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Response to Reviewers - EARTH_2018_550

Reviewer 1 - Comments Author’s response

The paper by Ambrecht et al. “Ancient DNA from 

marine sediments: precautions and considerations for 

seafloor

coring, sample handling and data generation” aims at 

presenting the review of state-of-the-art practices in 

ancient DNA studies of marine sediments, as well as 

providing general guidelines for sampling and lab 

protocols, which should be applied in future, in 

particular in IODP missions.

In general, the topic of ancient DNA is of the highest 

interest. However, in the present form, it may be more 

suitable for a journal of narrower scope. The 

manuscript would benefit a lot if it would be focused 

not only on technical aspects of coring, sampling etc. 

but also if it would provide a review of aDNA 

applications in various marine environments, time 

ranges, taxon groups etc. There are many recent 

studies (many of them included in the reference list) 

showing the potential of ancient DNA in the progress of 

science. Although several valuable reviews have been 

published during the last several years (e.g. Torti et al. 

2015, Rawlence et al. 2014, Pedersen et al. 2015), there 

are still many issues, which could be covered – 

including the specific character of the marine 

environment. DNA-related

problems revealed by the recent studies incorporate 

the limits of applications, the challenges, not only 

related to sampling and contamination, but also to 

bioinformatics, identification of taxonomic units, 

qualitative vs quantitative approaches etc. 

We disagree with the reviewer’s comment. This review 

forms the base of any future study in the emerging 

discipline of marine sedimentary ancient DNA, which is 

interdisciplinary in its core, and thus highly applicable 

to earth, marine, geo- and climate scientists. As 

Reviewer 2 also acknowledges, commonly used modern 

marine genomics techniques have been mis-applied to 

this new field, demonstrating the urgency to raise 

awareness amongst earth and marine scientists that 

appropriate ancient DNA techniques must be used if 

the aim is to acquire authentic ancient DNA; therefore, 

this manuscript is ideally suited to ESR and its 

readership. 

Our focus is on contamination and best-practise 

techniques, and we specifically point out in this review 

that many studies to date fail to provide adequate 

records of negative controls. Therefore, a review of 

currently reported taxonomic groups and age estimates 

is impossible and we do not provide further details than 

already given. 

However, we agree with the reviewer that more 

information can be provided on bioinformatics, 

identification of taxonomic units and approaches, and 

have expanded our data-analysis section accordingly.

Moreover, some of the chapters related to planetary 

exploration, although intriguing, are so far away

from the main topic of the paper that they should be 

removed or shortened.

We have shortened this section in the revised version. 

However, we would prefer to retain this section and 

not entirely remove it, as in our opinion the marine 

aDNA research guidelines are relevant to other low 

biomass environments such as permafrost and other 

planets.

l. 38 – 39 “The study of ancient DNA … has recently 

been applied as a tool to characterize past and modern 

life in deep ocean sediments”. First of all, the study of 

ancient DNA does not help in the characterization of 

modern life (we use modern DNA for that). Second, 

ancient DNA is studied and used for palaeoclimate etc. 

not only in oceanic sediments (see for instance 

numerous studies on ancient DNA in lake sediments).

We agree with the reviewer and have removed 

“modern life” from this sentence.

We agree with the reviewer, however, this review 

focuses on the marine environment, which is 

introduced in this first sentence. 

l. 89, l. 92-93 and elsewhere in the manuscript - 

“plankton” – here, and also later on in the manuscript, 

the authors focus only on plankton or deep biosphere. 

How about benthic organisms, which are also of 

importance and are used as indicatory species (e.g. 

foraminifera)? The aDNA of active swimmers (fish) may 

We removed plankton in this context, and only refer to 

planktonic organisms where previous studies have 

focused on those in particular.
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also be preserved and should not be neglected 

completely.

l.128-132 – the authors refer to a paper by Kirkpatrick 

et al 2016, reporting retrieval of 1.4 million years old 

DNA and underlying that the “origin of DNA must be 

carefully considered”. Later on in the text (l. 139-141), 

the authors list “to date, the oldest authenticated aDNA 

records” and do not take into account the one by 

Kirkpatrick et al (2016). It seems that the authors do 

not find the finding by Kirkpatrick et al. (2016) to be 

confirmed. I would expect much more detail 

information about this case – what was found in 

original paper and what was wrong in the opinion of 

the authors and why. Such a case is very interesting and 

important in terms of making progress in science, as the 

scientific community may learn from potential failures. 

Giving reasons for not recognizing the results obtained 

by Kirkaptrick et al. may give also a chance for them to 

address the constructive critics in the future 

correspondence or papers.

We acknowledge that Kirkpatrick et al. have taken 

utmost care that samples are not contaminated, certain 

precautions were not taken. For example, while 

sampling was undertaken immediately following core 

retrieval on the catwalk of the IODP research ship RV 

Joides Resolution, there is no mention of core liner 

decontamination before cutting, thus potential 

contamination of the inner core during cutting cannot 

be excluded. The authors also describe that PFTs (a 

chemical tracer) were run and below detection limit, 

however, it is unclear whether these low PFT 

concentrations were only measured at the centre of the 

core or also on the periphery (the latter would be a sign 

of unsuccessful tracer delivery to the core). All 

laboratory work was conducted in laminar flow hoods, 

these create air movement and are not as suitable as 

special ultra-low background DNA (ancient DNA) 

facilities; it is also not mentioned whether previous 

work on marine organisms has been performed in this 

hood. PCR was used to amplify the 16S V4 and V5 gene 

regions (each >100bp, thus surprising as aDNA is 

typically <100bp), then subtracting all but chloroplast 

derived sequences. We provide detailed information in 

this review on the biases of PCR and its unsuitability to 

study aDNA. We acknowledge that the decrease in 

cpDNA with depth measured by Kirkpatrick et al. is a 

good indicator for a realistic result, however, the 

possibility remains that the cpDNA signal might be 

derived from contaminating seawater DNA. The major 

diatom taxa detected, Thalassiosira and Chaetoceros, 

are indeed important contributors to the fossil record, 

but also highly represented in the water column. Better 

indicators for ancient DNA authenticity are, for 

example, DNA fragment size and degradation. 

l.157 “2.1” is missing Corrected.

l. 160 “where the DNA was not initially preserved for 

later analysis” – I am not sure what the authors mean. 

The same expression is used also in table 1. How could 

be DNA initially preserved for being analysed as ancient 

DNA?

We changed this to: ‘aDNA research involves the 

biomolecular study of non-modern genetic material 

preserved in a broad range of biological samples’.

l. 170 – 182 definitions. The authors try to make an 

order in a number of similar terms used in literature. I 

find it very useful. However, after reading this 

paragraph, I find some confusing statements. First of 

all, the authors contrast aDNA and PalEnDNA (l. 171-

172), while they seem to overlap, as also stated by the 

authors later on (l. 179-180). I suggest presenting the 

ranges of application of particular terms in form of 

figure (see for instance somehow similar figure in Torti 

et al. 2015). I also think that it is not necessary to add a 

new term ‘marine aDNA’. This term is well covered by 

the existing term ‘sedimentary aDNA’. If the authors 

find it necessary to define a new term then they should 

provide a precise definition. Does this term refer only 

to DNA of marine organisms? The DNA pool may 

Both Reviewer 1 and 2 commented on the terminology 

and definitions of PalEnDNA, aDNA, sedaDNA and 

marine aDNA. Reviewer 2 suggests PalEnDNA to be 

superfluous, while Reviewer 1 criticises the use of 

‘marine aDNA’ as both marine and freshwater 

environments can be influenced by freshwater and 

marine DNA sources, respectively. We agree that in 

regions characterised by brackish waters our term 

marine aDNA might indeed be too narrow, as such, we 

have adjusted our terminology and use an extension of 

the existing term sedaDNA (‘marine sedaDNA’) for 

ancient DNA from marine environments, on which this 

review focuses. We consider our table of definitions 

appropriate and do not see the need to display the 

definitions in a figure, neither did Reviewer 2.
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contain also terrigenous DNA delivered with rivers etc 

(see for instance Torti et al. 2015 and references 

therein). On the other hand, some processes, e.g. 

tsunami, may deliver and deposit marine sediments 

containing DNA of marine organisms on land (e.g. 

Szczucinski et

al 2016). Is the analysis of marine sediments so 

different from lake sediments to create a specific term? 

Please note that for instance in case of well-studied 

Black Sea, some of its older sediments were formed in 

lake conditions, not in marine. So, shall we use two 

separate terms in that case?

l. 186 – chapter 2.21 – this chapter should be in my 

opinion much better illustrated (table/figure). It is one 

of the chapters, which potentially may attract attention 

also of non-aDNA specialists. Particularly interesting 

may be to show the limits. The authors have mentioned 

(l. 201-202), that in well-oxygenated deep-sea 

sediments aDNA was also preserved. However, it was 

also preserved in much less suitable settings as for 

instance coastal marshes (tsunami deposits mentioned 

above).

We have rewritten this paragraph to integrate the 

reviewers’ comment on the retrieval of aDNA from 

oxygenated sediments, and outlining the limits of 

marine sedaDNA research with regard to 

environmental characteristics and age retrieval. 

However, we have not added a table or figure as 

neither would not add any information, and solely be a 

repetition of the text in the manuscript. 

l. 195 – ‘extremely small grain size … offer a high 

adsorption surface’ – I do not think that it is extremely 

small grain size that matters, it is the high surface area 

(ratio of surface to volume).

We agree and modified this sentence. 

l. 259 – ‘geological’ – actually it is a biomechanical 

process 

We replaced ‘geological’ with ‘biomechanical’.

l.280 – chapter 2.26 – it is the next chapter worth to be 

extended. For instance issue of comparison of various 

records (micropaleontological and DNA). The problem 

of quantification of aDNA record. The mentioned 

results from the Black Sea could be represented by a 

combined figure showing an example of the application 

of various proxies.

We expanded this section according to the reviewer’s 

suggestion. However, we are unsure what type of figure 

the reviewer is requesting here - a timeline of events in 

the Black Sea, or a hybrid of figure of already published 

Black Sea results? In either case, we believe that re-

illustrating Black Sea results/data exceeds the scope of 

this review, and have therefore decided against adding 

another figure in this context. (Instead we focused on 

refining Figure 1 (sedaDNA workflow) and adding Figure 

2 (coring systems)). 

l. 314 – chapter 3.1 - I wonder if the specific chapter 

only about IODP is really necessary.

We shortened this chapter considerably, keeping only 

information on available coring platforms, which 

provides important context for the following 

descriptions of drilling strategies suitable for deep 

seafloor aDNA recovery.

l. 324 – table 2 is not necessary. It is much easier to 

include these three points in the text.

We removed this table. 

l. 334- 348 – provide at least the project title. We shortened this section and project titles are no 

longer applicable.

l. 350 – chapter 3.2 on drilling strategies. Various details 

of coring systems are discussed. However, the chapter 

may be difficult to follow for not specialists – consider 

representing the coring systems and the differences 

between them on a figure. The authors claim that the 

paper is to be used by researchers working also in 

permafrost and other planets – make it accessible for 

them.

We have included a new figure showing the differences 

in coring systems. 
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l. 444 -447 - It is not clear why the authors expect the 

freezing to affect DNA leaching.

We added an explanation in the text. 

l. 546 - 'quantitative' - it is not clear what do the 

authors mean. A number of sequences?

We removed ‘quantitative’ in this context.

l. 615 - chapter 5. This chapter is poorly linked with the 

main topic of the paper and in fact, could be shortened 

to a single paragraph. This paper introduces marine 

aDNA guidelines (which are not yet established), and in 

this chapter an extensive description of its potential 

applications are discussed for non-marine settings. In 

particular for planetary exploration - very attractive 

topic, however in situation, when we are not sure if 

there is any life on other planets, not to mention if it is 

DNA-based, I do not find useful to discuss if suggested 

coring techniques, contaminant treatments for marine 

settings etc. may be useful in planetary exploration on 

Mars and other planets and moons. In fact, the chapter 

5.1 reveals more on applications of experience in 

studies of aDNA in permafrost for marine settings (630-

635) than vice versa.

We have shortened this section in the revised version. 

However, we would prefer to retain this section and 

not entirely remove it, as in our opinion the marine 

aDNA research guidelines are relevant to other low 

biomass environments such as permafrost and other 

planets. 

The manuscript could be also enriched in figures (there 

is only a single figure, so far). A good picture is worth a 

thousand words.

We added a figure showing coring systems.

The references need to be rechecked throughout – 

many cited references are not in the reference list (over 

20!) and

vice versa. I have listed below some of the references 

cited in the text and not included in the reference list 

but it

needs to be rechecked once more. Also, the alphabetic 

order in the references is not followed, in particular in 

cases

of the same first author.

The references cited in the text and missing in the 

references:

l. 84. Ambrecht et al. 2018

l.86 Loucaides et al. 2011

l. 89 Castaneda et al. 2011 (do you mean Castaneda and 

Schouten?)

l. 134 Coolen et al. 2011

l.189 Boere et al. 1008 (should be 2009?)

l. 191 (should be Lyon?)

l.241 Levy-Booth et al. 2007

l. 291 Calvert et al. 1987; Hay 1988  

l.292 Major et al. 2006

l.303 Lyra et al 2013 

l. 338 Frueh-Green – be consistent in writing the name 

with the reference list

l. 512 Brotherton et al. 2012 (should be 2013?)

l. 547 Klappenback et al 2001

l. 622 Bossenkol et al 2012 

l.625 Gittel et al. 2014

l. 631 Neghandhi et al 2016

l. 640 McConnell et al 2007

l.661 Grotzinger et al 2012

l. 1179 (Table 1) - van Everdingen 1998, Fry et al. 2003

We corrected the reference list. 
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l.1186 (Table 3) - Haile et al. 2012, Leite et al. 2014, 

Bidle et al 2007

Reviewer 2 - Comments Author’s response

I think this is a nice and timely review in the field of 

ancient DNA (aDNA) research in marine sediments. 

Although I am not particularly expert in marine and 

freshwater sediments I have good knowledge of aDNA 

studies in terrestrial sediments and the two aDNA 

research fields suffer of similar contamination 

problems. As also the authors suggest, many aDNA 

studies recently have not succeeded in reporting exact 

measures taken to prove authenticity of results,

particularly studies dealing with environmental DNA 

(eDNA) extracted from sediments and studies to 

investigate ancient microbiome communities. It is true 

that modern bacteria and other microorganism are 

present nearly in every part of our environments, from 

open research fields to modern clean laboratories. It is 

also true that in many cases common and standard 

molecular laboratories have been used in such studies 

for extracting DNA from ancient sediments and prepare 

samples for sequencing and that procedures for 

subsampling from cores have not been documented 

and reported carefully. This review is therefore very 

welcome and hopefully will encourage researchers 

dealing with aDNA data from marine environments to 

take all necessary precautions during sediment coring, 

sample handling and data generation.

I have only some minor comments that hopefully the 

authors will take into consideration before publication.

In general I agree with most of the suggestions 

provided by the authors and with most of their 

statements. However, I would give more importance to 

contamination that often occur in the laboratories 

during DNA extraction and PCR/library preparations 

rather than in the field during coring when is really hard 

to avoid it. Contamination is never possible to reduce to 

zero and will unfortunately always occurs. However it is 

possible to minimize and to monitor it during all steps. 

Therefore, rather than insisting on the importance of 

performing coring in sterilized conditions, which is 

indeed crucial but very hard to do especially on ships, I 

would stress much more the importance of avoiding 

contamination during subsampling and during analyses 

in the laboratories, as here it is indeed possible to work 

efficiently to minimize it. No matter how clean we work 

on the ship and during coring it is very likely that 

contamination will occur from the modern environment 

during sampling. What is crucial therefore is to clean 

samples as much as

possible prior to analyses and especially during 

subsampling to remove the outer part of the samples 

using sterilized tools, wearing lab mask, lab coats, 

gloves etc. In order to sample the internal 

uncontaminated part of the core it is therefore 

preferable to use larger rather than smaller corers in 

order to get as much material as possible. A second 

We refined section 3.5 “Marine aDNA sample 

processing and analysis” according to the reviewer’s 

suggestion.
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important step to minimize and monitor contamination 

is the use of negative controls during DNA extraction 

and PCR/library preparation. Both types of controls, as 

also mentioned by the authors, should always be 

processed in parallel with sediment samples from PCR, 

to DNA sequence and to bioinformatic analyses. It is 

not enough to measure the DNA amount and even if 

this is zero, controls must be analyzed all the way along 

all steps.

There is one paper on which I have strong doubts about 

authenticity (Inagaki et al. 2005). I don't think it is 

possible that the authors have extracted and analyzed 

DNA from a continental core 108 million years old. Such 

results are very likely created by contaminants and 

therefore not authentic and should therefore not be 

used to support any statement in this paper. This is 

especially true since the authors say correctly that at 

the moment the oldest authenticated DNA sequences 

comes fro remains that are ca 700 kyr (Orlando et al. 

2013).

We agree with the reviewer and do not cite this paper.

Please notice that on line 225 the reference is not 

correct (Inagaki et al. 2015 should be 2005), therefore I 

would not call this as a ‘recent’ study.

There are two different publications, Inagaki et al. 2005 

and Inagaki et al. 2015. The latter study reports on 

slow-growing live microbes in 2.5km deep ocean 

sediments, and is cited in our manuscript. There is no 

reference to Inagaki et al., 2005 (reporting on 100 Mio. 

years old ancient microbes). 

Line 160. Maybe I miss something here but I don't 

understand the meaning of the sentence: ‘where the 

DNA was not initially preserved for later analyses’.

We have changed this sentence to:

“aDNA research involves the biomolecular study of non-

modern genetic material preserved in a broad range of 

biological samples.”

Line 170. The term PalEnDNA is in my opinion 

superfluous. In literature we have already several 

established acronyms (aDNA for ancient DNA, eDNA for 

environmental DNA, sedaDNA or sedDNA for 

sedimentary ancient DNA, see Pedersen et al. 2015, 

Ficetola et al. 2015, Parducci et al. 2017). My 

suggestion is to use only: aDNA, eDNA, sedaDNA and 

marine aDNA.

We agree with the reviewer that the term PalEnDNA is 

somewhat superfluous, and have re-written this 

paragraph to give this term less emphasis. However, as 

it has been used in the literature to describe ancient 

DNA from a variety of environmental samples, we 

decided to retain a brief explanation of this term in the 

text and Table 1.  Additionally, in response to this 

comment and the comment made by reviewer 1 

regarding the terminology, we now use the term 

‘marine sedaDNA’ throughout the text.

Line 178. Some of these references are not correctly 

cited. Giguet Covex, Pansu and Alsos papers are about 

lake sediments and investigate mainly plants, but also 

animals growing around lakes and therefore in 

terrestrial environments.

We adjusted this sentence. (“Modern sequencing 

technologies and bioinformatic tools ease the analysis 

of these complex environmental aDNA samples and of 

the biological responses to human or climate change, 

with investigations having focussed on terrestrial 

settings (Jørgensen et al., 2012; Giguet-Covex et al., 

2014; Willerslev et al., 2014; Alsos et al., 2015; Pansu et 

al., 2015).”)

Line 191, I am a bit uncertain wether Lindhal paper 

suggests that hydrostatic pressure contribute to DNA

preservation. Are the authors sure of this statement?

We removed this statement. 

Line 201: well-oxygenated is misspelled. Corrected.

Line 266: There is no leaching in lake sediments 

(Parducci et al. 2017 New Phyt). There should not be 

either leaching occurring in marine sediments in my 

opinion.

We agree with the reviewer and have mentioned this in 

the text (section 2.2.5). However, in terrestrial non-

frozen sediments leaching has been found to be a 

factor (Haile et al., 2007), and as no studies exist that 
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investigate potential leaching in marine environments, 

its possibility cannot be excluded to date. 

Lines 296-298 I don't agree with this statement 

especially because based on Inagaki et al. 2005 on 

which I have doubts.

We have changed this sentence, however, as 

mentioned above we only refer to Inagaki et al. (2015), 

only (not Inagaki et al., 2005).

Line 358: I don't know what a drill-ship is exactly. Do 

the authors mean from a stable platform like MSP or 

from a ship? Maybe this can be explained for non-

experts.

We have modified this sentence, to clarify that we are 

referring to a ship that is capable of performing drilling 

operations. 

Lines 486-490: I am not sure about the statement that 

samples from the top part of the cores should be 

subsampled and processed in a non-aDNA laboratory. 

In these samples DNA even if more abundant is always 

fragmented and damaged and therefore ancient; 

contamination risk remains therefore high. If the 

authors means instead that this increase the risk for 

‘cross-contamination among samples then I only 

partially agree since cross-contamination must be 

always avoided regardless of the amount of DNA 

present in the ancient samples.

We removed this statement.

Lines 498-501: this depends also on the approach used: 

metabarcoding or shotgun sequencing. Using the latter 

in combination with capture technique may increase 

ability of detecting rare samples/species, particularly if 

these are present in the reference database.

We added this information to the text.

Lines 533-534: I think it is very good that this review 

brings up this problem, which is indeed serious. I would 

strength even more the importance of using strict 

aDNA methodologies and facilities in this field.

We added a sentence of the end of this paragraph to 

stress again the importance of strictly using aDNA 

facilities and methodologies as suggested by the 

reviewer.

In chapter 4.2 I would add one point here on the 

importance of negative controls and that these must be 

always processed and sequenced (and result shown) 

along with sediment samples.

We welcome this suggestion by the reviewer and have 

added this point to the ‘future priorities’ list.

Figure 1 is a too simplified and lacks important details. I 

suggest the authors to provide more details and 

improve the figure as well as the legend as this is an 

important figure for this review.

We updated this figure and added some more details 

on controls to be taken.  
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44 Abstract 

45 The study of ancient DNA (aDNA) from sediments (sedaDNA) offers great potential for 

46 paleoclimate interpretation, and has recently been applied as a tool to characterise past 

47 marine life and environments from deep ocean sediments over geological timescales. Using 
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48 sedaDNA, palaeo-communities have been detected, including prokaryotes and eukaryotes 

49 that do not fossilise, thereby revolutionising the scope of marine micropalaeontological 

50 research. However, many studies to date have not reported on the measures taken to prove 

51 the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly 

52 fragmented and degraded and extremely sensitive to contamination by non-target 

53 environmental DNA. Contamination risks are particularly high on research vessels, drilling 

54 ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, 

55 and due consideration needs to be given to sample processing and analysis following aDNA 

56 guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and 

57 highlights the urgency behind adopting new standards for marine sedaDNA research, with a 

58 focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into 

59 International Ocean Discovery Program (IODP) operations. Currently available installations 

60 aboard drilling ships and platforms are reviewed, improvements suggested, analytical 

61 approaches detailed, and the controls and documentation necessary to support the 

62 authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical 

63 considerations, concepts relevant to the study of past marine biodiversity based on aDNA, 

64 and the applicability of the new guidelines to the study of other contamination-susceptible 

65 environments (permafrost and outer space) are discussed.

66

67 Keywords: ancient DNA; marine sediments; deep biosphere; phytoplankton; contamination; 

68 seafloor; IODP; biomarkers; Mars

69

70 Abbreviations: aDNA, ancient DNA; APC, Advanced Piston Corer; HLAPC, Half-Length 

71 Advanced Piston Corer; IODP, International Ocean Discovery Program; mbsf, metres below 

72 seafloor; MSP, Mission Specific Platforms; NGS, Next generation Sequencing; PCR, 
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73 polymerase chain reaction; PFT, perfluorocarbon tracer; PMCH, perfluoromethylcyclohexane; 

74 PFMD, perfluoromethyldecalin; sedaDNA, sedimentary ancient DNA  

75 1 Introduction

76 Past marine environments have generally been investigated using a suite of methodological 

77 approaches and interdisciplinary research fields, such as geology, organic and inorganic 

78 geochemistry, paleoceanography and micropaleontology. Discoveries in all of these 

79 disciplines have contributed greatly to our understanding of the climatic history of Earth and 

80 the evolution and responses of its inhabitants. However, to date, it has not been possible to 

81 achieve a detailed picture of all living organisms that have occupied global oceans in the past, 

82 restricting estimates of past environmental conditions and climate. The techniques that have 

83 traditionally been applied to reconstruct marine palaeo-communities are limited, such as 

84 microscopy to investigate the microfossil record (e.g., Winter et al., 2010; Armbrecht et al., 

85 2018). Due to dissolution and degradation of phytoplankton and microzooplankton while 

86 sinking to the seafloor post-mortem, only the most robust skeletons and shells are preserved 

87 within a complex geological record (Loucaides et al., 2011). Often, these microfossils are 

88 broken, altered by chemical processes and unrecognizable. In the absence of well-preserved 

89 diagnostic morphological features, lipid biomarkers can provide supplementary information on 

90 biological sources in sediment records (Volkman et al., 1998; Coolen et al., 2004; Sinninghe 

91 Damste et al., 2004; Brocks et al., 2011), however, the majority of plankton members do not 

92 possess highly diagnostic biomarkers.  

93 New marine metagenomic approaches have allowed the routine characterisation of the 

94 diversity of both living hard- and soft-bodied plankton communities in the water column and 

95 sub-seafloor. Large-scale “omics” studies, such as the Tara Oceans project (a global sampling 

96 program to characterise pro- and eukaryotes of the surface ocean), have shed a new light on 

97 our understanding of modern (present day) marine ecosystems and diversity (de Vargas et 

98 al., 2015; Sunagawa et al., 2015; Carradec et al., 2018). The deep sea and sub-seafloor have 
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99 also been targeted with high-resolution metagenomic surveys revealing new insights into the 

100 abundance and composition of organisms existing in these largely unexplored environments 

101 (e.g., Zinger et al., 2011; Bienhold et al., 2016; Inagaki et al., 2015; Morono and Inagaki, 2016; 

102 Orsi et al., 2017, respectively). Such comprehensive studies on living marine communities are 

103 continually improving genome reference databases for the hundreds of thousands of pro- and 

104 eukaryotic organisms present in the marine environment (Sunagawa et al., 2015; Klemetsen 

105 et al., 2017). As a consequence, modern marine metagenomics has not only inspired marine 

106 palaeo-research, but also created a means of identifying ancient taxa from marine sediments 

107 over geological timescales. 

108 In the last decade, marine palaeo-research has been reinvigorated by genomic techniques 

109 that enable the analysis of ancient DNA (aDNA) molecules from long-dead organisms. Past 

110 prokaryotic and eukaryotic plankton communities have been reconstructed using aDNA 

111 sequencing approaches (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2008; 

112 2013; Bissett et al., 2005; D’Andrea et al., 2006; Boere et al., 2009; Lejzerowicz et al., 2013; 

113 Hou et al., 2014; Randlett et al., 2014; More et al., 2018). These studies have confirmed that 

114 phyto- and zooplankton are good targets for aDNA-based studies, while also being particularly 

115 relevant for ecosystem-climate reconstructions. It is reasonable to assume that obligate 

116 photosynthetic plankton (phytoplankton) and/or zooplankton do not survive and reproduce 

117 after burial in deep sediments, and represent uncommon lab contaminants (e.g., Lejzerowicz 

118 et al., 2013; Hou et al., 2014; More et al., 2018). aDNA analysis has shown that even after 

119 their voyage through the water column plankton-derived particles that had settled on the 

120 seafloor still reflect the global biogeographic patterns of living species (Morard et al., 2017). 

121 Notably, the reconstruction of past marine communities using aDNA is possible using just a 

122 few grams of sediment, facilitating sediment sample collection, transport and storage for the 

123 purpose of aDNA analyses.

124 The marine aDNA archive extends back to the Pleistocene, as shown by studies of genomic, 

125 18S rRNA gene markers targeting various eukaryotic groups. For example, aDNA has been 
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126 recovered from various eukaryotic plankton taxa in 43,000-year-old Arabian Sea sediments 

127 (More et al., 2018). Taxon-specific approaches targeting small, degraded DNA fragments 

128 allowed the retrieval of foraminiferal aDNA from ~800-year-old fjord sediments (Pawlowska et 

129 al., 2014) and ~30,000-year-old deep-sea sediments with the additional benefit of enabling 

130 the detection of rare taxa (Lejzerowicz et al., 2013). However, if a targeted approach is used, 

131 the origin and fate of the DNA in question must be carefully considered, especially for very old 

132 claims, such as the retrieval of 1.4 million years old DNA from chloroplasts (Kirkpatrick et al., 

133 2016), which are subject to kleptoplasty (sequestration and maintenance of chloroplasts; 

134 Bernhard and Bowser, 1999). While Kirkpatrick et al. (2016) used thorough contamination 

135 control, the finding of >1 million years old DNA remains to be replicated using adapted control 

136 measures (e.g., sediment core decontamination and metagenomic sequencing, as outlined in 

137 this review). Most studies to date have involved well-dated sediment records and used a cross-

138 validation through paired analysis of aDNA and diagnostic lipid biomarkers as well as 

139 geochemical proxies (e.g., Coolen et al., 2006; 2009). Yet, the absence of modern 

140 contaminants in analysed samples was not always verified through sequencing analysis of 

141 negative sampling and/or extraction controls, which is crucial for the interpretation of aDNA 

142 data even if DNA values measured following amplification (by polymerase chain reaction; 

143 PCR) are zero (as DNA may be present but simply be below detection limit). To date, the 

144 oldest authenticated aDNA records are from ~400,000-year-old cave sediments (Willerslev et 

145 al., 2003) and ~700,000-year-old permafrost mammal bones (Orlando et al., 2013).

146

147 Despite technologies now being available to rapidly extract and sequence aDNA from marine 

148 sediments, and the enormous potential of aDNA research to improve palaeo-oceanographic, 

149 -ecosystem and -climate models, marine sedaDNA studies remain scarce. This is mainly due 

150 to the difficulties and high costs associated with deep-sea aDNA material, for which rarity and 

151 hence value justify the deployment of state-of-the-art practices. We review current problems 

152 and pitfalls incurred in ship-board sediment sampling, laboratory processing and 

153 computational analysis. We suggest solutions to improve sediment coring and sampling 
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154 strategies so that aDNA research can become a well-established staple in marine 

155 biogeosciences. The focus is on sampling protocols within the framework of the International 

156 Ocean Discovery Program (IODP) “Biosphere Frontiers” theme, which is dedicated to 

157 understanding sub-seafloor communities. Our guidelines for deep-ocean sedaDNA isolation 

158 are applicable to any low-biomass and setting, including permafrost regions or planet Mars.

159 2 Definitions and pre-sampling considerations

160 2.1 Ancient DNA (aDNA), sedimentary ancient DNA (sed aDNA), and palaeo-environmental 

161 DNA (PalEnDNA)

162 aDNA research involves the biomolecular study of non-modern genetic material preserved in 

163 a broad range of biological samples (Shapiro und Hofreiter, 2012; Table 1). When an organism 

164 dies, mechanisms that ensure DNA repair in the cell are no longer active, leaving the DNA to 

165 degrade over time (Allentoft et al., 2012). Eventually, DNA from dead specimens becomes 

166 ancient. aDNA is highly fragmented to an average length of less than 100 base pairs (bp), for 

167 example, an average length of 48 bp has been determined in the oldest microbial genome 

168 assembled to date - from a 48,000-year-old Neandertal (Weyrich et al., 2017). aDNA is 

169 affected by post-mortem oxidative and deamination damage, such as thymine enrichment at 

170 the end of DNA sequences (Briggs et al., 2007; Ginolhac et al., 2011). Both fragmentation and 

171 damage patterns can be used to authenticate aDNA, and damage can even be used to predict 

172 its age in certain scenarios (Kistler et al., 2017). 

173 aDNA research mainly focuses on organismal DNA extracted from some tissue remnants of 

174 a wide range of single specimen (e.g., tooth, bone, hair, eggshell, feather). In contrast, 

175 environmental DNA (eDNA) focuses on disseminated genetic material found in environmental 

176 samples such as soil, sediment, water and ice (Taberlet et al., 2012a). Such samples contain 

177 complex mixtures of DNA from taxonomically diverse organisms (e.g., bacteria, archaea, 

178 plants, animals). In addition to aDNA and eDNA, the term sedimentary aDNA (sedaDNA) has 

179 been coined to describe aDNA that is exclusively recovered from sediments (Willerslev et al., 
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180 2003; Jørgensen et al., 2012). The term fossil DNA has also been used in pioneer studies 

181 where sedimentary plankton DNA and lipid biomarkers (i.e., “chemical fossils”) derived from 

182 the same historical source organisms were analysed in parallel to validate the ancient DNA 

183 results (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004). To a lesser degree, 

184 ‘palaeo-environmental DNA’ (PalEnDNA) has also been used to describe disseminated 

185 genetic material in a broad range of ancient environmental samples including sediments as 

186 well as soil, paleosols, coprolites, water and ice (Rawlence et al., 2014). Modern sequencing 

187 technologies and bioinformatic tools ease the analysis of these complex environmental aDNA 

188 samples and of the biological responses to human or climate change, with investigations 

189 having focussed on terrestrial settings (Jørgensen et al., 2012; Giguet-Covex et al., 2014; 

190 Willerslev et al., 2014; Alsos et al., 2015; Pansu et al., 2015). In this review, we use the term 

191 ‘marine sedaDNA’, which specifically refers to aDNA recovered from ocean sediments. A 

192 detailed list of terms frequently used in aDNA research and their definitions is given in Table 

193 1. 

194

195 2.2 Authenticity of marine aDNA

196 2.2.1 Environments favourable for marine aDNA preservation

197 Organic-rich sediments deposited in the deep, cold ocean under stratified and anoxic 

198 conditions present several favourable characteristics for the preservation of aDNA (e.g., 

199 Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2013; Boere et al., 2011). Oxidative 

200 and deamination damage is reduced in the absence of oxygen (Lindahl, 1993). The absence 

201 of irradiation (Lyon et al. 2010), the generally low temperatures (Willerslev et al., 2004), and 

202 the high concentration of borate (Furukawa et al., 2013) further contribute to DNA 

203 preservation. Additionally, the typically high mud content of deep-sea sediment offers a 

204 particularly well-suited matrix for the preservation and accumulation of DNA (Torti et al., 2015). 

205 The high surface:volume ratio of extremely small clay minerals in clay-rich sediments offer a 

206 high adsorption surface onto which DNA molecules can bind and remain sheltered from the 
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207 activity of nucleases (Dell’Anno et al., 2002; Corinaldesi et al., 2008, 2011, 2014, 2018). 

208 However, although the above listed properties have been reported to positively impact on DNA 

209 preservation, locations with other characteristics that seem less ideal might still be suitable for 

210 aDNA research. For example, well-oxygenated Atlantic deep-sea sediments and sand-rich 

211 coastal paleo-tsunami deposits have been used to extract and characterise aDNA from 

212 foraminifera (Lejzerowicz et al., 2013; Szczuciński et al., 2016, respectively). In conclusion, 

213 the preservation of aDNA in marine settings appears to be variable depending on regional 

214 environmental characteristics with less favourable to favourable conditions retaining aDNA 

215 between a few thousand to, at least, a few ten thousand years. More research is needed to 

216 estimate how far back in time authentic marine sedaDNA can be detected, which could be 

217 achieved, for example, by investigating sediment records from various deep seafloor locations 

218 over geological timescales.

219

220 2.2.2 Marine sedaDNA degradation and fragment length

221 18S rRNA gene fragments of past dinoflagellates, diatoms, and haptophytes as long as 500 

222 bp in length have been amplified and sequenced (e.g., Coolen et al., 2004), after DNA was 

223 isolated from sediments exhibiting characteristics favourable for aDNA preservation (Section 

224 2.2.1). Up to 20% of genomic DNA from haptophyte algae has been reported to still be of high 

225 molecular weight after 2,700 years of deposition in Black Sea sediments, and the ratio 

226 between 500 bp-long haptophyte 18S rDNA fragments and the concentration of haptophyte-

227 diagnostic long-chain alkenones did not vary substantially for at least 7,500 years after 

228 deposition, indicative that both types of biomolecules from the same plankton source were 

229 equally well preserved (Coolen et al., 2006). This contradicts the generalised view that aDNA 

230 is characterised by fragment lengths of <100bp. Nevertheless,  studies that report the recovery 

231 of exceedingly long aDNA fragments should be viewed with scepticism especially in the 

232 absence of sampling and extraction controls, where there is no indication on whether the data 

233 might reflect modern signals. However, to date, no data are available on average aDNA 
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234 fragment length for deep-sea sediments, which could be obtained from metagenomic shotgun 

235 sequencing. Gaining insights into the latter should be the focus of future research as this 

236 information will ultimately help to choose the most suitable and efficient aDNA extraction and 

237 sequencing library preparation techniques for degraded sedaDNA (see Section 3.5). 

238

239 2.2.3 Contamination sources by modern DNA

240 Key to the viability of marine sedaDNA studies is the capability to differentiate between true 

241 ancient signals (representative that lived at a particular time-period in the past) and modern 

242 contamination (introduced through the sampling and analysis process, or naturally by the 

243 environment). Microorganisms and their DNA coat nearly every part of this planet (Weyrich et 

244 al., 2015) and a recent study has shown that slow-growing microbes even occur in marine 

245 sediments up to 2.5 km deep (Inagaki et al., 2015). The DNA of active deep-biosphere 

246 organisms is likely to blur the aDNA signal, as would be the case for microorganisms 

247 introduced to ancient sediment samples through the drilling process (see Section 3.2). 

248 Moreover, microbial DNA is widely present in laboratory environments and reagents, including 

249 in those labelled DNA-free (Salter et al., 2014). If PCR is applied to amplify aDNA, the DNA 

250 from modern microorganisms may amplify preferentially over damaged, fragmented aDNA 

251 and obscure the true aDNA signals within the sample (Willerslev and Cooper, 2005). 

252 Therefore, utmost care must be taken to control and account for contaminants and background 

253 DNA throughout the whole process of collecting, processing and sequencing aDNA, e.g., by 

254 including negative controls in every step of the analysis process (Fig. 1). 

255

256 2.2.4 Intracellular vs. extracellular DNA

257 One approach to separating ancient from modern DNA in sediments has been to differentiate 

258 between intracellular and extracellular DNA. Intracellular DNA is defined as DNA contained 

259 within living cells, structurally intact dead cells and intact resting stages (e.g., bacterial spores, 
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260 or other cyst-forming plankton). Extracellular DNA is defined as DNA that has been released 

261 from cells and preserved for substantial periods of time through mineral and/or microfossil 

262 adsorption or within clay aggregates (Levy-Booth et al., 2007). Extracellular DNA represent 

263 an archive of taxa that were autochthonous at the time of deposition (Cornaldesi et al., 2008; 

264 2011). DNA extraction methods have been developed to target either of these DNA fractions 

265 (Corinaldesi et al., 2005; Taberlet et al., 2012b; Alawi et al., 2014). However, it is difficult to 

266 prove at what time in the past the organism died, and its DNA became extracellular. 

267 Furthermore, the extra- and intracellular DNA pool may not always be clearly distinguishable 

268 as genetic material present in the environment might have been taken up by competent 

269 bacteria (Demanèche et al., 2001; Dell’Anno et al., 2004) and even by eukaryotes (Overballe-

270 Petersen and Willerslev, 2014). It is also important to note that if only the extracellular pool 

271 was to be studied, the paleontological value of dormant yet ancient DNA (e.g., from cysts 

272 deposited far back in time) will be lost. Due to these issues, extraction techniques targeting 

273 only the extracellular portion are currently not recommended for marine sedaDNA studies. 

274 Alternatively, bioinformatics approaches that can clearly identify ancient signals (Ginolhac et 

275 al., 2011; Kistler et al., 2017) are preferred options for authenticating aDNA sequences 

276 (Jónsson et al., 2013).

277

278 2.2.5 Vertical DNA movement in marine sediment cores

279 Three major processes are associated with the vertical movement of DNA in sediment cores: 

280 DNA leaching, bioturbation and migration. Bioturbation is a biomechanical process that results 

281 in the multidirectional re-organisation of sediments primarily in the upper 10 cm of the sub-

282 seafloor (Boudreau, 1998). DNA leaching is a passive process describing the downward 

283 movement of DNA across sediment layers (Haile et al., 2007), without a lowermost boundary. 

284 The mixing of sediment layers, and consequently of modern and ancient DNA, can lead to 

285 misinterpretations of genomic data. Experimental trials to assess DNA leaching through 

286 terrestrial sediments exist (Ceccherini et al., 2007; Poté et al., 2007), with initial results 
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287 indicating that the extent of leaching depends on the taxonomic source (Haile et al., 2007). In 

288 Previous studies from lake sediments have shown that leaching is not a factor (Parducci et 

289 al., 2017), and in seafloor sediments DNA it seems to play a minor role as aDNA and lipid 

290 biomarkers derived from the same microbial source were found to co-exist or to be both below 

291 detection limit in marine sediments just centimetres apart (Boere et al., 2009; Coolen et al., 

292 2006; 2009; 2013). In the latter studies it therefore appears that the pore size of the laminated 

293 sediments was too small for intracellular DNA to migrate, and that all extracellular plankton 

294 DNA was adsorbed to the mineral matrices. Recent studies showing upwards vertical pore 

295 fluid movement also demonstrate the potential for vertical migration of relict or intact DNA 

296 within sediments (Torres et al., 2015), and should likewise be considered. Vertical migration 

297 of relict or intact DNA is expected to be especially a concern in sediments with micron scale 

298 pore sizes and/or a low clay content and a poor capacity to adsorb extracellular DNA. Future 

299 experimental research is required to quantify DNA leaching and/or migration through marine 

300 sediments, acknowledging the challenge of replicating a complex environmental system 

301 varying widely in hydrodynamics and sediment type.

302

303 2.2.6 Cross validation of marine aDNA and palaeo-environmental proxies

304 In addition to using proper contamination controls, downcore changes in past plankton 

305 compositions inferred from marine sedaDNA can be validated through a complementary 

306 analysis of independent biological (e.g., microfossils, lipid biomarkers) and geochemical 

307 proxies (indicative of the prevailing paleoenvironmental conditions) (Boere et al., 2009; Coolen 

308 et al., 2004; 2006; 2013; Hou et al., 2014; More et al., 2018). The most detailed comparison 

309 between past ecosystem changes using marine sedaDNA and the paleo-depositional 

310 environment to date has been performed on Holocene sediments from the permanently anoxic 

311 and sulfidic Black Sea (Coolen, 2011; Coolen et al., 2006; 2009; 2013; Giosan et al., 2012; 

312 Manske et al., 2008). The anoxic and laminated sediments of this semi-isolated sea are devoid 

313 of bioturbation and form high-resolution archives of climate-driven hydrological and 
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314 environmental changes (Calvert et al., 1987; Hay, 1988). Episodes of postglacial sea-level 

315 rise ~9,000 years ago (Major et al., 2006) and sea surface salinity increase ~5,200 years ago 

316 (Giosan et al., 2012) have been associated based on sedaDNA with freshwater to 

317 brackish/marine planktonic community transitions (Coolen et al., 2013). For example, the 

318 gradual increase in sea surface salinity coincided with the arrival of marine copepods (Calanus 

319 euxinus), which could only be identified through sedaDNA analysis (Coolen et al., 2013) as 

320 these important zooplankton members generally do not leave other diagnostic remains in the 

321 fossil record besides difficult to distinguish resting eggs (Marcus et al., 1996).

322 Vice versa, paleoenvironmental conditions inferred from more traditional geochemical 

323 and micropaleontological proxies have been verified from parallel sedaDNA analysis. By way 

324 of example, Black Sea sediments deposited since the last 2,500 years contain coccoliths from 

325 the calcified marine haptophyte Emiliania huxleyi whereas haptophyte-derived diagnostic long 

326 chain alkenones in the absence of coccoliths were abundant in up to 7,500-year-old sediments 

327 (Hay et al., 1991; Coolen et al., 2009). Paired analysis of long-chain alkenones and sedaDNA 

328 analysis (18S rRNA) revealed that that the first haptophytes that colonized the Black Sea 

329 ~7,500 years ago were initially a mixture of E. huxleyi and a highly diverse suite of previously 

330 overlooked non-calcified haptophytes related to alkenone-producing brackish Isochrysis 

331 species. E. huxleyi remained the only alkenone producer after 5,200 years BP when salinity 

332 reached modern day levels (Coolen et al., 2009). It was concluded that while calcite dissolution 

333 prevented the preservation of E. huxleyi coccoliths in sediments older than 2,500 years ago, 

334 their molecular fossils (DNA fragments and long-chain alkenones) survived much longer and 

335 showed that in reality this marine haptophyte entered the Black Sea already shortly after the 

336 marine reconnection which occurred ~9,000 years ago (Coolen et al., 2009; 2013). Even more 

337 detailed analyses of E. huxleyi (targeting 250-bp-long mitochondrial cytochrome oxidase 

338 subunit I; mtCOI) indicate a series of transitions from possibly low-salinity to high-salinity 

339 adapted strains of E. huxleyi in the Black Sea (7.5 – 5.2 ka BP), to a different suite of strains 

340 during the most marine stage (5.2 – 2.5 ka BP), returning to low salinity strains after 2.5 ka 

341 BP. The latter transition coincides with the onset of the cold and wet Subatlantic climate 
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342 (Coolen, 2011) when the Black Sea experienced re-freshening from 32 to 18 ppt (Van der 

343 Meer et al., 2011; Giosan et al., 2012; Coolen et al., 2013). The analysis of similar length 

344 preserved sequences of viral major capsid protein (mcp) genes revealed a continuous co-

345 existence of E. huxleyi and coccolithoviruses in the Black Sea since the last 7,000 years and 

346 that the same E. huxleyi strains, which occurred shortly after the marine reconnection returned 

347 with the same viral strains after the re-freshening during the Subatlantic climate thousands of 

348 years later (Coolen, 2011). More recently, detailed sedimentary 18S rDNA profiling targeting 

349 the shorter (130 bp) V9 region revealed that long-term expansion of past oxygen minimum 

350 zones (OMZ) created isolated habitats for unicellular eukaryotes (protists) capable of 

351 sustaining oxygen depletion either by adapting a parasitic life cycle (e.g., apicomplexans) or 

352 by establishing mutualistic connections with others (e.g., radiolarians and mixotrophic 

353 dinoflagellates). These examples show that sed aDNA can be used to identify biological 

354 sources of lipid biomarkers, to verify the reliability of paleoenvironmental information inferred 

355 from more traditional proxies, and to reconstruct past ecosystems at multiple trophic levels.

356 The reconstruction of subseafloor prokaryote communities is more complicated since the 

357 DNA may be derived from living intact cells in the sediment (see Section 2.2.4). However, 16S 

358 rRNA gene profiling from total (intracellular and extracellular) sedimentary DNA has revealed 

359 useful insights into sub-seafloor microbial indicators of the palaeo-depositional environment. 

360 For example, microbiomes in 20 million years-old coalbeds underlying 2 km of marine 

361 sediments were shown to resemble forest soil communities (Inagaki et al., 2015). Variations 

362 in bacterial communities found in Baltic Sea sediments have been linked to palaeo-salinity 

363 changes (Lyra et al., 2013). Orsi et al. (2017) showed that the genomic potential for 

364 denitrification correlated with past proxies for oxygen minimum zone strength in up to 43 ka-

365 old Arabian Sea sediments. The presence of fermentation pathways and their correlation with 

366 the depth distribution of the same denitrifier groups, however, suggests that these microbes 

367 were possibly alive upon burial, but low postdepositional selection criteria may explain why 

368 they nevertheless formed a long-term genomic archive of past environmental conditions 
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369 spanning the last glacial-interglacial cycle (Orsi et al., 2017). Further studies are required to 

370 determine as to how far the persistence of this phenomenon extends with increased depth in 

371 the biosphere. Nevertheless, these examples show that the complementary analysis of marine 

372 sedaDNA-inferred past plankton composition and biological and geochemical proxies is a 

373 powerful tool to reconstruct palaeo-environments. 

374

375 3 aDNA research in the International Ocean Discovery Program (IODP) framework 

376 3.1 IODP infrastructure

377 IODP is the global community’s longest marine geoscience program, operating for 51 years. 

378 Its scientific strategy has been to answer globally-significant research questions about the 

379 Earth’s structure, and the processes that have, and continue to, shape our planet and its 

380 climatic history. More recently, additional focus has been cast on biological evolution and 

381 limits, particularly in the sub-seafloor environment, under the new Biosphere Frontiers theme 

382 (Bickle et al., 2011). This theme has been inspired by the rapidly evolving knowledge and 

383 technical capabilities across the multiple merging fields of molecular biology, microbiology, 

384 organic and inorganic geochemistry, and micropalaeontology and includes scope for the 

385 integration of marine sedaDNA research. IODP is currently serviced through three platforms, 

386 the United States of America’s research vessel JOIDES Resolution, Japan’s Chikyu and by 

387 the European consortium’s Mission Specific Platforms (MSP). In recent years, the laboratories 

388 and storage facilities on the ships were modified, or purpose built, to ensure addressing Deep 

389 Biosphere questions was possible. As a result, the latest IODP decadal plan considered 

390 options to enable access to uncontaminated samples, their processing and preservation on-

391 board. The latter has led to new coring technologies such as the Half-Length Advanced Piston 

392 Corer (HLAPC) allowing a coring depth extension of the conventionally used Advanced Piston 

393 Corer (APC), and the use of chemical contamination tracers such as perfluorocarbon tracers 

394 (PFTs) (see Sections 3.2 and 3.3, respectively). Particularly useful to aDNA studies may be 
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395 the development of remotely controlled instruments allowing sediment sampling at ambient 

396 pressure (MeBo; Pape et al., 2017) and a rock-drilling device (RD2; Früh-Green et al., 2015). 

397 Notable achievements under the new Deep Biosphere theme include the finding of millions of 

398 years old active microbial community from coal beds buried at 2.5 km below the seafloor 

399 (Inagaki et al., 2015), and the preservation of an imprint of the Chicxulub impact catastrophe 

400 (Cockell et al., 2017). A lot remains to be understood before this theme and its challenges are 

401 satisfactorily addressed and it is clear that scientists engaging in Biosphere Frontiers will push 

402 methodological, technological and multidisciplinary studies.

403

404 3.2 Coring strategies suitable for marine sedaDNA retrieval

405 Ideally, marine sedaDNA sampling involves multiple spatial replicates to ensure that the 

406 biodiversity captured is representative of a particular site and time period. However, the ability 

407 to collect multiple deep ocean sediment cores to characterise palaeo-plankton is hindered by 

408 high costs and logistical issues associated with drilling operations. Thorough planning and 

409 collaboration to maximise the use of expensive expeditions and precious deep ocean 

410 sediment core material are indispensable in marine sedaDNA research. To date, several 

411 coring strategies exist that differ in machinery as well as sub-seafloor depth that can be 

412 reached, and their application is largely dependent on which drilling platform is used (ship or 

413 MSP), and what type of sediment is to be cored/drilled (soft sediment or hard rock). This review 

414 concentrates on describing piston coring strategies, which are generally better suited to 

415 retrieve sediments for aDNA analysis due to relatively low contamination risks. Rotary core 

416 barrel systems are required to drill some sedimentary and most igneous rocks, and as they 

417 operate with drill-heads and drilling fluids (e.g., seawater) the risk of contamination is 

418 dramatically increased (see Section 3.3, Fig. 2).

419 Piston coring, referred to as Advanced Piston Coring (APC) or Hydraulic Piston Coring System 

420 (HPCS), is used to sample unconsolidated or poorly consolidated (i.e., softer) marine 
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421 sediments. Briefly, these instruments are pushed into the sediment while a piston inside the 

422 core pipe creates a vacuum so that the collected sediment remains in the pipe during retrieval. 

423 Sediments obtained by piston coring preserve laminated sediments well, are associated with 

424 a relatively low risk of environmental contamination and the preferred method to obtain 

425 sediments for aDNA analysis (Lever et al., 2006; Smith et al., 2000; More et al., 2018; Fig. 2). 

426 Using the piston coring approach, a successive recovery of marine sediments has been 

427 achieved to a depth of ~490 m below seafloor (mbsf) (Tada et al., 2013). If only a few metres 

428 long (soft) sediment cores are required, gravity-based coring systems, such as a Kasten-, or 

429 a Multicorer provide a good alternative (Coolen et al., 2004; 2009). Progress has also been 

430 made towards modifying piston coring instruments so that contamination-free sampling is 

431 possible, at least for short (<4 m) sediments (Feek et al., 2011). For example, the ‘Mk II 

432 sampler’ uses an air and water-tight piston coring system with a pointed aluminium head, 

433 preventing contamination of the sampled sediment from smearing or water infiltration (Feek et 

434 al., 2011). However, to date this corer has only been used in shallow waters, thus it remains 

435 to be tested whether use of such an instrument would be feasible during coring operations in 

436 deeper waters and which modifications may be required. 

437

438 3.3 Contamination tracing during coring

439 Deep ocean coring requires the lowering of coring instruments through hundreds to thousands 

440 of metres of seawater before the seafloor is reached, hence exposes the instruments to 

441 contamination by modern DNA (Fig. 1). This unavoidable issue has called for the development 

442 of methods for environmental DNA contaminant tracing during coring operations. One 

443 approach has been to compare biological material found in the contaminating source material 

444 (e.g., seawater, drilling fluid) to that of sub-seafloor communities, and to exclude all signals 

445 occurring in either from the final analyses (e.g., Expedition 330 Scientists, 2012; Cox et al., 

446 2018).  This approach can be implemented for either piston coring or rotary core barrel drilling, 

447 provided other sampling constraints associated with these coring systems can be 
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448 accommodated. However, this procedure does not account for potential “false negative” DNA 

449 signals that might indeed occur in both ancient sediments and modern contaminating material. 

450 However, in some cases, the microbial community structure of modern contamination (e.g., 

451 drilling “mud”) can be resolved, particularly if functional genes are being targeted in sediment 

452 samples (Cox et al., 2018).

453 Another approach has been the introduction of fluorescent microspheres, which are particulate 

454 tracers of 0.2 - 1.0 mm in diameter physically mimicking contaminating organisms. The 

455 microspheres have been introduced near the coring head, i.e., where the sediment enters the 

456 corer and coring pipe, spreading across the outside of the core (inside the pipe) while drilling, 

457 simulating particle movement (Expedition 330 Scientists, 2012; Orcutt et al., 2017). 

458 Microscopy has been used to quantify the number of microspheres at the periphery and in the 

459 centre of the core to assess contamination (Expedition 330 Scientists, 2012; Orcutt et al., 

460 2017). Similar methods using other perfluorocarbon tracers (PFT’s) including 

461 perfluoromethylcyclohexane (PMCH) have been developed for the USA drilling vessel 

462 JOIDES Resolution (Smith et al., 2000) already in the early phases of IODP. Later, PMCH-

463 based contamination tracing has also been applied during riser drilling on the Chikyu (Inagaki 

464 et al., 2015). During the IODP Expedition 357 (Atlantis Massif Serpentinization and Life), the 

465 PMCH tracer delivery system was further developed to fit the seafloor-based drilling systems 

466 MeBO (Pape et al., 2017) and RD2 (Früh-Green et al., 2015) (see Section 3.1). PMCH is 

467 highly volatile which can lead to false positive measurements in uncontaminated samples, 

468 therefore, more recent investigations during IODP expeditions have moved to the use of the 

469 heavier chemical tracer perfluoromethyldecalin (PFMD, 512.09 g mol-1) (e.g., Fryer et al., 

470 2018). 

471

472 3.4 Subsampling after core acquisition
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473 Key to enable interdisciplinary sampling and correlations of independent measurements is a 

474 detailed sampling plan, specifying sample types as well as the sequence in which these 

475 samples are to be collected. Sampling for aDNA is time-sensitive (to avoid exposure to 

476 oxygen, high temperatures and contamination), thus should be conducted immediately after 

477 core retrieval on an untreated core-half (i.e., prior to any type of scanning such as by X-Ray). 

478 The laboratory in which subsampling for aDNA is carried out should be clean and 

479 workbenches and surfaces decontaminated with bleach (considered to be most efficient at 

480 removing contaminating DNA) and, if applicable, ethanol (to prevent corrosion of metal after 

481 bleach-treatment). Detailed records on whether molecular and amplification techniques (i.e., 

482 PCR) have been employed in on-board laboratories and which organisms were targeted 

483 should be kept on record within IODP to ensure sampling for aDNA can be spatially separated 

484 from these laboratories. While most vessels are not currently equipped for complete DNA 

485 decontamination, such records may be invaluable for post-expedition aDNA data analyses.

486

487 Two sampling approaches are the most feasible on board IODP ships and MSP’s: cutting 

488 whole round cores or direct subsampling after core cutting into 1.5 m long sections. The choice 

489 of approach needs to be made on a case-by-case basis, and depends on the specific facilities, 

490 consumables, chemicals and researcher expertise available during each mission. It is 

491 recommended that cutting or subsampling are performed under filtered air, e.g., a portable 

492 type of a horizontal laminar flow clean air system as described in Morono and Inagaki (2016). 

493 Additionally, subsampling should be conducted from the bottom to the top of the core (ancient 

494 to modern), using clean (e.g., bleach and ethanol treated) sampling tools for each sample to 

495 avoid any form of cross-contamination. Most commonly, soft sediments acquired by piston 

496 coring are used for sedaDNA analyses, therefore, we focus on subsampling procedures of the 

497 latter here, subsequently briefly outlining sampling recommendations for hard rock material.

498

499 If the sampling decision is in favour of whole round core samples, the newly acquired core 

500 sections are cut into 5 - 50 cm sections (preferably under cold conditions), which should be 
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501 packed in sterile bags or wrap and transferred directly into a fridge or freezer. Although quick 

502 and providing a large amount of material for later sub-sampling, this approach has the 

503 disadvantage that a lot of freezer space is required, and post-expedition transport can be 

504 costly due to the high sample volume and weight.

505

506 An alternative to whole round core cutting is direct subsampling immediately after core cutting, 

507 either directly from the centre of the top or bottom of each unsplit core section (usually 1.5 m 

508 long), or after or splitting the core sections into two halves. In any case the core liner should 

509 be cleaned with bleach to remove potential contamination from seawater, and core cutters 

510 and splitting-wires, usually metal and sensitive to bleach should be cleaned with ethanol. If 

511 sampling from uncut sections, surface material (~0.5 cm) should be removed with bleach and 

512 ethanol-treated scrapers before sampling, which is most easily done with sterile cut-tip 

513 syringes, placed into sterile plastic bags and stored frozen. 

514

515 If sampling is undertaken on split core halves, simultaneous visual sedimentological 

516 assessments are possible that enable more targeted sampling at specific depths of interest. 

517 Using DNA-clean tools, the top 0.5 cm of the core surface should be scraped off perpendicular 

518 to the core pipe using sterile scrapers (from bottom to top of the core). Alternatively, the core 

519 half to be sampled can be covered with plastic wrap, followed by powdered dry ice, which will 

520 result in the top 0.5 cm to become solid frozen. After 5 min, the frozen outer sediment layer 

521 can be lifted at one edge with a sterile scalpel creating a contaminant-free surface, from which 

522 subsamples can be taken (Coolen and Overmann, 1998). Then, subsampling should be 

523 undertaken using sterile (e.g., gamma-irradiated) plastic syringes or centrifuge tubes (e.g., 

524 capacity of ~15 mL). Cut-tip syringes have the advantage that more sediment can be collected 

525 as no pressure builds up when pushing the syringe into the sediment (the filled syringe should 

526 be placed into a sterile plastic bag immediately, e.g., Whirl-Pak®). Alternatively, sterile 

527 centrifuge tubes can be used as is to collect ‘plunge-samples’, usually providing ~1 - 3 cc of 

528 sediment material. The outside of the ‘mini-cores’ should be cleaned with bleach and placed 
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529 into sterile plastic bags to avoid cross-contamination between samples. For subsamples, 

530 storage at -20 °C or -80 °C is recommended as freezing has been shown to facilitate 

531 phytoplankton cell-lysis during DNA extractions (Armbrecht et al., in prep.). Sub-samples can 

532 also be collected by transferring a small amount of sediment into a sterile microcentrifuge tube 

533 using clean metal or disposable spatulas (particular care needs to be taken to avoid cross-

534 contamination when using the same sampling tool for different samples). The latter approach 

535 may be a good solution when only a few small samples are required, e.g., to supplement other 

536 scientific questions of an ongoing expedition. For replication purposes it is recommended that 

537 duplicate samples are taken at each depth. 

538

539 If the material is hard rock or similar, subsamples are most easily collected from whole round 

540 or split cores. The same decontamination procedures as outlined above should be considered 

541 throughout the subsampling procedure (i.e., decontamination of work-surfaces and sampling 

542 tools with bleach and ethanol, sampling under cold conditions and filtered or low air-flow, 

543 packing of samples into sterile bags before storage). A de-contaminated metal cutter or a 

544 hammer and chisel are best used to remove the outer layer of the exposed sediment, at least 

545 at those depths where subsampling is anticipated. 

546  

547

548 3.5 Marine aDNA sample processing and analysis 

549 Marine aDNA samples should be processed in a specialised aDNA laboratory to prevent 

550 contamination with modern DNA. Such a laboratory is generally characterised by creating a 

551 low-DNA environment, with a clear separation of no-DNA (e.g., buffer preparation) and DNA-

552 containing (e.g., DNA extraction) workflows, regular and thorough sterilisation procedures, 

553 positive air pressure, and protective clothing of the analyst (lab coat/suit, gloves, facemask, 

554 visor). Details on optimised laboratory set-up, techniques and workflows have been reviewed 

555 before (Cooper and Poinar, 2000; Pedersen et al., 2015). The introduction of aDNA samples 
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556 into such facilities is relatively straight-forward, as the outer packaging and surface of the 

557 sample can be easily sterilised (e.g., using bleach and/or UV). 

558 As on-board subsampling, DNA extractions should be carried out from the most ancient to 

559 most recent samples, to prevent modern DNA indivertibly being carried to ancient samples. 

560 The amount of sediment used in DNA extractions should capture a representative picture of 

561 the biota present in a sample. Despite suggestions that bulk DNA extractions from up to 10 g 

562 of material can improve detection of taxa and better represent the diversity of the area of 

563 interest (e.g., Taberlet et al., 2012b; Coolen et al., 2013), using such large volumes of 

564 sediment is often not practical and can be quite costly in this field where typically many 

565 samples are processed. Instead, numerous studies have used replicate extractions of a 

566 smaller sample size (e.g., 0.25 g; Table 2) to increase the likelihood of yielding aDNA from 

567 rare taxa, as well as successive DNA extractions from a single 0.25 g sediment sample (e.g., 

568 Willerslev et al., 2003). Post-extraction, the use of RNA-probe based enrichment approaches 

569 coupled with shotgun sequencing, a common technique in aDNA research, may furthermore 

570 drastically improve the detection of rare taxa (Horn et al., 2012). 

571 While it would be ideal to find one extraction method that will yield the best quality data and 

572 enable standardisation across ancient marine sediment studies, the type of sediment or target 

573 organisms may require some adjustments of standard protocols (Hermans et al., 2018). 

574 Extraction methods can bias the diversity observed due to differential resilience of taxa to the 

575 cell-lysis method (Zhou et al., 1996; Young et al., 2015) and DNA binding capacities of 

576 different soil and sediment types (Lorenz and Wackernagel, 1994; Miller et al., 1999). As a 

577 result, the aDNA extraction efficiency can be poor and the detection of an aDNA signal lost. 

578 To date, a variety of commercial kits have been successfully used to isolate aDNA from 

579 sediments (Table 3). To further increase the yield of very low amounts of highly fragmented 

580 aDNA several studies have been utilising extraction protocols that include a liquid-silica DNA 

581 binding step (e.g., Brotherton et al., 2013 and Weyrich et al., 2017 for non-sediment samples) 

582 or ethylenediaminetetraacetic acid (EDTA) cell-lysis step (Slon et al., 2017; utilising cave-
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583 sediment samples). Other studies have replaced the Bead Solution in the DNeasy extraction 

584 kits (Qiagen; Table 2) by 1M sodium phosphate pH 9 - 10 and 15 vol% ethanol to efficiently 

585 release clay-adsorbed DNA, and to prevent DNA released from intact cells from adsorbing to 

586 clay minerals during the extraction (Direito et al., 2012; Orsi et al., 2017; More et al., 2018). 

587 The latter is especially important when working with low organic, high carbonate rocks and 

588 sediments (Direito et al., 2012).

589 Two points are particularly important to prevent contamination during extractions. Firstly, as 

590 with the samples themselves, it is crucial that all tools and reagents undergo rigorous 

591 sterilisation procedures before utilisation, such as by bleach and UV treatment of any packing 

592 material before entering ancient DNA facilities. Secondly, blank controls should be included 

593 for every step of the laboratory process, i.e., extraction/library preparation blank controls, 

594 sequencing and bioinformatic analysis controls (Ficetola et al., 2016). Controlling and 

595 monitoring contamination is particularly important when analysing bacterial diversity due to 

596 their presence in all laboratory environments and reagents (Weyrich et al., 2015). Optimally, 

597 extraction blanks are included in a 1:5 ratio (Willerslev and Cooper, 2005), with a bare 

598 minimum of one control with each set of extractions. Aside from bioinformatically removing 

599 any organisms determined in such extraction blanks from the investigated sample material, 

600 the contaminants should be tracked within a laboratory, and contaminant lists published 

601 alongside the data for reasons of data transparency and authenticity.

602 Post-extraction, many marine aDNA studies have employed methods that are routinely used 

603 for modern marine DNA analysis. Although modern DNA work is not exempt from precautions, 

604 there are several issues with aDNA work: (i) as outlined in Sections 2.1. and 2.2. aDNA is 

605 highly fragmented and degraded and any small amount of modern DNA present in the sample 

606 (from reagents, labs or living cells that were present in the sediment sample) will amplify over 

607 the aDNA; (ii) sampling and extraction controls are often not included in the sequencing 

608 sample; (iii) PCRs are often inhibited due to the co-extraction of humic substances, pigments 

609 and heavy metals along with DNA (Webster et al., 2003 and references therein), requiring 
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610 adequate removal of these impurities (e.g., Coolen et al., 2009); (iv) successful PCRs are 

611 prone to bias due to random amplification in reactions that contain very low amounts of DNA 

612 template, thus PCR drift (stochastic variation in the first PCR cycles) can occur (Wagner et al., 

613 1994; Polz and Cavanaugh, 1998; Webster et al., 2003). More importantly, the number of, 

614 e.g., bacterial 16S and eukaryotic 18S rRNA operons can greatly vary between per genome 

615 and per cell and can cause a biased representation of the past community structure (e.g., 

616 Klappenbach et al., 2001). The above biases can be reduced and the detection limit lowered 

617 when PCR approaches selectively, amplifying particular groups of organisms indicative of 

618 environmental changes, are paired with independent geochemical proxies (e.g., Coolen et al., 

619 2004; 2006; 2009). However, we strongly advocate for the use of strict aDNA methodologies 

620 and facilities in order to achieve the generation of authentic marine sedaDNA data, following 

621 the guidelines in this review. 

622 Shotgun metagenomics are currently widely accepted and the least biased method to analyse 

623 the broad diversity of ancient environmental samples (e.g., Slon et al., 2017). Although only a 

624 small portion of the generated sequence data might be attributable to the ancient organism in 

625 question (Morard et al., 2017), next generation sequencing (NGS) generates large quantities 

626 of data that enable meaningful statistics, with the additional benefit of preserving the relative 

627 proportion of detected taxa. To analyse aDNA sequence data, robust bioinformatic pipelines 

628 (e.g., Paleomix, Schubert et al., 2014) have been developed and are available for the 

629 application to marine sedaDNA, integrating damage detection algorithms (e.g., Ginolhac et al. 

630 2011; Kistler et al., 2017) that enable the distinction between ancient and modern signals. 

631 Determining the extent of cytosine residues deamination (C to T and G to A, Weyrich et al. 

632 2017) should also be considered to assess authenticity of aDNA sequences, especially when 

633 the data was generated from mixed communities, such as from marine sedaDNA. It is 

634 furthermore crucial to carefully screen sequencing data for any low-complexity reads, which 

635 may get incorrectly assigned to taxa during alignments against genetic databases, as well as 

636 ensuring that taxonomic assignments in the database of choice are correct. Bioinformatic 
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637 pipelines removing such misidentification-derived errors do not currently exist and should be 

638 the focus of future research, as well as the comparison of shotgun and amplicon marine 

639 sedaDNA data to accurately determine biases and analysis strategies best suited to this new 

640 discipline.

641

642 4 Future marine aDNA sampling considerations

643 4.1 Equipment and installations required aboard IODP platforms

644 In addition to the recent upgrades and investments IODP has made to enable sediment 

645 sampling suitable for Biosphere Frontiers theme (Section 3.1) we suggest the following items 

646 to facilitate contamination-free sediment sampling and the tracing of contaminants. 

647 (i) Laboratories in which sampling for aDNA is undertaken should be carefully chosen to 

648 minimise contamination. Rapid transport of the core from the deck to the lab, thorough 

649 decontamination measures (see Section 3.4), and easy access to fridges or freezers are 

650 crucial. While a positively air-pressured lab (standard for aDNA laboratories) may not be 

651 feasible, air-flow can be reduced by keeping all doors shut and fans off during aDNA sampling. 

652 Contamination by human DNA from analysts can be greatly reduced by wearing adequate 

653 protective clothing (gloves, facemask, freshly laundered/disposable lab coat/overall). A 

654 detailed record or any molecular work undertaken in ship-board labs should be maintained by 

655 IODP, and under no circumstances should aDNA sampling be conducted in labs used 

656 previously to run PCRs (see Section 3.4). Alternatively, the equipment of a shipping container 

657 exclusively dedicated to aDNA sampling could be a good solution to spatially separate aDNA 

658 sampling aboard drilling-platforms and installation could be as required during expeditions that 

659 involve aDNA sampling.

660 (ii) DNA is likely to behave quite different from chemical tracers and microspheres currently 

661 used to track contamination. With constantly advancing technologies in the field of synthetic 
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662 biology, the possibility arises to develop ‘non-biological DNA’ with known sequences. Such 

663 non-viable DNA tags are already used in the oil industry, where a different tag is introduced 

664 into oil pipes monthly to monitor when and where leaks occur (Forecast Technology Ltd). 

665 Using such tags during seafloor coring operations instead of chemical tracers should enable 

666 a precise assessment of contamination by environmental DNA, where bioinformatics pipelines 

667 could be adjusted to detect and quantify the amount of tags present in the final sequencing 

668 data.

669

670 4.2 Ground-truthing marine aDNA research and data

671 To ground-truth marine aDNA studies and to ensure the generation of authentic aDNA data 

672 we suggest future research in this field to focus on the following aspects:

673 (i) The establishment of a public record of common contaminants. This can be achieved, for 

674 example, through an inter-lab comparison focused on analysing the same samples and 

675 integrating extraction blanks to trace contaminants associated with particular coring 

676 equipment, ship- and land- based laboratories. 

677 (ii) Investigation of factors that might considerably bias marine sedaDNA data. This might 

678 include information on sediment-type and environmental condition dependent aDNA 

679 preservation, taxon-specific DNA degradation rates, average aDNA fragment length, and 

680 shotgun and amplification-based aDNA data comparisons.

681 (iii) Ongoing enrichment of genetic reference databases for modern marine plankton, to enable 

682 taxonomic assignment of the hundreds of thousands of ancient sequences expected to be 

683 found in marine sediments.

684 (iv) The inclusion of negative controls during extractions, library preparations and in 

685 sequencing runs, and the publication of the results in the context of independent multiproxy 

686 biological and environmental metadata obtained from the same sediment interval.
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687 (iv) Once (i) - (iv) are addressed, the development of a dedicated aDNA coring proposal is 

688 encouraged, in which sediment cores are collected using the above outlined, best-suited 

689 coring strategies, sampling and analysis procedures. During such an expedition, basic 

690 questions such as optimal on-board contamination tracing techniques, feasible work-flows, 

691 spatial replication required to achieve representative community data, and age to which 

692 marine sedaDNA can be determined should be addressed. Such baseline data is missing to 

693 date and remains the most important step towards the generation of authentic aDNA data from 

694 marine sediments.

695

696 5 Application of marine sedaDNA research guidelines to other contamination 

697 susceptible environments

698 5.1 Permafrost

699 Permafrost molecular biological studies provide the opportunity to study living organisms that 

700 have successfully adapted to extremely cold environments and comprise an analogous 

701 cryogenic environment to that found on other planets, such as Mars (Amato et al., 2010). 

702 Molecular investigations have focussed on humans (Rasmussen et al., 2010), plants 

703 (Willerslev et al., 2003), megafauna (Boessenkool et al. 2012), fungi (Bellemain et al., 2013) 

704 and microbes (Willerslev et al., 2004). Permafrost top layers are characterised by a more 

705 abundant and diverse microbial community compared to the deeper soil (Gittel et al. 2014). 

706 To overcome the hurdle of distinguishing between the modern and ancient DNA signal, 

707 metatranscriptomics have been applied to identify the active community only (e.g., Coolen and 

708 Orsi, 2015). Despite the challenges in experimental approaches, such as rapid community 

709 shifts after thawing even at nearly ambient conditions (Negandhi et al. 2016), studies of 

710 permafrost environments have advanced our understanding of feedback loops associated with 

711 the response of extremophiles to warming, ultimately informing modelling studies including 

712 marine palaeo-environments. 
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713 Sampling for ice and permafrost in polar regions is challenging in terms of logistics and 

714 minimising contamination risks for both the sample and the sampled environment. For 

715 example, permafrost soil samples are, like marine sediment cores, retrieved through drilling, 

716 which can introduce microbial contaminants to the deeper permafrost soil layers as the drill 

717 head and liquid pass through the top active soil layer (Bang-Andreasen et al., 2017). 

718 Additionally, the cryosphere has been accumulating industrial chemicals and metals since the 

719 1850’s (McConnell et al., 2007), so that the present-day microbial community is now capable 

720 of degrading industrial contaminants, thereby representing an anthropogenically-adapted 

721 rather than an original pristine community (Hauptmann et al., 2017). With both these newly 

722 adapted anthropogenic and drilling fluid communities containing characteristics for heavy 

723 metal degradation, distinguishing indigenous ice core or permafrost communities from drilling 

724 fluid communities will become more difficult in the future (Miteva et al., 2014). Therefore, the 

725 described guidelines in this review for distinguishing ancient from modern and contaminant 

726 signals, as well as the need for aseptic sampling procedures, are highly applicable to 

727 permafrost environments and, more generally, the cryosphere.

728

729 5.2 Planetary exploration

730 The methodologies advocated in this review that enable aDNA in marine sediments to be 

731 distinguished from modern DNA are also applicable to the search for life on other planets or 

732 moons. Astrobiologists are especially interested in the possibility of detection of Life 2.0, where 

733 the life has an independent genesis to that on Earth. The search for life beyond Earth has 

734 been potentially possible since the 1970s, with the two Viking lander missions to Mars, but 

735 there are other possible targets in our solar system, notably some of the moons around Jupiter 

736 and Saturn (e.g., Europa, Titan). Space technology has now reached the point where the 

737 detection of life, if it exists or existed elsewhere in the solar system, is becoming a realistic 

738 possibility in the next 50 years. There have been several rovers that have carried out 

739 successful exploration of the surface of Mars, including Curiosity, the Mars Science Laboratory 
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740 that in 2018 is mid-way through its predicted mission (Grotzinger et al., 2014). The rover Mars 

741 2020 is being designed at present to test for evidence of life in the near-surface environment. 

742 It will drill, collect and cache samples from the Martian surface, which will then be returned to 

743 Earth for more detailed analysis (Beaty et al., 2015). Sample return from Mars to Earth is 

744 planned for the end of the 2020’s (Foust, 2018). Active planning is also ongoing for possible 

745 missions to land and analyse materials from the surfaces of moons such as Europa and Titan, 

746 by both NASA and the European Space Agency. For example, Europa (a moon of Jupiter) is 

747 known to have a global saltwater ocean below its icy crust, as well as a rocky seafloor, so is 

748 one of the highest priority targets in the search for present-day life beyond Earth (Hand et al., 

749 2017). A key concern with this solar system exploration is planetary protection, which is 

750 governed by the United Nations Outer Space Treaty (United Nations Office for Disarmament 

751 Affairs, 2015) and the Committee on Space Research (COSPAR) of the International 

752 Committee for Science. There are two important categories of planetary protection. The first 

753 is “forward contamination”, where Earth-derived microbial life hitches a ride on spacecraft and 

754 contaminates parts of a planetary surface being explored. The second is “backward 

755 contamination’, where life from an explored planet or moon is inadvertently returned to Earth, 

756 maybe in a spacecraft or within a rock sample. The relevance to aDNA analytical protocols is 

757 in forward contamination (i.e., the risk of contaminating sample material that could lead to data 

758 misinterpretations, and/or generally introducing Earth contaminants to other planets; Rummel 

759 and Conley, 2017). It should be noted that if indeed there is or was life on other planetary 

760 bodies, it may well not be based on a genetic code composed of DNA and RNA. Independently 

761 originated Life 2.0 would be highly unlikely to have evolved exactly the same nucleic acid 

762 genetic code as life on Earth (e.g., Rummel and Conley, 2017). Indeed, it has been postulated 

763 that an alternative biosphere could exist as a “shadow biosphere” on Earth (Davies et al., 

764 2009). If DNA or RNA-based extant life is found on Mars, for example, then it is most likely 

765 that it would represent either past natural exchange of rocks between the two planets 

766 (panspermia), or anthropogenic forward contamination. Therefore, the procedures used for 

767 distinguishing indigenous life in planetary exploration will need broadening to include the 
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768 possibility of life with a different genetic code. The protocols developed for aDNA sampling of 

769 marine sediments on Earth, including the ability to distinguish from modern DNA, have 

770 relevance for the designing of methods to look for past life on Mars or outer solar system 

771 moons using molecular biology techniques (Beaty et al., 2015; Hand et al., 2017).

772

773 Conclusions

774 Ancient DNA in marine deep-sea sediments holds the potential to open a new era of marine 

775 palaeo-environment and -climate reconstruction. However, anti-contamination measures 

776 central to all aDNA research have logistical constraints and are particularly poorly-suited to 

777 shipboard sediment sampling and processing. For example, sterile coring equipment and 

778 ultra-clean laboratories are usually not available on any type of drilling platform. Current and 

779 future IODP drilling vessels are aware of the increasing need for improved and innovative 

780 solutions to coring, non-contaminant drill fluids and appropriate laboratories and storage 

781 facilities. Such logistical advances should go hand-in-hand with the establishment of new 

782 criteria and standards to ensure the acquisition and preservation of sediment cores with 

783 minimal environmental contaminants. Complementary genetic and geochemical information 

784 currently available to date suggests that, realistically, environmental reconstructions based on 

785 marine sedaDNA from past plankton can be achieved for at least the last glacial-interglacial 

786 cycle, and potentially back to ~400,000 years. These guidelines can be applied in other 

787 scientific areas to facilitate and optimise research conducted in extremely remote locations, 

788 contamination-susceptible environmental samples, and even during the future exploration of 

789 other planets.
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815 Figures:

816 Figure 1: Schematic showing the key steps involved in acquiring deep marine sediment 

817 cores, subsampling, DNA extraction, aDNA preparation for sequencing and data generation. 

818 Indicated are sources of potential contamination and reduction in data quality, as well as 
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819 recommended precautions to be considered and/or controls to be taken. An impact score (1-

820 3 stars) is given to indicate the severity of potential contamination or the impact that impaired 

821 data would have on the results at each step in the process. Schematic graphics are not to 

822 scale.

823

824 Figure 2: Overview of IODP coring systems. A) Advanced piston coring system (APC), shown 

825 before and after stroking; only small volumes of drill fluid can enter the space between the 

826 core barrel and collar from above after stroking, greatly reducing the risk of contamination. B) 
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Abstract 

The study of ancient DNA (aDNA) from sediments (sedaDNA) offers great potential for 

paleoclimate interpretation, and has recently been applied as a tool to characterise past 

marine life and environments from deep ocean sediments over geological timescales. Using 

sedaDNA, palaeo-communities have been detected, including prokaryotes and eukaryotes 

that do not fossilise, thereby revolutionising the scope of marine micropalaeontological 

research. However, many studies to date have not reported on the measures taken to prove 

the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly 

fragmented and degraded and extremely sensitive to contamination by non-target 

environmental DNA. Contamination risks are particularly high on research vessels, drilling 

ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, 

and due consideration needs to be given to sample processing and analysis following aDNA 

guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and 

highlights the urgency behind adopting new standards for marine sedaDNA research, with a 

focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into 

International Ocean Discovery Program (IODP) operations. Currently available installations 

aboard drilling ships and platforms are reviewed, improvements suggested, analytical 

approaches detailed, and the controls and documentation necessary to support the 

authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical 

considerations, concepts relevant to the study of past marine biodiversity based on aDNA, 

and the applicability of the new guidelines to the study of other contamination-susceptible 

environments (permafrost and outer space) are discussed.
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49 the authenticity of sedaDNA-derived data from which conclusions are drawn. aDNA is highly 

50 fragmented and degraded and extremely sensitive to contamination by non-target 

51 environmental DNA. Contamination risks are particularly high on research vessels, drilling 

52 ships and platforms, where logistics and facilities do not yet allow for sterile sediment coring, 

53 and due consideration needs to be given to sample processing and analysis following aDNA 

54 guidelines. This review clarifies the use of aDNA terminology, discusses common pitfalls and 

55 highlights the urgency behind adopting new standards for marine sedaDNA research, with a 

56 focus on sampling optimisation to facilitate the incorporation of routine sedaDNA research into 

57 International Ocean Discovery Program (IODP) operations. Currently available installations 

58 aboard drilling ships and platforms are reviewed, improvements suggested, analytical 

59 approaches detailed, and the controls and documentation necessary to support the 

60 authenticity of aDNA retrieved from deep-sea sediment cores is outlined. Beyond practical 

61 considerations, concepts relevant to the study of past marine biodiversity based on aDNA, 

62 and the applicability of the new guidelines to the study of other contamination-susceptible 

63 environments (permafrost and outer space) are discussed.
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73 1 Introduction

74 Past marine environments have generally been investigated using a suite of methodological 

75 approaches and interdisciplinary research fields, such as geology, organic and inorganic 

76 geochemistry, paleoceanography and micropaleontology. Discoveries in all of these 

77 disciplines have contributed greatly to our understanding of the climatic history of Earth and 

78 the evolution and responses of its inhabitants. However, to date, it has not been possible to 

79 achieve a detailed picture of all living organisms that have occupied global oceans in the past, 

80 restricting estimates of past environmental conditions and climate. The techniques that have 

81 traditionally been applied to reconstruct marine palaeo-communities are limited, such as 

82 microscopy to investigate the microfossil record (e.g., Winter et al., 2010; Armbrecht et al., 

83 2018). Due to dissolution and degradation of phytoplankton and microzooplankton while 

84 sinking to the seafloor post-mortem, only the most robust skeletons and shells are preserved 

85 within a complex geological record (Loucaides et al., 2011). Often, these microfossils are 

86 broken, altered by chemical processes and unrecognizable. In the absence of well-preserved 

87 diagnostic morphological features, lipid biomarkers can provide supplementary information on 

88 biological sources in sediment records (Volkman et al., 1998; Coolen et al., 2004; Sinninghe 

89 Damste et al., 2004; Brocks et al., 2011), however, the majority of plankton members do not 

90 possess highly diagnostic biomarkers.  

91 New marine metagenomic approaches have allowed the routine characterisation of the 

92 diversity of both living hard- and soft-bodied plankton communities in the water column and 

93 sub-seafloor. Large-scale “omics” studies, such as the Tara Oceans project (a global sampling 

94 program to characterise pro- and eukaryotes of the surface ocean), have shed a new light on 

95 our understanding of modern (present day) marine ecosystems and diversity (de Vargas et 

96 al., 2015; Sunagawa et al., 2015; Carradec et al., 2018). The deep sea and sub-seafloor have 

97 also been targeted with high-resolution metagenomic surveys revealing new insights into the 

98 abundance and composition of organisms existing in these largely unexplored environments 

99 (e.g., Zinger et al., 2011; Bienhold et al., 2016; Inagaki et al., 2015; Morono and Inagaki, 2016; 
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100 Orsi et al., 2017, respectively). Such comprehensive studies on living marine communities are 

101 continually improving genome reference databases for the hundreds of thousands of pro- and 

102 eukaryotic organisms present in the marine environment (Sunagawa et al., 2015; Klemetsen 

103 et al., 2017). As a consequence, modern marine metagenomics has not only inspired marine 

104 palaeo-research, but also created a means of identifying ancient taxa from marine sediments 

105 over geological timescales. 

106 In the last decade, marine palaeo-research has been reinvigorated by genomic techniques 

107 that enable the analysis of ancient DNA (aDNA) molecules from long-dead organisms. Past 

108 prokaryotic and eukaryotic plankton communities have been reconstructed using aDNA 

109 sequencing approaches (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2008; 

110 2013; Bissett et al., 2005; D’Andrea et al., 2006; Boere et al., 2009; Lejzerowicz et al., 2013; 

111 Hou et al., 2014; Randlett et al., 2014; More et al., 2018). These studies have confirmed that 

112 phyto- and zooplankton are good targets for aDNA-based studies, while also being particularly 

113 relevant for ecosystem-climate reconstructions. It is reasonable to assume that obligate 

114 photosynthetic plankton (phytoplankton) and/or zooplankton do not survive and reproduce 

115 after burial in deep sediments, and represent uncommon lab contaminants (e.g., Lejzerowicz 

116 et al., 2013; Hou et al., 2014; More et al., 2018). aDNA analysis has shown that even after 

117 their voyage through the water column plankton-derived particles that had settled on the 

118 seafloor still reflect the global biogeographic patterns of living species (Morard et al., 2017). 

119 Notably, the reconstruction of past marine communities using aDNA is possible using just a 

120 few grams of sediment, facilitating sediment sample collection, transport and storage for the 

121 purpose of aDNA analyses.

122 The marine aDNA archive extends back to the Pleistocene, as shown by studies of genomic, 

123 18S rRNA gene markers targeting various eukaryotic groups. For example, aDNA has been 

124 recovered from various eukaryotic plankton taxa in 43,000-year-old Arabian Sea sediments 

125 (More et al., 2018). Taxon-specific approaches targeting small, degraded DNA fragments 

126 allowed the retrieval of foraminiferal aDNA from ~800-year-old fjord sediments (Pawlowska et 
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127 al., 2014) and ~30,000-year-old deep-sea sediments with the additional benefit of enabling 

128 the detection of rare taxa (Lejzerowicz et al., 2013). However, if a targeted approach is used, 

129 the origin and fate of the DNA in question must be carefully considered, especially for very old 

130 claims, such as the retrieval of 1.4 million years old DNA from chloroplasts (Kirkpatrick et al., 

131 2016), which are subject to kleptoplasty (sequestration and maintenance of chloroplasts; 

132 Bernhard and Bowser, 1999). While Kirkpatrick et al. (2016) used thorough contamination 

133 control, the finding of >1 million years old DNA remains to be replicated using adapted control 

134 measures (e.g., sediment core decontamination and metagenomic sequencing, as outlined in 

135 this review). Most studies to date have involved well-dated sediment records and used a cross-

136 validation through paired analysis of aDNA and diagnostic lipid biomarkers as well as 

137 geochemical proxies (e.g., Coolen et al., 2006; 2009). Yet, the absence of modern 

138 contaminants in analysed samples was not always verified through sequencing analysis of 

139 negative sampling and/or extraction controls, which is crucial for the interpretation of aDNA 

140 data even if DNA values measured following amplification (by polymerase chain reaction; 

141 PCR) are zero (as DNA may be present but simply be below detection limit). To date, the 

142 oldest authenticated aDNA records are from ~400,000-year-old cave sediments (Willerslev et 

143 al., 2003) and ~700,000-year-old permafrost mammal bones (Orlando et al., 2013).

144

145 Despite technologies now being available to rapidly extract and sequence aDNA from marine 

146 sediments, and the enormous potential of aDNA research to improve palaeo-oceanographic, 

147 -ecosystem and -climate models, marine sedaDNA studies remain scarce. This is mainly due 

148 to the difficulties and high costs associated with deep-sea aDNA material, for which rarity and 

149 hence value justify the deployment of state-of-the-art practices. We review current problems 

150 and pitfalls incurred in ship-board sediment sampling, laboratory processing and 

151 computational analysis. We suggest solutions to improve sediment coring and sampling 

152 strategies so that aDNA research can become a well-established staple in marine 

153 biogeosciences. The focus is on sampling protocols within the framework of the International 

154 Ocean Discovery Program (IODP) “Biosphere Frontiers” theme, which is dedicated to 
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155 understanding sub-seafloor communities. Our guidelines for deep-ocean sedaDNA isolation 

156 are applicable to any low-biomass and setting, including permafrost regions or planet Mars.

157 2 Definitions and pre-sampling considerations

158 2.1 Ancient DNA (aDNA), sedimentary ancient DNA (sed aDNA), and palaeo-environmental 

159 DNA (PalEnDNA)

160 aDNA research involves the biomolecular study of non-modern genetic material preserved in 

161 a broad range of biological samples (Shapiro und Hofreiter, 2012; Table 1). When an organism 

162 dies, mechanisms that ensure DNA repair in the cell are no longer active, leaving the DNA to 

163 degrade over time (Allentoft et al., 2012). Eventually, DNA from dead specimens becomes 

164 ancient. aDNA is highly fragmented to an average length of less than 100 base pairs (bp), for 

165 example, an average length of 48 bp has been determined in the oldest microbial genome 

166 assembled to date - from a 48,000-year-old Neandertal (Weyrich et al., 2017). aDNA is 

167 affected by post-mortem oxidative and deamination damage, such as thymine enrichment at 

168 the end of DNA sequences (Briggs et al., 2007; Ginolhac et al., 2011). Both fragmentation and 

169 damage patterns can be used to authenticate aDNA, and damage can even be used to predict 

170 its age in certain scenarios (Kistler et al., 2017). 

171 aDNA research mainly focuses on organismal DNA extracted from some tissue remnants of 

172 a wide range of single specimen (e.g., tooth, bone, hair, eggshell, feather). In contrast, 

173 environmental DNA (eDNA) focuses on disseminated genetic material found in environmental 

174 samples such as soil, sediment, water and ice (Taberlet et al., 2012a). Such samples contain 

175 complex mixtures of DNA from taxonomically diverse organisms (e.g., bacteria, archaea, 

176 plants, animals). In addition to aDNA and eDNA, the term sedimentary aDNA (sedaDNA) has 

177 been coined to describe aDNA that is exclusively recovered from sediments (Willerslev et al., 

178 2003; Jørgensen et al., 2012). The term fossil DNA has also been used in pioneer studies 

179 where sedimentary plankton DNA and lipid biomarkers (i.e., “chemical fossils”) derived from 

180 the same historical source organisms were analysed in parallel to validate the ancient DNA 
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181 results (e.g., Coolen and Overmann, 1998; 2007; Coolen et al., 2004). To a lesser degree, 

182 ‘palaeo-environmental DNA’ (PalEnDNA) has also been used to describe disseminated 

183 genetic material in a broad range of ancient environmental samples including sediments as 

184 well as soil, paleosols, coprolites, water and ice (Rawlence et al., 2014). Modern sequencing 

185 technologies and bioinformatic tools ease the analysis of these complex environmental aDNA 

186 samples and of the biological responses to human or climate change, with investigations 

187 having focussed on terrestrial settings (Jørgensen et al., 2012; Giguet-Covex et al., 2014; 

188 Willerslev et al., 2014; Alsos et al., 2015; Pansu et al., 2015). In this review, we use the term 

189 ‘marine sedaDNA’, which specifically refers to aDNA recovered from ocean sediments. A 

190 detailed list of terms frequently used in aDNA research and their definitions is given in Table 

191 1. 

192

193 2.2 Authenticity of marine aDNA

194 2.2.1 Environments favourable for marine aDNA preservation

195 Organic-rich sediments deposited in the deep, cold ocean under stratified and anoxic 

196 conditions present several favourable characteristics for the preservation of aDNA (e.g., 

197 Coolen and Overmann, 1998; 2007; Coolen et al., 2004; 2013; Boere et al., 2011). Oxidative 

198 and deamination damage is reduced in the absence of oxygen (Lindahl, 1993). The absence 

199 of irradiation (Lyon et al. 2010), the generally low temperatures (Willerslev et al., 2004), and 

200 the high concentration of borate (Furukawa et al., 2013) further contribute to DNA 

201 preservation. Additionally, the typically high mud content of deep-sea sediment offers a 

202 particularly well-suited matrix for the preservation and accumulation of DNA (Torti et al., 2015). 

203 The high surface:volume ratio of extremely small clay minerals in clay-rich sediments offer a 

204 high adsorption surface onto which DNA molecules can bind and remain sheltered from the 

205 activity of nucleases (Dell’Anno et al., 2002; Corinaldesi et al., 2008, 2011, 2014, 2018). 

206 However, although the above listed properties have been reported to positively impact on DNA 

207 preservation, locations with other characteristics that seem less ideal might still be suitable for 
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208 aDNA research. For example, well-oxygenated Atlantic deep-sea sediments and sand-rich 

209 coastal paleo-tsunami deposits have been used to extract and characterise aDNA from 

210 foraminifera (Lejzerowicz et al., 2013; Szczuciński et al., 2016, respectively). In conclusion, 

211 the preservation of aDNA in marine settings appears to be variable depending on regional 

212 environmental characteristics with less favourable to favourable conditions retaining aDNA 

213 between a few thousand to, at least, a few ten thousand years. More research is needed to 

214 estimate how far back in time authentic marine sedaDNA can be detected, which could be 

215 achieved, for example, by investigating sediment records from various deep seafloor locations 

216 over geological timescales.

217

218 2.2.2 Marine sedaDNA degradation and fragment length

219 18S rRNA gene fragments of past dinoflagellates, diatoms, and haptophytes as long as 500 

220 bp in length have been amplified and sequenced (e.g., Coolen et al., 2004), after DNA was 

221 isolated from sediments exhibiting characteristics favourable for aDNA preservation (Section 

222 2.2.1). Up to 20% of genomic DNA from haptophyte algae has been reported to still be of high 

223 molecular weight after 2,700 years of deposition in Black Sea sediments, and the ratio 

224 between 500 bp-long haptophyte 18S rDNA fragments and the concentration of haptophyte-

225 diagnostic long-chain alkenones did not vary substantially for at least 7,500 years after 

226 deposition, indicative that both types of biomolecules from the same plankton source were 

227 equally well preserved (Coolen et al., 2006). This contradicts the generalised view that aDNA 

228 is characterised by fragment lengths of <100bp. Nevertheless,  studies that report the recovery 

229 of exceedingly long aDNA fragments should be viewed with scepticism especially in the 

230 absence of sampling and extraction controls, where there is no indication on whether the data 

231 might reflect modern signals. However, to date, no data are available on average aDNA 

232 fragment length for deep-sea sediments, which could be obtained from metagenomic shotgun 

233 sequencing. Gaining insights into the latter should be the focus of future research as this 
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234 information will ultimately help to choose the most suitable and efficient aDNA extraction and 

235 sequencing library preparation techniques for degraded sedaDNA (see Section 3.5). 

236

237 2.2.3 Contamination sources by modern DNA

238 Key to the viability of marine sedaDNA studies is the capability to differentiate between true 

239 ancient signals (representative that lived at a particular time-period in the past) and modern 

240 contamination (introduced through the sampling and analysis process, or naturally by the 

241 environment). Microorganisms and their DNA coat nearly every part of this planet (Weyrich et 

242 al., 2015) and a recent study has shown that slow-growing microbes even occur in marine 

243 sediments up to 2.5 km deep (Inagaki et al., 2015). The DNA of active deep-biosphere 

244 organisms is likely to blur the aDNA signal, as would be the case for microorganisms 

245 introduced to ancient sediment samples through the drilling process (see Section 3.2). 

246 Moreover, microbial DNA is widely present in laboratory environments and reagents, including 

247 in those labelled DNA-free (Salter et al., 2014). If PCR is applied to amplify aDNA, the DNA 

248 from modern microorganisms may amplify preferentially over damaged, fragmented aDNA 

249 and obscure the true aDNA signals within the sample (Willerslev and Cooper, 2005). 

250 Therefore, utmost care must be taken to control and account for contaminants and background 

251 DNA throughout the whole process of collecting, processing and sequencing aDNA, e.g., by 

252 including negative controls in every step of the analysis process (Fig. 1). 

253

254 2.2.4 Intracellular vs. extracellular DNA

255 One approach to separating ancient from modern DNA in sediments has been to differentiate 

256 between intracellular and extracellular DNA. Intracellular DNA is defined as DNA contained 

257 within living cells, structurally intact dead cells and intact resting stages (e.g., bacterial spores, 

258 or other cyst-forming plankton). Extracellular DNA is defined as DNA that has been released 

259 from cells and preserved for substantial periods of time through mineral and/or microfossil 
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260 adsorption or within clay aggregates (Levy-Booth et al., 2007). Extracellular DNA represent 

261 an archive of taxa that were autochthonous at the time of deposition (Cornaldesi et al., 2008; 

262 2011). DNA extraction methods have been developed to target either of these DNA fractions 

263 (Corinaldesi et al., 2005; Taberlet et al., 2012b; Alawi et al., 2014). However, it is difficult to 

264 prove at what time in the past the organism died, and its DNA became extracellular. 

265 Furthermore, the extra- and intracellular DNA pool may not always be clearly distinguishable 

266 as genetic material present in the environment might have been taken up by competent 

267 bacteria (Demanèche et al., 2001; Dell’Anno et al., 2004) and even by eukaryotes (Overballe-

268 Petersen and Willerslev, 2014). It is also important to note that if only the extracellular pool 

269 was to be studied, the paleontological value of dormant yet ancient DNA (e.g., from cysts 

270 deposited far back in time) will be lost. Due to these issues, extraction techniques targeting 

271 only the extracellular portion are currently not recommended for marine sedaDNA studies. 

272 Alternatively, bioinformatics approaches that can clearly identify ancient signals (Ginolhac et 

273 al., 2011; Kistler et al., 2017) are preferred options for authenticating aDNA sequences 

274 (Jónsson et al., 2013).

275

276 2.2.5 Vertical DNA movement in marine sediment cores

277 Three major processes are associated with the vertical movement of DNA in sediment cores: 

278 DNA leaching, bioturbation and migration. Bioturbation is a biomechanical process that results 

279 in the multidirectional re-organisation of sediments primarily in the upper 10 cm of the sub-

280 seafloor (Boudreau, 1998). DNA leaching is a passive process describing the downward 

281 movement of DNA across sediment layers (Haile et al., 2007), without a lowermost boundary. 

282 The mixing of sediment layers, and consequently of modern and ancient DNA, can lead to 

283 misinterpretations of genomic data. Experimental trials to assess DNA leaching through 

284 terrestrial sediments exist (Ceccherini et al., 2007; Poté et al., 2007), with initial results 

285 indicating that the extent of leaching depends on the taxonomic source (Haile et al., 2007). In 

286 Previous studies from lake sediments have shown that leaching is not a factor (Parducci et 
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287 al., 2017), and in seafloor sediments DNA it seems to play a minor role as aDNA and lipid 

288 biomarkers derived from the same microbial source were found to co-exist or to be both below 

289 detection limit in marine sediments just centimetres apart (Boere et al., 2009; Coolen et al., 

290 2006; 2009; 2013). In the latter studies it therefore appears that the pore size of the laminated 

291 sediments was too small for intracellular DNA to migrate, and that all extracellular plankton 

292 DNA was adsorbed to the mineral matrices. Recent studies showing upwards vertical pore 

293 fluid movement also demonstrate the potential for vertical migration of relict or intact DNA 

294 within sediments (Torres et al., 2015), and should likewise be considered. Vertical migration 

295 of relict or intact DNA is expected to be especially a concern in sediments with micron scale 

296 pore sizes and/or a low clay content and a poor capacity to adsorb extracellular DNA. Future 

297 experimental research is required to quantify DNA leaching and/or migration through marine 

298 sediments, acknowledging the challenge of replicating a complex environmental system 

299 varying widely in hydrodynamics and sediment type.

300

301 2.2.6 Cross validation of marine aDNA and palaeo-environmental proxies

302 In addition to using proper contamination controls, downcore changes in past plankton 

303 compositions inferred from marine sedaDNA can be validated through a complementary 

304 analysis of independent biological (e.g., microfossils, lipid biomarkers) and geochemical 

305 proxies (indicative of the prevailing paleoenvironmental conditions) (Boere et al., 2009; Coolen 

306 et al., 2004; 2006; 2013; Hou et al., 2014; More et al., 2018). The most detailed comparison 

307 between past ecosystem changes using marine sedaDNA and the paleo-depositional 

308 environment to date has been performed on Holocene sediments from the permanently anoxic 

309 and sulfidic Black Sea (Coolen, 2011; Coolen et al., 2006; 2009; 2013; Giosan et al., 2012; 

310 Manske et al., 2008). The anoxic and laminated sediments of this semi-isolated sea are devoid 

311 of bioturbation and form high-resolution archives of climate-driven hydrological and 

312 environmental changes (Calvert et al., 1987; Hay, 1988). Episodes of postglacial sea-level 

313 rise ~9,000 years ago (Major et al., 2006) and sea surface salinity increase ~5,200 years ago 
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314 (Giosan et al., 2012) have been associated based on sedaDNA with freshwater to 

315 brackish/marine planktonic community transitions (Coolen et al., 2013). For example, the 

316 gradual increase in sea surface salinity coincided with the arrival of marine copepods (Calanus 

317 euxinus), which could only be identified through sedaDNA analysis (Coolen et al., 2013) as 

318 these important zooplankton members generally do not leave other diagnostic remains in the 

319 fossil record besides difficult to distinguish resting eggs (Marcus et al., 1996).

320 Vice versa, paleoenvironmental conditions inferred from more traditional geochemical 

321 and micropaleontological proxies have been verified from parallel sedaDNA analysis. By way 

322 of example, Black Sea sediments deposited since the last 2,500 years contain coccoliths from 

323 the calcified marine haptophyte Emiliania huxleyi whereas haptophyte-derived diagnostic long 

324 chain alkenones in the absence of coccoliths were abundant in up to 7,500-year-old sediments 

325 (Hay et al., 1991; Coolen et al., 2009). Paired analysis of long-chain alkenones and sedaDNA 

326 analysis (18S rRNA) revealed that that the first haptophytes that colonized the Black Sea 

327 ~7,500 years ago were initially a mixture of E. huxleyi and a highly diverse suite of previously 

328 overlooked non-calcified haptophytes related to alkenone-producing brackish Isochrysis 

329 species. E. huxleyi remained the only alkenone producer after 5,200 years BP when salinity 

330 reached modern day levels (Coolen et al., 2009). It was concluded that while calcite dissolution 

331 prevented the preservation of E. huxleyi coccoliths in sediments older than 2,500 years ago, 

332 their molecular fossils (DNA fragments and long-chain alkenones) survived much longer and 

333 showed that in reality this marine haptophyte entered the Black Sea already shortly after the 

334 marine reconnection which occurred ~9,000 years ago (Coolen et al., 2009; 2013). Even more 

335 detailed analyses of E. huxleyi (targeting 250-bp-long mitochondrial cytochrome oxidase 

336 subunit I; mtCOI) indicate a series of transitions from possibly low-salinity to high-salinity 

337 adapted strains of E. huxleyi in the Black Sea (7.5 – 5.2 ka BP), to a different suite of strains 

338 during the most marine stage (5.2 – 2.5 ka BP), returning to low salinity strains after 2.5 ka 

339 BP. The latter transition coincides with the onset of the cold and wet Subatlantic climate 

340 (Coolen, 2011) when the Black Sea experienced re-freshening from 32 to 18 ppt (Van der 

341 Meer et al., 2011; Giosan et al., 2012; Coolen et al., 2013). The analysis of similar length 
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342 preserved sequences of viral major capsid protein (mcp) genes revealed a continuous co-

343 existence of E. huxleyi and coccolithoviruses in the Black Sea since the last 7,000 years and 

344 that the same E. huxleyi strains, which occurred shortly after the marine reconnection returned 

345 with the same viral strains after the re-freshening during the Subatlantic climate thousands of 

346 years later (Coolen, 2011). More recently, detailed sedimentary 18S rDNA profiling targeting 

347 the shorter (130 bp) V9 region revealed that long-term expansion of past oxygen minimum 

348 zones (OMZ) created isolated habitats for unicellular eukaryotes (protists) capable of 

349 sustaining oxygen depletion either by adapting a parasitic life cycle (e.g., apicomplexans) or 

350 by establishing mutualistic connections with others (e.g., radiolarians and mixotrophic 

351 dinoflagellates). These examples show that sed aDNA can be used to identify biological 

352 sources of lipid biomarkers, to verify the reliability of paleoenvironmental information inferred 

353 from more traditional proxies, and to reconstruct past ecosystems at multiple trophic levels.

354 The reconstruction of subseafloor prokaryote communities is more complicated since the 

355 DNA may be derived from living intact cells in the sediment (see Section 2.2.4). However, 16S 

356 rRNA gene profiling from total (intracellular and extracellular) sedimentary DNA has revealed 

357 useful insights into sub-seafloor microbial indicators of the palaeo-depositional environment. 

358 For example, microbiomes in 20 million years-old coalbeds underlying 2 km of marine 

359 sediments were shown to resemble forest soil communities (Inagaki et al., 2015). Variations 

360 in bacterial communities found in Baltic Sea sediments have been linked to palaeo-salinity 

361 changes (Lyra et al., 2013). Orsi et al. (2017) showed that the genomic potential for 

362 denitrification correlated with past proxies for oxygen minimum zone strength in up to 43 ka-

363 old Arabian Sea sediments. The presence of fermentation pathways and their correlation with 

364 the depth distribution of the same denitrifier groups, however, suggests that these microbes 

365 were possibly alive upon burial, but low postdepositional selection criteria may explain why 

366 they nevertheless formed a long-term genomic archive of past environmental conditions 

367 spanning the last glacial-interglacial cycle (Orsi et al., 2017). Further studies are required to 

368 determine as to how far the persistence of this phenomenon extends with increased depth in 
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369 the biosphere. Nevertheless, these examples show that the complementary analysis of marine 

370 sedaDNA-inferred past plankton composition and biological and geochemical proxies is a 

371 powerful tool to reconstruct palaeo-environments. 

372

373 3 aDNA research in the International Ocean Discovery Program (IODP) framework 

374 3.1 IODP infrastructure

375 IODP is the global community’s longest marine geoscience program, operating for 51 years. 

376 Its scientific strategy has been to answer globally-significant research questions about the 

377 Earth’s structure, and the processes that have, and continue to, shape our planet and its 

378 climatic history. More recently, additional focus has been cast on biological evolution and 

379 limits, particularly in the sub-seafloor environment, under the new Biosphere Frontiers theme 

380 (Bickle et al., 2011). This theme has been inspired by the rapidly evolving knowledge and 

381 technical capabilities across the multiple merging fields of molecular biology, microbiology, 

382 organic and inorganic geochemistry, and micropalaeontology and includes scope for the 

383 integration of marine sedaDNA research. IODP is currently serviced through three platforms, 

384 the United States of America’s research vessel JOIDES Resolution, Japan’s Chikyu and by 

385 the European consortium’s Mission Specific Platforms (MSP). In recent years, the laboratories 

386 and storage facilities on the ships were modified, or purpose built, to ensure addressing Deep 

387 Biosphere questions was possible. As a result, the latest IODP decadal plan considered 

388 options to enable access to uncontaminated samples, their processing and preservation on-

389 board. The latter has led to new coring technologies such as the Half-Length Advanced Piston 

390 Corer (HLAPC) allowing a coring depth extension of the conventionally used Advanced Piston 

391 Corer (APC), and the use of chemical contamination tracers such as perfluorocarbon tracers 

392 (PFTs) (see Sections 3.2 and 3.3, respectively). Particularly useful to aDNA studies may be 

393 the development of remotely controlled instruments allowing sediment sampling at ambient 

394 pressure (MeBo; Pape et al., 2017) and a rock-drilling device (RD2; Früh-Green et al., 2015). 
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395 Notable achievements under the new Deep Biosphere theme include the finding of millions of 

396 years old active microbial community from coal beds buried at 2.5 km below the seafloor 

397 (Inagaki et al., 2015), and the preservation of an imprint of the Chicxulub impact catastrophe 

398 (Cockell et al., 2017). A lot remains to be understood before this theme and its challenges are 

399 satisfactorily addressed and it is clear that scientists engaging in Biosphere Frontiers will push 

400 methodological, technological and multidisciplinary studies.

401

402 3.2 Coring strategies suitable for marine sedaDNA retrieval

403 Ideally, marine sedaDNA sampling involves multiple spatial replicates to ensure that the 

404 biodiversity captured is representative of a particular site and time period. However, the ability 

405 to collect multiple deep ocean sediment cores to characterise palaeo-plankton is hindered by 

406 high costs and logistical issues associated with drilling operations. Thorough planning and 

407 collaboration to maximise the use of expensive expeditions and precious deep ocean 

408 sediment core material are indispensable in marine sedaDNA research. To date, several 

409 coring strategies exist that differ in machinery as well as sub-seafloor depth that can be 

410 reached, and their application is largely dependent on which drilling platform is used (ship or 

411 MSP), and what type of sediment is to be cored/drilled (soft sediment or hard rock). This review 

412 concentrates on describing piston coring strategies, which are generally better suited to 

413 retrieve sediments for aDNA analysis due to relatively low contamination risks. Rotary core 

414 barrel systems are required to drill some sedimentary and most igneous rocks, and as they 

415 operate with drill-heads and drilling fluids (e.g., seawater) the risk of contamination is 

416 dramatically increased (see Section 3.3, Fig. 2).

417 Piston coring, referred to as Advanced Piston Coring (APC) or Hydraulic Piston Coring System 

418 (HPCS), is used to sample unconsolidated or poorly consolidated (i.e., softer) marine 

419 sediments. Briefly, these instruments are pushed into the sediment while a piston inside the 

420 core pipe creates a vacuum so that the collected sediment remains in the pipe during retrieval. 
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421 Sediments obtained by piston coring preserve laminated sediments well, are associated with 

422 a relatively low risk of environmental contamination and the preferred method to obtain 

423 sediments for aDNA analysis (Lever et al., 2006; Smith et al., 2000; More et al., 2018; Fig. 2). 

424 Using the piston coring approach, a successive recovery of marine sediments has been 

425 achieved to a depth of ~490 m below seafloor (mbsf) (Tada et al., 2013). If only a few metres 

426 long (soft) sediment cores are required, gravity-based coring systems, such as a Kasten-, or 

427 a Multicorer provide a good alternative (Coolen et al., 2004; 2009). Progress has also been 

428 made towards modifying piston coring instruments so that contamination-free sampling is 

429 possible, at least for short (<4 m) sediments (Feek et al., 2011). For example, the ‘Mk II 

430 sampler’ uses an air and water-tight piston coring system with a pointed aluminium head, 

431 preventing contamination of the sampled sediment from smearing or water infiltration (Feek et 

432 al., 2011). However, to date this corer has only been used in shallow waters, thus it remains 

433 to be tested whether use of such an instrument would be feasible during coring operations in 

434 deeper waters and which modifications may be required. 

435

436 3.3 Contamination tracing during coring

437 Deep ocean coring requires the lowering of coring instruments through hundreds to thousands 

438 of metres of seawater before the seafloor is reached, hence exposes the instruments to 

439 contamination by modern DNA (Fig. 1). This unavoidable issue has called for the development 

440 of methods for environmental DNA contaminant tracing during coring operations. One 

441 approach has been to compare biological material found in the contaminating source material 

442 (e.g., seawater, drilling fluid) to that of sub-seafloor communities, and to exclude all signals 

443 occurring in either from the final analyses (e.g., Expedition 330 Scientists, 2012; Cox et al., 

444 2018).  This approach can be implemented for either piston coring or rotary core barrel drilling, 

445 provided other sampling constraints associated with these coring systems can be 

446 accommodated. However, this procedure does not account for potential “false negative” DNA 

447 signals that might indeed occur in both ancient sediments and modern contaminating material. 
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448 However, in some cases, the microbial community structure of modern contamination (e.g., 

449 drilling “mud”) can be resolved, particularly if functional genes are being targeted in sediment 

450 samples (Cox et al., 2018).

451 Another approach has been the introduction of fluorescent microspheres, which are particulate 

452 tracers of 0.2 - 1.0 mm in diameter physically mimicking contaminating organisms. The 

453 microspheres have been introduced near the coring head, i.e., where the sediment enters the 

454 corer and coring pipe, spreading across the outside of the core (inside the pipe) while drilling, 

455 simulating particle movement (Expedition 330 Scientists, 2012; Orcutt et al., 2017). 

456 Microscopy has been used to quantify the number of microspheres at the periphery and in the 

457 centre of the core to assess contamination (Expedition 330 Scientists, 2012; Orcutt et al., 

458 2017). Similar methods using other perfluorocarbon tracers (PFT’s) including 

459 perfluoromethylcyclohexane (PMCH) have been developed for the USA drilling vessel 

460 JOIDES Resolution (Smith et al., 2000) already in the early phases of IODP. Later, PMCH-

461 based contamination tracing has also been applied during riser drilling on the Chikyu (Inagaki 

462 et al., 2015). During the IODP Expedition 357 (Atlantis Massif Serpentinization and Life), the 

463 PMCH tracer delivery system was further developed to fit the seafloor-based drilling systems 

464 MeBO (Pape et al., 2017) and RD2 (Früh-Green et al., 2015) (see Section 3.1). PMCH is 

465 highly volatile which can lead to false positive measurements in uncontaminated samples, 

466 therefore, more recent investigations during IODP expeditions have moved to the use of the 

467 heavier chemical tracer perfluoromethyldecalin (PFMD, 512.09 g mol-1) (e.g., Fryer et al., 

468 2018). 

469

470 3.4 Subsampling after core acquisition

471 Key to enable interdisciplinary sampling and correlations of independent measurements is a 

472 detailed sampling plan, specifying sample types as well as the sequence in which these 

473 samples are to be collected. Sampling for aDNA is time-sensitive (to avoid exposure to 
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474 oxygen, high temperatures and contamination), thus should be conducted immediately after 

475 core retrieval on an untreated core-half (i.e., prior to any type of scanning such as by X-Ray). 

476 The laboratory in which subsampling for aDNA is carried out should be clean and 

477 workbenches and surfaces decontaminated with bleach (considered to be most efficient at 

478 removing contaminating DNA) and, if applicable, ethanol (to prevent corrosion of metal after 

479 bleach-treatment). Detailed records on whether molecular and amplification techniques (i.e., 

480 PCR) have been employed in on-board laboratories and which organisms were targeted 

481 should be kept on record within IODP to ensure sampling for aDNA can be spatially separated 

482 from these laboratories. While most vessels are not currently equipped for complete DNA 

483 decontamination, such records may be invaluable for post-expedition aDNA data analyses.

484

485 Two sampling approaches are the most feasible on board IODP ships and MSP’s: cutting 

486 whole round cores or direct subsampling after core cutting into 1.5 m long sections. The choice 

487 of approach needs to be made on a case-by-case basis, and depends on the specific facilities, 

488 consumables, chemicals and researcher expertise available during each mission. It is 

489 recommended that cutting or subsampling are performed under filtered air, e.g., a portable 

490 type of a horizontal laminar flow clean air system as described in Morono and Inagaki (2016). 

491 Additionally, subsampling should be conducted from the bottom to the top of the core (ancient 

492 to modern), using clean (e.g., bleach and ethanol treated) sampling tools for each sample to 

493 avoid any form of cross-contamination. Most commonly, soft sediments acquired by piston 

494 coring are used for sedaDNA analyses, therefore, we focus on subsampling procedures of the 

495 latter here, subsequently briefly outlining sampling recommendations for hard rock material.

496

497 If the sampling decision is in favour of whole round core samples, the newly acquired core 

498 sections are cut into 5 - 50 cm sections (preferably under cold conditions), which should be 

499 packed in sterile bags or wrap and transferred directly into a fridge or freezer. Although quick 

500 and providing a large amount of material for later sub-sampling, this approach has the 
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501 disadvantage that a lot of freezer space is required, and post-expedition transport can be 

502 costly due to the high sample volume and weight.

503

504 An alternative to whole round core cutting is direct subsampling immediately after core cutting, 

505 either directly from the centre of the top or bottom of each unsplit core section (usually 1.5 m 

506 long), or after or splitting the core sections into two halves. In any case the core liner should 

507 be cleaned with bleach to remove potential contamination from seawater, and core cutters 

508 and splitting-wires, usually metal and sensitive to bleach should be cleaned with ethanol. If 

509 sampling from uncut sections, surface material (~0.5 cm) should be removed with bleach and 

510 ethanol-treated scrapers before sampling, which is most easily done with sterile cut-tip 

511 syringes, placed into sterile plastic bags and stored frozen. 

512

513 If sampling is undertaken on split core halves, simultaneous visual sedimentological 

514 assessments are possible that enable more targeted sampling at specific depths of interest. 

515 Using DNA-clean tools, the top 0.5 cm of the core surface should be scraped off perpendicular 

516 to the core pipe using sterile scrapers (from bottom to top of the core). Alternatively, the core 

517 half to be sampled can be covered with plastic wrap, followed by powdered dry ice, which will 

518 result in the top 0.5 cm to become solid frozen. After 5 min, the frozen outer sediment layer 

519 can be lifted at one edge with a sterile scalpel creating a contaminant-free surface, from which 

520 subsamples can be taken (Coolen and Overmann, 1998). Then, subsampling should be 

521 undertaken using sterile (e.g., gamma-irradiated) plastic syringes or centrifuge tubes (e.g., 

522 capacity of ~15 mL). Cut-tip syringes have the advantage that more sediment can be collected 

523 as no pressure builds up when pushing the syringe into the sediment (the filled syringe should 

524 be placed into a sterile plastic bag immediately, e.g., Whirl-Pak®). Alternatively, sterile 

525 centrifuge tubes can be used as is to collect ‘plunge-samples’, usually providing ~1 - 3 cc of 

526 sediment material. The outside of the ‘mini-cores’ should be cleaned with bleach and placed 

527 into sterile plastic bags to avoid cross-contamination between samples. For subsamples, 

528 storage at -20 °C or -80 °C is recommended as freezing has been shown to facilitate 
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529 phytoplankton cell-lysis during DNA extractions (Armbrecht et al., in prep.). Sub-samples can 

530 also be collected by transferring a small amount of sediment into a sterile microcentrifuge tube 

531 using clean metal or disposable spatulas (particular care needs to be taken to avoid cross-

532 contamination when using the same sampling tool for different samples). The latter approach 

533 may be a good solution when only a few small samples are required, e.g., to supplement other 

534 scientific questions of an ongoing expedition. For replication purposes it is recommended that 

535 duplicate samples are taken at each depth. 

536

537 If the material is hard rock or similar, subsamples are most easily collected from whole round 

538 or split cores. The same decontamination procedures as outlined above should be considered 

539 throughout the subsampling procedure (i.e., decontamination of work-surfaces and sampling 

540 tools with bleach and ethanol, sampling under cold conditions and filtered or low air-flow, 

541 packing of samples into sterile bags before storage). A de-contaminated metal cutter or a 

542 hammer and chisel are best used to remove the outer layer of the exposed sediment, at least 

543 at those depths where subsampling is anticipated. 

544  

545

546 3.5 Marine aDNA sample processing and analysis 

547 Marine aDNA samples should be processed in a specialised aDNA laboratory to prevent 

548 contamination with modern DNA. Such a laboratory is generally characterised by creating a 

549 low-DNA environment, with a clear separation of no-DNA (e.g., buffer preparation) and DNA-

550 containing (e.g., DNA extraction) workflows, regular and thorough sterilisation procedures, 

551 positive air pressure, and protective clothing of the analyst (lab coat/suit, gloves, facemask, 

552 visor). Details on optimised laboratory set-up, techniques and workflows have been reviewed 

553 before (Cooper and Poinar, 2000; Pedersen et al., 2015). The introduction of aDNA samples 

554 into such facilities is relatively straight-forward, as the outer packaging and surface of the 

555 sample can be easily sterilised (e.g., using bleach and/or UV). 
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556 As on-board subsampling, DNA extractions should be carried out from the most ancient to 

557 most recent samples, to prevent modern DNA indivertibly being carried to ancient samples. 

558 The amount of sediment used in DNA extractions should capture a representative picture of 

559 the biota present in a sample. Despite suggestions that bulk DNA extractions from up to 10 g 

560 of material can improve detection of taxa and better represent the diversity of the area of 

561 interest (e.g., Taberlet et al., 2012b; Coolen et al., 2013), using such large volumes of 

562 sediment is often not practical and can be quite costly in this field where typically many 

563 samples are processed. Instead, numerous studies have used replicate extractions of a 

564 smaller sample size (e.g., 0.25 g; Table 2) to increase the likelihood of yielding aDNA from 

565 rare taxa, as well as successive DNA extractions from a single 0.25 g sediment sample (e.g., 

566 Willerslev et al., 2003). Post-extraction, the use of RNA-probe based enrichment approaches 

567 coupled with shotgun sequencing, a common technique in aDNA research, may furthermore 

568 drastically improve the detection of rare taxa (Horn et al., 2012). 

569 While it would be ideal to find one extraction method that will yield the best quality data and 

570 enable standardisation across ancient marine sediment studies, the type of sediment or target 

571 organisms may require some adjustments of standard protocols (Hermans et al., 2018). 

572 Extraction methods can bias the diversity observed due to differential resilience of taxa to the 

573 cell-lysis method (Zhou et al., 1996; Young et al., 2015) and DNA binding capacities of 

574 different soil and sediment types (Lorenz and Wackernagel, 1994; Miller et al., 1999). As a 

575 result, the aDNA extraction efficiency can be poor and the detection of an aDNA signal lost. 

576 To date, a variety of commercial kits have been successfully used to isolate aDNA from 

577 sediments (Table 3). To further increase the yield of very low amounts of highly fragmented 

578 aDNA several studies have been utilising extraction protocols that include a liquid-silica DNA 

579 binding step (e.g., Brotherton et al., 2013 and Weyrich et al., 2017 for non-sediment samples) 

580 or ethylenediaminetetraacetic acid (EDTA) cell-lysis step (Slon et al., 2017; utilising cave-

581 sediment samples). Other studies have replaced the Bead Solution in the DNeasy extraction 

582 kits (Qiagen; Table 2) by 1M sodium phosphate pH 9 - 10 and 15 vol% ethanol to efficiently 
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583 release clay-adsorbed DNA, and to prevent DNA released from intact cells from adsorbing to 

584 clay minerals during the extraction (Direito et al., 2012; Orsi et al., 2017; More et al., 2018). 

585 The latter is especially important when working with low organic, high carbonate rocks and 

586 sediments (Direito et al., 2012).

587 Two points are particularly important to prevent contamination during extractions. Firstly, as 

588 with the samples themselves, it is crucial that all tools and reagents undergo rigorous 

589 sterilisation procedures before utilisation, such as by bleach and UV treatment of any packing 

590 material before entering ancient DNA facilities. Secondly, blank controls should be included 

591 for every step of the laboratory process, i.e., extraction/library preparation blank controls, 

592 sequencing and bioinformatic analysis controls (Ficetola et al., 2016). Controlling and 

593 monitoring contamination is particularly important when analysing bacterial diversity due to 

594 their presence in all laboratory environments and reagents (Weyrich et al., 2015). Optimally, 

595 extraction blanks are included in a 1:5 ratio (Willerslev and Cooper, 2005), with a bare 

596 minimum of one control with each set of extractions. Aside from bioinformatically removing 

597 any organisms determined in such extraction blanks from the investigated sample material, 

598 the contaminants should be tracked within a laboratory, and contaminant lists published 

599 alongside the data for reasons of data transparency and authenticity.

600 Post-extraction, many marine aDNA studies have employed methods that are routinely used 

601 for modern marine DNA analysis. Although modern DNA work is not exempt from precautions, 

602 there are several issues with aDNA work: (i) as outlined in Sections 2.1. and 2.2. aDNA is 

603 highly fragmented and degraded and any small amount of modern DNA present in the sample 

604 (from reagents, labs or living cells that were present in the sediment sample) will amplify over 

605 the aDNA; (ii) sampling and extraction controls are often not included in the sequencing 

606 sample; (iii) PCRs are often inhibited due to the co-extraction of humic substances, pigments 

607 and heavy metals along with DNA (Webster et al., 2003 and references therein), requiring 

608 adequate removal of these impurities (e.g., Coolen et al., 2009); (iv) successful PCRs are 

609 prone to bias due to random amplification in reactions that contain very low amounts of DNA 
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610 template, thus PCR drift (stochastic variation in the first PCR cycles) can occur (Wagner et al., 

611 1994; Polz and Cavanaugh, 1998; Webster et al., 2003). More importantly, the number of, 

612 e.g., bacterial 16S and eukaryotic 18S rRNA operons can greatly vary between per genome 

613 and per cell and can cause a biased representation of the past community structure (e.g., 

614 Klappenbach et al., 2001). The above biases can be reduced and the detection limit lowered 

615 when PCR approaches selectively, amplifying particular groups of organisms indicative of 

616 environmental changes, are paired with independent geochemical proxies (e.g., Coolen et al., 

617 2004; 2006; 2009). However, we strongly advocate for the use of strict aDNA methodologies 

618 and facilities in order to achieve the generation of authentic marine sedaDNA data, following 

619 the guidelines in this review. 

620 Shotgun metagenomics are currently widely accepted and the least biased method to analyse 

621 the broad diversity of ancient environmental samples (e.g., Slon et al., 2017). Although only a 

622 small portion of the generated sequence data might be attributable to the ancient organism in 

623 question (Morard et al., 2017), next generation sequencing (NGS) generates large quantities 

624 of data that enable meaningful statistics, with the additional benefit of preserving the relative 

625 proportion of detected taxa. To analyse aDNA sequence data, robust bioinformatic pipelines 

626 (e.g., Paleomix, Schubert et al., 2014) have been developed and are available for the 

627 application to marine sedaDNA, integrating damage detection algorithms (e.g., Ginolhac et al. 

628 2011; Kistler et al., 2017) that enable the distinction between ancient and modern signals. 

629 Determining the extent of cytosine residues deamination (C to T and G to A, Weyrich et al. 

630 2017) should also be considered to assess authenticity of aDNA sequences, especially when 

631 the data was generated from mixed communities, such as from marine sedaDNA. It is 

632 furthermore crucial to carefully screen sequencing data for any low-complexity reads, which 

633 may get incorrectly assigned to taxa during alignments against genetic databases, as well as 

634 ensuring that taxonomic assignments in the database of choice are correct. Bioinformatic 

635 pipelines removing such misidentification-derived errors do not currently exist and should be 

636 the focus of future research, as well as the comparison of shotgun and amplicon marine 
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637 sedaDNA data to accurately determine biases and analysis strategies best suited to this new 

638 discipline.

639

640 4 Future marine aDNA sampling considerations

641 4.1 Equipment and installations required aboard IODP platforms

642 In addition to the recent upgrades and investments IODP has made to enable sediment 

643 sampling suitable for Biosphere Frontiers theme (Section 3.1) we suggest the following items 

644 to facilitate contamination-free sediment sampling and the tracing of contaminants. 

645 (i) Laboratories in which sampling for aDNA is undertaken should be carefully chosen to 

646 minimise contamination. Rapid transport of the core from the deck to the lab, thorough 

647 decontamination measures (see Section 3.4), and easy access to fridges or freezers are 

648 crucial. While a positively air-pressured lab (standard for aDNA laboratories) may not be 

649 feasible, air-flow can be reduced by keeping all doors shut and fans off during aDNA sampling. 

650 Contamination by human DNA from analysts can be greatly reduced by wearing adequate 

651 protective clothing (gloves, facemask, freshly laundered/disposable lab coat/overall). A 

652 detailed record or any molecular work undertaken in ship-board labs should be maintained by 

653 IODP, and under no circumstances should aDNA sampling be conducted in labs used 

654 previously to run PCRs (see Section 3.4). Alternatively, the equipment of a shipping container 

655 exclusively dedicated to aDNA sampling could be a good solution to spatially separate aDNA 

656 sampling aboard drilling-platforms and installation could be as required during expeditions that 

657 involve aDNA sampling.

658 (ii) DNA is likely to behave quite different from chemical tracers and microspheres currently 

659 used to track contamination. With constantly advancing technologies in the field of synthetic 

660 biology, the possibility arises to develop ‘non-biological DNA’ with known sequences. Such 

661 non-viable DNA tags are already used in the oil industry, where a different tag is introduced 
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662 into oil pipes monthly to monitor when and where leaks occur (Forecast Technology Ltd). 

663 Using such tags during seafloor coring operations instead of chemical tracers should enable 

664 a precise assessment of contamination by environmental DNA, where bioinformatics pipelines 

665 could be adjusted to detect and quantify the amount of tags present in the final sequencing 

666 data.

667

668 4.2 Ground-truthing marine aDNA research and data

669 To ground-truth marine aDNA studies and to ensure the generation of authentic aDNA data 

670 we suggest future research in this field to focus on the following aspects:

671 (i) The establishment of a public record of common contaminants. This can be achieved, for 

672 example, through an inter-lab comparison focused on analysing the same samples and 

673 integrating extraction blanks to trace contaminants associated with particular coring 

674 equipment, ship- and land- based laboratories. 

675 (ii) Investigation of factors that might considerably bias marine sedaDNA data. This might 

676 include information on sediment-type and environmental condition dependent aDNA 

677 preservation, taxon-specific DNA degradation rates, average aDNA fragment length, and 

678 shotgun and amplification-based aDNA data comparisons.

679 (iii) Ongoing enrichment of genetic reference databases for modern marine plankton, to enable 

680 taxonomic assignment of the hundreds of thousands of ancient sequences expected to be 

681 found in marine sediments.

682 (iv) The inclusion of negative controls during extractions, library preparations and in 

683 sequencing runs, and the publication of the results in the context of independent multiproxy 

684 biological and environmental metadata obtained from the same sediment interval.

685 (iv) Once (i) - (iv) are addressed, the development of a dedicated aDNA coring proposal is 

686 encouraged, in which sediment cores are collected using the above outlined, best-suited 
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687 coring strategies, sampling and analysis procedures. During such an expedition, basic 

688 questions such as optimal on-board contamination tracing techniques, feasible work-flows, 

689 spatial replication required to achieve representative community data, and age to which 

690 marine sedaDNA can be determined should be addressed. Such baseline data is missing to 

691 date and remains the most important step towards the generation of authentic aDNA data from 

692 marine sediments.

693

694 5 Application of marine sedaDNA research guidelines to other contamination 

695 susceptible environments

696 5.1 Permafrost

697 Permafrost molecular biological studies provide the opportunity to study living organisms that 

698 have successfully adapted to extremely cold environments and comprise an analogous 

699 cryogenic environment to that found on other planets, such as Mars (Amato et al., 2010). 

700 Molecular investigations have focussed on humans (Rasmussen et al., 2010), plants 

701 (Willerslev et al., 2003), megafauna (Boessenkool et al. 2012), fungi (Bellemain et al., 2013) 

702 and microbes (Willerslev et al., 2004). Permafrost top layers are characterised by a more 

703 abundant and diverse microbial community compared to the deeper soil (Gittel et al. 2014). 

704 To overcome the hurdle of distinguishing between the modern and ancient DNA signal, 

705 metatranscriptomics have been applied to identify the active community only (e.g., Coolen and 

706 Orsi, 2015). Despite the challenges in experimental approaches, such as rapid community 

707 shifts after thawing even at nearly ambient conditions (Negandhi et al. 2016), studies of 

708 permafrost environments have advanced our understanding of feedback loops associated with 

709 the response of extremophiles to warming, ultimately informing modelling studies including 

710 marine palaeo-environments. 

711 Sampling for ice and permafrost in polar regions is challenging in terms of logistics and 

712 minimising contamination risks for both the sample and the sampled environment. For 
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713 example, permafrost soil samples are, like marine sediment cores, retrieved through drilling, 

714 which can introduce microbial contaminants to the deeper permafrost soil layers as the drill 

715 head and liquid pass through the top active soil layer (Bang-Andreasen et al., 2017). 

716 Additionally, the cryosphere has been accumulating industrial chemicals and metals since the 

717 1850’s (McConnell et al., 2007), so that the present-day microbial community is now capable 

718 of degrading industrial contaminants, thereby representing an anthropogenically-adapted 

719 rather than an original pristine community (Hauptmann et al., 2017). With both these newly 

720 adapted anthropogenic and drilling fluid communities containing characteristics for heavy 

721 metal degradation, distinguishing indigenous ice core or permafrost communities from drilling 

722 fluid communities will become more difficult in the future (Miteva et al., 2014). Therefore, the 

723 described guidelines in this review for distinguishing ancient from modern and contaminant 

724 signals, as well as the need for aseptic sampling procedures, are highly applicable to 

725 permafrost environments and, more generally, the cryosphere.

726

727 5.2 Planetary exploration

728 The methodologies advocated in this review that enable aDNA in marine sediments to be 

729 distinguished from modern DNA are also applicable to the search for life on other planets or 

730 moons. Astrobiologists are especially interested in the possibility of detection of Life 2.0, where 

731 the life has an independent genesis to that on Earth. The search for life beyond Earth has 

732 been potentially possible since the 1970s, with the two Viking lander missions to Mars, but 

733 there are other possible targets in our solar system, notably some of the moons around Jupiter 

734 and Saturn (e.g., Europa, Titan). Space technology has now reached the point where the 

735 detection of life, if it exists or existed elsewhere in the solar system, is becoming a realistic 

736 possibility in the next 50 years. There have been several rovers that have carried out 

737 successful exploration of the surface of Mars, including Curiosity, the Mars Science Laboratory 

738 that in 2018 is mid-way through its predicted mission (Grotzinger et al., 2014). The rover Mars 

739 2020 is being designed at present to test for evidence of life in the near-surface environment. 
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740 It will drill, collect and cache samples from the Martian surface, which will then be returned to 

741 Earth for more detailed analysis (Beaty et al., 2015). Sample return from Mars to Earth is 

742 planned for the end of the 2020’s (Foust, 2018). Active planning is also ongoing for possible 

743 missions to land and analyse materials from the surfaces of moons such as Europa and Titan, 

744 by both NASA and the European Space Agency. For example, Europa (a moon of Jupiter) is 

745 known to have a global saltwater ocean below its icy crust, as well as a rocky seafloor, so is 

746 one of the highest priority targets in the search for present-day life beyond Earth (Hand et al., 

747 2017). A key concern with this solar system exploration is planetary protection, which is 

748 governed by the United Nations Outer Space Treaty (United Nations Office for Disarmament 

749 Affairs, 2015) and the Committee on Space Research (COSPAR) of the International 

750 Committee for Science. There are two important categories of planetary protection. The first 

751 is “forward contamination”, where Earth-derived microbial life hitches a ride on spacecraft and 

752 contaminates parts of a planetary surface being explored. The second is “backward 

753 contamination’, where life from an explored planet or moon is inadvertently returned to Earth, 

754 maybe in a spacecraft or within a rock sample. The relevance to aDNA analytical protocols is 

755 in forward contamination (i.e., the risk of contaminating sample material that could lead to data 

756 misinterpretations, and/or generally introducing Earth contaminants to other planets; Rummel 

757 and Conley, 2017). It should be noted that if indeed there is or was life on other planetary 

758 bodies, it may well not be based on a genetic code composed of DNA and RNA. Independently 

759 originated Life 2.0 would be highly unlikely to have evolved exactly the same nucleic acid 

760 genetic code as life on Earth (e.g., Rummel and Conley, 2017). Indeed, it has been postulated 

761 that an alternative biosphere could exist as a “shadow biosphere” on Earth (Davies et al., 

762 2009). If DNA or RNA-based extant life is found on Mars, for example, then it is most likely 

763 that it would represent either past natural exchange of rocks between the two planets 

764 (panspermia), or anthropogenic forward contamination. Therefore, the procedures used for 

765 distinguishing indigenous life in planetary exploration will need broadening to include the 

766 possibility of life with a different genetic code. The protocols developed for aDNA sampling of 

767 marine sediments on Earth, including the ability to distinguish from modern DNA, have 
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768 relevance for the designing of methods to look for past life on Mars or outer solar system 

769 moons using molecular biology techniques (Beaty et al., 2015; Hand et al., 2017).

770

771 Conclusions

772 Ancient DNA in marine deep-sea sediments holds the potential to open a new era of marine 

773 palaeo-environment and -climate reconstruction. However, anti-contamination measures 

774 central to all aDNA research have logistical constraints and are particularly poorly-suited to 

775 shipboard sediment sampling and processing. For example, sterile coring equipment and 

776 ultra-clean laboratories are usually not available on any type of drilling platform. Current and 

777 future IODP drilling vessels are aware of the increasing need for improved and innovative 

778 solutions to coring, non-contaminant drill fluids and appropriate laboratories and storage 

779 facilities. Such logistical advances should go hand-in-hand with the establishment of new 

780 criteria and standards to ensure the acquisition and preservation of sediment cores with 

781 minimal environmental contaminants. Complementary genetic and geochemical information 

782 currently available to date suggests that, realistically, environmental reconstructions based on 

783 marine sedaDNA from past plankton can be achieved for at least the last glacial-interglacial 

784 cycle, and potentially back to ~400,000 years. These guidelines can be applied in other 

785 scientific areas to facilitate and optimise research conducted in extremely remote locations, 

786 contamination-susceptible environmental samples, and even during the future exploration of 

787 other planets.

788

789

790 Acknowledgements:

791 This work is the outcome of a workshop on “Ancient DNA in marine sediments”, held at 

792 Macquarie University, Australia in December 2017. We thank Prof. Ian Paulsen for insightful 

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770



793 discussions around the topic, and Mrs Kelly-Anne Lawler and Ms Louise Fleck for their support 

794 with the organisation and running of the workshop.

795

796 Funding sources: 

797 The above-named workshop was supported by the Macquarie University Marine Research 

798 Centre (MQMarine), the Department of Biological Sciences, and the Faculty of Science and 

799 Engineering, Macquarie University, North Ryde, Australia. LA was supported by the Australia-

800 New Zealand IODP Consortium (ANZIC) 2017 Special Analytical Funding and MQMarine. 

801 MJLC was supported by the Australian Government through the Australian Research 

802 Council’s (ARC) Discovery Projects DP160102587 and DP18100982 as well as by Australian 

803 and New Zealand legacy IODP funding (ANZIC 364 post cruise funding). LKA and SCG were 

804 supported by the ARC LIEF funding scheme LE160100067 provided to ANZIC. MO was 

805 supported by an ARC Discovery Project DP15012326. MO and AF were supported by an ARC 

806 Laureate Fellowship FL14010021 to Ian Paulsen. MS acknowledges the support of ARC 

807 Linkage Project LP160100839. JWM acknowledges the support of ARC Discovery Project 

808 DP110103668. AC is supported by ARC Laureate Fellowship (FL140100260) and LSW by 

809 ARC Future Fellowship (FT180100407), both AC and LSW are also supported by the ARC 

810 Centre of Excellence for Australian Biodiversity and Heritage (CABAH; CE170100015). NRF 

811 was funded by the University of Adelaide RTP scholarship. FL is supported by an Early 

812 Postdoc Mobility fellowship from the Swiss National Science Foundation.

813 Figures:

814 Figure 1: Schematic showing the key steps involved in acquiring deep marine sediment 

815 cores, subsampling, DNA extraction, aDNA preparation for sequencing and data generation. 

816 Indicated are sources of potential contamination and reduction in data quality, as well as 

817 recommended precautions to be considered and/or controls to be taken. An impact score (1-

818 3 stars) is given to indicate the severity of potential contamination or the impact that impaired 
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819 data would have on the results at each step in the process. Schematic graphics are not to 

820 scale.

821

822 Figure 2: Overview of IODP coring systems. A) Advanced piston coring system (APC), shown 

823 before and after stroking; only small volumes of drill fluid can enter the space between the 

824 core barrel and collar from above after stroking, greatly reducing the risk of contamination. B) 

825 Extended core barrel system (XCB) and C) Rotary core barrel system (RCB); both containing 

826 circulation jets at the bottom of the core barrel through which drill-fluid enters and removes 

827 coring debris by transporting it upwards within the drill hole to the surface. D) Comparison of 

828 rotary and piston cored sediments demonstrating the well-preserved lamination in Piston 

829 cored material. Figure adapted from Sun et al. (2018) and IODP 

830 (iodp.tamu.edu/tools/index.html).  

831

832 Table 1: Terms commonly used in marine aDNA research and their definition. aDNA terms 

833 are listed hierarchically, all other terms are listed alphabetically.
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835 Table 2: Commonly used DNA extraction kits in aDNA studies to date.
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