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We study Anderson localization in graphene with short-range disorder using the real-space Kubo-Greenwood

method implemented on graphics processing units. Two models of short-range disorder, namely, the Anderson

on-site disorder model and the vacancy defect model, are considered. For graphene with Anderson disorder, local-

ization lengths of quasi-one-dimensional systems with various disorder strengths, edge symmetries, and boundary

conditions are calculated using the real-space Kubo-Greenwood formalism, showing excellent agreement with

independent transfer matrix calculations and superior computational efficiency. Using these data, we demonstrate

the applicability of the one-parameter scaling theory of localization length and propose an analytical expression for

the scaling function, which provides a reliable method of computing the two-dimensional localization length. This

method is found to be consistent with another widely used method which relates the two-dimensional localization

length to the elastic mean free path and the semiclassical conductivity. Abnormal behavior at the charge neutrality

point is identified and interpreted to be caused by finite-size effects when the system width is comparable

to or smaller than the elastic mean free path. We also demonstrate the finite-size effect when calculating the

two-dimensional conductivity in the localized regime and show that a renormalization group β function consistent

with the one-parameter scaling theory can be extracted numerically. For graphene with vacancy disorder, we

show that the proposed scaling function of localization length also applies. Last, we discuss some ambiguities in

calculating the semiclassical conductivity around the charge neutrality point due to the presence of resonant states.

DOI: 10.1103/PhysRevB.89.245422 PACS number(s): 72.80.Vp, 72.15.Rn, 73.23.−b, 05.60.Gg

I. INTRODUCTION

Graphene is an effectively two-dimensional (2D) material

consisting of a sheet of carbon atoms [1,2]. In its pristine form,

it exhibits many remarkable low-energy electronic transport

properties, such as the half-integer quantum Hall effect [3,4]

and Klein tunneling [5], due to the linear dispersion of the

charge carriers near two inequivalent valleys around the charge

neutrality point. However, disorder may dramatically alter both

the electronic structure [6] and transport properties [7–9] of

graphene. It is generally believed that both short-range [10–13]

and strong long-range [14] disorder can lead to intervalley

scattering and Anderson localization, while weak long-range

disorder only gives rise to intravalley scattering, which does

not lead to backscattering and Anderson localization [15–17].

Due to its intrinsic low-dimensionality, graphene provides

an ideal test bed of revisiting old ideas regarding Anderson

localization in low dimensions, as well as discovering new

ones. The most successful theory for Anderson localization

is one-parameter scaling [18], which predicts that all states

in disordered 1D and 2D systems are localized at zero

temperature if the system is sufficiently large, although

exceptions can occur when the disorder is correlated [19]

or electron-electron interaction cannot be neglected [20].

However, recent works regarding localization in graphene have

yielded results that conflict with one-parameter scaling, with

some studies supporting the existence of mobility edges even in

the presence of uncorrelated Anderson disorder [21,22]. Very

recent numerical results indicate the difficulty of associating

data for the finite-size localization length with a single scaling

curve [23], as well as the discrepancy between results of the

*Corresponding author: zheyong.fan@aalto.fi

2D localization length obtained from the finite-size scaling

approach and the self-consistent theory of localization [24]. On

the other hand, it has been suggested that the conductivity at

the charge neutrality point (CNP) saturates to a constant value

[25], or decays following a power law rather than exponentially

with increasing system size [26,27], in graphene with resonant

scatterers such as vacancy defects.

Since the typical length scales regarding localization

properties in 2D systems are generally very large, efficient

numerical methods are desirable. Although the standard

numerical method for studying quantum transport is the

Landauer-Büttiker approach combined with the recursive

Green’s-function technique, using it for realistically sized truly

2D graphene systems is still beyond current computational

ability, since the computational effort scales cubically with

the width of the system. In contrast, the linear-scaling real-

space Kubo-Greenwood (RSKG) method [28–31] is generally

much more efficient and has been used to study electronic

transport in realistically sized graphene with various kinds of

disorder [26,27,32–36]. In this method, the actual computa-

tional effort depends on the energy resolution, the required

statistical accuracy, and, most crucially, the transport regime.

Exploring the localization properties generally requires a large

simulation cell to eliminate possible finite-size effects and

a long correlation time (which can be thought of as the

evolution time of a wave packet) to actually reach the localized

regime, which can be very time consuming. Recently, we have

significantly accelerated the calculations by implementing [37]

this method on graphics processing units [38] and further

developed methods for obtaining the localization properties

of disordered systems. It has been established [39] through

comparisons with the standard Landauer-Büttiker approach

that (1) the average propagating length of electrons can serve

as a good definition of length before its saturation and (2)
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the saturated propagating length is directly proportional to the

localization length defined in terms of the exponential decay

of conductance in the strongly localized regime.

Armed with this efficient numerical method, we perform

an extensive numerical study of Anderson localization in

graphene with short-range disorder, including Anderson dis-

order and vacancies. We first calculate the localization lengths

for various quasi-1D (Q1D) systems using the RSKG method.

Since most of the previous works [12,23,24,40] have applied

the transfer matrix method (TMM) [41] (or, equivalently, the

recursive Green’s-function method; see Ref. [42]), we also

present a comparison between these two methods. Based on

our computational data, we are able to compare the results

against the one-parameter scaling theory of localization length

[42,43] and construct an analytical expression for the so-far-

undetermined scaling function. Our results are consistent with

those of Schreiber and Ottomeier [40] and Lee et al. [24],

but, compared to these works, we have considered a more

complete set of energy points and much wider systems. We also

discuss the finite-size effects for the scaling analyses of both

localization length and conductivity and some ambiguities in

determining the semiclassical conductivity in graphene with

resonant disorder using the RSKG method.

This paper is organized as follows. Section II defines the

physical models and introduces the TMM for the calculation of

localization length and the RSKG method for the calculation

of localization length, as well as other electronic and transport

properties. We then study Anderson localization of graphene

with Anderson disorder and vacancy-type disorder in Secs. III

and IV, respectively. Section V concludes.

II. MODELS AND METHODS

A. Models

For pristine graphene, we apply the widely used nearest-

neighbor pz orbital tight-binding Hamiltonian

H = −t
∑

〈i,j〉

|i〉〈j |, (1)

where t is the hopping parameter. The uncorrelated Anderson

disorder is modeled by adding random on-site potentials uni-

formly distributed within an energy interval of [−W/2,W/2],

W being a measure of the disorder strength. The more realistic

vacancy disorder is modeled by randomly removing carbon

atoms according to a prescribed defect concentration n, which

is defined to be the number of vacancies divided by the number

of carbon atoms in the pristine system. We consider the whole

energy spectrum for the Anderson model and thus take t as

the unit of energy, but only consider a small energy window

for the vacancy model and take eV as the unit of energy and

set t = 2.7 eV. When calculating the Q1D localization length,

we consider both zigzag and armchair graphene nanoribbons

(ZGNRs and AGNRs, correspondingly). To test the effect

of the boundary conditions in the transverse direction, we

also consider armchair carbon nanotubes (ACNTs) with

the transport direction along the zigzag edge and periodic

boundary conditions also along the transverse direction. We

use Nx and Ny to denote the number of dimer lines along the

zigzag edge and the number of zigzag-shaped chains across

the armchair edge, respectively. The total number of carbon

atoms in the computational cell is then Nx×Ny . The symbol M

defines the width of the system. For ZGNRs and ACNTs, we set

M to Ny and obtain the actual width LM using LM = 3Ma/2.

For AGNRs, we set M to Nx and obtain the actual width using

LM =
√

3Ma/2. Here, a is the carbon-carbon distance, being

roughly 0.142 nm.

B. Methods

We define the localization length λM of a Q1D system

with a fixed width LM to be the characteristic length of the

exponential decay of typical conductance with the system

length L in the strongly localized regime [44]:

gtyp(L) ∼ exp(−2L/λM ), (2)

where the typical conductance gtyp ≡ exp(〈ln g〉) is obtained

from the ensemble average over individual realizations with

fixed system size and disorder strength [45].

In the literature, the most often used methods for computing

λM are the recursive Green’s-function method and the TMM,

which are essentially equivalent [42]. In Ref. [39], we have

suggested another method of finding λM using the RSKG

formalism, briefly explained below. In this work, we further

demonstrate its accuracy and efficiency by comparing it

against the TMM.

1. The transfer matrix method

In the TMM, the wave function ψn of the nth slice along

the transport direction of the Q1D geometry is calculated

iteratively using the transfer matrix equation (note that all

the matrix or vector elements here are M-by-M matrices) as

(

ψn+1

ψn

)

=
(

E1 − Hn −1

1 0

) (

ψn

ψn−1

)

≡ Tn

(

ψn

ψn−1

)

, (3)

with the initial wave functions ψ1 = 1 and ψ0 = 0. We only

consider ZGNRs and ACNTs (both with the transport direction

along the zigzag edge) when using the TMM, where the matrix

Hn takes two alternative forms depending on whether n is even

or odd, as given in Ref. [40]. According to Oseledec’s theorem

[46], with increasing N , the eigenvalues of (Ŵ
†
NŴN )1/2N ,

where ŴN ≡ TNTN−1 · · · T1, converge to fixed values e±γm , the

γm(1 � m � M) being Lyapunov exponents. The localization

length is defined as the largest decaying length associated with

the minimum Lyapunov exponent [44]:

λM =
1

γmin

. (4)

Numerically, the minimum Lyapunov exponent can be com-

puted by combining Gram-Schmidt orthonormalization with

the above transfer matrix multiplication. Practically, only

sparse matrix-vector multiplication is required and one does

not need to perform Gram-Schmidt orthonormalization after

each multiplication. Usually, performing one Gram-Schmidt

orthonormalization every ten multiplications keeps a good

balance between speed and accuracy. The number of slices

required for achieving a relative accuracy of ǫ is approximately

[42] 2(λM/a)/ǫ2. In this work, we set ǫ = 1%.
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2. The real-space Kubo-Greenwood method

In the RSKG method [28–31], the zero-temperature dc

electrical conductivity at energy E and correlation time τ can

be expressed as

σ (E,τ ) = e2ρ(E)
d�X2(E,τ )

2dτ
, (5)

where

ρ(E) =
2Tr [δ(E − H )]



(6)

is the electronic density of states with the spin degeneracy

taken into account. Note that the factors of 2 in the above two

equations can cancel each other and are not presented in some

works, but we prefer to keep them for clarity. Here H is the

Hamiltonian and 
 is the volume, or, in our case, just the area

of the graphene sheet, and

�X2(E,τ ) =
Tr{[X,U (τ )]†δ(E − H )[X,U (τ )]}

Tr[δ(E − H )]
(7)

is the mean square displacement. X is the position operator and

U (τ ) = e−iHτ/� is the time-evolution operator. What need to

be calculated are Tr[δ(E − H )] and Tr{[X,U (τ )]†δ(E − H )

[X,U (τ )]} at a chosen set of τ . The so-called linear-scaling

algorithm for calculating the latter (the calculation of the

former does not need the second technique below) can be

achieved by the following three techniques: (1) approximating

the trace by using one or a few random vectors |φ〉, Tr[A] ≈
〈φ|A|φ〉, A being an arbitrary operator, (2) calculating the

time-evolution of [X,U (τ )]|φ〉 iteratively using, e.g., the

Chebyshev polynomial expansion, and (3) approximating

the Dirac δ function δ(E − H ) using a linear-scaling technique

such as Fourier transform, Lanczos recursion, or kernel

polynomial. The relative error caused by the random-vector

approximation is proportional to [47] 1/
√

NrN , where N

is the Hamiltonian size (the total number of carbon atoms

in our problems) and Nr is the number of independent

random vectors used. In this work, we have used a few to

a few tens of random vectors for each simulated system, the

specific number depending on the specific system, the required

accuracy, and the specific quantities to be calculated. For the

approximation of the Dirac δ function, we have used the kernel

polynomial method [47]. The energy resolution δE achieved

using this method is inversely proportional to the number

of Chebyshev moments (which is the order the Chebyshev

polynomial expansion) Nm used. For most of the calculations,

we have chosen Nm to be 3000, which corresponds to an

energy resolution of a few meV. While this energy resolution

is sufficiently high for graphene with Anderson disorder, it

is not necessarily high enough to distinguish the resonant

state at the CNP in graphene with vacancy defects from other

states. In Sec. IV D, we discuss the effect of energy resolution

on the results for graphene with vacancy defects. Details of

the involved algorithms and the implementation on graphics

processing units can be found in Ref. [37].

As τ increases from zero, the running conductivity σ (E,τ )

first increases linearly, indicting a ballistic behavior, and

then gradually saturates to a fixed value, which can be

interpreted as the semiclassical conductivity σsc(E), and

finally decreases until it becomes zero if localization takes

place. In practice, especially when the disorder is strong, there

may be no apparent plateau to which the running conductivity

saturates, and σsc(E) is thus usually defined as the maximum

of σ (E,τ ). While this is generally a reasonable definition, it

can sometimes result in problems, as we show in Sec. IV C.

After obtaining σsc(E), one can calculate the elastic mean

free path le(E) through the Einstein relation for diffusive

transport [48],

σsc(E) = 1
2
e2ρ(E)v(E)le(E), (8)

where v(E) is the Fermi velocity, which can be calculated

from the velocity autocorrelation at zero correlation time [37].

The usefulness of the RSKG method also depends crucially

on a definition of propagating length L(E,τ ) in terms of
√

�X2(E,τ ). Indeed, in the original Kubo-Greenwood formal-

ism, there is no definition of length and no connection between

conductivity and conductance can be made. A definition of

length is required for the study of mesoscopic transport prop-

erties. A natural definition would be L(E,τ ) =
√

�X2(E,τ ),

but a more precise relation has been established [37,39]:

L(E,τ ) = 2
√

�X2(E,τ ). (9)

The factor of 2 in this equation can be justified from different

perspectives: (1) it results in [37] the textbook formula [49]

for the ballistic conductance,

g(E) = e2ρ(E)v(E)LM/2, (10)

and (2) it results in a Q1D conductance g(E,L) = LMσ (E,τ )/

L(E,τ ) which is consistent with independent Landauer-

Büttiker calculations in the localized regime [39]. This

definition of length is only valid up to about g ∼ 0.1e2/h,

after which the propagating length saturates to a fixed value

proportional to the localization length [39,44]:

λM (E) = lim
τ→∞

2
√

�X2(E,τ )

π
. (11)

The meaning of the factor of π in this equation is yet

to be found, but this expression yields results in a good

agreement with independent Landauer-Büttiker calculations

[39]. Although an infinite τ is indicated in the above equation,

in practice, we only simulate up to a finite τ and then fit

the mean square displacement data using a Padé approximant

of the form �X2(τ ) = (c1τ + c2)/(τ + c3). We found that as

long as the mean square displacement is almost converged,

this simple Padé approximant results in a very good fit to

the data and the saturated mean square displacement can

be extracted as c1. As in the case of the TMM, an error

estimation of the calculated data is useful to evaluate the

quality of the results. However, there seems to be no unique

way to define the errors for λM (E) calculated using the RSKG

method. We have estimated the error for λM (E) as the mean

of |L(E,τ ) − Lfit(E,τ )| over τ , where Lfit(E,τ ) is the fitted

propagating length using the Padé approximant. We further

validate this method by comparing with independent TMM

calculations in Sec. III A and discuss the finite-size effect

in this method caused by the finite simulation cell length in

Sec. IV A.
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FIG. 1. (Color online) Localization lengths as a function of energy for Q1D systems: (a) ZGNRs with W = 2t , (b) ACNTs with W = 2t ,

(c) ZGNRs with W = 1.4t , and (d) AGNRs with W = 1.4t . For (a) and (b), M = 8, 16, 32, 64, 128, 256, and 512; for (c), M = 32, 64,

128, 256, 512, 768, and 1024; for (d), M = 50, 98, 194, 386, 770, 1154, and 1538. The open circles [only in (a) and (b)] and the small solid

dots represent the results obtained by the TMM and the RSKG method, respectively. The shaded areas with bounding lines indicate the error

estimates of the data calculated by the RSKG method. The value of M increases monotonically from bottom to top in each subfigure. Note the

different relation between the width LM and M for AGNRs from other cases.

III. GRAPHENE WITH ANDERSON DISORDER

A. Localization lengths for quasi-one-dimensional systems

Figure 1 shows the calculated localization lengths for Q1D

systems with different widths, energies, disorder strengths,

edge types, and boundary conditions. The considered systems

are (a) ZGNRs with W = 2.0t , (b) ACNTs with W = 2.0t ,

(c) ZGNRs with W = 1.4t , and (d) AGNRs with W = 1.4t .

In Figs. 1(a) and 1(b), the open circles and small solid dots

correspond to the results obtained by the TMM and the RSKG

method, respectively. The errors estimates for the RSKG

results are indicated by the shaded areas with bounding

lines. The relative accuracy of the TMM results is set to 1%,

which would result in errors comparable to the corresponding

marker size, and we thus omit the error bars for the TMM

results for simplicity. Both methods give practically the same

results, but the RSKG method is much more efficient for

wider systems due to the use of linear-scaling techniques

and the intrinsic parallelism in energy of this method. The

parallelism in energy means that obtaining the results for all

the energy points does not require more computation time

than obtaining the result for a single energy value. In contrast,

the computation time for the TMM scales cubically with

respect to the width of the system and there is no parallelism

in energy. Therefore, using the TMM, we have only calculated

a limited number of energy points for M = 128 and 256 and

no points for M = 512. Even under these conditions, the

computation times for these two methods are roughly equal,

which demonstrates the accuracy and efficiency of the RSKG

method. We thus only used the RSKG method for weaker

disorder, as shown in Figs. 1(c) and 1(d).
There is an obvious difference between the results for

different boundary conditions and edge types. Figures 1(a)
and 1(b) correspond to transport in the direction of the zigzag
edge and differ only by the boundary conditions used in the
transverse direction, with Fig. 1(a) corresponding to free (hard
wall) boundary conditions (ZGNRs) and Fig. 1(b) to periodic
boundary conditions (ACNTs). We note that for ACNTs, the
CNP behaves rather differently from the other points: It evolves
from a local maximum for M < 128 to a local minimum for
M > 128. This observation is consistent with the finding by
Xiong et al. [12]. Figures 1(c) and 1(d) correspond to a weaker
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disorder with W = 1.4t , with Figs. 1(c) showing results for
ZGNRs and 1(d) for AGNRs. To avoid band gaps, only
metallic AGNRs are considered. We note that AGNRs
behave similarly as ACNTs, having a maximum of λM at the
CNP when the width of the system is small. However, with
increasing width, the differences between different boundary
conditions and edge types become smaller, and one may
expect that these differences become vanishingly small in the
limit of wide systems.

B. One-parameter scaling of localization length

As our results indicate that the differences of localization
lengths between different boundary conditions and edge types
become smaller with increasing width, a natural question is
whether the conventional one-parameter scaling theory of
localization length applies to our simulation data. MacKinnon
and Kramer [42,43] have proposed a scaling law for the Q1D
localization length,

λM

LM

= f

(

ξ

LM

)

, (12)

where ξ = ξ (W,E) is the 2D localization length for a given W

and E and f = f (x) is an unknown function. The construction
of the scaling function for graphene (or honeycomb lattice)
was considered by Schreiber and Ottomeier [40] as early as
1992, although they only considered relatively strong disorder
(W � 4t) due to the limited computational power available
at that time. Recently, Lee et al. [24] constructed a scaling
curve for systems with W down to 1.2t , although not all
the energy points (especially some points at and around the
CNP) were considered uniformly. An inspection of the scaling
curves presented in Refs. [40] and [24] reveals that the scaling
function f (x) may be universal. Thus, it is natural to attempt
to construct an analytical expression for this scaling function.

To find such a universal function, we note that when
LM is in the Q1D limit, where LM ≪ ξ (i.e., x ≫ 1) (but
LM should be large enough to ensure that λM/LM enters
the scaling regime), λM/LM decays nearly linearly with
increasing ln(LM ) (not shown here). This indicates that
f (x) = a1 ln(x) + a2, where a1 and a2 are constants. This
kind of asymptotic behavior was, in fact, noticed very early
by MacKinnon and Kramer [42]. On the other hand, they
also noted that when LM ≫ ξ (i.e., x ≪ 1), ξ ≈ λM and the
scaling function should behave as f (x) ∼ x. A natural choice
for the scaling function which meets these two conditions
simultaneously is thus f (x) = ln(1 + kx)/k, or equivalently,

λM

LM

=
ln (1 + kξ/LM )

k
, (13)

where k is a constant which needs to be determined numeri-
cally. Before testing this function against our data, we point out
that finding a parametrized analytical expression for the scaling
function is not in sharp contrast with previous works. On the
one hand, it is conventional to assume an analytical form for the
scaling function when studying Anderson localization in 3D
systems [50,51], and following this approach, different func-
tions have been tested for simulation data for graphene flakes
[23]. On the other hand, it has been assumed that in the limit of
x ≪ 1 the scaling function takes a parametrized form [24,42],

f (x) = x − bx2 + O(x3), (14)

where b is a fitting parameter. It is clear that Eq. (13) automati-
cally results in this kind of asymptotic behavior when b = k/2.

We have fitted the data of Fig. 1 against Eq. (13), treating

the 2D localization lengths ξ (E,W ) for every E and W as

independent fitting parameters. The results are shown in Fig. 2.

We have only used the data for the three systems having the

largest localization lengths in each of the Figs. 1(a)–1(d), since

data for relatively narrow systems apparently do not follow

any scaling curve. Nevertheless, our data already spread over

a broader range of system widths compared to previous works

[24,40]. Accidentally or not, we estimate that the value of the

parameter k in Eq. (13) is very close to π . As can be seen from

Fig. 2, all the data points project well onto the scaling curve,

except for the CNP in the two weakly disordered (W = 1.4t)

systems. The reason why the CNP experiences the largest

finite-size effect will be discussed later. The scaling function,

Eq. (13) with k = π , also gives an excellent description for

the data in Refs. [24,52], as well as for the data for a square

lattice with uncorrelated Anderson disorder, as shown in the

Appendix, and for the data for graphene with vacancy-type

disorder, as discussed in Sec. IV C. While the simulation data

agree well with the proposed scaling function, in the next

section we further explore its connection to another widely

used method of computing the 2D localization length.

C. Comparing two methods of computing

the 2D localization length

According to the scaling theory of Anderson localization

[53–56], ξ can also be estimated exclusively based on the

diffusive transport properties [44]:

ξ (E) = 2le(E) exp

[

πσsc(E)

G0

]

. (15)

It is thus important to ask whether this expression is consistent

with the scaling approach based on the Q1D localization

length. To answer this question, we first calculate the diffusive

transport properties for systems with W = 1.4t and 2.0t .

The results are shown in Fig. 3. Note that the results are

not sensitive to the edge type or boundary conditions, since

the relevant transport length scale, the mean free path le, is

relatively small (compared to ξ ), and we can use a sufficiently

large simulation cell size to eliminate any finite-size effects

affecting the diffusive transport properties. An examination

of Fig. 3 reveals why the CNP behaves very differently from

other states regarding the localization properties. At the CNP,

the density of states is vanishingly small but the semiclassical

conductivity and the group velocity are of the same order

as for other states. This results in a very large le at the

CNP, as has also been found by Lherbier et al. [32]. With

a disorder strength of W = 1.4t , le ≈ 200a at the CNP, which

is comparable to the simulation widths used for calculating the

Q1D localization lengths. One cannot expect that the scaling

function applies when LM ∼ le, because le sets up a lower limit

of the scaling behavior [42]. More quantitatively, LM should

be at least several times larger than le to make the scaling

function fully applicable. However, with decreasing disorder

strength, le for the CNP diverges and it becomes formidable to

reach the scaling regime computationally.
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FIG. 2. (Color online) One-parameter scaling of localization length. The localization length divided by the width, λM/LM , is plotted as a

function of ξ/LM , where ξ is the 2D localization length obtained by fitting the data against the scaling curve. All the data from Fig. 1 with the

last three largest M in each subfigure are considered. Abnormal data for the CNP in systems with weak disorder (W = 1.4t) are emphasized.

Due to the symmetry of the band structure, data with E < 0 from Fig. 1 are omitted. The solid line represents the scaling function given by

Eq. (13) with k = π and the dashed line represents the identity function f (x) = x. The error bars correspond to the error estimates of λM

indicated in Fig. 1.

Figure 4 compares the localization lengths calculated by

Eq. (13) (with k = π ) and Eq. (15). We can see that the 2D

localization lengths are much larger than the Q1D values,

making a direct computation nearly impossible. They also

depend sensitively on the disorder strength, with the values for

W = 1.4t being several orders of magnitude larger than those

for W = 2.0t . With a given disorder strength, the values of

ξ obtained using Eq. (13) with different boundary conditions

and edge types are very close to each other, only exhibiting

some discrepancies around the CNP, which, as have been noted

before, should be originated from the finite-size effect. It can

be seen that the two methods for computing ξ agree well with

each other. Lee et al. [24] also compared these two methods,

but in contrast to our results, observed that Eq. (15) results

in a significant underestimation. Our interpretation is that

their method of computing σsc is based on the semiclassical

self-consistent Born approximation, which may be not as

accurate as the fully quantum mechanical RSKG method.

The fact that Eqs. (13) and (15) give consistent results

for ξ can be understood in the following way. We know that

in the Q1D limit, the localization length and the mean free

path are related by the Thouless relation [57–60] (for the

orthogonal universality class, which is the case for graphene

with intervalley scattering) [44],

λM (E) ≈ Nc(E)le(E), (16)

where Nc(E) is the number of transport channels. In other

words, Nc(E) equals the “hypothetical” ballistic conductance

as given by Eq. (10) divided by the conductance quantum

G0 ≡ 2e2/h:

Nc(E) ≡
g(E)

G0

=
LMe2ρ(E)v(E)

2G0

. (17)

By “hypothetical”, we mean that g(E) is the conductance of the

disordered system in the zero length limit, where no scattering

starts to play a role. By combining the above two equations

and using the relation between σsc(E) and le(E) in Eq. (8),

we arrive at the following modified version of the Thouless

relation:

λM (E) =
LMσsc(E)

G0

. (18)

In the Q1D limit, the scaling function given by Eq. (13) (with

a = π ) can be written as λM (E)/LM = ln [πξ (E)/LM ] /π ,

which, combined with the above Thouless relation, gives

ξ (E) =
LM

π
exp

[

πσsc(E)

G0

]

. (19)

Choosing LM = 2πle(E) gives exactly Eq. (15). This heuristic

derivation is consistent with the intuition that the scaling

regime starts from a width several times larger than the mean

free path.
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FIG. 3. (Color online) (a) Density of states, (b) semiclassical

conductivity, (c) group velocity (v0 = 3at/2�), and (d) mean free

path as functions of energy. The solid and dashed lines represent the

results for W = 1.4t and W = 2.0t , respectively. Sufficiently large

simulation cell sizes are used to eliminate the finite-size effects.

D. One-parameter scaling of conductivity

The one-parameter scaling of localization length is, in fact,

intimately connected [42] to the one-parameter scaling of

conductivity. Equation (15) has been derived from the scaling

behavior of the 2D conductivity in the weak-localization

regime, where the conductivity σ (E,L) decays logarithmically

with increasing L:

σ (E,L) = σsc(E) −
G0

π
ln

[

L

l0(E)

]

. (20)

−3 −2 −1 0 1 2 3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

E (t)

ξ 
(a

)

ZGNRs, W = 1.4

AGNRs, W = 1.4

ZGNRs, W = 2.0

ACNTs, W = 2.0

FIG. 4. (Color online) Two-dimensional localization lengths as a

function of energy. The markers are obtained by fitting the Q1D data

(the same as used in Fig. 2) against Eq. (13), with the specific types of

the system indicated by the legends. The lines are obtained by using

Eq. (15), using the diffusive transport properties shown in Fig. 3.
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FIG. 5. (Color online) Conductivity for 2D graphene with

W = 2.0t . (a) Conductivity as a function of the propagating length

of electrons for different simulation sizes Nx ∗ Ny (markers). The

prediction from the weak-localization formula given by Eq. (20)

is also shown (line). The energy considered here is E = 1.8t . (b)

Conductivity as a function of the reduced length L/ξ for a set of

energy points. The 2D localization length ξ is taken to be the average

over the results obtained shown in Fig. 4. The inset in (b) shows

the renormalization group β function (solid line) calculated by using

Eq. (21) after fitting σ as a smooth function of L/ξ . The dashed line

in the inset represents β = ln(σ/G0). Periodic boundary conditions

are applied in both the transport and the transverse directions. The

transport direction is taken to be along the zigzag edge; taking the

transport direction to be along the armchair edge yields similar results.

Here l0(E) is a length scale, conventionally set to le(E).

Assuming that L reaches ξ (E) when the weak-localization

correction becomes comparable to σsc(E) gives Eq. (15)

apart from a factor of 2 resulting from the use of different

conventions [44].

The validity of the weak-localization formula, Eq. (20),

can also be confirmed numerically. Figure 5(a) shows the

calculated conductivity as a function of the propagating length,

as defined by Eq. (9), for the state with E = 1.8t and W = 2.0t .

The calculated conductivities are ensemble averaged over
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several disorder realizations and the tracing operation in Eq. (7)

has been approximated using several random vectors, resulting

in relatively smooth curves. Due to the large localization length

in 2D, significant finite-size effects arise when calculating

the conductivity in the localized regime. When the simulation

size Nx×Ny increases from 1000×1000 to 4000×4000, the

calculated data get closer to the line predicted by Eq. (20),

with l0(E) being set to the “diffusion length” ldiff (which is

generally larger than the mean free path) beyond which the

conductivity starts to decay. ldiff is defined as the length at

which the running conductivity reaches its maximum value

[33,34]. Although periodic boundary conditions are applied in

both the transport and the transverse directions, we see that a

simulation size of 1000×1000 is not large enough to eliminate

the finite-size effect, resulting in an artificial fast decay of

conductivity when L > 1000a.

The transition from the weak to the strong localization

regime is smooth and universal. Figure 5(b) shows the con-

ductivity as a function of the propagating length normalized

by the 2D localization length. The data for different energy

states project onto a single curve, which agrees with the

scaling theory of localization. This indicates the existence of

a universal renormalization group β function,

β =
d ln(σ/G0)

d ln(L/ξ )
, (21)

as shown in the inset of Fig. 5(b). The scaling function

behaves as β ∼ ln (σ/G0) when σ ≪ G0, which is consistent

with the exponential decay of conductivity in the strongly

localized regime. Similar results have been obtained [61] for

hydrogenated graphene using the Landauer-Büttiker approach.

One may note that different renormalization group β functions,

either with [15] or without [16] an unstable fixed point, have

been obtained for graphene with long-range disorder. While

the positive sign of the β functions (in the large conductivity

limit) in the previous works signifies antilocalization in the

absence of intervalley scattering, the negative sign of the β

function in our work is associated with localization caused by

intervalley scattering.

IV. GRAPHENE WITH VACANCY DISORDER

Although the Anderson disorder model is of general

theoretical interest, more realistic short-range scatterers in

graphene are atomically sharp defects, such as vacancies and

adatoms, which are believed to cause intervalley scattering and

Anderson localization around the CNP in irradiated graphene

[62] and hydrogenated graphene [63]. Here we focus on the

vacancy-type disorder, which also approximates the effect of

hydrogen adatoms [64].

A. Finite-size effect resulting from the finiteness

of the simulation length

Before presenting the results for graphene with vacancy

defects, we first discuss the finite-size effect for the calculation

of the Q1D localization length using the RSKG method.

This finite-size effect is different from that which causes

the deviations of the data for the CNP from the scaling

function in Fig. 2. It is a finite-size effect caused by the
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FIG. 6. (Color online) Demonstration of the finite-size effect for

the calculation of the Q1D localization length using the RSKG

method. The Q1D localization length is plotted as a function

of energy. The systems correspond to graphene (in the ACNTs

geometry) with 1% vacancies. The width of the systems corresponds

to a value of M = Ny = 512 (which gives LM = 768a) and the

simulation lengths are indicated by the Nx (corresponding to a

simulation cell length of
√

3Nxa/2) values in the legend. Error bars

are omitted, since their magnitudes are comparable to the marker size.

use of a finite simulation length in practical calculations. In

the RSKG method, the propagating length L(E,τ ), defined

by Eq. (9), serves as a measure of the actual length of the

physical system at a specific correlation time. In contrast, the

simulation cell length, which is proportional to Nx (or Ny ,

depending on the transport direction) has no direct connection

to L(E,τ ). Usually, periodic boundary conditions are applied

along the transport direction to alleviate the finite-size effect

caused by the finiteness of Nx . Whether or not a given Nx

is large enough to eliminate the finite-size effect depends

on the involved transport length scales. Figure 6 shows the

finite-size effect when calculating the Q1D localization lengths

for ACNTs of width LM = 768a with 1% vacancies. As the

simulation cell length increases from Nx = 103 to Nx = 104,

the calculated Q1D localization lengths converge, which

reflects the alleviation of the finite-size effect by increasing the

simulation cell length. It is clear to see that states with larger

saturated localization lengths require larger simulation cell

lengths to eliminate the finite-size effect. More quantitatively,

to completely eliminate the finite-size effect, the simulation

cell length should be a few times larger than the maximum

localization length for a given simulated system. In this paper,

we have used as large as possible simulation cell lengths, and

the finite-size effects resulting from the finiteness of Nx have

been practically eliminated.

B. One-parameter scaling of localization length

We have calculated the localization lengths for Q1D

graphene systems in the ACNT geometry with M = 128, 256,

and 512 with the vacancy concentration fixed to n = 1%. The

results are shown in the inset of Fig. 7. The main frame of

Fig. 7 shows that the scaling function given by Eq. (13),

with k ≈ π , also applies here. A striking difference between

vacancy disorder and Anderson disorder is that the Van Hove
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FIG. 7. (Color online) One-parameter scaling of localization

length for graphene with 1% vacancy disorder. The localization length

divided by the width, λM/LM , is plotted as a function of ξ/LM , where

ξ is the 2D localization length obtained by fitting the data in the inset

against the scaling function. The solid line represents the scaling

function given by Eq. (13) with k = π and the dashed line represents

the identity function f (x) = x. The inset shows the Q1D localization

lengths as a function of energy. The transport direction is along the

zigzag edge and periodic boundary conditions are applied along the

transverse direction for the Q1D systems. The Q1D systems have a

fixed vacancy concentration of 1%.

singularities at E = ±t are much more strongly affected

by Anderson disorder (manifested in the local minimum of

the mean free path at E = ±t in Fig. 3), while vacancies

mostly affect low-energy charge carriers around the CNP.

This is because vacancies serve as high potential barriers

which result in large scattering cross sections and small mean

free paths for low-energy charge carriers [60]. In contrast,

high-energy charge carriers experience small scattering cross

sections and have large mean free paths, which, combined

with higher densities of states (larger number of transport

channels), gives rise to large Q1D localization lengths ac-

cording to the Thouless relation. For the selected defect

concentration, our numerical calculations are only able to

explore a small energy range |E| � 0.5 eV around the CNP.

Within this energy range, all the data agree well with Eq. (13),

and the corresponding 2D localization length can thus be

extracted.

C. Connecting diffusive and localized transport regimes

As in the case of graphene with Anderson disorder, one may

ask whether the 2D localization lengths obtained by fitting the

Q1D data against Eq. (13) are consistent with those obtained

by using Eq. (15). It turns out that there is some ambiguity in

the calculation of the semiclassical conductivity at the CNP, as

shown in Fig. 8(a), where the running conductivity obtained

by using Eq. (5) is compared with that obtained by substituting

the time derivative in Eq. (5) with a time division. The latter

may be well described by a power-law length dependence in

an appropriate regime [26,27] and is thus associated with an

infinite localization length, as suggested in the previous works.

However, the correct derivative-based definition of σ does

not support the power-law length dependence. The calculated

σ (L) develops more than one peak, which may just reflect
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FIG. 8. (Color online) Conductivity as a function of propagating

length in (a) the ballistic-to-diffusive transition regime and (b) the

localized regime. “derivative” in the legend means that the data

are obtained by using the derivative-based definition of the running

conductivity, as given by Eq. (5), while “division” means that the data

are obtained by substituting the time derivative with a time division.

The markers and lines in (b) represent raw data and exponential

fits using σ (L) ∼ exp(−2L/ξ ), respectively. The simulated system

corresponds to 2D graphene (using a sufficiently large simulation cell

size) with a vacancy concentration of 1%.

the radial distribution profile of the local density of states,

which has large magnitude in the vicinity of the vacancies [65].

In the RSKG method, as the wave packets (associated with

individual sites) propagate, they can “feel” a large local density

of states associated with the conductivity peak before reaching

the diffusive regime. Unfortunately, there does not seem to be

any completely unambiguous method in the RSKG formalism

for determining a diffusive regime where a well-defined value

of σsc(E) can be extracted. When moving away from the CNP,

the effect of the local density of states diminishes, and there

is no such local peaks of conductivity, as shown by the results

for E = 0.1 eV in Fig. 8(a).

The large local density of states at the CNP affects the

conductivity significantly only in the ballistic-to-diffusive

regime. In the strongly localized regime, we expect that the

conductivity decays exponentially with increasing length. This

is confirmed by the results shown in Fig. 8(b). Here the

simulation data can be well described by the exponential fitting

[44]: σ (L) ∼ exp(−2L/ξ ). Even the conductivity at the CNP

obtained by approximating the time derivative with a time

division follows the exponential law in the strongly localized

regime, although this approximation results in a much larger

value of conductivity at a given length.
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FIG. 9. (Color online) 2D Localization length as a function of

energy obtained by using Eq. (15) (dashed line) and Eq. (13) (solid

line). When using Eq. (15), a sufficiently large simulation cell size

is used to obtain the diffusive transport properties. When using

Eq. (13), Q1D localization length data from the inset of Fig. 7 are

used. The diamond and circle correspond to the results obtained by

the exponential fitting as shown in Fig. 8(b) for the CNP (using

the derivative-based definition for the running conductivity) and

E = 0.1 eV, respectively. The studied system corresponds to 2D

graphene with a vacancy concentration of 1%.

Figure 9 shows the 2D localization lengths calculated by

Eqs. (15) and (13), along with those for E = 0 and 0.1 eV

extracted using the exponential fitting. Here the semiclassical

conductivity is taken to be the maximum of the running

conductivity when applying Eq. (15). The agreement between

Eqs. (15) and (13) is good only at higher energies. At the CNP,

the prediction of Eq. (15) is far too large compared to that

given by Eq. (13). In contrast, the exponential fitting gives rise

to results consistent with Eq. (13). We thus conclude that the

discrepancy between Eqs. (15) and (13) is largely resulted

from the ambiguity in the calculation of the semiclassical

conductivity.

D. Effects of energy resolution and vacancy concentration

Due to the large density of states around the CNP, one may

expect that the energy resolution δE used in the numerical

calculations would affect the results. To see how the energy

resolution affects the results, we first calculate the density

of states and running conductivity for graphene with 1%

vacancy defects using different values of Nm, the number

of Chebyshev moments in the kernel polynomial method.

Although there may be no exact relationship between δE and

Nm, it is generally believed [47] that δE ∝ 1/Nm. Therefore,

one can increase the energy resolution, i.e., decrease δE, by

increasing Nm.

Figure 10 presents the results for the density of states ρ(E)

and the maximum conductivity σmax(E) (over the correlation

time), the latter being conventionally taken as the definition of

σsc(E) in the RSKG method. It can be seen that with increasing

energy resolution, both ρ(E) and σmax(E) develop increasingly

high values at the CNP. In contrast, the results for the other

energy points do not depend on the energy resolution. Inter-

estingly, σmax(E = 0) is proportional to ρ(E = 0), as shown

in Fig. 10(c). Then, one may ask if the length dependence

of the conductivity at the CNP also depends crucially on the

energy resolution. To answer this question, we have plotted the

running conductivity as a function of the propagating length L

at the CNP, obtained by using different energy resolutions, in

Fig. 11(a). It can be seen that when L < 30a, i.e., roughly in

the ballistic-to-diffusive regime, the results depend strongly on

the energy resolution. Outside this regime, the dependence dis-

appears with increasing Nm, with the results being converged

when Nm > 10 000. Moreover, it can be seen that the energy

resolution does not affect the obtained localization length.

Figure 11(b) shows the running conductivity at E = 0.2 eV,

also obtained using different energy resolutions. The energy

resolution does not seem to significantly affect the results at

any length scale away from the CNP.

So far, we have only considered a relatively large vacancy

concentration of n = 1%. We now study how the defect

concentration affects the scaling of conductivity at the CNP,

by additionally considering systems with lower vacancy con-

centrations: n = 0.1% and n = 0.01%. The results are shown

in Fig. 12. In the main frame, we have plotted the running

conductivity as a function of the normalized propagating

length L/L0, where L0 is the average distance between an atom

and its nearest vacancy. From simple geometric considerations,
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FIG. 10. (Color online) (a) Density of states and (b) maximum conductivity (over correlation time) as a function of energy for 2D graphene

with 1% vacancy defects calculated by using different energy resolutions corresponding to different numbers of Chebyshev moments (Nm) used

in the kernel polynomial method. The dashed line in (b) indicates the “minimum conductivity” σmin = 4e2/(πh). (c) Maximum conductivity

at the CNP as a function of the density of states ρ at the CNP. The line in (c) represents the linear dependence σmax = 44ρ. To achieve high

statistical accuracy, Nr = 50 random vectors were used for each energy resolution.
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propagating length for (a) the CNP and (b) E = 0.2 eV in 2D

graphene with 1% vacancy defects calculated by using different

energy resolutions corresponding to different numbers of Chebyshev

moments (Nm) used in the kernel polynomial method. To achieve

high statistical accuracy, Nr = 50 random vectors are used for each

energy resolution.

0 1 2 4 6 8 10 12 14
10

−1

10
0

10
1

L/L
0

σ
 (

e
2
/h

)

n = 1%

n = 0.1%

n = 0.01%

50 100
0

0.5

1

n (L/a)
2

σ
 (

e
2
/h

)

FIG. 12. (Color online) Running conductivity at the CNP as a

function of the normalized propagating length L/L0 in graphene with

vacancy defects, where L0 is the average distance between an atom

and its nearest vacancy. The inset shows the running conductivity

as a function of n(L/a)2 in the scaling regime, where n is the

vacancy concentration, as indicated in the legend. For all the vacancy

concentrations, the number of Chebyshev moments and the number

of random vectors are chosen to be Nm = 10 000 and Nr = 50,

respectively.

one can find that

L0 =
1

4

√

3
√

3

n
a, (22)

which can also be confirmed by numerical calculations. One

can make several observations based on Fig. 12.

(1) The maximum values σmax of the running conductivity

are different for different vacancy concentrations n; a higher n

gives a higher σmax. This indicates that the peak of the running

conductivity is related to the local density of states around the

vacancies.

(2) For all the considered vacancy concentrations, the

running conductivity takes its maximum at L = L0 (L/L0 = 1

in Fig. 12). This further supports our suggestion that the peak of

the running conductivity is directly related to the local density

of states around the vacancies, since L0 is also the distance at

which the radial distribution function of the local density of

states attains its peak value.

(3) Beyond the ballistic-to-diffusive regime, i.e., when

σ < e2/h, the running conductivities for different vacancy

concentrations are well correlated and decay exponentially

with increasing length. This is strong evidence for the

validity of the one-parameter scaling. Since L0 ∝ n−1/2, the

running conductivities are also correlated when plotted as

a function of n(L/a)2, as shown in the inset of Fig. 12.

Our results are qualitatively different from those by Ostro-

vsky et al. [25]. Using a different numerical method, they

found that the running conductivity saturates to a constant

on the order of σmin with increasing n(L/a)2, without

localization even up to n(L/a)2 = 300. We are not sure

about the origin of the different results, but we note that

Ostrovsky et al. have remarked that [25] the systems will

eventually enter the localized regime with increasing vacancy

concentration.

(4) Based on the correlation in the main panel of Fig. 12,

we can infer that the localization length is proportional to

L0, which is, in turn, proportional to the average distance

between the vacancies. Based on the analysis of the effective

cross sections [60], we know that the mean free path is also

proportional to L0. Therefore, the (2D) localization length

at the CNP is directly proportional to the mean free path,

indicating [according to Eq. (15)] that σsc at the CNP does not

depend on the vacancy concentration. Taking the mean free

path as L0, we estimate that σsc ≈ e2/h at the CNP. Using this

value for σsc, the discrepancy between Eqs. (15) and (13) at

the CNP disappears.

Although the CNP has a very large density of states

coming from the resonant states (midgap states), it is the most

localized state, exhibiting the smallest localization length.

The state at the CNP is a quasilocalized state [65] and also

exhibits a peak value of the inverse participation ratio [66].

Therefore, Anderson localization can be observed around the

CNP, manifesting itself as conductivities smaller than the

minimum conductivity σmin = 2G0/π of pristine graphene.

However, when moving away from the CNP, the localization

length increases quickly, even up to values much larger than

realistic sample sizes or coherence lengths. For a fixed sample

size, the localization effect is only significant around the

CNP and disappears rapidly with increasing energy (or carrier
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concentration), which may result in an effective mobility edge

and metal-insulator transition.

V. CONCLUSIONS

In summary, we have presented a systematic numerical

study of Anderson localization in graphene with short-range

disorder, using the RSKG formalism and simulating uncor-

related Anderson disorder and vacancy defects. For graphene

with Anderson disorder, the localization lengths for various

Q1D systems with different widths LM , disorder strengths,

energies, edge types, and boundary conditions were calculated,

and results for smaller systems were checked against the

standard TMM with good agreement. We have found that the

localization lengths λM can be well described by a simple

scaling function, λM/LM = ln(1 + kξ/LM )/k, with k being

close or equal to π . Deviations from this scaling law occur due

to finite-size effects, which manifest themselves when LM is

comparable to or even smaller than the mean free path le. The

2D localization lengths ξ obtained using this scaling function

are found to be consistent with the approximation based on

diffusive transport properties: ξ = 2le exp[πσsc/G0], where

σsc is the semiclassical conductivity and G0 = 2e2/h is the

conductance quantum. By calculating the 2D conductivity in

the weak and strong localized regimes, with the finite-size

effects identified and eliminated by using sufficiently large

simulation domain size, we also obtained a universal renor-

malization group β function for 2D conductivity. For graphene

with vacancy disorder, we have demonstrated another finite-

size effect in the RSKG method, which occurs when the

simulation cell length is not sufficiently large compared with

λM . Surprisingly, the same scaling function proposed based

on the results for Anderson disorder also applies to graphene

with vacancy defects. The CNP in graphene with vacancy

defects, however, exhibits an abnormally large peak value for

the running conductivity in the ballistic-to-diffusive regime.

We have suggested that this abnormal behavior may be resulted

form the local density of states caused by the resonant states

located around the vacancy sites and presented evidence that

the CNP is exponentially localized. Our work thus suggests

that the localization behavior of graphene with short-range

disorder is to a large extent similar to conventional 2D systems

(such as the square lattice studied in the Appendix).
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APPENDIX: SQUARE LATTICE

WITH ANDERSON DISORDER

In this appendix, we show that the scaling function in

Eq. (13) with k = π also applies to a square lattice with

uncorrelated Anderson disorder, i.e., random on-site potentials
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FIG. 13. (Color online) Q1D Localization length as a function

of energy for square lattices with W = 3t (a) and W = 5t (b). The

diamonds, squares, circles, upward triangles, and downward triangles

correspond to M = 32, 64, 128, 256, and 512, respectively. Free

boundary conditions are applied along the transverse direction for

the Q1D systems. Error bars are comparable to the marker sizes and

thus omitted.

uniformly distributed in an interval of [−W/2,W/2]. To this

end, we first calculate the Q1D localization lengths using

Eq. (11). Figures 13(a) and 13(b) show the results for W = 3t

and W = 5t , respectively. As can be seen from Fig. 14, all the

data with 32 � M � 512 are correlated by the scaling function
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FIG. 14. (Color online) One-parameter scaling of localization

length for square lattices with W = 3t and W = 5t . The localization

length divided by the width, λM/LM , is plotted as a function of ξ/LM ,

where ξ is the 2D localization length obtained by fitting the data in

Fig. 13 against the scaling function. The solid line represents the

scaling function given by Eq. (13) with k = π and the dashed line

represents the identity function f (x) = x. Note that LM = Ma for

square lattice, where a is the lattice constant. The inset shows the 2D

localization length as a function of energy for W = 3t (dashed line)

and W = 5t (solid line), with the triangle and diamond denoting the

corresponding results for E = 0 by Schreiber and Ottomeier [40].
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very well, without any abnormal behavior resulting from the

finite-size effect. Even the maximum mean free path for the

square lattice with the weaker disorder strength, W = 3t , is

less than 10a, which is well below the smallest value of M

considered. Therefore, all the data are in the scaling regime

and follow the scaling curve. The obtained 2D localization

lengths are shown in the inset, from which we see that the

results for the band center are consistent with previous results

by Schreiber and Ottomeier [40]. The results for other points

away from the band center with W = 5t are also consistent

with those by Zdetsis et al. [67], exhibiting maximum values

of ξ around E = ±2t .
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