$\mathcal{L}^{*}(K)$ AND OTHER LATTICES OF RECURSIVELY ENUMERABLE SETS ${ }^{1}$

RICHARD A. SHORE

Abstract

We study the direct product operation on lattices which are principal filters of \mathcal{E}^{*}, the lattice of r.e. sets modulo finite sets, to generate new isomorphism types of such filters and to characterize the one generated by the complete r.e. set \boldsymbol{K}.

A major trend in the long term project of analyzing the lattice \mathcal{E} of recursively enumerable sets and \mathcal{E}^{*} its quotient modulo the finite sets has been the investigation of the class \mathscr{F} of principal filters of \mathcal{E}^{*}, i.e. of the lattices $\mathscr{L}^{*}(A)=\{B \in$ $\left.\mathcal{E}^{*} \mid B^{*} \supseteq A\right\}$ for r.e. A. (Note that $A \subseteq \subseteq^{*} B$ iff $A \triangle B$ is finite.) Of course the principal ideals of \mathcal{E}^{*} are irrelevant since $\left\{B \in \mathcal{E}^{*} \mid B \subseteq{ }^{*} A\right\} \simeq \mathscr{E}^{*}$ for every $A \neq{ }^{*} \varnothing$. The first such conscious investigations began with Myhill [1956] who defined maximal r.e. sets, i.e. sets M such that $\mathscr{L}^{*}(M) \simeq\{0,1\}$ (the two element Boolean algebra). Indeed the hyperhypersimple sets of Post [1944], although defined in terms of the intersection of arrays with the sets complement, also turned out to be related to this line of thought. Lachlan [1968] showed that they are precisely the r.e. sets A such that $\mathcal{L}^{*}(A)$ is a Boolean algebra. He was also able to completely characterize the members of \mathscr{F} which are Boolean algebras as exactly the Σ_{3} presentable ones.

At the other extreme one finds the r-maximal sets. These are easily seen to be equivalent to those with $\mathcal{L}^{*}(A)$ having no complemented elements. Classifying the isomorphism types of the r-maximal sets however seems to be a difficult open problem. The only other commonly recognized principal filter in \mathcal{E}^{*} is the nearly ubiquitous one $-\mathcal{E}^{*}$ itself. Of course if A is recursive it is immediate that $\mathcal{L}^{*}(A) \cong \mathcal{E}^{*}$ but Soare [1974], [1981] has shown that this type is extremely common: If A is an r.e. infinite set and \bar{A} is semilow (i.e. $\left\{e \mid W_{e} \cap \bar{A} \neq \varnothing\right\}<\varnothing^{\prime}$) then $\mathfrak{L}^{*}(A) \cong \mathscr{G}^{*}$. This means that there are r.e. sets A in every r.e. degree with $\mathcal{L}^{*}(A) \cong \mathcal{E}^{*}$ and all low r.e. sets A (i.e., $A^{\prime} \leqslant T \varnothing^{\prime}$) have this property.

Our goal here is simply to provide some additional examples of types of principal filters in \mathcal{E}^{*}. We will do this by describing some simple properties of the direct product of lattices in \mathscr{F}. We will then use it to generate new isomorphism types in \mathscr{F}. In addition these properties will enable us to make one really new identification. We will characterize the isomorphism type of $\mathscr{L}^{*}(K)$ by an absorption property

[^0]with respect to products in \mathcal{E}. Some connections between the structure of $\mathbb{L}^{*}(A)$ and the degree of A will also be pointed out.

Our starting point is a simple fact from lattice theory. We work with distributive lattices with 0 and 1. Basic references are Birkhoff [1948] for lattice theory and Rogers [1967] for recursion theory. An excellent current survey of r.e. sets and degrees is Soare [1978].

Lemma 1. $L_{1} \otimes L_{2} \cong L$ iff there are x_{1} and x_{2} in L such that $x_{1} \wedge x_{2}=0, x_{1} \vee x_{2}$ $=1$ and $L_{i} \cong L\left(x_{i}\right)$ where $L\left(x_{i}\right)=\left\{y \in L_{i} \mid y \geqslant x_{i}\right\}$.

Proof. The idea is just that x_{1}, x_{2} are the images of $\langle 0,1\rangle$ and $\langle 1,0\rangle$ respectively. See Birkhoff [1948, p. 26].
Our first observation is that \mathscr{F} is closed under products. Consider $\mathcal{L}^{*}\left(A_{1}\right)$ and $\mathcal{L}^{*}\left(A_{2}\right)$. Let R be an infinite coinfinite recursive set with complement \bar{R}. We map $f_{1}: \mathbf{N} \rightarrow R, f_{2}: \mathbf{N} \rightarrow \bar{R}$ by one-one onto recursive maps. It is then immediate that $\mathcal{L}^{*}\left(\bar{R} \cup f_{1}\left[A_{1}\right]\right) \cong \mathcal{L}^{*}\left(A_{1}\right)$ and $\mathscr{L}^{*}\left(R \cup f_{2}\left[A_{2}\right]\right) \cong \mathcal{L}^{*}\left(A_{2}\right)$. Thus

$$
\mathfrak{L}^{*}\left(A_{1}\right) \otimes \mathfrak{L}^{*}\left(A_{2}\right) \cong \mathfrak{L}^{*}\left(\bar{R} \cup f_{1}\left[A_{1}\right]\right) \otimes \mathfrak{L}^{*}\left(R \cup f_{2}\left[A_{2}\right]\right)
$$

but by the lemma this is just $\mathfrak{L}^{*}\left(f_{1}\left[A_{1}\right] \cup f_{2}\left[A_{2}\right]\right)$. Note that if A_{1} and A_{2} are simple so is $f_{1}\left[A_{1}\right] \cup f_{2}\left[A_{2}\right]$. Thus the class of principal filters generated by simple sets is also closed under direct product. Of course $\mathcal{L}^{*}(\mathbf{N})=1$, the trivial one-element lattice, is an identity for products in \mathscr{F}.

We next consider \mathscr{E}^{*} and see that it is an indecomposable idempotent.
Corollary 2. $\mathcal{E}^{*} \otimes \mathcal{E}^{*} \cong \mathcal{E}^{*}$.
Proof. Let x_{1} and x_{2} be given by any infinite coinfinite recursive set and its complement.

Corollary 3. If $L_{1} \otimes L_{2} \cong \mathcal{E}^{*}$ then $L_{i}=1$ or \mathcal{E}^{*}.
Proof. By the lemma the L_{i} are isomorphic to $\mathcal{L}^{*}\left(A_{i}\right)$ for $A_{1} \cap A_{2}={ }^{*} \varnothing$ and $A_{1} \cup A_{2}={ }^{*} \mathbf{N}$. Thus the A_{i} are recursive and $\varrho^{*}\left(A_{i}\right) \simeq \mathcal{E}^{*}$ or 1 (if one is \mathbf{N}).

Thus products of \mathfrak{E}^{*} give no new isomorphism types in \mathscr{F} and of course products of Boolean algebras are still Boolean algebras. We can however combine these two known types to generate new ones. We use a more general version of Lemma 1 to prove that one gets new types in this way.

Theorem 4. If $\mathscr{E}^{*} \otimes L_{1} \cong \mathcal{E}^{*} \otimes L_{2}$ then $L_{1} \cong L_{2}$ or $L_{1} \simeq \mathcal{E}^{*} \otimes L_{2}$ or $L_{2}=\mathcal{E}^{*}$ $\otimes L_{1}$.

Proof. By Theorem 7 on p. 26 of Birkhoff [1948] there are lattices $Z_{1}^{1}, Z_{1}^{2}, Z_{2}^{1}, Z_{2}^{2}$ such that $Z_{1}^{1} \otimes Z_{1}^{2} \cong \mathcal{E}^{*}, Z_{1}^{1} \otimes Z_{2}^{1} \cong \mathcal{E}^{*}, Z_{2}^{1} \otimes Z_{2}^{2} \simeq L_{1}$ and Z_{1}^{2} $\otimes Z_{2}^{2} \cong L_{2}$. By Corollary $3, Z_{1}^{1}, Z_{1}^{2}$ and Z_{2}^{1} are 1 or \mathcal{E}^{*}. If $Z_{1}^{1} \cong 1$ then $Z_{1}^{2}=\mathcal{E}^{*}$ $=Z_{2}^{1}$ and so $L_{1} \simeq \mathcal{E}^{*} \otimes Z_{2}^{2} \simeq L_{2}$ as required. Suppose now that $Z_{1}^{1} \simeq \mathcal{E}^{*}$. If $Z_{2}^{1} \simeq Z_{1}^{2}$ ($\simeq 1$ or \mathcal{E}^{*}) then again $L_{1} \cong L_{2}\left(\cong Z_{2}^{2}\right.$ or $\mathcal{E}^{*} \otimes Z_{2}^{2}$ respectively). The remaining cases are $\left(Z_{2}^{1} \simeq 1 \& Z_{1}^{2} \cong \mathcal{E}^{*}\right)$ and ($Z_{2}^{1} \simeq \mathcal{E}^{*} \& Z_{1}^{2} \simeq 1$). In the first case $L_{1} \cong Z_{2}^{2}$ and $L_{2} \cong \mathcal{E}^{*} \otimes Z_{2}^{2}$ as required. The second of course gives $L_{2} \simeq Z_{2}^{2}$ and $L_{1} \cong \mathcal{E}^{*} \otimes Z_{2}^{2}$.

Corollary 5. If $\mathscr{B}_{1} \neq \mathscr{B}_{2}$ are Boolean algebras in \mathscr{F} then $\mathcal{E}^{*} \otimes \mathscr{B}_{1}$ and $\mathscr{E}^{*} \otimes \mathfrak{B}_{2}$ are nonisomorphic elements of \mathscr{F}. Neither is a Boolean algebra or \mathscr{E}^{*} but both are isomorphic to principal filters generated by simple sets.

Proof. As \mathcal{E}^{*} is not a Boolean algebra $\mathscr{B}_{i} \neq \mathcal{E}^{*} \otimes \mathscr{B}_{i}$ and we apply the theorem. As there is a simple set A with $\mathcal{L}^{*}(A) \simeq \mathscr{E}^{*}$ the $\mathscr{E}^{*} \otimes \mathscr{B}_{i}$ are isomorphic to principal filters generated by simple sets by the closure of this class under direct product.

We next want to point out a simple relation between products of elements of \mathscr{F} and the degrees of the r.e. sets to which they correspond.

Lemma 6. If $\mathfrak{L}^{*}(A) \cong \mathfrak{L}^{*}\left(A_{1}\right) \otimes \mathfrak{L}^{*}\left(A_{2}\right)$ then there are B_{i} with $\mathfrak{L}^{*}\left(B_{i}\right) \simeq \mathfrak{L}^{*}\left(A_{i}\right)$ and $B_{1} \oplus B_{2} \equiv_{T} A$.

Proof. The elements of $\mathcal{L}^{*}(A)$ guaranteed by our basic lemma are now r.e. sets B_{1} and B_{2} with $B_{1} \cap B_{2}=A, B_{1} \cup B_{2}=\mathbf{N}$ and $\mathscr{L}^{*}\left(B_{i}\right) \simeq \mathscr{L}^{*}\left(A_{i}\right)$. To see if $x \in B_{i}$ ask if $x \in A$. If so, $x \in B_{i}$. If not, enumerate both B_{1} and B_{2} until x appears in one of them. If it first appears in $B_{i}, x \in B_{i}$ and otherwise $x \notin B_{i}$. Of course $x \in A$ iff $x \in B_{1}$ and $x \in B_{2}$.

Thus restrictions on $\mathcal{L}^{*}(A)$ that push the degree of A upward are passed on by products. So we have for example

Corollary 7. If $\mathfrak{B} \neq 1$ is a Boolean algebra and $\mathfrak{L}^{*}(A) \cong \mathcal{E}^{*} \otimes \mathscr{B}$ then A is high i.e. $\varnothing^{\prime \prime} \equiv_{T} A^{\prime}$.

Proof. By Lachlan [1968] any B with $\mathscr{L}^{*}(B)=\mathscr{B}$ is hyperhypersimple. Martin [1966] then shows that B must be high.

Carrying this idea to an extreme one might guess that the most complicated sets A should have $\mathscr{L}^{*}(A)$'s with the most factors. Indeed this gives us our characterization of $\mathcal{L}^{*}(K) .\left(K=\left\{e \mid e \in W_{e}\right\}\right.$ is of course a 1-complete r.e. set and so in many ways the most complicated one.)

Theorem 8. $\mathfrak{L}^{*}(K) \cong \mathfrak{L}^{*}(K) \otimes \mathfrak{L}^{*}(A)$ for every r.e. A.
Proof. Let R_{1}, f_{1} and f_{2} be as in the proof that \mathscr{F} is closed under products following Lemma 1. As before we see that $\mathscr{L}^{*}(K) \otimes \mathscr{L}^{*}(A) \simeq \mathscr{L}^{*}\left(f_{1}[K] \cup f_{2}[A]\right)$. As f_{1} is a recursive one-one and onto map of \mathbf{N} to a recursive set $R, f_{1}[K]$ is also a complete set as is $f_{1}[K] \cup f_{2}[A]$. Thus by Myhill [1955] K and $f_{1}[K] \cup f_{2}[A]$ are recursively isomorphic and so

$$
\mathfrak{L}^{*}(K) \cong \mathfrak{L}^{*}\left(f_{1}[K] \cup f_{2}[A]\right) \cong \mathfrak{L}^{*}(K) \otimes \mathfrak{L}^{*}(A)
$$

as required.
This theorem characterizes the isomorphism type of $\mathscr{L}^{*}(K)$ for if $\mathscr{L}^{*}(B) \simeq \mathscr{L}^{*}(B)$ $\otimes \mathscr{L}^{*}(A)$ for every A then $\mathscr{L}^{*}(B) \cong \mathscr{L}^{*}(B) \otimes \mathscr{L}^{*}(K) \cong \mathscr{L}^{*}(K)$. Moreover our earlier results show that the type of $\mathscr{L}^{*}(K)$ is not any of the ones considered before, i.e., it is not generated as a product of lattices which are Boolean algebras or \mathcal{E}^{*}. Finally our results on degrees show that if $\mathscr{L}^{*}(K) \simeq \mathscr{L}^{*}(A)$ then A is high.

Bibliography

G. Birkhoff [1948], Lattice theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I.
A. H. Lachlan [1968], On the lattice of recursively enumerable sets, Trans. Amer. Math. Soc. 130, 1-37.
D. A. Martin [1966], Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grundlagen Math. 12, 295-310.
J. Myhill [1955], Creative sets, Z. Math. Logik Grundlagen Math. 1, 97-108.
[1956], The lattice of recursively enumerable sets, J. Symbolic Logic 21, 220.
E. L. Post [1944], Recursively emumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50, 284-316.
R. I. Soare [1974], Automorphisms of the lattice of recursively emumerable sets, Bull. Amer. Math. Soc. 80, 53-58.
[1978], Recursively enumerable sets and degrees, Bull. Amer. Math. Soc. 84, 1149-1181.
[1981], Automorphisms of the lattice of recursively enumerable sets, Part II: Low sets (to appear).
H. Rogers, Jr. [1967], Theory of recursive functions and effective computability, McGraw-Hill, New York.

Department of Mathematics, Cornell University, Ithaca, New York 14853

[^0]: Received by the editors July 23, 1979.
 1980 Mathematics Subject Classification. Primary 03D25.
 Key words and phrases. Complete sets, lattices of r.e. supersets of r.e. sets, products of lattices.
 ${ }^{1}$ The preparation of this paper was partially supported by NSF grant MCS 77-04013.

