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Anderson–Kitaev spin liquid
Masahiko G. Yamada 1,2✉

The bond-disordered Kitaev model attracts much attention due to the experimental relevance in α-RuCl3 and A3LiIr2O6 (A = H, D,

Ag, etc.). Applying a magnetic field to break the time-reversal symmetry leads to a strong modulation in mass terms for Dirac cones.

Because of the smallness of the flux gap of the Kitaev model, a small bond disorder can have large influence on itinerant Majorana

fermions. The quantization of the thermal Hall conductivity κxy/T disappears by a quantum Hall transition induced by a small

disorder, and κxy/T shows a rapid crossover into a state with a negligible Hall current. We call this immobile liquid state

Anderson–Kitaev spin liquid (AKSL). Especially, the critical disorder strength δJc1 ~ 0.05 in the unit of the Kitaev interaction would

have many implications for the stability of Kitaev spin liquids.
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INTRODUCTION

The Kitaev model1 is one of the greatest examples of two-
dimensional (2D) solvable models of quantum spin liquids
(QSLs)2–4, especially in the perspective of spin-orbital-entangled
physics5,6. This model has a bond-dependent anisotropic interac-
tion, which brings about exchange frustration and realizes gapped
and gapless spin liquid states depending on its parameters.
Amazingly, this interaction can be furnished in materials with a
strong spin–orbit coupling7. Iridates and α-RuCl3 are prominent
examples of candidate materials for the Kitaev model8–10, and
thus are called Kitaev materials. As a hallmark, the half-integer
quantization of the thermal Hall conductance has been observed
in α-RuCl3 with a magnetic field11, suggesting the fractionalization
of spin degrees of freedom predicted from the Kitaev model.
However, it is also known that these honeycomb materials cannot
fully be understood by the original (pure) Kitaev model12,13. While
other diagonal or offdiagonal interactions might be important
in real materials14, the importance of disorder has been ignored in
these materials until recently15–17. Indeed, experiments in
A3LiIr2O6 (A = H, Ag, etc.) show a universal scaling in the field
dependence of the heat capacity5,18, which strongly suggests the
existence of disorder19,20. The candidate ground states must be
disordered QSLs, and the absence of long-range order can be
attributed to the critical role of disorder.
In fact, the role of disorder in QSLs itself is a long-standing

problem because of the absence of a solvable model, except for
limited cases21. We propose a disordered Kitaev model as a
"numerically” solvable model for the disordered QSL, where we
can treat the magnetic field effect within the perturbation theory.
Thus, this study is not only a model investigation for the
disordered Kitaev materials like A3LiIr2O6 (A = H, D, Ag,
etc.)5,18,22, but also a systematic examination of a numerically
solvable disordered QSL, which would be an attempt towards the
universal understanding of various disordered QSLs. Especially,
since most QSLs are unsolvable, an unbiased study of disordered
QSLs was impossible in the previous method.
Moreover, the bond-disordered Kitaev model with an applied

magnetic field is not an “analytically” solvable problem. While it
seems that the problem is reduced to the Anderson localization of
symmetry class D with a short-range correlated disorder23, we

discovered that this is not the end of the story. The nontrivial part
comes from the third-order perturbation in an applied field
because the computation of the “disorder” in the time-reversal-
breaking term requires diagonalization1. This nonlocal operation
makes the disorder long-range correlated. Such a long-range
correlated random mass disorder could be a relevant perturba-
tion24, and a simple renormalization group analysis may fail.
Treating the long-range correlated disorder essentially requires a
large-scale calculation and the extrapolation to the thermody-
namic limit, which were numerically difficult in the finite-size
Monte Carlo methods25,26. For these reasons, we invented a
powerful numerical method based on the kernel polynomial
method (KPM)27 to overcome the difficulty.
From the materials side, the dispersion of low-energy excita-

tions of H3LiIr2O6 is a mystery. Although the behavior of the heat
capacity of H3LiIr2O6 without a magnetic field5 is partially
explained by the bond-disordered Kitaev model17, the T2-
dependence of the heat capacity of H3LiIr2O6 with a magnetic
field5, which suggests the linear dispersion of the low-energy
density of states (DOS)5, has never been described by an
unbiased calculation. Such heat capacity behaviors are phenom-
enologically explained by the random-singlet theory with a
Dzyaloshinskii–Moriya (DM) interaction19. However, it is not clear
whether the DM interaction is important in H3LiIr2O6, and
symmetric Kitaev–Γ interactions may be a dominant consequence
of the spin–orbit coupling. We rather try to explain the observed
linear dispersion with an applied field from the bond-disordered
Kitaev model. Indeed, an unbiased numerical simulation of the
bond disorder is not only theoretically nontrivial but also
experimentally important.
The Anderson transition (or quantum Hall transition) is visible in

a Kitaev spin liquid (KSL) by applying a small magnetic field. The
quantized thermal Hall conductivity serves as an order parameter,
which must go to zero in the large-disorder limit. This limit
without a linear slope of the thermal Hall conductivity is named
Anderson–Kitaev spin liquid (AKSL). The transition between KSL
and AKSL is nothing but a transition between different Hall
plateaus. Although we defined the transition in 2D, the transition
may be observable even in three-dimensional (3D) general-
izations28,29 (mobility edge).
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In this article, we simulate the bond-disordered Kitaev model to
see a crossover between KSL and AKSL, especially from the
topological transition in the thermal Hall effect11,25,30. We
discovered that the quantized thermal Hall effect is not as stable
as expected from the Anderson transition with a short-range
correlated disorder.

RESULTS

Magnetic field effect

The pure Kitaev model on the honeycomb lattice can be defined
from Fig. 1a. The bonds parallel to the red, green, and blue ones
are x-, y-, and z-labeled bonds, respectively. The Hamiltonian is

H0 ¼ �J
X

hjki2γ
σ
γ
j σ

γ
k ; (1)

where 〈jk〉 means a nearest-neighbor (NN) bond, and J > 0. γ = x,
y, or z is determined by a bond label. This model is known to be
solvable by representing σ

γ
j by Majorana fermions ib

γ
j cj . This

representation still works even if we introduce bond disorder as
follows:

Hbond ¼ �
X

hjki2γ
Jjkσ

γ
j σ

γ
k ; (2)

where Jjk = J ± δJ is a bond-dependent hopping, and δJ > 0 is the
strength of bond disorder. This model is still numerically solvable
if we can assume that the ground state is 0-flux when δJ is in the
perturbative regime. Under this assumption, all the states with a
vison, which is defined as a pair of neighboring π-flux vortices
excited by flipping the sign of a single bond, are assumed to be
the "first” excited states from the ground state flux sector. This is
how the perturbation theory works for this Kitaev model. We
employ Kitaev’s trick to solve these Hamiltonians with an applied
magnetic field1.
Let us first review the perturbation for the pure Kitaev model

with a magnetic field

H ¼ H0 þ V : (3)

V ¼ �
X

j

hxσxj þ hyσ
y
j þ hzσz

j

� �

; (4)

where h ¼ ðhx ; hy ; hzÞt is an applied magnetic field.
It is well known that V can be treated by the third-order

perturbation1. The result after introducing itinerant Majorana

fermions cj is

Heff ¼
iJ

2

X

hjki
cjck þ

i~κ

2

X

hhklii
ckcl þ ðfour� fermion termsÞ: (5)

~κ ¼ 3hxhyhz

48α20J
2
; (6)

where α0 = 0.262433 in the thermodynamic limit for the 0-flux
state, and α0J is a vison gap in the uniform case. The
determination of the prefactor follows a mean-field solution31.
The direction of the next-nearest-neighbor (NNN) bond 〈〈kl〉〉 is
defined clockwise as shown in Fig. 1a around the site j. A site
connected by the γ-bond from j is called γ[j] for γ = x, y, and z, as
shown in Fig. 1a. We define ~h ¼ hxhyhz=48.

Kitaev’s trick

Next, let us include binary disorder as H = Hbond + V. Following
Kitaev1, we can always do perturbation from any random Hbond by
a formula

H
ð3Þ
eff ¼ Π0VG

0
0ðE0ÞVG0

0ðE0ÞVΠ0; (7)

where Π0 is a projection onto the ground state flux sector, G0
0ðEÞ is

an unperturbed Green function constructed from Hbond with the
ground state flux sector excluded from the Hilbert space, and E0 is
an initial energy. Since Hbond is solvable by Majorana fermions, it is
in principle possible to calculate G0

0ðEÞ numerically to exhaust
every term appearing in the third order. For example, a Green
function for excited states is efficiently obtained by KPM27

numerically. However, this strategy is surely overkill for our
problem.
A much simpler solution is to use a trick introduced by Kitaev.

Though we still need an O(N4) calculation cost to decide all terms
by usual matrix diagonalization, where N is the number of sites,
there is no need for matrix exponentiation or integration. Kitaev’s
trick is done by replacing G0

0ðE0Þ by − (1 − Π0)/Δvison, assuming
that the virtual state energy is constant determined just by a vison
gap Δvison. This is a bold approximation to simplify the problem
drastically, but as we will see essential features, such as the
modulation of the mass term, can be captured even within
Kitaev’s approximation.
In this way, a typical third-order term is as follows:

Heff ¼
i

2

X

hjki
Jjkcjck þ

i

2

X

hhklii
~κklckcl þ � � � (8)

where ~κkl depends on the intermediate site j in the third-order
perturbation process. Seen from j, ~κ can be calculated by replacing
3=ðα0JÞ2 by 1/(ΔxΔy) + 1/(ΔyΔz) + 1/(ΔzΔx), where Δγ is the energy
of the vison excited by flipping the sign of the bond between j
and γ[j].

~κkl ¼ ~κj ¼
~h

ΔxΔy

þ
~h

ΔyΔz

þ
~h

ΔzΔx

: (9)

We note that three bonds have the same value of ~κkl around j.
Thus, the disorder simply modulate the mass term of Dirac cones
via random NNN hoppings, and the problem is still solvable
numerically.
In this case, four-fermion terms are short-ranged and we have

just ignored them as we are only interested in the Hall
conductivity in the h → 0 limit. Though we will assume the
ground state of Hbond to be 0-flux in the following discussions, the
perturbation can be done from any flux configuration. We note
that a second-order perturbation in h is ignored because it just
renormalizes bond-dependent hoppings Jjk and does not break
the time-reversal symmetry. Indeed, there is a priori no way to
determine the ratio of the coefficients of the second- and third-
order perturbations, although we can always use a mean-field

0.26

~0.05

KSL

vison glass

Anderson-Kitaev
spin liquid

0.0

0

a b

c

perturbative

Fig. 1 Schematic phase diagram. a Directional dependence of the
bond interaction and the NNN hopping arising for Majorana
fermions under the magnetic field. b Δmin ¼ minðΔvisonÞ versus
disorder strength δJ. After the gap closing around δJ = δJc2, the flux
sector becomes vison glass. c κxy versus disorder strength δJ. From
δJ > δJc1, the crossover to the AKSL is observed and κxy/T finally
reaches 0 around δJ/J = 1.
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solution of the pure Kitaev model to estimate it31. As stressed in
the Introduction, the computation by Kitaev’s trick is an essential
part of this study, producing long-range correlation in the mass
disorder.

Thermal conductivity

We only consider zero temperature and ignore thermal flux
fluctuations above the 0-flux sector. Lieb’s theorem32 no longer
applies, but we can expect it to be applicable on average. Anyway,
the calculation is relevant only in the regime where the flux gap is
not closed by thermal fluctuation or bond disorder (δJ < δJc2 in
Fig. 1b, c).
We employed Kitaev’s trick to calculate a Majorana spectrum

with an external magnetic field for each quenched bond disorder.
From this, we can compute an inplane thermal Hall conductivity
κxy(T), especially behavior of κxy/T at T → 0. Here xy does not
coincide with the Cartesian axis but means a transverse
component of the thermal conductivity.
As described in Methods, the thermal Hall conductivity can be

computed directly by the Kubo formula. However, we can
alternatively use the so-called noncommutative Chern number
(NCCN)33, which is defined by a spectral projector for occupied
free fermions. This formula is advantageous because it is proven to
become integer after disorder average with some conditions,
whereas it only makes sense in the thermodynamic limit.

Ch ¼ � 2πi

L2
tr PF ½r1; PF �; ½r2; PF �½ �f g; (10)

where PF is a spectral projector, i.e. the projection operator onto
the occupied states, and L is a linear scale of the system. This
formula must agree with the Kubo formula in the thermodynamic
limit by a well-known relation κxy=T ¼ πk2BCh=ð12_Þ for Majorana
fermions. We note that there are other ways to detect the
topological nontriviality34–36.
After taking an average of Ch ∝ κxy/T over a number of disorder

configurations, we plot a physical thermal Hall conductivity as a
function of δJ. The error bar is estimated from a statistical
deviation. From now on we set �h = kB = J = 1.

Numerical results

We first note that, since we only include the third-order
perturbation, the results here are not simply comparable with
experiments. However, it was proposed that the contribution from
hxhyhz can be picked up by applying an inplane magnetic field37,
so we only take an odd component under every sign change (hx

↦ − hx, hy ↦ − hy, and hz ↦ − hz) of the three components of h

from total κxy. From now on we denote κxy as an odd component
under every sign change and ignore other components.
The approximate correspondence between the Kubo formula

and NCCN is confirmed for the pure Kitaev model (see Fig. 2a). We
note that Haar-random vectors are used in this calculation, but are
not used in the following as described in Supplementary Methods
and Supplementary Fig. 1. From here we will prefer NCCN to the
Kubo formula because we can use KPM to approximate
the spectral projector PF to avoid diagonalization. We note that
the application of KPM to the Kubo formula requires efforts38.
Next, we would move on to a large-scale calculation by Kitaev’s

trick. We only take (Kitaev’s) L × L periodic boundary condition (for
spins) from L = 10, where the vison gap gets close to the
thermodynamic limit. As long as we are interested in the
topological property, the h → 0 limit does not have to be taken.
We set hx ¼ hy ¼ hz � h ¼ Δmin, where Δmin is the minimum vison
gap for each disorder configuration. In order to reduce the finite-
size effect, we adopt Kitaev’s torus basis where the finite-size
effects cancel out, which is defined from a torus basis (Ln1, Ln2 +
n1)

1. We call it Kitaev’s periodic boundary condition (KPBC) for
simplicity. The NCCN formula for KPBC has to be modified as
described in Supplementary Methods. This arbitrary choice of
boundary conditions does not matter in the thermodynamic limit.
The averaged 〈κxy〉/T for T → 0 is shown as a function of δJ, and
drops rapidly to 0 from the quantized value as the disorder
strength δJ grows. From here 〈κxy〉/T is plotted in the unit of a
quantum π/12. We used R = 24 vectors to approximate the
trace39.
The mean and minimum values of vison gaps are plotted for

each δJ in Fig. 2b. When δJ > δJc2 ~ 0.3, the vison gap approaches
0 for some plaquette, and the 0-flux ground state is destabilized.
We tentatively define δJc2 as the point where Δmin ¼ 0:05. From
here, the perturbation from the 0-flux sector cannot be justified.
Moreover, some flux sectors get almost degenerate and the first-
order perturbation in h now becomes relevant. Beyond this point,
a quantized thermal Hall current is no longer a well-defined
notion. Flux excitations and (itinerant) Majorana fermions are not
separable, and the discussion based only on free Majorana
fermions breaks down.
When δJ ≪ δJc2, the calculation by Kitaev’s trick can be justified.

Fig. 2c shows NCCN calculated by diagonalization (line plot) and
KPM (scatter plot). These two methods agree well. From the data
of KPM we extrapolated the thermodynamic limit. The finite-size
data are fit by exponential functions, and extracted the converged
value for L → ∞. The extrapolation is plotted in Fig. 2d and the
thermodynamic limit is shown in a line plot with a ribbon. Around
δJ = δJc1 = 0.05, NCCN deviates from unity, which suggests the
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Fig. 2 Main results. a Kubo formula versus NCCN. NCCN-Diag means that the Chern number is calculated by diagonalization, while NCCN-
KPM means that the Chern number is calculated by KPM with M0 ¼ 512 and R = 100. In order to put errorbars, random vectors are chosen to
be Haar-random. Only Lmod 6 ¼ 2; 4 is plotted. The ordinary periodic boundary condition is used. b Mean and minimum values of flux gaps
calculated by KPM. The error bar is smaller than the line width and only plotted for L = 10. KPBC is used. c NCCN calculated by diagonalization
(solid lines) and KPM (scatter plots). Nsample = 24 is used for the diagonalization. For KPM we used R = 24, and Nsample = 360. KPBC is used.
d NCCN calculated by KPM and the value extracted for L → ∞. The margin of error at 5% significance level is used for the ribbon for the
extrapolation. Error bars are standard errors (SE) if not mentioned.
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existence of the topological transition into the gapless phase. For
the calculations we took Nsample = 360 quenched disorder
samples and used M = 1024, and R = 24, where M is the
expansion order of KPM.

Local density of states

When δJ ≪ δJc2, free Majorana fermions are only relevant low-
energy excitations, and we can use many tools of free fermions to
discuss properties of the transition, such as DOS and a localization
length. DOS around the ground state can be measured from the
information of the 0-flux sector. As is often the case, we only
calculated local density of states (LDOS), instead. LDOS for a site i
is defined as follows27:

ρiðεÞ ¼
X

N

k¼1

hijkij j2δðε� εkÞ; (11)

where ij i is a site basis, and kj i is an eigenstate of the Hamiltonian
with an energy ε = εk.
The nonlocality of Majorana fermions does not matter as

averaged LDOS approximates DOS well enough. Both of the
quantities are easily computed using KPM, and LDOS is enough for
our purpose. The ratio of the arithmetic and geometric means of
LDOS also works as the order parameter of an Anderson transition
instead of the localization length. From the gapped Dirac
spectrum (see Fig. 3a) the LDOS becomes gapless as the disorder
strength increases. In the gapless region, DOS behaves linearly
around ε = 0 (see Fig. 3b–d). The localization in Fig. 3b–d is clear
from the discrepancy between the arithmetic and geometric
averages of LDOS. Details are included in Supplementary Methods.

DISCUSSION

Even in a finite-size calculation, the transition between KSL and
AKSL was well-observed and the schematic phase diagram in Fig.
1c was confirmed. From the extrapolation, δJc1 is very small and
δJc1/J ~ 0.05. δJc1/J ≪ α0 ~ 0.26 suggests the fragility of KSL. The
fragility potentially explains the observed sample dependence of
the half-integer quantized thermal Hall effect in α-RuCl3

40. There is

a possibility that δJc1/J → 0 as h=Δmin ! 0, which means that the
bond disorder in the Kiteav model is a relevant perturbation24.
After the transition, the V-shaped behavior of DOS completely
agrees with an observed linear low-energy DOS for H3LiIr2O6 with
an applied magnetic field5.
It was proposed that the spin-polarized scanning tunneling

microscopy (SP-STM) could be a local probe for edge states of the
Kitaev model41. During the crossover to AKSL, edge states should
disappear gradually and thus SP-STM should be a good probe for
the topological transition.
The h=Δmin ! 0 limit must be taken carefully. A small h=Δmin

suffers from the finite-size effect, so we need to increase N
according to the h=Δmin ! 0 limit, as described in Supplementary
Methods and Supplementary Fig. 2. Whether or not δJc1/J → 0 in
this limit is an important future problem. We note that the vortex
disorder is known to be relevant, so the introduction of random
vortices may change the universality42.
The fragility of the quantization has many implications to

experiments. Disorder always exists in real materials, especially in
any 2D layered system, and even in clean samples of α-RuCl3
stacking faults must exist43. Thus, the situation is quite similar to
that of the fractional quantum Hall effect (FQHE). The observation
of FQHE requires a really clean sample, and the recently observed
quantized thermal Hall current of FQHE is more sensitive to
disorder44. The sensitivity also resembles unconventional super-
conductors45. It might be universal in strongly correlated systems.
Thus, we need to reconsider the importance of cleanness for the
topological order in general. Further discussions can be found in
Supplementary Discussion.

Note added

After the early version of the present paper on arXiv, a finite-
temperature calculation of the disordered Kitaev models has been
reported46.

METHODS

We would like to introduce the KPM27,47,48. KPM is used twofold in this
work. The first is for the vison gap calculation and the second is for the
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Fig. 3 Arithmetic and geometric means of LDOS. a δJ = 0.0. b δJ = 0.1. c δJ = 0.2. d δJ = 0.3. For every figure L = 100, R = 24, and
Nsample = 360.
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Chern number calculation. The calculation cost for the former is O(N2) and
for the latter O(N).

Vison gap calculation

First, let us consider a Majorana Hamiltonian with the following form.

H ¼ 1

4

X

j;k

Hjkcjck ; (12)

where H is a Hermitian matrix. For Majorana fermions cj, H has a form
H ¼ iA, where A is a real skew-symmetric matrix. From now on, we assume
H to be the ones considered in the main text, either with or without a
magnetic field. The eigenvalues of the N × N matrix H is denoted by Ek
with k = 1, …, N.
A Green function can be expanded by a Chebyshev polynomial Tm(x) as

follows:

GjjðE þ iεÞ ¼ i
~μ0 þ 2

PM�1
m¼1

~μm exp½�im arccosðE=sÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � E2
p : (13)

~μm ¼ gmhjjTmðH=sÞjji: (14)

gm ¼ sinh½λð1�m=MÞ�
sinh λ

; (15)

where λ = 4.0 was used in the Lorentz kernel gm. M is the expansion order
and m = 0, …, M − 1. ε is a small parameter which goes to 0 when M → ∞.
The scaling factor s is necessary so that the spectrum of the Hamiltonian
H=s falls within the domain of the Chebyshev polynomials [−1, 1]. We note
that this expression is for diagonal components, but almost the same is
true for offdiagonal components. We simply set s ¼ Emax þ 0:1, where Emax

is the maximal eigenvalue.
Elements of Chebyshev moments TmðH=sÞ can be computed recursively

by using Tm(x) = 2xTm−1(x) − Tm−2(x) and T2m+i(x) = 2Tm(x)Tm+i(x) − Ti(x)
for i = 0, 1. The total O(N2) cost is required to compute all the necessary
elements.
From the expanded Green function, we can compute the energy change

by the local modification of the Hamiltonian H ! Hþ δH. We define

DðEÞ ¼ det½1þ GðEÞδH�: (16)

By extending this function to a complex number, the energy difference, i.e.
vison gap Δvison, can be computed as follows:

Δvison ¼ 1

π

Z 1

�1
FðEÞ lim

ε!0
Im log ½DðE þ iεÞ�dE; (17)

where F(E) is a Fermi-Majorana function at zero temperature.

FðEÞ ¼ � lim
β!1

1

2
tanh

βE

2
¼ ϑð�EÞ � 1

2
: (18)

The evaluation of the integral in the Green function requires fast Fourier
transformation (FFT) or discrete cosine transformation (DCT)27. Using this,
the integral is reduced to a discrete weighted sum of the Fermi(-Majorana)
function evaluated at some specific points. The discretization size ~M for the
summation was set ~M ¼ 2M for simplicity. We compared M = 64, 128, 256,
512, 1024, and 2048. Among these, we found that M = 1024 has the best
performance for our purpose, where the error is always about 0.01J.
KPM can reproduce the vison gap with an enough precision and reduce the

computational cost to O(N) with a truncation algorithm49–51. However, later
we found that the truncation causes a problem in our simulation, and thus we
used the abovementioned O(N2) algorithm without a truncation27,47,48.

Chern number calculation

A Kubo formula for κxy at zero temperature is reduced to the generalized
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula52 for noninteract-
ing Majorana Hamiltonians:

κxy ¼ _π2k2BT

6L2

X

m;n

ϑð�εmÞ
2Im½hmjv1jnihnjv2jmi�

εm � εnð Þ2
; (19)

where m and n label eigenvalues of H, εm and εn, corresponding to
eigenstates mj i and nj i, respectively53,54. ϑ(x) is a Heaviside theta and
vα ¼ i½H; rα�=_ is a velocity operator along the α-direction. We define a
position operator rα for the nα-direction for α = 1, 2. A gravitomagnetic
term should be added to derive this formula. We note the generalized

formula without a translation symmetry was originally discussed by Kitaev1

using a flow of unitary matrices and extended by Kapustin and
Spodyneiko55. This Kubo-TKNN formula is nothing but a real-space
formulation of the Chern number calculation.
However, as mentioned in the main text, it is better to use a

noncommutative Chern number (NCCN) Eq. (10)33 to compute the same
quantity in the thermodynamic limit. Though Eq. (10) makes sense only in
the thermodynamic limit, we can make use of a discretized version, which
exponentially converges to the thermodyanamic limit by an artificial k-
space quantization of a size L × L. This version can be derived by replacing
the commutator33 as follows:

�i½rα; PF �7!
X

Q

q¼�Q

cqe
�iqΔrαPFe

iqΔrα ; (20)

where Δ = 2π/L, c0 = 0 and cq = −c
−q are determined to hold

x �PL=2
q¼�L=2 cqe

iqΔx ¼ OðΔLÞ, and Q ≤ L/2. Thus, we can expect that these

two methods to compute κxy may agree with a large L, while the Hall
conductivity and the Chern number are a priori different quantities. We
fixed Q = 15 for L > 30 because otherwise the calculation cost becomes O
(N3).
The spectral projector PF can be rewritten as:

PF ¼ � 1

2πi

I

C

1

H� E
dE; (21)

where C is a contour which encloses every negative eigenvalue of H. The
integrant is nothing but a Green function, and can be expanded by KPM.
It is better to use the following Fermi function instead of approximating

a spectral projector directly.

PeffF ¼ FðH=sÞ ¼ ϑð�H=sÞ � 1

2
: (22)

Due to the particle-hole symmetry, this deformation also gives a correct
Chern number. This expression can again be expanded by Chebyshev
polynomials. Especially, the Fermi function has been expanded as

fm ¼
Z 1

�1

dx

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p TmðxÞFðxÞ: (23)

FðxÞ ¼ f 0 þ 2
X

M0�1

m¼1

fmTmðxÞ; (24)

where M0 is a cutoff of the expansion for NCCN39. We used the Jackson
kernel for the Chern number:

g0m ¼
ðM0 �mþ 1Þ cos πm

M0þ1
þ sin πm

M0þ1
cot π

M0þ1

M0 þ 1
; (25)

where m ¼ 0; ¼ ;M0 � 1. We here used M0 ¼ 512, instead. Thus,

PeffF � g00f 0T0ðHÞ þ 2
X

M0�1

m¼1

g0mfmTmðHÞ: (26)

This can indeed be evaluated with a calculation cost of O(N). Detailed
information for the O(N) approximation is included in Supplementary
Methods.
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