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£ *(K) AND OTHER LATTICES OF RECURSIVELY

ENUMERABLE SETS1

RICHARD A. SHORE

Abstract. We study the direct product operation on lattices which are principal

filters of S *, the lattice of r.e. sets modulo finite sets, to generate new isomorphism

types of such filters and to characterize the one generated by the complete r.e. set

K.

A major trend in the long term project of analyzing the lattice S of recursively

enumerable sets and S * its quotient modulo the finite sets has been the investiga-

tion of the class S of principal filters of &*, i.e. of the lattices t*(A) = {i£

&*\B* D A) for r.e. A. (Note that A C* B iîf AAB is finite.) Of course the

principal ideals of & * are irrelevant since [B E &*\B Ç * A) at S* for every

A ^ *0. The first such conscious investigations began with Myhill [1956] who

defined maximal r.e. sets, i.e. sets M such that t*(M) a: {0, 1} (the two element

Boolean algebra). Indeed the hyperhypersimple sets of Post [1944], although

defined in terms of the intersection of arrays with the sets complement, also turned

out to be related to this line of thought. Lachlan [1968] showed that they are

precisely the r.e. sets A such that t*(A) is a Boolean algebra. He was also able to

completely characterize the members of S which are Boolean algebras as exactly

the 23 presentable ones.

At the other extreme one finds the /--maximal sets. These are easily seen to be

equivalent to those with t*(A) having no complemented elements. Classifying the

isomorphism types of the r-maximal sets however seems to be a difficult open

problem. The only other commonly recognized principal filter in S * is the nearly

ubiquitous one -&* itself. Of course if A is recursive it is immediate that

\Z*(A) as &* but Soare [1974], [1981] has shown that this type is extremely com-

mon: If A is an r.e. infinite set and A is semilow (i.e. {e\We (~) A ¥= 0} < 0') then

t*(A) at S*. This means that there are r.e. sets A in every r.e. degree with

t*(A) s g * and all low r.e. sets A (i.e., A' < t 0') have this property.

Our goal here is simply to provide some additional examples of types of principal

filters in &*. We will do this by describing some simple properties of the direct

product of lattices in S. We will then use it to generate new isomorphism types in

§'. In addition these properties will enable us to make one really new identification.

We will characterize the isomorphism type of \Z*(K) by an absorption property
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with respect to products in £. Some connections between the structure of t*(A)

and the degree of A will also be pointed out.

Our starting point is a simple fact from lattice theory. We work with distributive

lattices with 0 and 1. Basic references are Birkhoff [1948] for lattice theory and

Rogers [1967] for recursion theory. An excellent current survey of r.e. sets and

degrees is Soare [1978].

Lemma 1. L, ® L2 = L iff there are x, and x2 in L such that xx /\x2 = 0, x, V x2

= 1 and L¡ = L(x¡) where L(x¡) = [y G L¡\y > x,}.

Proof. The idea is just that x„ x2 are the images of <0, 1> and <1, 0> respec-

tively. See Birkhoff [1948, p. 26].

Our first observation is that S is closed under products. Consider t*(Ax) and

£*(^2). Let R be an infinite coinfinite recursive set with complement R. We map

/,: N-» R,f2: N-> R by one-one onto recursive maps. It is then immediate that

£*(* U fx[Ax]) s t*(Ax) and t*(R u f2[A2]) =* ̂ (AJ. Thus

t*(Ax) ® t*(A2) » £*(R Ufx[Ax]) ® £*(* uf2[A2])

but by the lemma this is just t*(fx[Ax] u f2[A2]). Note that if Ax and A2 are simple

so is/,L4,] u f2ÍA2]. Thus the class of principal filters generated by simple sets is

also closed under direct product. Of course £*(N) = 1, the trivial one-element

lattice, is an identity for products in S.

We next consider S * and see that it is an indecomposable idempotent.

Corollary 2i*8S' = g*.

Proof. Let x, and x2 be given by any infinite coinfinite recursive set and its

complement.

Corollary 3. If Lx <S> L2 =s & * then L, = 1 or & *.

Proof. By the lemma the L¡ are isomorphic to t*(A¡) for Ax n A2 =* 0 and

A i U A2 = * N. Thus the A¡ are recursive and £ *(At) at S * or 1 (if one is N).

Thus products of S * give no new isomorphism types in S and of course

products of Boolean algebras are still Boolean algebras. We can however combine

these two known types to generate new ones. We use a more general version of

Lemma 1 to prove that one gets new types in this way.

Theorem 4. If S * <8> L, s S * <8> L2 then L, s L2 or Lx s S * <8> L2 or L2 = S *

® Lx.

Proof. By Theorem 7 on p. 26 of Birkhoff [1948] there are lattices

Z\, Z\, Z\, Zl such that Z\ ® Z2 =* S *, Z,1 0Z2'ag *, Z\ <8> Z\ a L, and Z\
® Z\ s L2. By CoroUary 3, Z\, Z\ and Z\ are 1 or S*. If Z,1 * 1 then Zf = S*
= Z2 and so L, ä S * ® Z| =s L2 as required. Suppose now that Z\ ss S *. If

Z2X at Z,2 (- 1 or S *) then again 7_, s L2 (s Z22 or S * ® Z22 respectively). The

remaining cases are (Z2 =s l&Z2 s S *) and (Z2 « S *&Z2 ss 1). In the first case

L, ss Z2 and L2 as S * ® Z2 as required. The second of course gives L2 at z\ and

L, « S * ® Z22.   □
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Corollary 5. If ®, as <$>2 are Boolean algebras in S then &* ® <$>x and

S * ® i&2 are nonisomorphic elements of S. Neither is a Boolean algebra or S * 6«<

¿w/A are isomorphic to principal filters generated by simple sets.

Proof. As & * is not a Boolean algebra %¡, et S * ® <3b¡ and we apply the

theorem. As there is a simple set A with t*(A) at g * the £ * ® €Bf are isomorphic

to principal filters generated by simple sets by the closure of this class under direct

product.

We next want to point out a simple relation between products of elements of S

and the degrees of the r.e. sets to which they correspond.

Lemma 6. If t*(A) at t*(Ax) ® t*(A2) then there are 7L with t*(B,) at t*(A¡)

and Bx © B2=TA.

Proof. The elements of t*(A) guaranteed by our basic lemma are now r.e. sets

Bx and B2 with Bx n B2 = A, Bx u B2 = N and £*(£,) at t*(A,). To see if x E B¡

ask if x E A. If so, x E B¡. If not, enumerate both Bx and B2 until x appears in one

of them. If it first appears in B¡, x E B¡ and otherwise x ÇÊ B¡. Of course x E A iff

x E Bx and x E B2.

Thus restrictions on t*(A) that push the degree of A upward are passed on by

products. So we have for example

Corollary 7. If <$ =£ 1 ¿s a Boolean algebra and t*(A) at S * ® 'S then A is

high i.e. 0" =TA'.

Proof. By Lachlan [1968] any B with t*(B) = % is hyperhypersimple. Martin

[1966] then shows that B must be high.

Carrying this idea to an extreme one might guess that the most complicated sets

A should have £*L4)'s with the most factors. Indeed this gives us our characteriza-

tion of ft*(K). (K = [e\e E We) is of course a 1-complete r.e. set and so in many

ways the most complicated one.)

Theorem 8. £*(7i") s t*(K) ® £*(.4)/or every r.e. A.

Proof. Let Rx,fx and f2 be as in the proof that S is closed under products

following Lemma 1. As before we see that \Z*(K) ® t*(A) at £*(/,[K] u f2[A]).

As /j is a recursive one-one and onto map of N to a recursive set R, fx[K] is also a

complete set as is /,[7<] u f2[A]. Thus by Myhill [1955] K and fx[K] U f2[A] are

recursively isomorphic and so

t*(K) ^ t*(fx[K] Uf2[A]) at £*(K)® t*(A)

as required.   □

This theorem characterizes the isomorphism type of t*(K) for if £*(2?) at £*(B)

® t*(A) for every A then t*(B) s £*(5)® t*(K) s £*(Ä"). Moreover our

earlier results show that the type of t*(K) is not any of the ones considered before,

i.e., it is not generated as a product of lattices which are Boolean algebras or S *.

Finally our results on degrees show that if ñ*(K) s¡ £*L4) then A is high.
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