
AND/OR Reasoning Graphs for Determining Prime
Implicants in Multi-Level Combinational Networks

Dominik Stoffel Wolfgang Kunz Stefan Gerber

Max-Planck Fault-Tolerant Computing Group
at the University of Potsdam, Germany

Abstract

This paper presents a technique to determine prime implicants
in multi-level combinational networks. The method is based on
a graph representation of Boolean functions called AND/OR
reasoning graphs. This representation follows from a search
strategy to solve the satisfiability problem that is radically
different from conventional search for this purpose (such as
exhaustive simulation, backtracking, BDDs).
The paper shows how to build AND/OR reasoning graphs for
arbitrary combinational circuits and proves basic theoretical
properties of the graphs. It will be demonstrated that AND/OR
reasoning graphs allow us to naturally extend basic notions of
two-level switching circuit theory to multi-level circuits.
In particular, the notions of prime implicants and permissible
prime implicants are defined for multi-level circuits and it is
proved that AND/OR reasoning graphs represent all these
implicants.
Experimental results are shown for PLA factorization.

1 Introduction

This paper presents a method to calculate prime implicants
in multi-level circuits, thus generalizing basic notions from
classical two-level minimization theory to multi-level
circuits. Our reasoning techniques to analyze multi-level
circuits are based on a radically different way of solving
satisfiability compared to conventional concepts. This moti-
vates the following basic discussion attempting to give a
global view on the nature of the algorithm.

Algorithms to solve satisfiability rely on appropriate sear-
ching techniques. Every search process can be viewed as a
traversal of a directed graph. Standard literature, e.g. [14],
distinguishes between two basic types of search graphs. In
the most simple case to be considered, the graph is a so
called OR graph. A node in the OR graph represents a given
problem to be solved and each arc emerging from this node
represents a possible move or decision that can be made at
the current state of the search process. A solution is found by
traversing the graph following a certain strategy and being
guided by some heuristics exploiting problem-specific
knowledge.

As is well-known however, for some problems it is useful to
allow graphs with two types of nodes, AND nodes and OR
nodes in order to represent a different type of search process.
If at a given search state a certain move is made this may
lead to several new problems that all have to be solved. Such
AND/OR reasoning graphs or simply AND/OR graphs are
the basis of many searching methods employed in the field of

automatic theorem proving with predicate logic and are used
in proof-by-refutation strategies. For a description of general
problem-solving techniques in computer science and for
more information on the basic concepts of OR graphs and
AND/OR graphs, the reader may refer to a standard text
book, e.g. [14].

Conventionally, in the field of switching theory, when explo-
ring the functionality of a given Boolean function or combi-
national circuit, techniques enumerate through the finite
Boolean space being defined by the set of all combinations of
value assignments at the input variables. A common search
scheme to prove satisfiability or related problems like test
generation is the decision tree. A decision tree can be consi-
dered as an example for an OR graph.

Notice that there can also be a different interpretation to
such graphs. They do not only represent a possible search
process to solve a specific problem, for certain problem
formulations (like satisfiability) they can also represent the
underlying Boolean function. If exhaustive simulation is
represented as tree we obtain a Shannon tree. This tree can
be reduced by sharing isomorphic subtrees so that we obtain
a binary decision diagram [2],[6]. Graph representations of
Boolean functions by ordered binary decision diagrams [6]
have encountered wide-spread popularity.

The following observation is crucial for the motivation of
this paper: the conventional concepts to solve satisfiability
and related problems in computer-aided circuit design like
decision tree based backtracking, exhaustive simulation,
Shannon trees or binary decision diagrams can be interpre-
ted as OR trees and not as AND/OR trees.

Note that any Boolean expression can be understood as an
AND/OR tree. However, such a general AND/OR tree does
not decide whether the implemented Boolean function is
satisfiable or not. (As mentioned, this problem is usually
solved by resorting to an OR tree based enumeration). Here
we are interested in specific AND/OR trees for Boolean
functions that decide satisfiability. This is important for
many applications in design automation and leads to other
useful properties of these graphs. A technique which solves
Boolean satisfiability based on AND/OR search is the recur-
sive learning approach of [11].

The differences between the two searching schemes are of
great practical interest in the field of design automation. In
particular OR search techniques are hard to use for system-
atic reasoning. The goal of any reasoning is to derive the

ASP-DAC ’97
0 89791 851 7$5 00

logic consequences of a given assumption. Specifically,
for some Boolean statement A we would like to derive some
statement B that is true if A is true, i.e. A ⇒ B. Previous
representations of Boolean functions are not well suited for
this kind of task. For example, given statement A, a BDD-
based approach cannot derive or imply statement B, it can
only check if A ⇒ B is true if both A and B are given.

Boolean reasoning techniques have always played an im-
portant role for two-level circuits. Here, we propose a rea-
soning technique for multi-level circuits. In the sequel we
will speak of AND/OR reasoning graphs or simply AND/OR
graphs interchangeably.

2 AND/OR Enumeration in Combinational Networks

In the following, we consider combinational networks C with
n primary inputs and m primary outputs where all gates in
the circuit have a unique label and their output signals yi

realize Boolean functions yi(x): Bn
2 → B2 with B2 = {0, 1},

where the variables x1,... xn correspond to the primary input
signals of the circuit C. Following the usual representation
of a combinational circuit as a directed acyclic graph (DAG),
we say as in [4], that a signal f lies in the transitive fanout of
y if and only if there exists a directed path from y to f. Simi-
larly, a signal f lies in the transitive fanin of y if and only if
there exists a directed path from f to y. Furthermore, we
assume that there are no external don’t cares, the function of
the combinational network C(x): B2

n → B2
m with B2 = {0,

1} is completely specified. Extensions to our methods using
external don’t cares are possible, but will not be further
considered here.

2.1 Revisiting basic notions of [11]

AND/OR enumeration is performed by injecting and rever-
sing signal values and by evaluating their logic consequences
using the ordinary event-driven implication techniques for
combinational circuits. Direct implications play an im-
portant role in this reasoning. By direct implications as in
[11] we understand the evaluation of the set of value as-
signments at every gate that has an event and the propagati-
on of value assignments according to the connectivity in the
circuit. To perform AND/OR enumeration in a multi-level
combinational network we need the two basic notions of
unjustified gates and justifications from [11]. For the time
being, assume that we operate in a ternary logic alphabet (0,
1, X) where X is the don’t care value. A signal is called
specified if it is assigned the logic value 0 or 1, it is unspeci-
fied if it has the value X.

Def. 2.1: Given a gate g in a combinational network that
has at least one specified input or output signal and the
values at g are logically consistent: Gate g is called un-
justified, if there are one or several unspecified input or
output signals of g for which there exists a combination

of value assignments yielding a conflict at g. Otherwise,
g is called justified.

Unjustified gates represent OR nodes in the AND/OR tree.
The special case of an unjustified gate where the specified
signal is at the gate output is commonly referred to as unju-
stified line in test generation literature [1].

Def. 2.2: Let f1, f2, ... fn be some unspecified input- or
output signals of an unjustified gate g and let V1, V2,
...,Vn be logic values which specify them. The set of si-
gnal assignments, J = {f1 = V1 , f2 = V2, ... fn = Vn}, is
called justification for g, if the combination of value as-
signments in J makes g justified.

Justifications represent AND-nodes in the AND/OR tree. To
complete the picture we need the following definition:

Def. 2.3: Let gC be a set of m justifications J1, J2, ... Jm

for an unjustified gate g. If there is at least one justifica-
tion Ji ∈ gC, i=1,2...m for any possible justification J* of
g, such that Ji ⊆ J*, then set gC is called complete.

As an example, the following represents a complete set of
justifications for a logic OR gate with five unspecified inputs
and a logical 1 at the output: C = {J1, J2, J3, J4, J5} with
J1 = {a = 1}, J2 = {b = 1}, J3 = {c = 1}, J4 = {d = 1}, J5 =
{ e = 1}. Note, that for example the justification J* = {a = 1,
b = 0} does not have to be in C since all assignments in J1

are contained in J*. Finally the following definition is nee-
ded:

Def. 2.4: Let R be the set of value assignments fi = Vi

for those variables fi in a combinational network whose
value has been changed by making implications for a gi-
ven set of value assignments S. Further, U is the set of
variable assignments at the outputs of those unjustified
gates, which have an input with a variable assignment
contained in R. The set E(S) = R ∪ U is called the event
list E for S.

In other words, when performing (e.g. direct) implications
for a given set of value assignments S, the event list E con-
tains all variables whose value has been changed. This
includes the output signals of new unjustified gates.
Furthermore, also the output signals of old unjustified gates
are included if their status has changed, i.e. one of their
inputs has assumed a different value.

2.2 AND/OR Reasoning Trees

The procedure in Table 1 performs AND/OR enumeration
for an initial set of value assignments S at arbitrary signals
in a combinational circuit. The technique in Table 1 results
from routine make_all_implications() in [11] after removing
the statements to extract necessary assignments. If the

initial set of value assignments is inconsistent, the
routine produces a conflict. If the value assignments are
satisfiable this is proved by the absence of a conflict after
exhausting the complete AND/OR tree. (This is similar as in
proof-by-refutation strategies for theorem proving.) The
completeness of this method follows from [11].

Note an important difference to conventional techniques:
unlike other techniques in computer-aided circuit design this
method proves the satisfiability of a set of value assignments
in a combinational circuit without actually generating a
satisfying input vector. (This may only happen in special
cases). When conventional methods check satisfiability, as a
side result, they produce sufficient solutions, i.e. inputs that
satisfy the function. In contrast, the AND/OR enumeration
based approach presented here, as a side result, can generate
the necessary conditions for a solution in terms of implicati-
ons or implicants. This will be further developed in Secti-
on 4.

initially: r:=0;
/* this procedure operates on a global data structure representing the circuit,
it takes as input r, rmax and a set of initial value assignments S in a circuit */

and_or_enumerate(S, r, rmax)
{

/* determine OR nodes of AND/OR tree */
make all direct implications for S in circuit and
set up a list Ur of unjustified gates in event list E(S);

if (value assignments are logically inconsistent)

 return INCONSISTENT;

/* determine AND nodes of AND/OR tree */
 if (r<rmax)
 {

for (each unjustified gate g in Ur)
{

set up list of justifications gCr;

/* try justifications */
for (each justification Ji ∈

 gCr)
consistencyi := and_or_enumerate(Ji, r+1, rmax);

/* check logic consistency */
if (consistencyi = INCONSISTENT for all i)

 return INCONSISTENT;
}

}
return CONSISTENT;

}

Table 1: Pseudo-code for AND/OR enumeration

We now introduce AND/OR trees constructed by the routine
of Table 1. An AND/OR tree is a bipartite tree, one type of
node is referred to as AND node, the other type is the OR
node. The justifications as performed by and_or_enumerate()
form the AND nodes. The situation of value assignments
being implied from the justifications are represented by the
OR nodes. Justified gates are OR nodes without successors,
i.e. they are the leaves of the tree. Unjustified gates require
justifications and have AND nodes as children.

Consider the circuit in Figure 1. We apply and_or_enu-
merate() for an initial situation of value assignments
S = {y = 1}. The initial event list is E = {y = 1}. Node y in
the circuit of Figure 1 becomes an unjustified line and the
complete set of justifications is yC ={{ g = 1}, {e = 1}}. This
produces the two AND nodes in the AND/OR tree of Figure
2. To distinguish AND nodes from OR nodes, AND nodes
are marked by an arc. (This convention is adopted from
standard literature.) For each justification direct implications
imply logic signal values and produce new unjustified gates.
Every value assignment forms an OR node in the tree. For g
= 1 we imply c = 1, f = 1 and u = 1, where node f becomes a
new unjustified gate. This requires new justifications and the
technique continues to enumerate the AND/OR tree as
shown in Figure 2 in a depth-first way.

a
b

c

d

y=1

f
u

v

w

g

e

Figure 1: Circuit with value assignment y = 1

The proposed AND/OR trees are described more precisely by
the following definitions:

Def. 2.5: An AND/OR tree is a bipartite rooted directed
tree with two disjoint vertex sets VAND and VOR. The root
node vr is an element of VAND . The terminal nodes
(leaves) of the tree are elements of VOR. Adjacent nodes
belong to different vertex sets. Each node vOR ∈ VOR has
as attribute a variable assignment f = V where f is element
of a set of variables {f1, f2, ..., fn} and V is element of a
set of values B. Each node vAnd ∈ VAND has as attribute a
set of variable assignments S = {f1 = V1, f2 = V2, ..., fk =
Vk }. Furthermore, each vertex v has as attribute an inte-
ger level(v), such that
i) The root (AND) node vr has

level(vr) = 0.
ii) OR nodes vOR have the same level(vOR) as their im-

mediate (AND) predecessors vpred:
level(vOR) = level(vpred).

iii) AND nodes vAND with their immediate (OR) pre-
decessors vpred have

level(vAND) = level(vpred) + 1.

Def. 2.6: An AND/OR tree with root node vr can be as-
sociated with the AND/OR enumeration of Table 1 as
follows:
i) each AND node vAND belongs to a set S = {f1 = V1,

f2 = V2, ..., fk = Vk } of variable assignments at nodes
in the combinational network, where this set is given
either by the initial set of variable assignments if
vAND = vr (root node), or by justifications for unjusti-

fied gates if vAND ≠ vr (intermediate nodes). If a
set S turns out to be logically inconsistent, the corre-
sponding AND node and all its successors are remo-
ved from the tree.

ii) each OR node vOR belongs to a variable assignment
f = V at a node in the combinational network which is
required for the logic consistency of the set S as-
sociated with the parent AND node of vOR, i.e. an OR
node belongs to a variable assignment in the event list
E(S). If f = V is at the output of an unjustified gate g
then vOR has m AND children, each belonging to a
justification J ∈ gC, with m = |gC|. If f = V is at the
output of a justified gate then vOR is a leaf of the tree.

Such a tree is called the AND/OR reasoning tree for the
initial set of value assignments S and the given combina-
tional network.

Implications can be extracted in an easy way by examining
the topology of the AND/OR tree. If all AND nodes that
succeed a given OR node, say y, have succeeding OR nodes
that all correspond to the same value assignment, then, these
OR nodes with identical value assignments can be attached
as OR nodes to the immediate predecessor of y. As an ex-
ample, in Figure 2, the two AND nodes corresponding to
justifications {g = 1} and {e = 1} have a succeeding OR
node corresponding to f = 1. Therefore this OR node can be
attached to the immediate predecessor of y. This process has
been referred to as “learning“ in [11] and is schematically
shown in Figure 2. It can occur in any recursion level and
the value assignments resulting in the previous level can
change the course of subsequent enumeration so that more
logical consequences can be examined faster. Recursive
learning is one possible application of AND/OR trees and
allows to determine all (not only direct) implications for the
given set of value assignments in the circuit.

An important practical property of AND/OR graphs is that
important information about the given problem can be deri-
ved without visiting the complete graph. In the above ex-
ample the implication y = 1 ⇒ f = 1 can be derived already
in the first recursion of and_or_enumerate(). Partial graphs
can be visited by restricting the maximum recursion depth
for and_or_enumerate() to some value rmax.

It is illuminating to apply and_or_enumerate() of Table 1 to
two-level circuits. Consider the two-level circuit in Figure 3.
Figure 4 shows the AND/OR graph for the assignment y = 0.
AND/OR enumeration for the initial set of value as-
signments S = {y = 0} at the output of a two-level SOP type
circuit performs a tautology test. The SOP is a tautology if
and only if a conflict is produced by and_or_enumerate(). As
can be noted, the AND/OR tree for a unate SOP is very
simple and has the same structure as the two-level circuit.
The root AND node in the AND/OR tree corresponds to the
OR gate in the circuit and the succeeding OR nodes corre-

spond to the AND gates in the circuit. Obviously, this is
because the AND gates in the circuit represent implicants for
function y and therefore the value assignment y = 0 implies
OR nodes which correspond to these implicants. Since the
circuit implements a unate function the AND/OR tree termi-
nates in the next level, all AND nodes have only one succee-
ding OR node representing a leaf of the tree. This reflects
the well-known fact that tautology checking for unate functi-
ons is of polynomial complexity.

initial assignments {y=1}

y=1!

J1={g=1} J2={e=1}

g=1 c=1 u=1
f=1!

e=1 b=0 a=1 f=1 u=1
g=x!

J1={a=1} J2={b=1} J1={g=1,c=1} J2={g=0,c=0}

g=1 c=1 g=0 c=0a=1
e=X!

b=1 e=0

J1={e=0,b=1} J2={e=1, b=0}

e=0 b=1 e=1 b=0

f=1
v=1w=1

 Figure 2: AND/OR tree for assignment y = 1 in the circuit
of Figure 1

Let the AND/OR tree be levelized according to Def. 2.5,
then each level consists of a set of AND nodes with their OR
children. The following theorem holds:

Theorem 2.1: Let y be the output signal of a two-level
combinational circuit in SOP form. The AND/OR tree
for the initial set of value assignments S = {y = 0}
(tautology test) has only two levels if the SOP is unate.

The fact that the AND/OR tree for a unate SOP has only two
levels is related to the well-known result that all prime
implicants in a unate SOP are essential, i.e. the unate SOP is
a syllogistic formula [5]. If the circuit is not unate the
AND/OR tree has to be continued after level 1 in order to
explore the logic consequences which are not covered by the
implicants included in the SOP.

The situation for the non-unate case is illustrated in Figure 5
and 6 where the circuit of Figure 3 is modified such that it
becomes non-unate in variable c. Also in the case of a non-
unate circuit, level 0 of the AND/OR tree reflects the impli-
cants in the SOP. If the circuit is not unate however, the

AND/OR tree continues after level 1. (Now there are
non-essential prime implicants). This is because the justifi-
cations at some unjustified line, e.g. h = 0 in Figure 5, pro-
duce events at other unjustified lines without justifying them.
In Figure 5, the justification c = 0 at gate h produces a
logical 1 at the input of gate j. This changes the status at
gate j and represents an event so that the unjustified line j =
0 is added to the list of unjustified gates for the next recursi-
on level.

a
b
c

d

e

f
g

h

i

j

y

Figure 3: Unate two-level circuit

initial assignments {y=0}

h=0 j=0i=0

J1={c=0} J2={b=0} J3}{a=0}

c=0 b=0 a=0 d=0 e=0

J1={d=0} J2={e=0}

c=0 f=0 g=0

J1={c=0} J2={f=0} J3{g=0}

y=0

Figure 4: AND/OR tree for circuit in Figure 3

a
b
c

d

e

f
g

h

i

j

y

 Figure 5: Non-unate circuit

Note that conventional OR search exploits the properties of
unate functions only by additional heuristic guidance. For
example, a decision tree based test generator usually employs
a backtrace procedure, see [1], to direct the search such that
non-unate signals are enumerated first. Similarly, in tautolo-
gy checking by the unate recursive paradigm [3] heuristics
are used to direct the Shannon expansions to the non-unate
signals. AND/OR enumeration on the other hand does not
require any such guidance. As the above examples illustrate
it is an inherent property of AND/OR enumeration that the
enumeration simplifies at the presence of unate signals or
unate circuit partitions. This is not only of theoretical but

also of practical importance as will be demonstrated in
Section 5.

initial assignments {y=0}

h=0 j=0i=0

J1={c=0} J2={b=0} J3}{a=0}

c=0
j=0!

b=0 a=0

J1={f=0} J2={g=0}

f=0 g=0

d=0 e=0

J1={d=0} J2={e=0}

c=1
h=0!

f=0

J1={a=0}

a=0 b=0

g=0

J1={c=1} J2={f=0} J3{g=0}

J2={b=0}

y=0

Figure 6: AND/OR tree for circuit in Figure 5

3 Implicants in Multi-Level Circuits

Section 3.1 provides the theoretical links between basic
notions of two-level minimization theory, namely implicants
and prime implicants, and certain subtrees of the AND/OR
reasoning tree. Section 3.2 shows that AND/OR enumeration
allows to naturally extend these notions to important con-
cepts of multi-level optimization theory like observability
don't cares and permissible functions [13]. Section 3.3
illustrates these concepts by means of an example.

3.1 Prime Implicants

The notions of implicants and prime implicants of Boolean
functions are central elements in two-level minimization
theory. However, when dealing with general, multi-level
combinational circuits the basic concepts of implicants and
prime implicants have been used only rarely. One reason
why the notion of implicants has only played a limited role
in multi-level circuit design, we believe, is that in the classi-
cal approach implicants are always expressed in terms of the
variables of the considered Boolean function. This is suffi-
cient for two-level circuits, however, in multi-level circuits
this does permit to describe all transformations which are
possible in a multi-level network. Therefore, in this section,
we extend the meaning of the notion of prime implicants for
broader use in multi-level circuits. A second reason why the
notion of prime implicants has not become popoular for
multi-level circuits is that previously no techniques have
been available to actually calculate them. The classical
Boolean reasoning techniques like consensus-methods are
based on a two-level description of the circuit. Therefore we
now present how prime implicants can be determined in
multi-level circuits based on the concepts of Section 2.

A literal is a variable in the combinational network or
its complement. A product term is a conjunction of literals.

Def. 3.1: A 1-implicant (0-implicant) for a given func-
tion y in a combinational network C is a product term t
such that y assumes the value 1 (0) for every set of value
assignments at the primary inputs of C for which t as-
sumes the value 1. An implicant for a node y is product
term which is either a 0-implicant or a 1-implicant for y.

Note that 1-implicants correspond to the classical notion of
implicants as used in the theory of two-level minimization.

Def. 3.2: An implicant is called prime if the removal of
any literal makes the implicant a product term that is not
an implicant.

By definition, the literals of an implicant for some node y in
a multi-level combinational network can belong to arbitrary
nodes in the network. Unlike in the case of a two-level
circuit, they are not necessarily primary inputs and do not
even have to be in the transitive fanin of y. Prime implicants
at a node in the network may be composed out of arbitrary
network variables.

Consider the node y in the circuit of Figure 7. It is immedi-
ately obvious that c and bd are prime (1-)implicants of
function y. If we allow that the literals of the implicants do
not have to belong exclusively to primary input signals but
can belong to arbitrary nodes of the network, additional
prime implicants can be determined. Note that x = 1 and
z = 0 can simultaneously only occur for input assignments
that produce y = 1. Therefore, xz is a 1-implicant for y. This
implicant is prime because neither x nor z represent a 1-
implicant for y.

a

b

c
d

e

y

x

z

Figure 7: Circuit example for multi-level implicants

We will now examine how implicants in combinational
networks can be derived by AND/OR reasoning trees. It has
been shown in [11] how all single-literal implicants can be
extracted from the AND/OR enumeration process (= recur-
sive learning). This is now extended to extract arbitrary,
multi-literal implicants.

The following definition is useful to relate implications and
implicants in a combinational network to certain subtrees of
the AND/OR reasoning tree defined in Section 2.

Def. 3.3: An implication subtree (IST) is an AND/OR
tree with the following properties:
i) it is a subtree of an AND/OR reasoning tree accor-

ding to Def. 2.6,
ii) the AND/OR reasoning tree and its subtree have the

same root node,
iii) for each AND node included in the subtree, all its si-

blings in the AND/OR reasoning tree are also inclu-
ded in the subtree.

Theorem 3.1: Let y be an arbitrary node in a combi-
national network and T be the AND/OR reasoning tree
for an initial set of value assignments S = {y=0}. Consi-
der a product term t = x1⋅x2⋅ ...xm where xi is a literal
corresponding to a variable fi or its complement in the
combinational network. Further, consider an IST of T
with a set of leaves L.

If there is a one-to-one mapping between the literals
xi of t and the elements (fi = Vi) of L such that Vi = 0 if xi

represents the uncomplemented variable, and Vi = 1
otherwise, then t is a 1-implicant for y. Analogously, t is
a 0-implicant for y if the IST is a subtree of the AND/OR
reasoning tree with the initial assignment S = {y=1}.

Theorem 3.1 states the rule for deriving implicants from an
AND/OR tree. An implicant is formed by the conjunction of
variables belonging to the leaves of an IST. If a variable at a
leaf of the IST is assigned to 0 then we have to take the
uncomplemented variable, if it is assigned to 1 we have to
take the complemented variable as a literal in the implicant.

As mentioned above, implications as performed in test
generation can be related to single-literal implicants. Viewed
in AND/OR trees, direct implications correspond to an IST
completely contained in level 0, i.e. it only consists of the
root node with its immediate OR successors. For an indirect
implication, say y = 1 ⇒ f = 1, there must exist an IST with
root node y and an initial set of value assignments {y = 1}
which also includes OR nodes further down in the AND/OR
tree, and which fulfills the condition that all leaves belong to
the same value assignment f = 1. As an example, the bold
lines in Figure 2 indicate an IST which corresponds to an
indirect implication.

How are prime implicants represented in the AND/OR tree?
Note in Def. 3.3 there is no requirement to include in the
IST more than one child of each AND node of the original
tree. In fact, including more than one OR child of any AND
node makes the IST non-minimal. Since this non-minimal
IST can contain leaves with new variable assignments which
are not needed to make the product term an implicant, the
corresponding implicant is non-prime.

Def. 3.4: An IST is called minimal implication subtree
(MIST) if each AND node has exactly one OR child.

Theorem 3.2: Let y be an arbitrary node in a combi-
national network and T be the AND/OR reasoning tree
for an initial set of value assignments S = {y = V},
V ∈ {0, 1}. For every prime implicant of y there exists a
minimal implication subtree (MIST) of T such that the
leaves of the MIST correspond to the literals of the prime
implicant as given in Theorem 3.1.

Note that not every MIST corresponds to a prime implicant.
For a given MIST with a set of leaves L there may be some
other MIST with a set of leaves L’ such that L’ ⊂ L. Ob-
viously, then, the implicant belonging to the first MIST
cannot be prime. Fortunately, by tracing from the leaves
towards the root of the AND/OR tree, it is very easy to check
for a given MIST with its set of leaves, whether a subset of
these leaves can belong to another MIST.

3.2 Observability Don't Cares

Often, the value of an internal logic function cannot be
observed at any of the circuit outputs and therefore, in such
situations the value of the function need not be specified.
This leads to so called observability don't cares. Any functi-
on that covers such an incompletely specified function is
called a permissible function according to Muroga [13].

Since we extend the notion of implicants from two-level
circuits to multi-level circuits we do not only calculate prime
implicants for functions at the outputs of the circuit but also
for functions that belong to arbitrary internal nodes in the
network. Therefore, we also want to take into account the
concepts of observability don't cares and permissible functi-
ons. This leads to the definition of permissible prime impli-
cants:

Def. 3.5: For some node y in the combinational network
C, a product term t of some node variables of C is called
a permissible 1-implicant for y, if and only if the follo-
wing condition holds: If t is 1 then y is 1 or not obser-
vable at any primary output of C. Equally, t is called a
permissible 0-implicant for y, if and only if the following
condition holds: If t is 1 then y is 0 or not observable at
any primary output of C. A permissible implicant is cal-
led prime if the removal of any literal makes the per-
missible implicant a product term that is not a per-
missible implicant.

AND/OR enumeration for a given node in the combinational
network can easily take care of observability if the enumera-
tion is based on Roth's D-alphabet. In [11] a method has
been presented to calculate all value assignments necessary
to observe a stuck-at fault at a given fault line in a combina-
tional network. This routine is called fault_propaga-
tion_learning() in [11]. Analogously, like the AND/OR

enumeration of Table 1 results from make_all_implications()
[11], D-AND/OR enumeration results from
fault_propagation_learning() by removing the statements to
extract necessary assignments. The routine will be illustrated
by an example in Section 3.3.

The AND/OR tree associated with these extensions starts
with a single stuck-at fault assumption and, in the sequel, is
referred to as D-AND/OR reasoning tree. The results of
Section 3.1 can now be generalized for permissible impli-
cants.

Theorem 3.3: Let y be an arbitrary node in a combi-
national network and T be the D-AND/OR reasoning tree
for a fault assumption, y stuck-at-1. Consider a product
term t = x1⋅x2⋅ ...xm where xi is a literal corresponding to
a variable fi or its complement in the combinational net-
work. Further, consider an IST of T with a set of leaves L
such that in the combinational network the nodes fi can-
not be reached by the fault effect.

If there is a one-to-one mapping between the literals
xi of t and the elements (fi = Vi) of L such that Vi = 0 if xi

represents the uncomplemented variable, and Vi = 1
otherwise, then t is a permissible 1-implicant for y.
Analogously, t is a permissible 0-implicant for y if the
IST is a subtree of the enumeration tree with y stuck-at-0.

Theorem 3.4 states an important property of AND/OR trees
which makes them very attractive in multi-level logic syn-
thesis:

Theorem 3.4: Let y be an arbitrary node in a combi-
national network and T be the D-AND/OR reasoning tree
for a fault assumption, y stuck-at-V, V∈{0, 1}. For every
permissible prime implicant at node y there exists a mi-
nimal implication subtree (MIST) of T such that the lea-
ves of the MIST correspond to the literals of the per-
missible prime implicant as given in Theorem 3.1.

3.3 Example

For illustration of D-AND/OR enumeration consider the
following example. Figure 9 shows a circuit for which the
AND/OR tree is built in Figure 11. Consider the fault a,
stuck-at 1.

We proceed as given by fault_propagation_learning() in
[11]. There are two paths along which this fault can propa-
gate to a primary output. At least one of them has to be
sensitized for fault detection. One path traverses gates k and
l, sensitization yields the value assignments d = 1 and j = 0.
For the AND/OR tree in Figure 11, this produces the left
AND-node in level 1 with its children. The second possibi-
lity is to sensitize the path through m and q resulting in the
right portion of the AND/OR tree. The sensitizations yield
value assignments and unjustified lines. These value as-

signments are enumerated in the usual way as given by
Table 1, so that the AND/OR tree for the stuck-at-1 fault
assumption at signal a results as shown in Figure 10.

a
d

c

f
b

e

g

k

h

i j

q
n

l

o p

m

Figure 9: Example circuit for D-AND/OR enumeration

Note that for reasons of simplicity, in Figure 10, we only
consider for inclusion in the AND/OR tree those unjustified
gates that have a specified output signal, i.e. they represent
what is referred to as unjustified lines in test generation
literature. Although unjustified gates with unspecified out-
puts like in the AND/OR tree of Figure 2 are necessary for
the theoretical completeness of the enumeration, it is pos-
sible to neglect them for most practical purposes [11].

initial assignments {a = D} (stuck-at 1)

a is D-frontier

sensitize k and l sensitize m and q

d=1
j=0!

J1={i=0} J2={b=0}

h=0f=0 b=0 p=0n=0

e=1

c=0

p=0!

J1={o=0} J2={b=0}

g=0o=0 b=0 j=0c= 0n=0i=0 e=0

 Figure 10: AND/OR tree for circuit in Figure 9, bold lines
indicate the MIST for implicant b⋅c

The bold lines in Figure 10 indicate a MIST that represents a
permissible implicant b⋅c for node a in the circuit.

Note the special characteristics of this prime implicant: the
network function a does not depend on the variables b and c.
Still, according to our definitions, it is possible to determine
a prime implicant for a using these variables. This is not

possible with the conventional two-level notion of prime
implicants. Further, this example illustrates another im-
portant property of our approach. The implicant actually
exploits observability don't cares at node a. The fact that b⋅c
is a permissible prime implicant means that we can modify
the combinational network of Figure 9 as shown in Figure
11. The node a' assumes a different function than a but the
full circuits in both figures are still functionally equivalent.

a

d

c

f
b

e

g

k

h

i j

q
n

l

o p

m

a'

Figure 11: Adding permissible implicant b⋅c at signal a

3.4 Heuristics

A) Heuristics to select an implicant

AND/OR reasoning trees, in principle, can be used to gene-
rate all prime implicants for nodes in a multi-level combina-
tional network, however there may be a huge number of
prime implicants for a given node in the network, especially
if we take into account that the implicants can be expressed
in terms of arbitrary (internal) nodes of the network. There-
fore, this section is dedicated to demonstrate how the topo-
logy of the AND/OR trees can be used to generate certain
implicants being particularly promising for the given appli-
cation. Here we consider circuit minimization. In [12] it has
been observed and experimentally confirmed that, for a
given node y, certain single-literal implicants, being ob-
tained by indirect implications, represent good divisors for y.
As explained above, an indirect implication corresponds to a
MIST with several leaves all belonging to the same value
assignment. Intuitively, a subtree of the AND/OR tree which
has several leaves that all correspond to the same value
assignment indicates suboptimal circuitry. If such a subtree
is a MIST, then we have an implication and transformations
like in [12] can be performed. Hence, we intend to identify
MISTs with many identical leaves. In Figure 10 of Section
3.1, the bold lines indicate a promising MIST with four
leaves that only belong to two different value assignments.
Therefore, the permissible implicant b⋅c is promising for
inclusion in a permissible function at node a. In Section 4 it
will be shown how this optimizes the circuit.

Importantly, in this work, we completely avoid building the
trees to save memory. In [17], a method has been developed
to extract MISTs with a maximum number of identical
leaves from the D-AND/OR reasoning tree, solely by
"monitoring" the enumeration process. This method is based
on repeated enumeration, thus we are maintaining linear
memory requirements at the cost of CPU-time. This
technique must be omitted here for reasons of space.

B) Heuristics to select sets of implicants

Often it is not sufficient to add a single implicant to a net-
work in order to obtain reductions in other parts of the
network. A different cover of the node function can often
only be obtained if several new implicants are added to the
network. If there are several implicants that are all particu-
larly "good" according to our heuristics then they all are
added to the network. This is a pretty rough heuristic and
current research examines whether topological properties of
the AND/OR tree can give insight what implicants should be
grouped together in the attempt to find a better cover.

4 Optimization Procedure

The optimization procedure is along the lines of [12] and,
for reasons of space, is only illustrated by an example. Re-
consider the circuit of Figure 9. The function of the circuit is
given by the following Boolean expressions:

l = ad + b(cd + f) = (a + bc)d + bf
q = ae + b(ce + g) = (a + bc)e + bg

By manipulating the equations, it can be noted that there
exists a common kernel, a + bc. Minimization can be achie-
ved by sharing this kernel. It was demonstrated for this
example in Section 3.3 how to generate the permissible
implicant bc for signal a. Note that the suboptimality of the
original circuit is reflected by the existence of a MIST with
several leaves belonging to the same value assignments,
b = 0 and c = 0. In this case it points out a common kernel, a
+ bc, that can be shared to save area.

If bc is a permissible implicant for a then the circuit is
modified as shown in Figure 11. After adding the implicant
to the circuit, redundancy elimination is used to reduce the
circuit. This results in the circuit of Figure 12.

The optimization in this example can also be obtained by an
algebraic kernel extraction technique [4]. Note however, that
the procedures based on AND/OR trees and redundancy
elimination are capable of performing general Boolean
manipulations and are not restricted to algebraic transfor-
mations. Also note that this kind of transformation cannot be
obtained by the netlist optimization methods of [8], [9], [12].

a

dc

f
b

e

g

k

j

q

l

p

m

Figure 12: Circuit after redundancy removal

In [18] it has been proved that manipulating circuits based
on prime implicants can perform arbitrary transformations
in a combinational network. This means that the classical
notion of prime implicants is not only sufficient to fully
describe circuit transformations for two-level circuits but
also for multi-level circuits. Indeed, all transformations in
combinational networks commonly referred to as "division",
"decomposition", "kernel extraction", "transduction" etc. can
also be described by operations based on our notion of prime
implicants in networks, thus extending the classical notions
of two-level theory to multi-level circuits.

5 Experimental Results

The described methods have been implemented in the pro-
gram system HANNIBAL and are applied to the problem of
PLA factorization. This application has been chosen because
this task cannot be accomplished in a satisfactory way by
previous implication based minimization techniques [12] or
ATPG-based methods [8], [9], [16]. Table 2 shows the
results for some two-level MCNC benchmark circuits which
are factorized into a multi-level description. Since our im-
plementation does not accept external don’t cares, at this
point we selected only such examples which are completely
specified. The results of HANNIBAL are compared with
SIS1.2 (using resub -a, simplify -d followed by
script.rugged). The area is measured in terms of number of
connections based on a generic library of the basic gate
types. For both tools we show results for fixed settings
(single run of script.rugged for SIS) and interactive use
(column "multi run" for SIS and column "best" for HANNI-
BAL). Column "RL" shows the results if only single literal
implicants (recursive learning) are used.

The optimization results of Table 2 show the great promise
of this approach although CPU-times are not yet satisfactory.
As mentioned in Section 3, implicants are determined by
repeated enumeration [17] without building the graphs. If
the graphs are actually constructed (at the cost of memory)
implicants can be determined much faster by simple operati-
ons on the graph. Current research investigates appropriate

trade-offs between memory and time and how to inclu-
de appropriate hashing and caching techniques similarly like
for BDDs. This will be needed to reduce CPU-times of our
approach. An important attribute of the presented AND/OR
trees is that they need not be constructed to their full size in
order to be useful. In these experiments, AND/OR trees have
been examined only up to a recursion depth of ‘3’. This
however proved sufficient to obtain the shown optimization
results.
The experimental results clearly confirm our conjecture that
topological properties of AND/OR reasoning graphs can be
used to guide an optimization process.

PLA

factorization

SIS1.2
(script rugged)

HANNIBAL

results single
run

multi
run

fixed settings best RL

name # c. # c. # c. # c. CPU-
time

 # c. # c.

5xp1 369 164 159 79 0:01:58 78 237

9sym 609 320 206 152 0:17:00 83 609

clip 1055 195 187 110 0:10:24 90 520

con1 32 30 30 27 0:00:01 27 30

duke2 995 540 510 416 1:12:33 355 612

e64 2144 253 253 253 0:15:19 253 253

misex1 154 77 77 59 0:00:51 55 81

misex2 206 121 121 121 0:02:47 111 134

o64 195 - - 195 0:00:08 195 195

rd53 176 52 52 36 0:00:42 34 99

sao2 501 192 190 116 0:05:38 108 195

vg2 914 124 124 115 0:03:22 112 141

Table 2: Experimental results for MCNC PLAs (without
external don't care conditions), Sparc 5

Our experiments also demonstrate the practical relevance of
the theoretical result given in Theorem 3.1. This can be
nicely observed at the example of the MCNC benchmark
circuit o64. This circuit is small, nevertheless it is impos-
sible to build an OBDD for this circuit. No literal in the
circuit description appears in more than one product term
(hence the SOP is unate) and all prime implicants are essen-
tial. Therefore no optimization is possible, neither with two-
level nor with multi-level minimization techniques. SIS1.2
runs out of memory in both script.rugged and
script.algebraic after about ten minutes of CPU-time in each
script. However, since the circuit is unate (Theorem 3.1
applies) HANNIBAL has no problem with this example. The
fact that this circuit cannot be further optimized is detected
very fast and only little CPU-time is wasted. This benchmark
circuit illustrates that the basic theoretical differences betwe-
en variable enumeration and AND/OR enumeration that
have been elaborated in this paper have important conse-
quences in practical applications.

Conclusion

This paper has introduced specific AND/OR reasoning
graphs as a new basis for solving design automation pro-
blems by implicant-based techniques. Conventional variable
enumeration and its derivates are not the only possibility to
fully explore the functionality of a given circuit. We have
proved basic theoretical properties of the proposed AND/OR
graphs permitting to extend basic concepts of two-level
circuit theory to multi-level circuits.

References

[1] Abramovici M., Breuer M., Friedman A.: “Digital Systems Testing and
Testable Design”, Computer Science Press, 1990.

[2] Akers S.: “Binary Decision Diagrams“, IEEE Transactions on Compu-
ters, vol. 27, pp. 509-516, June 1978.

[3] Brayton R. K., Hachtel G. D., McMullen C. T., Sangiovanni-Vincentelli
A. L.: “Logic Minimization Algorithms for VLSISynthesis”, Kluwer
Academic Publishers, Boston, MA, 1984.

[4] Brayton R. K., Rudell R., Sangiovanni-Vincentelli A., Wang A. R.:
“MIS: Multi-level Interactive Logic Optimization System”, IEEE Trans.
on CAD, CAD-6(6), pp. 1062-1081, Nov. 1987.

[5] Brown F.: “Boolean Reasoning”, Kluwer Academic Publishers, Boston,
MA 1990.

[6] Bryant R.: “Graph-based algorithms for Boolean function manipulati-
on“, IEEE Trans. on Computers, vol. 35, pp. 677-691, August 1986.

[7] Brand D.: “Verification of Large Synthesized Designs”, Proc. Int. Conf.
on Computer-Aided Design, Santa Clara, Nov. 1993, pp. 534-537.

[8] Chang S.C., Marek-Sadowska M.: “Perturb and Simplify: Multi-Level
Boolean Network Optimizer”, Proc. International Conf. on Computer-
Aided Design, San Jose, Nov. 1994.

[9] Entrena L. A., Cheng K.T: “Sequential Logic Optimization by Redun-
dancy Addition and Removal”, Proc. Intl. Conf. on Computer-Aided De-
sign, Nov. 1993, pp. 310-315.

[10] Jain J., Mukherjee R., Fujita M.: "Advanced Verification Techniques
Based on Learning", Design Automation Conference (DAC), pp. 420 -
426, June 1995.

[11] Kunz W., Pradhan D.K.: “Recursive Learning: A New Implication
Technique for Efficient Solutions to CAD Problems: Test, Verification
and Optimization”, IEEE Trans. on CAD, vol. 13, pp. 1143-1158, Sept.
1994.

 [12] Kunz W., Menon P.: “Multi-Level Logic Optimization by Implication
Analysis” Proc. Intl. Conference on Computer-Aided Design, San Jose,
pp. 6-13, Nov. 1994.

 [13] Muroga S. et al.: "The Transduction Method - Design of Logic Net-
works Based on Permissible Functions", IEEE Trans. on Computers,
Oct. 1989, pp. 1404-1424.

[14] Rich E.: "Artificial Intelligence", McGraw-Hill, 1983.

[15] Roth J. P.: "Diagnosis of automata failures: A calculus & a method",
IBM J. Res. Develop., vol. 10, July 1966, pp. 278-291.

[16] Rohfleisch B., Brglez F.: “Introduction of Permissible Bridges with
Application to Logic Optimization after Technology Mapping” , Proc.
EDAC/ETC/EUROASIC 1994.

[17] Stoffel D., Kunz W., Gerber S.: "AND/OR Graphs", Technical Report,
Max-Planck-Society, MPI-I-95-602, 1995.

[18] Kunz W.: "Testing Techniques in Logic Synthesis", Habilitation Thesis,
Department of Computer Science, University of Potsdam, 1996.

