
PHYSICAL REVIEW A 83, 033813 (2011)

Anderson localization of light near boundaries of disordered photonic lattices
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We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional
photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and
corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We
find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength
of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.
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I. INTRODUCTION

Anderson localization has gained renewed interest due to
the evident potential for the realization of localization of
optical waves in random media [1]. It has become a central
part of recent investigations of discrete, photonic, band-gap
lattices with nonperiodic, i.e., random, structures. Owing to the
analogy of these photonic systems to solid-state systems, and
thanks to the fact that longitudinally invariant disorder is more
easily realized in lattices, experimental activities in Anderson
localization of light have recently taken a new turn [2,3].
Similar observations of Anderson localization have been made
in other fields, for example in Bose-Einstein condensates [4].
These experiments motivated numerous theoretical studies, in-
cluding the analysis of wave spreading in nonlinear disordered
systems [5] and Anderson localization, and lasing in photonic
crystals [6]. The concept of Anderson localization of light was
introduced some time ago [7], but recently it has been extended
to include the dynamical localization of mutually incoherent
counterpropagating beams, in which time-dependent effects
can take place [8].

Since wave localization in random structures relies on
fluctuations imposed on an otherwise periodic structure, the
truncation of the lattice yields an additional distortion in the
periodicity and induces the formation of localized surface
states. One would expect that the presence of boundaries in
random lattices would enhance the localization. However,
a recent experimental study of the light localization near
the edge of a truncated one-dimensional (1D) photonic
lattice revealed that boundaries can suppress the localization
effects [9].

To extend on the ideas of that work, we analyze here the
effect of boundaries on the transverse Anderson localization
of light in 2D photonic lattices of finite size; specifically
near the lattice edges and corners. We assume that the lattice
is optically induced in a nonlinear medium with saturable,
photorefractive nonlinearity, in which strength is monitored by
a single coupling parameter. A systematic quantitative study
of dependence on the degree of disorder is presented here
and, in addition, we focus on the photorefractive nonlinearity,
where these effects have not yet been discussed. We reveal

that the character of localization near the boundaries is in
fact nontrivial, depending on both the strength of disorder
and on the geometry of the surface. While one might
expect that a surface, representing a major defect in the
lattice akin to a defect or domain wall, should advance
localization, this actually is not so. Both corners and edges
effectively suppress Anderson localization, so that stronger
disorder is needed near the boundaries to obtain the same
localization effect as in the bulk. This surprising result is
nonetheless consistent with the experimental observations
reported earlier for one-dimensional lattices [9]. We further
observe that the suppression is more pronounced at the
corners, relative to the edges. However, depending on the
nonlinear-medium characteristics, we discover that this is not
always so: In Kerr-like media at lower levels of disorder,
suppression is more pronounced at the edges than at the
corners.

This paper is organized as follows. In Sec. II we introduce
our model, which describes the propagation of light in a
saturable nonlinear medium with an induced (regular or
randomized) periodic potential. Section III summarizes our
main results, and we discuss a number of effects depending on
the variation of the lattice and nonlinearity parameters. Finally,
Sec. IV concludes the paper.

II. MODELING DISORDER

We study localization of light in optically induced photonic
lattices and describe the propagation of an optical beam along
the z axis using the effective nonlinear Schrödinger equation
for the electric-field amplitude F [10],

i
∂F

∂z
= −�F − �F

|F |2 + V

1 + |F |2 + V
, (1)

where � is the transverse Laplacian, � is the dimensionless
coupling constant, and V is the transverse lattice potential.
Nonlinearity is assumed to be of a saturable type, allowing an
easy extrapolation to the Kerr regime, or to the regime of a
strong lattice. A scaling, x/x0 → x, y/x0 → y, z/LD → z, is
utilized for the dimensionless equation, where x0 is the typical
full width at half maximum (FWHM) beam waist and LD
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is the diffraction length. Intensities are given in units of the
background light intensity. The propagation equation is solved
numerically by employing a numerical approach developed
earlier [11,12].

To study Anderson localization effects, we introduce disor-
der by using random potential Vd and choosing V = Vp + rVd ,
where Vp is the perfect periodic potential describing a square
lattice, and r (0 < r < 1) is a deterministic real parameter
that controls the degree of disorder in the lattice. Random
potential is generated by multiplying Vp at each (x,y) point by
a pseudo-random-number of uniform distribution; this ensures
that Vd is not varied along the propagation direction. In this
manner, one is actually dealing with the transverse Anderson
localization [2,7]. We keep the input peak amplitude of the
random potential Vd0 equal to the input peak amplitude of the
periodic potential Vp0, so that the strength of disorder relative
to the periodic potential is controlled by a single parameter r .
The degree of disorder is increased by increasing parameter
r . Multiplying Vp by a pseudo-random-number is one way to
introduce disorder; the other way is to randomize the distances
between the lattice sites. The most general way is to combine
both.

In simulations, we use experimental data for optically
induced photonic lattices generated experimentally [13]:
10-mm-long Ce:SBN crystal and lattice spacing d = 23 µm.
However, we vary the coupling constant � and the input
beam intensities. We stress the fact that our findings apply to
experimentally accessible systems. We use a square photonic
lattice, but expect similar conclusions to hold for a hexagonal
lattice (Ref. [2]) as well. The only difference would be the
possibility of having two different corner geometries in the
hexagonal lattice: at 60◦ and at 120◦. For this case, we
expect that a stronger disorder is needed for the “corner 60”
geometry to obtain the same localization as for the “corner
120” geometry.

III. LOCALIZATION IN BULK, AT CORNERS,
AND NEAR EDGES

A. General

We investigate localization effects near the edge and in
the corner of a disordered, optically induced photonic lattice,
and compare them with the localization in bulk lattice. By
increasing the level of disorder, we observe the effect of
Anderson localization, with the typical results summarized
in Figs. 1(d)–1(f) for 60% of disorder (r = 0.6). For compar-
ison, the corresponding cases without disorder are shown in
Figs. 1(a)–1(c).

For quantitative analysis, we utilize the standard quantities
used in the description of Anderson localization: the inverse
participation ratio,

P =
∫

I 2(x,y,L)dxdy

{∫
I (x,y,L)dxdy

}−2

, (2)

and the effective beamwidth ωeff = P −1/2 [2]. Since Anderson
localization is essentially a statistical phenomenon, many
realizations of disorder are needed to measure ensemble
averages for the quantities of interest. Here, different disorder
realizations are realized by starting each simulation with

FIG. 1. (Color online) Anderson localization in a square photonic
lattice. Localized modes are shown in (a)–(c) for no disorder, and in
(d)–(f) for 60% disorder: (a,d) near the edge, (b,e) in the corner, and
(c,f) in the bulk. Input beams are centered on the lattice site. The
layout of lattice beams is shown in the first column by open circles.
Physical parameters are � = 7, input beam intensity |F0|2 = 0.1,
Vp0 = Vd0 = 1, and input beam FWHM = 5d .

different seeds for a random-number generator. Even though
different realizations lead to different transverse distributions
of the probe beams, the measured values of P and ωeff stay
close to each other, as displayed by the error bars in Fig. 2 and
Fig. 4.

The other quantity of interest for the description of
Anderson localization is the localization length ξ . We find
localization length by fitting the averaged intensity profile to
an exponentially decaying profile I ∼ exp(−2|r|/ξ ). In our
system, the localization length is given by ξ = l∗exp(k⊥l∗/2),
where l∗ is the mean free path and k⊥ = 2π/ω0 is the
transverse wave number, while ω0 is the input beam FWHM.
Here ω0 = 115 µm. We find that the localization length for
the edge localization with 60% disorder level equals ξ =
15.4 µm, so that the mean free path is calculated
to be 11.3µm.

B. Kerr vs saturable medium

It is of interest to consider the localization effects in
different limits of the model. This is accomplished by varying
the input peak amplitude of the lattice potential. Figure 2
presents the averaged effective width at the lattice output
as a function of the disorder level for three different values
of the lattice potential. The first case is for a weak lattice
potential, the second is for the lattice peak intensity equal to
the background intensity, and the third is for a stronger lattice
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FIG. 2. (Color online) Effective beamwidth at the lattice output
vs the disorder level for the edge, corner, and bulk modes. The widths
are normalized to the input values. Error bars depict the spread
in values coming from statistics. Insets in (a) and (c) display in
more detail the regions of low disorder and high effective widths.
(a) Weak potential Vp0 = Vd0 = 0.1, (b) Vp0 = Vd0 = 1, and
(c) strong potential Vp0 = Vd0 = 5. Other parameters are as in Fig. 1.

potential. All the cases are for three different locations in the
lattice. The averaged effective widths in Fig. 2 are taken over
50 realizations of disorder for each disorder level. Different
realizations mean different seeds for a given random-number
generator.

The effective beamwidth decreases as the level of disorder
is increased, displaying a similar tendency as in the experiment
[2]. It should be stressed that the effective beamwidth decreases
faster in the bulk lattice as compared to the boundary, as the
level of disorder is increased. Clearly, the beam propagation
in the corner displays the least localization, followed by the
beam at the edge. Interestingly, for lower disorders (up to about
50%) the localization in the corner is slightly more pronounced
than the localization at the edge. The effect is more noticeable

FIG. 3. (Color online) Influence of the crystal length on the
localization. Effective beamwidth vs the propagation distance is
shown for 60% disorder level. Other parameters are as in Fig. 1.

in the Kerr-like regime, when the input beam intensity and the
input lattice potential are small compared to the background
intensity [Fig. 2(a)]. As the lattice intensity is increased, the
effect is washed away [Fig. 2(c)]. The phenomenon is probably
due to the increased ability for light localization near the fixed
lattice imperfection at low levels of disorder. At higher levels
of disorder, this ability is diminished.

Figure 2(c) shows very interesting behavior in strong
lattices. Effective beamwidths cease decreasing uniformly
and develop minima in all the cases at disorder levels of
∼20%–40%; they then recover. There is another dip at ∼70%
for the corner and edge modes, but these modes in general
display little localization at very high levels of disorder, if at all.

FIG. 4. (Color online) Focusing vs defocusing localization.
(a) Effective beamwidth vs the disorder level. Focusing (dashed lines)
and defocusing (solid lines) cases are compared for different levels
of disorder. The corresponding localized modes are shown for 60%
disorder level (b) near the edge, (c) in the corner, and (d) in the bulk.
Parameters are as in Fig. 1, except for the negative � = −7.

033813-3
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FIG. 5. (Color online) Effective beamwidth vs the propagation
distance for different percentages of disorder. The four 3D intensity
plots show the corresponding edge modes at the lattice output.

C. Size effects

Next, we investigate the size effects—the influence of the
crystal length and the beam FWHM on the beam localization.
Again, we consider three different locations in the lattice.
Figure 3 presents the normalized effective beamwidth vs the
propagation distance. Localization is more pronounced for
longer propagation distances, i.e., for larger crystal lengths.
Also, increasing the strength of nonlinearity makes local-
ization more pronounced. These two parameters, coupling
constant and propagation distance, produce similar effects
on the localization. We also consider different input beam
FWHM (not shown). For all three cases, the localization is
more pronounced for broader beams.

D. Focusing vs defocusing case

We also look into the case with negative coupling constant
�, i.e., localization with defocusing nonlinearity. Figure 4(a)

FIG. 6. (Color online) Comparison between the linear and
nonlinear localization of the edge modes. Effective beamwidth is
shown vs the propagation distance for different coupling constants.
Other parameters are as in Fig. 1.

presents the normalized effective beamwidth as a function
of disorder, for both the focusing (dashed lines) and the
defocusing (solid lines) localization. It is noted that the
effective beamwidth decreases faster for the focusing case
as compared to the defocusing case, as the level of disorder
is increased. Typical localized modes for all three defocusing
cases are presented in Figs. 4(b), 4(c), and 4(d); these should
be compared with the corresponding modes in Fig. 1.

E. Edge localization

At the end, we concentrate on the localization near the
edges. We study first the effective beamwidth as a function of
the propagation distance (Fig. 5, middle panel) for different
levels of disorder. We observe that the beamwidth displays
self-focusing oscillations, which are less pronounced as the
level of disorder is increased. No initial diffusive broadening
is observed, since we are in the strongly nonlinear regime of
the saturable model. In the upper and lower rows of Fig. 5, we
show the edge modes at the lattice output as three-dimensional
intensity distributions for different levels of disorder. Strong
localization is evident. Still, a higher level of disorder is needed
to observe similar localization near the edge, as compared to
the bulk.

Finally, we analyze the effect of nonlinearity on the beam
localization for a fixed level of disorder (in the case shown,
60%). To compare with the linear propagation in a disordered
lattice, we reduce the nonlinearity by decreasing the coupling
constant � to 0.01. Figure 6 shows that the effective beamwidth
decreases faster as the nonlinearity strength is increased; this
tendency is expected. Similar results, consistent with the ones
reported in the earlier experiments [2,3], are obtained when
one moves into the Kerr regime; this is achieved by assuming
that the lattice and the beam intensities are small relative to
the background intensity [which is taken to be 1 in Eq. (1)].

IV. CONCLUSIONS

We have analyzed numerically how the edges and corners
of truncated two-dimensional photonic lattices modify the
phenomenon of Anderson localization of light. We have
demonstrated that the effect is nontrivial, and that it depends
on the strength of disorder and the characteristics of the
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nonlinearity model. For weak disorder, the presence of a
corner slightly enhances light localization relative to the edge,
due to the ability to better localize light near the lattice
imperfection. For strong disorder, both corners and edges
effectively suppress Anderson localization, so that a higher
level of disorder near the boundaries is required to obtain
similar localization as in the bulk; Anderson localization in
the corner is less effective than the localization at the edge.
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