Banff, 29 October 2013

Anderson's orthogonality catastrophe

Peter Müller

(LMU München)

joint with Martin Gebert, Heinrich Küttler, Peter Otte arXiv:1302.6124 and in preparation

(1) Historic background

Motivation: explanation of anomalies in X-ray absorption in metals

Volume 18, Number 24

PHYSICAL REVIEW LETTERS
12 Jtine 1967

INFRARED CATASTROPHE IN FERMI GASES WITHI LOCAL SCATTERING POTENTLALS
P. W. Anderson

Bell Telephone Laboratories, Murray Hill, New Jersey
(Receiverd 27 March Itsir)

Abstract

We prove that the ground state of a system of N fermions is orthogonal to the ground state in the presence of a finite range scattering phtential, as $N \rightarrow \infty$. This implies that the rosponse to application of auch a potential involves only emission of excitations into the continum, and that certain procosses in Гermi gases may be blocked by orthogonality in a low- γ, low-encrgy limit.

- ground-state overlap $\lesssim N^{\text {-const. }}$ in the macroscopic limit
- controverse discussion in the Physics literature in the 1970ies
- still of interest in Physics today
- no mathematical explanation

(2) Model and result

- Schrödinger operators on $L^{2}\left(\mathbb{R}^{d}\right)$

$$
H:=-\Delta+V_{0} \quad \text { and } \quad H^{\prime}:=H+V
$$

V_{0} Kato decomposable perturbation $0 \leq V \in L_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

- Finite-volume restrictions to box $\Lambda_{L}:=[-L, L]^{d}$ with Dirichlet b.c.

$$
H_{L}=\sum_{j \in \mathbb{N}} \lambda_{j}^{L}\left|\varphi_{j}^{L}\right\rangle\left\langle\varphi_{j}^{L}\right| \quad \text { and } \quad H_{L}^{\prime}=\sum_{j \in \mathbb{N}} \mu_{j}^{L}\left|\psi_{j}^{L}\right\rangle\left\langle\psi_{j}^{L}\right|
$$

- Non-interacting system of N spinless fermions on $\bigwedge_{j=1}^{N} L^{2}\left(\Lambda_{L}\right)$

$$
H_{L}^{(\prime)}:=\sum_{j=1}^{N} \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes H_{L}^{(1)} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}
$$

- Ground states

$$
\Phi_{N}^{L}:=\frac{1}{\sqrt{N!}} \varphi_{1}^{L} \wedge \cdots \wedge \varphi_{N}^{L} \quad \text { and } \quad \Psi_{N}^{L}:=\frac{1}{\sqrt{N!}} \psi_{1}^{L} \wedge \cdots \wedge \psi_{N}^{L}
$$

- Particle number to yield given Fermi energy $E \in \mathbb{R}$ in the mac. limit

$$
N \equiv N_{L}(E):=\#\left\{j \in \mathbb{N}: \lambda_{j}^{L} \leq E\right\}
$$

- Ground-state overlap

$$
\mathcal{S}_{L}(E):=\left\langle\Phi_{N_{L}(E)}^{L}, \Psi_{N_{L}(E)}^{L}\right\rangle=\operatorname{det}\left(\begin{array}{ccc}
\left\langle\varphi_{1}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{1}^{L}, \psi_{N_{L}(E)}^{L}\right\rangle \\
\vdots & & \vdots \\
\left\langle\varphi_{N_{L}(E),}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{N_{L}(E),}^{L} \psi_{N_{L}(E)}^{L}\right\rangle
\end{array}\right)
$$

Theorem A. [Gebert, Küttler, M. - to appear in CMP]

\forall sequence of lengths $\left(L_{n}\right)_{n \in \mathbb{N}}, L_{n} \uparrow \infty, \exists$ subsequence $\left(L_{n_{k}}\right)_{k \in \mathbb{N}}$ such that for Leb.-a.e. $E \in \mathbb{R}$

$$
\limsup _{k \rightarrow \infty} \frac{\ln \left|\mathcal{S}_{L_{n_{k}}}(E)\right|}{\ln L_{n_{k}}} \leq-\frac{v(E)}{2}
$$

with

$$
V(E):=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \operatorname{tr}\left(\sqrt{V} 1_{] E-\varepsilon, E]}\left(H_{a c}\right) V 1_{[E, E+\varepsilon[}\left(H_{a c}^{\prime}\right) \sqrt{V}\right) .
$$

Theorem A. [Gebert, Küttler, M. - to appear in CMP]

\forall sequence of lengths $\left(L_{n}\right)_{n \in \mathbb{N}}, L_{n} \uparrow \infty, \exists$ subsequence $\left(L_{n_{k}}\right)_{k \in \mathbb{N}}$ such that for Leb.-a.e. $E \in \mathbb{R}$

$$
\limsup _{k \rightarrow \infty} \frac{\ln \left|\mathcal{S}_{L_{n_{k}}}(E)\right|}{\ln L_{n_{k}}} \leq-\frac{v(E)}{2}
$$

with

$$
\gamma(E):=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \operatorname{tr}\left(\sqrt{V} 1_{] E-\varepsilon, E]}\left(H_{a c}\right) V 1_{[E, E+\varepsilon[}\left(H_{a c}^{\prime}\right) \sqrt{V}\right) .
$$

- $\gamma(E)$ well defined for Leb.-a.e. $E \in \mathbb{R}$
- $\left|\mathcal{S}_{L_{n_{k}}}(E)\right| \leq \exp \left\{-\frac{a \gamma(E)}{2} \ln L_{n_{k}}+o_{a}\left(\ln L_{n_{k}}\right)\right\} \quad \forall 0<a<1$
- if $d=1$ or $\ell^{2}\left(\mathbb{Z}^{d}\right)$ no subsequence necessary
- $\gamma(E)=0 \quad \forall E \notin \operatorname{spec}_{a c}(H)\left[=\operatorname{spec}_{a c}\left(H^{\prime}\right)\right]$
- connection with Frank, Lewin, Lieb, Seiringer (2011).

Relation to scattering theory

$$
\gamma(E):=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \operatorname{tr}\left(\sqrt{V} 1_{] E-\varepsilon, E]}\left(H_{a c}\right) V 1_{[E, E+\varepsilon[}\left(H_{a c}^{\prime}\right) \sqrt{V}\right) .
$$

Proposition.

For Leb.-a.e. $E \in \operatorname{spec}_{a c}(H)$

$$
v(E)=(2 \pi)^{-2}\|S(E)-\mathbb{1}\|_{H S}^{2}=(2 \pi)^{-2}\|T(E)\|_{H S}^{2}
$$

with fixed-energy scattering matrix $S(E): L^{2}\left(\$^{d-1}\right) \rightarrow L^{2}\left(\$^{d-1}\right)$.
Corollary.
Assume $d=3, V_{0}=0$, and V radially symmetric. Then for Leb.-a.e. $E \geq 0$

$$
v(E)=\frac{1}{\pi^{2}} \sum_{\ell=0}^{\infty}(2 \ell+1)\left(\sin \delta_{\ell}(E)\right)^{2}
$$

with scattering phases $\delta_{\ell}(E), \ell \in \mathbb{N}_{0}$.
Coincides with Anderson's decay exponent (only point interaction there)!
(3) Sketch of the proof

For simplicity: $H=H_{a c}$ and $H^{\prime}=H_{a c}^{\prime}$

$$
A:=\left(\begin{array}{ccc}
\left\langle\varphi_{1}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{1}^{L}, \psi_{N}^{L}\right\rangle \\
\vdots & & \vdots \\
\left\langle\varphi_{N}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{N}^{L}, \psi_{N}^{L}\right\rangle
\end{array}\right)
$$

Lemma 1. Let $E \in \mathbb{R}$ and recall $N \equiv N_{L}(E)$. Then

$$
\left|\mathcal{S}_{L}(E)\right|=|\operatorname{det} A|=\exp \left\{-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr}\left((P \Pi P)^{k}\right)\right\} \leq \exp \left\{-\frac{1}{2} \operatorname{tr}(P \Pi)\right\}
$$

with $P:=1_{\left.]-\infty, \lambda_{N}^{L}\right]}\left(H_{L}\right)$ and $\Pi:=1_{\left[\mu_{N+1}^{L}, \infty\right.}\left[H_{L}^{\prime}\right)$.

(3) Sketch of the proof

For simplicity: $H=H_{a c}$ and $H^{\prime}=H_{a c}^{\prime}$

$$
A:=\left(\begin{array}{ccc}
\left\langle\varphi_{1}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{1}^{L}, \psi_{N}^{L}\right\rangle \\
\vdots & & \vdots \\
\left\langle\varphi_{N}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{N}^{L}, \psi_{N}^{L}\right\rangle
\end{array}\right)
$$

Lemma 1. Let $E \in \mathbb{R}$ and recall $N \equiv N_{L}(E)$. Then

$$
\left|\mathcal{S}_{L}(E)\right|=|\operatorname{det} A|=\exp \left\{-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr}\left((P \Pi P)^{k}\right)\right\} \leq \exp \left\{-\frac{1}{2} \operatorname{tr}(P \Pi)\right\}
$$

with $P:=1_{\left.]-\infty, \lambda_{N}\right]}\left(H_{L}\right)$ and $\Pi:=1_{\left[\mu_{N+1}^{L}, \infty[\right.}\left(H_{L}^{\prime}\right)$.
Definition. Anderson integral

$$
\mathcal{I}_{L}(E):=\operatorname{tr}(P \Pi)
$$

Lower bound on $\mathcal{I}_{L}(E)$ needed!

(3) Sketch of the proof

For simplicity: $H=H_{a c}$ and $H^{\prime}=H_{a c}^{\prime}$

$$
A:=\left(\begin{array}{ccc}
\left\langle\varphi_{1}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{1}^{L}, \psi_{N}^{L}\right\rangle \\
\vdots & & \vdots \\
\left\langle\varphi_{N}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{N}^{L}, \psi_{N}^{L}\right\rangle
\end{array}\right)
$$

Lemma 1. Let $E \in \mathbb{R}$ and recall $N \equiv N_{L}(E)$. Then

$$
\left|\mathcal{S}_{L}(E)\right|=|\operatorname{det} A|=\exp \left\{-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr}\left((P \Pi P)^{k}\right)\right\} \leq \exp \left\{-\frac{1}{2} \operatorname{tr}(P \Pi)\right\}
$$

with $P:=1_{\left.]-\infty, \lambda_{N}\right]}\left(H_{L}\right)$ and $\Pi:=1_{\left[\mu_{N+1}^{L}, \infty[\right.}\left(H_{L}^{\prime}\right)$.

Definition. Anderson integral

$$
\mathcal{I}_{L}(E):=\operatorname{tr}(P \Pi)
$$

Lower bound on $\mathcal{I}_{L}(E)$ needed!
[Küttler, Otte, Spitzer - AHP to appear]

$$
\mathcal{I}_{L}(E)=v(E) \ln L+o(\ln L)
$$

($d=1, V_{0}=0, V$ more general)
(3) Sketch of the proof

For simplicity: $H=H_{a c}$ and $H^{\prime}=H_{a c}^{\prime}$

$$
A:=\left(\begin{array}{ccc}
\left\langle\varphi_{1}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{1}^{L}, \psi_{N}^{L}\right\rangle \\
\vdots & & \vdots \\
\left\langle\varphi_{N}^{L}, \psi_{1}^{L}\right\rangle & \cdots & \left\langle\varphi_{N}^{L}, \psi_{N}^{L}\right\rangle
\end{array}\right)
$$

Lemma 1. Let $E \in \mathbb{R}$ and recall $N \equiv N_{L}(E)$. Then

$$
\left|\mathcal{S}_{L}(E)\right|=|\operatorname{det} A|=\exp \left\{-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr}\left((P \Pi P)^{k}\right)\right\} \leq \exp \left\{-\frac{1}{2} \operatorname{tr}(P \Pi)\right\}
$$

with $P:=1_{\left.]-\infty, \lambda_{N}\right]}\left(H_{L}\right)$ and $\Pi:=1_{\left[\mu_{N+1}^{L}, \infty[\right.}\left(H_{L}^{\prime}\right)$.

Definition. Anderson integral

$$
\mathcal{I}_{L}(E):=\operatorname{tr}(P \Pi)
$$

Lower bound on $\mathcal{I}_{L}(E)$ needed!

$$
\mathcal{I}_{L}(E)=v(E) \ln L+o(\ln L)
$$

($d=1, V_{0}=0, V$ more general)
Lemma 2. \forall sequence of lengths $\left(L_{n}\right)_{n \in \mathbb{N}}, L_{n} \uparrow \infty, \exists$ subsequence $\left(L_{n_{k}}\right)_{k \in \mathbb{N}}$ such that for Leb.-a.e. $E \in \mathbb{R}$

$$
\left|\mathcal{I}_{L_{n_{k}}}(E)-\operatorname{tr}\left(1_{]-\infty, E]}\left(H_{L_{n_{k}}}\right) 1_{] E, \infty[}\left(H_{L_{n_{k}}}^{\prime}\right)\right)\right|=o\left(\ln L_{n_{k}}\right)
$$

Lemma 3. Let $E \in \mathbb{R}$. Then

$$
\operatorname{tr}\left(1_{]-\infty, E]}\left(H_{L}\right) 1_{] E, \infty[}\left(H_{L}^{\prime}\right)\right)=\int_{]-\infty, E] \times] E, \infty[} \frac{d \mu_{L}(x, y)}{(y-x)^{2}}
$$

with $\mu_{L}\left(B \times B^{\prime}\right):=\operatorname{tr}\left(\sqrt{V} 1_{B}\left(H_{L}\right) V 1_{B^{\prime}}\left(H_{L}^{\prime}\right) \sqrt{V}\right)$

Lemma 3. Let $E \in \mathbb{R}$. Then $\forall a>0$

$$
\operatorname{tr}\left(1_{]-\infty, E]}\left(H_{L}\right) 1_{] E, \infty[}\left(H_{L}^{\prime}\right)\right) \geq \int_{]-\infty, E] \times] E, \infty[} \frac{d \mu_{L}(x, y)}{\left(y-x+L^{-a}\right)^{2}}
$$

with $\mu_{L}\left(B \times B^{\prime}\right):=\operatorname{tr}\left(\sqrt{V} 1_{B}\left(H_{L}\right) V 1_{B^{\prime}}\left(H_{L}^{\prime}\right) \sqrt{V}\right)$

Lemma 3. Let $E \in \mathbb{R}$. Then $\forall a>0$

$$
\operatorname{tr}\left(1_{]-\infty, E]}\left(H_{L}\right) 1_{] E, \infty[}\left(H_{L}^{\prime}\right)\right) \geq \int_{J-\infty, E] \times] E, \infty[} \frac{d \mu_{L}(x, y)}{\left(y-x+L^{-a}\right)^{2}}
$$

with $\mu_{L}\left(B \times B^{\prime}\right):=\operatorname{tr}\left(\sqrt{V} 1_{B}\left(H_{L}\right) V 1_{B^{\prime}}\left(H_{L}^{\prime}\right) \sqrt{V}\right)$
Lemma 4. $\forall 0<a<1$ for Leb.-a.e. $E \in \mathbb{R}$

$$
\int_{J-\infty, E] \times] E, \infty[} \frac{\mathrm{d} \mu_{L}(x, y)}{\left(y-x+L^{-a}\right)^{2}} \geq \int_{]-\infty, E] \times] E, \infty[} \frac{\mathrm{d} \mu(x, y)}{\left(y-x+L^{-a}\right)^{2}}+O_{a}(1)
$$

with $\mu\left(B \times B^{\prime}\right):=\operatorname{tr}\left(\sqrt{V} 1_{B}(H) V 1_{B^{\prime}}\left(H^{\prime}\right) \sqrt{V}\right)$
Idea of the proof: regularise, Helffer-Sjöstrand, remove regularisation!

Lemma 3. Let $E \in \mathbb{R}$. Then $\forall a>0$

$$
\operatorname{tr}\left(1_{]-\infty, E]}\left(H_{L}\right) 1_{] E, \infty[}\left(H_{L}^{\prime}\right)\right) \geq \int_{]-\infty, E] \times] E, \infty[} \frac{d \mu_{L}(x, y)}{\left(y-x+L^{-a}\right)^{2}}
$$

with $\mu_{L}\left(B \times B^{\prime}\right):=\operatorname{tr}\left(\sqrt{V} 1_{B}\left(H_{L}\right) V 1_{B^{\prime}}\left(H_{L}^{\prime}\right) \sqrt{V}\right)$
Lemma 4. $\forall 0<a<1$ for Leb.-a.e. $E \in \mathbb{R}$

$$
\int_{]-\infty, E] \times] E, \infty[} \frac{d \mu_{L}(x, y)}{\left(y-x+L^{-a}\right)^{2}} \geq \int_{]-\infty, E] \times] E, \infty[} \frac{d \mu(x, y)}{\left(y-x+L^{-a}\right)^{2}}+O_{a}(1)
$$

with $\mu\left(B \times B^{\prime}\right):=\operatorname{tr}\left(\sqrt{V} 1_{B}(H) V 1_{B^{\prime}}\left(H^{\prime}\right) \sqrt{V}\right)$
Idea of the proof: regularise, Helffer-Sjöstrand, remove regularisation!
Lemma 5. $\forall a>0$ for Leb.-a.e. $E \in \mathbb{R}$

$$
\int_{]-\infty, E] \times] E, \infty[} \frac{\mathrm{d} \mu(x, y)}{\left(y-x+L^{-a}\right)^{2}}=a v(E) \ln L+o_{a}(\ln L)
$$

(4) Towards the exact asymptotics

Ground State of a Magnetic Impurity in a Metal

PuILe W. Anderson

Bell Telephorse Loborabovier, Murray Hill, Mow Jerrsy
(Rercived 21 July 1967)
... This is the exact version of the orthogonality theorem proved as an inequality in Ref. 15. It is interesting that the main difference from the previous result is to replace $\sin ^{2} \delta$ by δ^{2}.

(4) Towards the exact asymptotics ...

Ground State of a Magnetic Impurity in a Metal

Pumer W. Anderion
Bell Teleptorse Lebbrabories, Murray Hill, Mow ferrsy
(Rercived 21 July 1967)
... This is the exact version of the orthogonality theorem proved as an inequality in Ref. 15. It is interesting that the main difference from the previous result is to replace $\sin ^{2} \delta$ by δ^{2}.

Theorem B. [Gebert, Küttler, M., Otte - in prep.]

\forall sequence of lengths $\left(L_{n}\right)_{n \in \mathbb{N}}, L_{n} \uparrow \infty, \exists$ subsequence $\left(L_{n_{k}}\right)_{k \in \mathbb{N}}$ such that for Leb.-a.e. $E \in \mathbb{R}$

$$
\begin{array}{cl}
\limsup _{k \rightarrow \infty} \frac{\ln \left|\mathcal{S}_{L_{n_{k}}}(E)\right|}{\ln L_{n_{k}}} \leq-\frac{\tilde{v}(E)}{2} & \text { Compare Theorem } A: \\
\tilde{v}(E):=\frac{\|\arcsin |T(E) / 2|\|_{H S}^{2}}{\pi^{2}} . & v(E):=\frac{\|T(E) / 2\|_{H S}^{2}}{\pi^{2}} .
\end{array}
$$

