
2024 2025	901	J., Ronan, M.T., Lachmann, M. and Pääbo, S. (2007). Patterns of damage in genomic DNA
2026 2027	902	sequences from a Neandertal. Proceedings of the National Academy of Sciences 104, 14616-
2028 2029	903	14621.
2030 2031 2032	904	Brocks, J.J. and Grice, K. (2011). Biomarkers (Molecular Fossils). Encyclopedia of
2033 2034	905	Geobiology. Reitner, J. and Thiel, V. Dordrecht, Springer Netherlands, pp. 147-167.
2035 2036	906	Brotherton, P., Haak, W., Templeton, J., Brandt, G., Soubrier, J., Adler, C.J., Richards, S.M.,
2037 2038	907	Der Sarkissian, C., Ganslmeier, R., Friederich, S. and Dresely, V. (2013). Neolithic
2039 2040	908	mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nature
2041 2042	909	communications 4, 1764.
2043 2044 2045	910	Calvert, S.E., Vogel, J.S. and Southon, J.R. (1987). Carbon accumulation rates and the origin
2045 2046 2047	911	of the Holocene sapropel in the Black Sea. Geology 15, 918-921.
2048 2049	912	Carradec, Q., Pelletier, E., Da Silva, C., Alberti, A., Seeleuthner, Y., Blanc-Mathieu, R., Lima-
2050 2051	913	Mendez, G., Rocha, F., Tirichine, L., Labadie, K. and Kirilovsky, A. (2018). A global ocean
2052 2053	914	atlas of eukaryotic genes. Nature communications 9, 373.
2054 2055 2056	915	Ceccherini, M.T., Ascher, J., Pietramellara, G., Vogel, T. M. and Nannipieri, P. (2007). Vertical
2050 2057 2058	916	advection of extracellular DNA by water capillarity in soil columns. Soil Biology and
2050 2059 2060 2061 2062 2063 2064	917	Biochemistry 39, 158-163.
2064 2065		

Cockell, C.S., Coolen, M., Schaefer, B., Grice, K., Gulick, S.P.S., Morgan, J.V., Kring, D.A., Osinski, G. (2017). Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor. American Geophysical Union, Fall Meeting 2017, abstract #P23H-06. http://adsabs.harvard.edu/abs/2017AGUFM.P23H..06C. Coolen, M.J.L. and Overmann, J. (1998). Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology 64, 4513-4521. Coolen, M.J.L. and Overmann, J. (2007). 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environmental Microbiology 9, 238-249. Coolen, M.J., Muyzer, G. Rijpstra, W.I.C., Schouten, S., Volkman, J.K. and Damsté, J.S.S. (2004). Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth and Planetary Science Letters 223, 225-239. Coolen, M.J., Boere, A., Abbas, B., Baas, M., Wakeham, S.G. and Sinninghe Damsté, J.S. (2006). Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, PA1005. Coolen, M.J.L., Talbot, H.M., Abbas, B.A., Ward, C., Schouten, S., Volkman, J. K. and Damste, J.S.S. (2008). Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environmental Microbiology 10, 1783-1803. Coolen, M.J.L., Saenz, J.P., Giosan, L., Trowbridge, N.Y., Dimitrov, P., Dimitrov, D. and Eglinton, T.I. (2009). DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene. Earth and Planetary Science Letters 284, 610-621. Coolen, M.J. (2011). 7000 years of *Emiliania huxleyi* viruses in the Black Sea. Science 333, 451-452.

2125		
2126		
2127	942	Coolen, M.J., Orsi, W.D., Balkema, C., Quince, C., Harris, K., Sylva, S.P., Filipova-Marinova,
2129213021312132	943	M. and Giosan, L. (2013). Evolution of the plankton paleome in the Black Sea from the
	944	Deglacial to Anthropocene. Proceedings of the National Academy of Sciences 110, 8609-
2133 2134	945	8614.
2135	946	Coolen, M.J. and Orsi, W.D. (2015). The transcriptional response of microbial communities in
2137 2138 2139 2140 2141	947	thawing Alaskan permafrost soils. Frontiers in Microbiology 6, 197.
	948	Cooper, A. and Poinar, H.N. (2000). Ancient DNA: do it right or not at all. Science 289, 1139-
2142 2143	949	1139.
2144 2145 2146 2147	950	Corinaldesi, C., Danovaro, R. and Dell'Anno, A. (2005). Simultaneous recovery of extracellular
	951	and intracellular DNA suitable for molecular studies from marine sediments. Applied and
2148 2149 2150	952	Environmental Microbiology 71, 46-50.
2151 2152	953	Corinaldesi, C., Beolchini, F. and Dell'Anno, A. (2008). Damage and degradation rates of
2153 2154	954	extracellular DNA in marine sediments: implications for the preservation of gene sequences.
2155 2156	955	Molecular Ecology 17, 3939-3951.
2157 2158 2159	956	Corinaldesi, C., Barucca, M., Luna, G.M. and Dell'Anno, A. (2011). Preservation, origin and
2159	957	genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Molecular
2161 2162 2163	958	Ecology 20, 642-654.
2164 2165	959	Corinaldesi, C., Tangherlini, M., Luna, G.M. and Dell'Anno, A. (2014). Extracellular DNA can
2166 2167 2168 2169 2170 2171	960	preserve the genetic signatures of present and past viral infection events in deep hypersaline
	961	anoxic basins. Proceedings of the Royal Society of London B: Biological Sciences 281,
	962	20133299.
2172 2173	963	Corinaldesi, C., Tangherlini, M., Manea, E. and Dell'Anno, A. (2018). Extracellular DNA as a
2174	964	genetic recorder of microbial diversity in benthic deep-sea ecosystems. Scientific Reports 8,
2176 2177 2178 2179 2180 2181 2182 2183	965	1839.

Cox, T.L., Gan, H.M. and Moreau, J.W. (2018) Deep seawater recirculation sustains an aero-tolerant population of sulfate-reducing bacteria in the sub-seafloor. Geobiology, in press. D'Andrea, W. J., M. Lage, J. B. H. Martiny, A. D. Laatsch, L. A. Amaral-Zettler, M. L. Sogin and Y. Huang (2006). Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments. Journal of Geophysical Research 111, G0313. Davies, P.C., Benner, S.A., Cleland, C.E., Lineweaver, C.H., McKay, C.P. and Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology 9, 241-249. Dell'Anno, A., Stefano, B. and Danovaro, R. (2002). Quantification, base composition, and fate of extracellular DNA in marine sediments. Limnology and Oceanography 47, 899-905. Dell'Anno, A., Corinaldesi, C. and Anno, A.D. (2004). Degradation and turnover of extracellular DNA in marine sediments: ecological and methodological considerations. Applied and environmental microbiology 70, 4384-4386. Demanèche, S., Bertolla, F., Buret, F., Nalin, R., Sailland, A., Auriol, P., Vogel, T.M. and Simonet, P., (2001). Laboratory-scale evidence for lightning-mediated gene transfer in soil. Applied and environmental microbiology 67, 3440-3444. De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I. and Carmichael, M. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. Direito, S.O., Marees, A. and Röling, W.F. (2012). Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals. FEMS microbiology ecology 81, 111-123. Expedition 330 Scientists (2012). Methods. In Koppers, A.A.P., Yamazaki, T., Geldmacher, J., and the Expedition 330 Scientists, Proc. IODP, 330: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.330.102.2012.

2244		
2245 2246	990	Feek, D. T., Horrocks, M., Baisden, W. T., and Flenley, J. (2011). The Mk II sampler: a device
2247 2248	991	to collect sediment cores for analysis of uncontaminated DNA. Journal of Paleolimnology 45,
2249 2250	992	115-119.
2251 2252 2253	993	Ficetola, G.F., Taberlet, P. and Coissac, E. (2016). How to limit false positives in
2254 2255	994	environmental DNA and metabarcoding? Molecular Ecology Resources 16, 604-607.
2256 2257	995	Foust, J. (2018). ESA awards Mars sample return study contracts as international cooperation
2258 2259	996	plans take shape. Spacenews July 8 2018. Available at: https://spacenews.com/esa-awards-
2260 2261	997	mars-sample-return-study-contracts-as-international-cooperation-plans-take-shape/
2263 2264	998	Früh-Green, G., Orcutt, B. and Green, S., 2015. Expedition 357 Scientific Prospectus: Atlantis
2265	999	Massif Serpentinization and Life. International Ocean Discovery Program.
2266 2267 2268	1000	http://dx.doi.org/10.14379/iodp.sp.327.2015
2269 2270	1001	Fry, J.C., Parkes, R.J., Cragg, B. A., Weightman, A. J., Webster, G. (2008). Prokaryotic
2271 2272	1002	biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiology Ecology 66,
2273 2274	1003	181–196.
2275	1004	Fryer, P., Wheat, C.G., Williams, T., Albers, E., Bekins, B., Debret, B.P.R., Deng, J., Dong,
2277	1005	Y., Eickenbusch, P., Frery, E.A., Ichiyama, Y., Johnson, K., Johnston, R.M., Kevorkian, R.T.,
2279 2280	1006	Kurz, W., Magalhaes, V., Mantovanelli, S.S., Menapace, W., Menzies, C.D., Michibayashi, K.,
2281 2282	1007	Moyer, C.L., Mullane, K.K., Park, JW., Price, R.E., Ryan, J.G., Shervais, J.W., Sissmann,
2283 2284	1008	O.J., Suzuki, S., Takai, K., Walter, B., and Zhang, R. (2018) Expedition 366 methods.
2285 2286	1009	Proceedings of the International Ocean Discovery Program Volume 366,
2287 2288 2289	1010	publications.iodp.org, https://doi.org/10.14379/iodp.proc.366.102.2018.
2290 2291	1011	Furukawa, Y., Horiuchi, M. and Kakegawa, T. (2013). Selective stabilization of ribose by
2292 2293	1012	borate. Origins of Life and Evolution of Biospheres 43, 353-361.
2294 2295	1013	Giguet-Covex, C., J. Pansu, F. Arnaud, P. J. Rey, C. Griggo, L. Gielly, I. Domaizon, E.
2296 2297 2298	1014	Coissac, F. David, P. Choler, J. Poulenard, and P. Taberlet (2014). Long livestock farming
2299 2300		
230 I		

2308

2314

2321

2329

²³⁰⁴ 1015 history and human landscape shaping revealed by lake sediment DNA. Nature ²³⁰⁶ 1016 Communications 5, 3211.

Giosan, L., Coolen, M.J., Kaplan, J.O., Constantinescu, S., Filip, F., Filipova-Marinova, M., Kettner, A.J. and Thom, N. (2012). Early anthropogenic transformation of the Danube-Black Sea system. Scientific Reports 2 582.

Ginolhac, A., Rasmussen, M., Gilbert, M.T.P., Willerslev, E. and Orlando, L. (2011).
mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2319
1022 2153-2155.

Gittel, A., Bárta, J., Kohoutova, I., Schnecker, J., Wild, B., Čapek, P., Kaiser, C., Torsvik, V.L., 2322 1023 2323 2324 1024 Richter, A., Schleper, C., Urich, T. (2014). Site-and horizon-specific patterns of microbial 2325 ₂₃₂₆ 1025 community structure and enzyme activities in permafrost-affected soils of 2327 ₂₃₂₈ 1026 Greenland. Frontiers in microbiology 5, 541.

2330 Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, 1027 2331 2332 K., Schieber, J., Mangold, N., Milliken, R., Conrad, P.G., DesMarais, D., Farmer, J., Siebach, 1028 2333 2334 1029 K., Calef, F., Hurowitz, J., McLennan, S.M., Ming, D., Vani- man, D., Crisp, J., Vasavada, A., 2335 2336 1030 Edgett, K.S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R.C., Maurice, S., Grant, 2337 J.A., Wilson, S., Anderson, R.C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R.S., Rice, M., 2338 1031 2339 Bell, J., Griffes, J., Ehl- mann, B., Anderson, R.B., Bristow, T.F., Dietrich, W.E., Dro- mart, G., 2340 1032 2341 Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, 2342 1033 2343 S., Leshin, L.A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., 2344 1034 2345 2346 1035 Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, 2347 ₂₃₄₈ 1036 S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R. and Yingst, A. (2014). A 2349 ₂₃₅₀ 1037 habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 2351 1038 1242777. 2352

Haile, J., Holdaway, R., Oliver, K., Bunce, M., Gilbert, M. T., Nielsen, R., Munch, K., Ho, S. Y.,
 Shapiro, B. and Willerslev., E. (2007). Ancient DNA chronology within sediment deposits: are

2358 2359

2353

2363
23641041paleobiological reconstructions possible and is DNA leaching a factor? Molecular biology and2365
23661042evolution 24, 982-989.

Haile, J. (2012) Ancient DNA Extraction from Soils and Sediments. In: Ancient DNA, Methods
and Protocols (2012). *Eds.* Shapiro, B., Hofreiter, M. Springer New York, Dordrecht,
Heidelberg, London, pp. 57-64.

Hand, K.P., Murray, A.E., Garvin, J.B., Brinckerhoff, W.B., Christner, B.C., Edgett, K.S., Ehlmann, B.L., German, C.R., Hayes, A.G., Hoehler, T.M., Horst, S.M., Lunine, J.I., Nealson, K.H., Paranicas, C., Schmidt, B.E., Smith, D.E., Rhoden, A.R., Russell, M.J., Templeton, A.S., ²³⁸⁰ 1049 Willis P.A., Yingst, R.A., Phillips, C.B., Cable, M.L., Craft, K.L., Hofmann, A.E., Nordheim, 2382 1050 T.A., Pappalardo, R.P. and the Project Engineering Team (2017). Report of the Europa Lander 2384 1051 Science Definition Team. National Aeronautics and Space Administration.

Hauptmann, A.L., Sicheritz-Pontén, T., Cameron, K.A., Bælum, J., Plichta, D.R., Dalgaard, M.
and Stibal, M. (2017). Contamination of the Arctic reflected in microbial metagenomes from
the Greenland ice sheet. Environmental Research Letters 12, 074019.

Hay, B.J. (1988). Sediment accumulation in the central western Black Sea over the past 5,100
years. Paleoceanography 3, 491-508.

Hermans, S.M., Buckley, H.L. and Lear, G. (2018). Optimal extraction methods for the
simultaneous analysis of DNA from diverse organisms and sample types. Molecular Ecology
Resources 18, 557-569.

Horn, S. (2012) Target enrichment via DNA hybridization capture; In: Ancient DNA, Methods
and Protocols (2012). *Eds.* Shapiro, B., Hofreiter, M. Springer New York, Dordrecht,
Heidelberg, London, pp. 177-188.

Hou, W., Dong, H., Li, G., Yang, J., Coolen, M.J., Liu, X., Wang, S., Jiang, H., Wu, X., Xiao,
H. and Lian, B. (2014). Identification of photosynthetic plankton communities using

2422
24231065sedimentary ancient DNA and their response to late-Holocene climate change on the Tibetan2424
24251066Plateau. Scientific Reports 4, 6648.

Inagaki, F., Hinrichs, K.U., Kubo, Y., Bowles, M.W., Heuer, V.B., Hong, W.L., Hoshino, T., Ijiri,
A., Imachi, H., Ito, M. and Kaneko, M. (2015). Exploring deep microbial life in coal-bearing
sediment down to ~2.5 km below the ocean floor. Science 349, 420-424.

²⁴³³ 1070 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P.L. and Orlando, L. (2013).
 ²⁴³⁵ 1071 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters.
 ²⁴³⁷ 1072 Bioinformatics 29, 1682-1684.

Jørgensen, T., Kjaer,K.H., Haile, J., Rasmussen, M., Boessenkool, S., Andersen, K., Coissac,
Io74
E., Taberlet, P., Brochmann, C., Orlando, L., Gilbert, M.T. and Willerslev, E. (2012). Islands
in the ice: detecting past vegetation on Greenlandic nunataks using historical records and
sedimentary ancient DNA meta-barcoding. Molecular Ecology 21, 1980-1988.

Kirkpatrick, J. B., Walsh, E. A. and D'Hondt, S. (2016). Fossil DNA persistence and decay in
marine sediment over hundred-thousand-year to million-year time scales. Geology 44, 615–
1079 618.

24551080Kistler, L., Ware, R., Smith, O., Collins, M. and Allaby, R.G. (2017). A new model for ancient245624571081DNA decay based on paleogenomic meta-analysis. Nucleic acids research 45, 6310-6320.

Klappenbach, J. A., Saxman, P. R., Cole, J. R., & Schmidt, T. M. (2001). rrndb: the ribosomal
RNA operon copy number database. Nucleic acids research 29, 181-184.

Klemetsen, T., Raknes, I.A., Fu, J., Agafonov, A., Balasundaram, S.V., Tartari, G., Robertsen,
E. and Willassen, N.P. (2017). The MAR databases: development and implementation of
databases specific for marine metagenomics. Nucleic acids research 46, D692-D699.

Leite, D., Leitão, A., Schaan, A. P., Marinho, A. N., Souza, S., Rodrigues-Carvalho, C.,
Leite, D., Leitão, A., Schaan, A. P., Marinho, A. N., Souza, S., Rodrigues-Carvalho, C.,
Cardoso, F., Ribeiro-dos-Santos, Â. (2014). Paleogenetic studies in Guajajara skeletal
remains, Maranhão state, Brazil. Journal of Anthropology, Article ID 729120.

2479		
2480		
2481 2482	1090	Lejzerowicz, F., Esling, P., Majewski, W., Szczuciński, W., Decelle, J., Obadia, C., Arbizu,
2483 2484	1091	P.M. and Pawlowski, J. (2013). Ancient DNA complements microfossil record in deep-sea
2485 2486 2487	1092	subsurface sediments. Biology Letters 9, 20130283.
2488 2489	1093	Lever, M.A., Alperin, M., Engelen, B., Inagaki, F., Nakagawa, S., Steinsbu, B.O., and Teske,
2490 2491	1094	A. (2006). Trends in basalt and sediment core contamination during IODP Expedition 301.
2492 2493	1095	Geomicrobiology Journal 23, 517-530.
2494 2495	1096	Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell, J. R., Klironomos, J.
2496 2497	1097	N., Pails, P., Swanton, C.J., Trevorsa, J.T., Dunfield, K. E. (2007). Cycling of extracellular DNA
2498 2499	1098	in the soil environment. Soil Biology and Biochemistry, 39(12), 2977-2991.
2500 2501 2502	1099	Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709.
2503 2504	1100	Lorenz, M.G. and Wackernagel, W. (1994). Bacterial gene transfer by natural genetic
2505 2506 2507	1101	transformation in the environment. Microbiological reviews 58, 563-602.
2508 2509	1102	Loucaides, S., Van Cappellen, P., Roubeix, V., Moriceau, B. and Ragueneau, O. (2011).
2510 2511	1103	Controls on the recycling and preservation of biogenic silica from biomineralization to burial.
2512 2513	1104	Silicon 4, 7-22.
2514 . 2515	1105	Lyon, D.Y., Monier, J.M., Dupraz, S., Freissinet, C., Simonet, P. and Vogel, T.M. (2010).
2516 2517 2518	1106	Integrity and biological activity of DNA after UV exposure. Astrobiology 10, 285-292.
2519 2520	1107	Lyra, C., Sinkko, H., Rantanen, M., Paulin, L. and Kotilainen, A. (2013) Sediment bacterial
2521 2522	1108	communities reflect the history of a sea basin. PLoS One 8, e54326.
2523 2524	1109	Major, C.O., Goldstein, S.L., Ryan, W.B., Lericolais, G., Piotrowski, A.M. and Hajdas, I. (2006).
2525 2526	1110	The co-evolution of Black Sea level and composition through the last deglaciation and its
2527 2528 2529	1111	paleoclimatic significance. Quaternary Science Reviews 25, 2031-2047.
2530 - 2531 -	1112	Manske, A.K., Henssge, U. Glaeser, J. and Overmann, J. (2008). Subfossil 16S rRNA gene
2532	1113	sequences of green sulfur bacteria in the Black Sea and their implications for past photic zone
2534 2535 2536 2537	1114	anoxia. Applied and Environmental Microbiology 74, 624-632.

2538	
2539	
2540 2541 1115	McConnell, J.R., Edwards, R., Kok, G.L., Flanner, M.G., Zender, C.S., Saltzman, E.S., Banta,
2542 2543 1116	J.R., Pasteris, D.R., Carter, M.M., Kahl, J.D. (2007). 20th-century industrial black carbon
²⁵⁴⁴ 1117 2545 2546	emissions altered arctic climate forcing. Science 317, 1381-1384.
2547 1118	Miller, D.N., Bryant, J.E., Madsen, E.L. and Ghiorse, W.C. (1999). Evaluation and optimization
2549 1119	of DNA extraction and purification procedures for soil and sediment samples. Applied and
2551 1120 2552	environmental microbiology 65, 4715-4724.
2553 1121 2554	Miteva, V., Sowers, T. and Brenchley, J. (2014). Penetration of fluorescent microspheres into
²⁵⁵⁵ 1122 2556	the NEEM (North Eemian) Greenland ice core to assess the probability of microbial
2557 1123 2558 2559	contamination. Polar biology 37, 47-59.
2560 1124 2561	Morard, R., Lejzerowicz, F., Darling, K.F., Lecroq-Bennet, B., Pedersen, M.W., Orlando, L.,
2562 1125	Pawlowski, J., Mulitza, S., De Vargas, C. and Kucera, M. (2017). Planktonic foraminifera-
2564 1126 2565	derived environmental DNA extract. Biogeosciences 14, 2741-2754.
2566 1127 2567	Marcus, N.H. (1996) Ecological and evolutionary significance of resting eggs in marine
2568 1128 2569 2570	copepods: past, present, and future studies. Hydrobiologia 320, 141-152.
2571 1129	More, K.D., Orsi, W.D., Galy, V., Giosan, L., He, L., Grice, K. and Coolen, M.J. (2018). A 43
2573 1130	kyr record of protist communities and their response to oxygen minimum zone variability in the
2575 1131 2576	Northeastern Arabian Sea. Earth and Planetary Science Letters 496, 248-256.
2577 1132 2578	Morono, Y. and Inagaki, F. (2016). Chapter Three - Analysis of Low-Biomass Microbial
2579 1133 2580	Communities in the Deep Biosphere, pp. 149-178. In: S. Sariaslani and G. Michael Gadd
2581 1134 2582 2583	(Editors), Advances in Applied Microbiology, Academic Press.
2584 1135	Negandhi, K., Laurion, I., Lovejoy, C. (2016). Temperature effects on net greenhouse gas
2586 1136	production and bacterial communities in arctic thaw ponds. FEMS Microbiology Ecology 92,
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596	fiw117.
2000	

Orcutt, B.N., Bergenthal, M., Freudenthal, T., Smith, D., Lilley, M.D., Schnieders, L., Green, S. and Früh-Green, G.L. (2017). Contamination tracer testing with seabed drills: IODP Expedition 357. Scientific Drilling 23, 39-46. Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., 2606 1141 2608 1142 Cappellini, E., Petersen, B., Moltke, I. and Johnson, P.L. (2013). Recalibrating Equus evolution 2610 1143 using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74-78. Orsi, W.D., Coolen, M.J., Wuchter, C., He, L., More, K.D., Irigoien, X., Chust, G., Johnson, C., Hemingway, J.D., Lee, M. and Galy, V. (2017). Climate oscillations reflected within the ²⁶¹⁶ 1146 microbiome of Arabian Sea sediments. Scientific Reports 7, 6040. 2619 1147 Overballe-Petersen, S., and Willerslev, E. (2014). Horizontal transfer of short and degraded 2621 1148 DNA has evolutionary implications for microbes and eukaryotic sexual reproduction. **1149** Bioessays 36, 1005–1010. Pansu, J., Giguet-Covex, C., Ficetola, G. F., Gielly, L., Boyer, F., Zinger, L., Arnaud, J. Poulenard, P. Taberlet and Choler, P. (2015). Reconstructing long-term human impacts on 2629 1152 plant communities: an ecological approach based on lake sediment DNA. Molecular Ecology 2631 1153 24, 1485-1498. Pape, T., Hohnberg, H.J., Wunsch, D., Anders, E., Freudenthal, T., Huhn, K. and Bohrmann, G. (2017). Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (Meeresboden-Bohrgerät). Scientific Drilling 23, 29-37. 2640 1157 Parducci, L., Bennett, K.D., Ficetola, G. F., Alsos, I.G., Suyama, Y., Wood, J.R., Pedersen, 2642 1158 M.W. (2017). Ancient plant DNA in lake sediments. New Phytologist, 214(3), 924-942 Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J. and Harvey, S.M. (1994). Deep bacterial biosphere in Pacific-Ocean sediments. Nature 371, 410-413.

2656	
2657	
2658 2659 1162	Pawłowska, J., Lejzerowicz, F., Esling, P., Szczuciński, W., Zajączkowski, M. and Pawlowski,
2660 2661 1163	J. (2014). Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last
2662 2663 2664	millennium. Geobiology 12, 277-288.
2665 1165	Pedersen, M.W., Overballe-Petersen, S., Ermini, L., Der Sarkissian, C., Haile, J., Hellstrom,
2667 1166	M., Spens, J., Thomsen, P.F., Bohmann, K., Cappellini, E. and Schnell, I.B. (2015). Ancient
2669 1167	and modern environmental DNA. Philosophical Transactions of the Royal Society B 370,
2670 2671 1168 2672	20130383.
2673 1169 2674	Polz, M.F. and Cavanaugh, C.M. (1998). Bias in template-to-product ratios in multitemplate
2675 1170 2676 2677	PCR. Applied and environmental Microbiology 64, 3724-3730.
2678 1171	Poté, J., Rosselli, W., Wigger, A. and Wildi, W. (2007). Release and leaching of plant DNA in
2680 1172 2681	unsaturated soil column. Ecotoxicology and environmental safety 68, 293-298.
²⁶⁸² 1173 2683	Randlett, M.E., Coolen, M.J.L., Stockhecke, M., Pickarski, N., Litt, T., Balkema, C., Kwiecien,
²⁶⁸⁴ 1174 2685	O., Tomonaga, Y., Wehrli, B. and Schubert, C.J. (2014). Alkenone distribution in Lake Van
2686 1175 2687	sediment over the last 270 ka: influence of temperature and haptophyte species composition.
2688 1176 2689	Quaternary Science Reviews 10, 53-62.
2690 2691 1177	Rasmussen, M., Li, Y., Lindgreen, S., Pedersen, J.S., Albrechtsen, A., Moltke, I., Metspalu,
2692 2693 1178	M., Metspalu, E., Kivisild, T., Gupta, R. and Bertalan, M. (2010). Ancient human genome
2694 2695 1179 2696	sequence of an extinct Palaeo-Eskimo. Nature 463, 757.
2697 1180 2698	Rawlence, N.J., Lowe, D.J., Wood, J.R., Young, J.M., Churchman, G.J., Huang, Y.T. and
2699 1181 2700	Cooper, A., (2014). Using palaeoenvironmental DNA to reconstruct past environments:
2701 1182 2702	progress and prospects. Journal of Quaternary Science 29, 610-626.
2703 2704 1183	Rummel, J.D. and Conley, C.A. (2017). Four Fallacies and an Oversight: Searching for Martian
2705 2706 1184 2707 2708 2709 2710 2711 2712 2713 2714	Life. Astrobiology 17, 971-974.
2715	
--	--
2716	
2717 2718 1185	Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner, P.,
2719 2720 1186	Parkhill, J., Loman, N.J. and Walker, A.W. (2014). Reagent and laboratory contamination can
2721 2722 2723	critically impact sequence-based microbiome analyses. BMC biology 12:87.
2724 1188	Sinninghe Damsté, J.S., Muyzer, G., Abbas, B., Rampen, S.W., Masse, G., Allard, W.G., Belt,
2726 1189	S.T., Robert, J.M., Rowland, S.J., Moldowan, J.M., Barbanti, S.M., Fago, F.J., Denisevich,
2728 1190	P., Dahl, J., Trindade, L.A.F., and Schouten, S. (2004). The rise of the rhizosolenid diatoms.
2729 2730 1191 2731	Science 304, 584-587.
2732 1192 2733	Szczuciński, W., Pawłowska, J., Lejzerowicz, F., Nishimura, Y., Kokociński, M., Majewski, W.,
2734 1193 2735	Nakamura, Y and Pawlowski, J. (2016). Ancient sedimentary DNA reveals past tsunami
2736 1194 2737 2738	deposits. Marine Geology 381, 29-33.
2739 1195	Schubert, M., Ermini, L., Sarkissian, C.D., Jónsson, H., Ginolhac, A., Schaefer, R., Martin,
2740 2741 1196	M.D., Fernández, R., Kircher, M., McCue, M., Willerslev, E., and Orlando, L. (2014).
2742 2743 1197	Characterization of ancient and modern genomes by SNP detection and phylogenomic and
2744 2745 1198 2746	metagenomic analysis using PALEOMIX. Nature Protocols 9, 1056-82.
2747 1199 2748	Shapiro, B. and Hofreiter, M. (2012). Preface, pp. v-vii. In: Ancient DNA, methods and
2749 1200 2750	protocols, Shapiro, B. and Hofreiter, M. (Eds), Springer New York, Dordrecht, Heidelberg,
2751 1201 2752	London.
2753 2754 1202	Slon, V., Hopfe, C., Weiß, C.L., Mafessoni, F., De la Rasilla, M., Lalueza-Fox, C., Rosas, A.,
2755 2756 1203	Soressi, M., Knul, M.V., Miller, R. and Stewart, J.R. (2017). Neandertal and Denisovan DNA
2757 2758 1204 2759	from Pleistocene sediments. Science 356, 605-608.
2760 1205 2761	Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A. and Staudigel, H. (2000). Tracer-based
2762 1206 2763	estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiology
2764 1207 2765 2766 2767 2768 2769 2770 2771 2772 2773	Journal 17, 207-219.

2774	
2775	
2776 2777 1208	Stat, M., Huggett, M.J., Bernasconi, R., DiBattista, J.D., Berry, T.E., Newman, S.J., Harvey,
2778 2779 1209	E.S. and Bunce, M. (2017). Ecosystem biomonitoring with eDNA: metabarcoding across the
2780 2781 2782	tree of life in a tropical marine environment. Scientific Reports 7, 12240.
2783 1211 2784	Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., and the
2785 1212 2786	Expedition 367/368 Scientists, 2018. South China Sea Rifted Margin. Proceedings of
2787 1213 2788	the International Ocean Discovery Program, 367/368: College Station, TX
2789 2790 1214	(International Ocean Discovery Program). <u>https://doi.org/10.14379/</u>
2791 2792 2793	iodp.proc.367368.2018
2794 1216 2795	Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G.,
2796 1217 2797	Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A. and Cornejo-Castillo, F.M. (2015).
2798 1218 2799	Structure and function of the global ocean microbiome. Science 348, 1261359.
2800 2801 1219	Szczuciński, W., Pawłowska, J., Lejzerowicz, F., Nishimura, Y., Kokociński, M., Majewski,
2802 2803 1220	W., Nakamura, Y., Pawlowski, J. (2016). Ancient sedimentary DNA reveals past tsunami
2804 2805 2806	deposits. Marine Geology 381, 29–33.
2807 2807 2808 1223	Taberlet, P., Coissac, E., Hajibabaei, M. and Rieseberg, L.H. (2012a). Environmental DNA.
2809 2810 1224	Molecular Ecology 21, 1789-1793.
2811 2812 1225	Taberlet, P., Prud'homme, S.M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L.,
2813 2814 1226	Rioux, D., Choler, P., and Clément, J.C. (2012b). Soil sampling and isolation of extracellular
2815 2816 1227	DNA from large amount of starting material suitable for metabarcoding studies. Molecular
2817 2818 1228 2819	Ecology 21, 1816-1820.
2820 1229 2821	Tada, R., Murray, R., Alvarez Zarikian, C., Anderson Jr, W., Bassetti, M., Brace, B., Clemens,
²⁸²² 1230 2823	S., da Costa Gurgel, M., Dickens, G. and Dunlea, A. (2013). Asian Monsoon: onset and
2824 1231 2825	evolution of millennial-scale variability of Asian monsoon and its possible relation with
2826 1232 2827 2828 2829 2830 2831 2832	Himalaya and Tibetan Plateau uplift. IODP Scientific Prospectus 346, 1-111.

2834 2835 1233 Torres, M.E., Cox, T.L., Hong, W.-L., McManus, J., Sample, J.C., Destrigneville, C., Gan, H.M. 2836 2837 1234 and Moreau, J.M. (2015). Crustal fluid and ash alteration impacts on the biosphere of Shikoku 2838 2839 1235 Basin sediments, Nankai Trough, Japan. Geobiology 13, 562-580. 2840 2841 2842 1236 Torti, A., Lever, M.A. and Jørgensen, B.B. (2015). Origin, dynamics, and implications of 2843 2844 1237 extracellular DNA pools in marine sediments. Marine Genomics 24, 185-196. 2845 2846 1238 United Nations Office for Disarmament Affairs (2015). Treaty on Principles Governing the 2847 2848 1239 Activities of States in the Exploration and Use of Outer Space, including the Moon and Other 2849 2850 Celestial Bodies, Article IX, version 2015, signed by almost all nation states, including all the 1240 2851 ²⁸⁵² 1241 space-faring current and aspiring nation states. Available online at http:// 2853 2854 1242 disarmament.un.org/treaties/t/outer_space. 2855 2856 2857 1243 Van Everdingen, R.O. (Ed.). (1998). Multi-Language Glossary of Permafrost and Related 2858 Ground-Ice Terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, 1244 2859 2860 1245 Romanian, Russian, Spanish, and Swedish. International Permafrost Association, 2861 2862 1246 Terminology Working Group. 2863 2864 2865 1247 Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L., and Gelin, F. (1998). 2866 2867 1248 Microalgal biomarkers: A review of recent research developments. Organic Geochemistry 29, 2868 2869 1249 1163-1179. 2870 2871 Wagner, A., Blackstone, N., Cartwright, P., Dick, M., Misof, B., Snow, P., Wagner, G.P., 1250 2872 2873 Bartels, J., Murtha, M. and Pendleton, J. (1994). Surveys of gene families using polymerase 1251 2874 2875 1252 chain reaction: PCR selection and PCR drift. Systematic Biology 43, 250-261. 2876 2877 2878 1253 Webster, G., Newberry, C.J., Fry, J.C. and Weightman, A.J. (2003). Assessment of bacterial 2879 community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a 2880 1254 2881 cautionary tale. Journal of Microbiological Methods 55, 155-164. 2882 1255 2883 2884 Weyrich, L.S., Dobney, K. and Cooper, A. (2015). Ancient DNA analysis of dental calculus. 1256 2885 2886 1257 Journal of human evolution 79, 119-124. 2887 2888 2889 2890 2891

2833

2892		
2893		
2894 2895	1258	Weyrich, L.S., Duchene, S., Soubrier, J., Arriola, L., Llamas, B., Breen, J., Morris, A.G., Alt,
2896 2897	1259	K.W., Caramelli, D. and Dresely, V. (2017). Neanderthal behaviour, diet, and disease inferred
2898 2899 2900	1260	from ancient DNA in dental calculus. Nature 544, 357.
2901 2902	1261	Willerslev, E. and Cooper, A. (2005). Ancient DNA. Proceedings of the Royal Society of
2903 2904	1262	London B: Biological Sciences 272, 3-16.
2905 2906	1263	Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E., Lorenzen, E.D.,
2907 2908	1264	Vestergård, M., Gussarova, G., Haile, J., Craine, J., Gielly, L., Boessenkool, S., Epp, L.S.,
2909 2910	1265	Pearman, P.B., Cheddadi, R., Murray, D., Brathen, K.A., Yoccoz, N., Binney, H., Cruaud, C.,
2911 2912	1266	Wincker, P. ,Goslar, T. , Alsos, I.G., Bellemain, E., Brysting, A.K., Elven, R., Sonstebo, J.H.,
2913 2914	1267	Murton, J., Sher, A., Rasmussen, M., Ronn, R., Mourier, T., Cooper, A., Austin, J., Moller, P.,
2915 2916	1268	Froese, D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V., Tikhonov, A., Savvinov, G.,
2917 2918	1269	Roberts, R.G., MacPhee, R.D., Gilbert, M.T., Kjaer, K.H., Orlando, L., Brochmann, C., and
2919 2920	1270	Taberlet, P. (2014). Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506,
2921 2922	1271	47-51.
2923 2924	1272	Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., Bunce,
2925 2926	1273	M., Wiuf, C., Gilichinsky, D. A., and Cooper, A. (2003). Diverse plant and animal genetic
2927 2928 2929	1274	records from Holocene and Pleistocene sediments. Science 300, 791-795.
2930 2931	1275	Willerslev, E., Hansen, A. J., and Poinar, H. N. (2004). Isolation of nucleic acids and cultures
2932 2933	1276	from fossil ice and permafrost. Trends in Ecology and Evolution 19, 141–147.
2934 2935	1277	Winter, D., Sjunneskog, C. and Harwood, D. (2010). Early to mid-Pliocene environmentally
2936 2937	1278	constrained diatom assemblages from the AND-1B drillcore, McMurdo Sound, Antarctica.
2938 2939 2940	1279	Stratigraphy 7, 207-227.
2941 2942	1280	Young, J.M., Weyrich, L.S., Clarke, L.J. andCooper, A. (2015). Residual soil DNA extraction
2943 2944	1281	increases the discriminatory power between samples. Forensic Science Medicine and
2945 2946 2947 2948 2949 2950	1282	Pathology 11, 268–72.

2951		
2952		
2954 1	L283	Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch,
2955 2956	L284	D.B.M., Martiny, J.B., Sogin, M., Boetius, A. and Ramette, A. (2011). Global patterns of
2957 2958	L285	bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6, e24570.
2959 2960 1	L286	Zhou, J., Bruns, M.A. and Tiedje, J.M. (1996). DNA recovery from soils of diverse composition.
2961 2962 1	L287	Applied and environmental microbiology 62, 316-322.
2963		
2965		
2966		
2967		
2968		
2969		
2970 2071		
2972		
2973		
2974		
2975		
2976 2977		
2978		
2979		
2980		
2981		
2982		
2984		
2985		
2986		
2987		
2900 2989		
2990		
2991		
2992		
2993		
2994		
2996		
2997		
2998		
2999		
3001		
3002		
3003		
3004		
3005		
3007		
3008		
3009		

Impact subject

Impact score

- Modern DNA in seawater •
- Contaminant DNA in drilling fluid • Surface sediment DNA pushed
- downwards during coring

Recommended contamination control measures: seawater control sample, application of chemical tracers

- Human DNA from analysts
- Contaminant DNA present in working area
- **Cross-contamination**

Recommended contamination control measures: reduction of airflow, sampling under cold conditions, decontamination of core-liners, removal of exposed surface sediments, air controls and lab swabs

- Contaminant DNA present in reagents
- Contaminant DNA present in laboratory
- **Cross-contamination**

Recommended contamination control measures: working on low-DNA environment, personal protective equipment, negative controls

**

aDNA

Sediment core

subsampling

Sediment coring

L O

δ

Samples

Negative control

Metagenomic library preparation

*

aDNA preparati for sequencin

data analysis

aDNA

(reagent contaminants)

PCR and amplicon library preparation (PCR bias)

Recommended contamination control measures: working on low-DNA environment, personal protective equipment, negative controls

Vigorous data filtering and quality control

Recommended contamination control measures: analysis of negative controls alongside samples

A) APC coring system

B) XCB coring system

C) RCB coring system

D) Rotary (left) and Piston (right) cored sediment core

99