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Abstract

Motivation: A standard approach to classifying sets of genomes is to calculate their pairwise

distances. This is difficult for large samples. We have therefore developed an algorithm for rapidly

computing the evolutionary distances between closely related genomes.

Results: Our distance measure is based on ungapped local alignments that we anchor through

pairs of maximal unique matches of a minimum length. These exact matches can be looked up

efficiently using enhanced suffix arrays and our implementation requires approximately only 1 s

and 45 MB RAM/Mbase analysed. The pairing of matches distinguishes non-homologous from

homologous regions leading to accurate distance estimation. We show this by analysing simulated

data and genome samples ranging from 29 Escherichia coli/Shigella genomes to 3085 genomes of

Streptococcus pneumoniae.

Availability and implementation: We have implemented the computation of anchor distances

in the multithreaded UNIX command-line program andi for ANchor DIstances. C sources and

documentation are posted at http://github.com/evolbioinf/andi/

Contact: haubold@evolbio.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The spread of infectious diseases is nowadays often monitored by

sequencing the genomes of the outbreak strains. Since a given pan-

demic is usually caused by the rapid expansion of a single clone,

monitoring by sequencing leads to the accumulation of hundreds to

thousands of similar genome sequences. For example, Petty et al.

(2014) studied the spread of the multi-drug resistant Escherichia coli

strain ST131, which causes extra-intestinal infections in humans.

The authors sequenced 99 outbreak strains and reconstructed their

phylogeny. This revealed that the outbreak was caused by a single

lineage of ST131. On an even larger scale, Chewapreecha et al.

(2014) studied pneumococcal carriage in a refugee camp by

sequencing 3085 strains of Streptococcus pneumoniae, which causes

pneumoniae in humans. Again, phylogeny reconstruction based on

these genomes was an early step in the study.

Classifying bacteria by clustering their genomes is set to become

routine. For this purpose, Petty et al. (2014) computed a multiple se-

quence alignment of their E.coli ST131 strains using the program

mugsy (Angiuoli and Salzberg, 2011). It is based on the MUMmer

software (Kurtz et al., 2004), which makes mugsy one of the fastest

multiple genome aligners available: it took only 19 h to align 57

complete E.coli genomes. However, the run time of mugsy becomes

unacceptable when applied to the recently collected samples of hun-

dreds or even thousands of bacterial genomes.
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For their study of 3085 pneumococcal isolates, Chewapreecha

et al. (2014) mapped the sequencing reads onto a reference genome,

thereby approximating a multiple sequence alignment. Such align-

ment by mapping is widely used, and Bertels et al. (2014) have

shown that its accuracy can be further improved by mapping

against multiple reference genomes instead of the customary single

reference. Their implementation of this idea, REALPHY, requires

2min and 250 MB/Mbase analysed. The genome of S.pneumoniae

is 2.2 Mbase long, so REALPHY would run 9.4 days on the

3085 S.pneumoniae isolates. However, a more prohibitive aspect

of REALPHYmight be the RAM requirement of 1.7 TB.

Perhaps surprisingly, it is not necessary to compute an explicit

alignment for phylogeny reconstruction. This insight has sparked

interest in devising alignment-free methods for rapidly calculating

pairwise distances between genomes (Haubold, 2014), which can

then be clustered using various quick algorithms (Felsenstein, 2004).

Alignment-free distance computation is either based on counting

words of a certain length or recording match lengths (Haubold,

2014). When counting words, there is a choice between the trad-

itional approach of counting exact words and a more recent method

of looking for words that enclose one mismatch. The latter is imple-

mented in the program co-phylog (Yi and Jin, 2013), which

gives better distances than exact word counting while requiring only

moderate additional resources (Haubold, 2014).

Haubold et al. (2009) devised an alignment-free estimator of

genetic distance based on match lengths. The expected match length

is the inverse of the proportion of mismatches. For example, if 1%

of positions between two genomes are mismatched, the expected

match length is 100. Domazet-Lošo and Haubold (2009) imple-

mented this idea using a generalized suffix tree of all input sequences

to look up the match lengths. Their program kr computes the dis-

tances between the complete genomes of 29 E.coli/Shigella strains in

just 5.5min on a single processor. However, this takes 5.3 GB RAM

and kr has been criticized for excessive RAM utilization

(Cohen and Chor, 2012). Moreover, Yi and Jin (2013) noted that

co-phylog gave a better phylogeny when applied to the bench-

marking sample of 29 E.coli/Shigella genomes.

This has prompted us to devise a replacement for kr. Our new

strategy is to look for mismatches that are bracketed by long exact

matches, which we call anchors. We show through simulation that

the resulting program andi, for ANchor DIstances, is accurate, fast

and memory efficient. Moreover, we apply andi to three sets of bac-

terial genomes: the 29 genomes of E.coli/Shigella Yi and Jin (2013)

used for benchmarking co-phylog, the 109 genomes of E.coli

ST131 studied by Petty et al. (2014)—of which they sequenced

99 strains—and the 3085 genomes of S.pneumoniae sequenced by

Chewapreecha et al. (2014). In each case, andi quickly recovers

pairwise distances. For the E.coli samples, we compare the new dis-

tances to alignment-based distances and find they are so similar that

they yield almost identical phylogenies.

2 Methods

2.1 Defining anchor distances

We compute anchor distances using maximal matches by imposing

three criteria on them: uniqueness, equidistance and a minimum

length. In this section, we explain each of these criteria in turn,

which sets the stage for the description of our algorithm in

Section 2.2.

Consider two DNA sequences, a query Q and a subject S.

Taking our cue from genome alignment tools such as MUMmer

(Kurtz et al., 2004) and mauve (Darling et al., 2004), we call a

unique maximal match between Q and S an anchor, if it has some

minimum length. We look for pairs of anchors that have the same

distance in Q and S, as shown in Figure 1A. Such anchor pairs

approximate ungapped alignments, and we count the mismatches in

the intervening segment. In contrast, if the anchors are unequally

spaced as shown in Figure 1B, the regions they bracket are either not

homologous or contain indels. We ignore such anchor pairs in our

analysis. The total number of mismatches bracketed by equidistant

anchors divided by the number of nucleotides covered by the an-

chors and the bracketed regions is our estimate of the number of

mismatches per site, dmðQ; SÞ. This is converted to the number of

substitutions per site using the correction by Jukes and Cantor

(1969):

KðQ; SÞ ¼ �
3

4
ln 1�

4

3
dmðQ; SÞ

� �

:

K(Q, S) is not symmetrical, that is, KðQ; SÞ 6¼ KðS;QÞ. We there-

fore define the anchor distance between two sequences i and j as the

average Jukes–Cantor distance computed from the two possible

labellings of i and j:

daði; jÞ ¼
KðQ; SÞ þ KðS;QÞ

2
:

A critical parameter in the computation of daði; jÞ is the min-

imum anchor length, l. We compute this as a function of GC content

and subject length using equation (6) by Haubold et al. (2009):

P X�i�x
� �

¼
X

x

k¼0

2x
x

k

 !

pkð12� pÞx�kð1� pkð12� pÞx�kÞjSj;

where X�i is the length of a match starting at position i in Q and any

position in S, and 2p is the GC content of S. We define l to be the

97.5% quantile of the distribution of X�i .

2.2 Algorithm and implementation

For computing anchor distances, we first order alphabetically all

suffixes contained in the forward and reverse strands of S. From this

suffix array, we compute the array of common prefix lengths be-

tween consecutive suffixes using the U-algorithm listed as Algorithm

4.4 by Ohlebusch (2013). Together with the suffix array, this lon-

gest common prefix array forms the enhanced suffix array, E, which

is the central input for computing K(Q, S). Algorithm 1 uses the

function getMatchðE;stringÞ to look for the longest prefix of

A

Q S

B

Q S

Fig. 1. Exact matches of a given minimum length (anchors) between query

(Q) and subject (S) sequences. A: Equally spaced anchors; here we count the

mismatches in the intervening segment. B: Unequally spaced anchors; these

are ignored in the distance computation. (Color version of this figure is avail-

able at Bioinformatics online.)
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string that matches somewhere in S. In Line 8, string is the suf-

fix of Q that has not yet been matched against S. Function

getMatch (not shown) is a slight variation on Algorithm 5.2 by

Ohlebusch (2013). The matching step is repeated one residue be-

yond the mismatched nucleotide that terminates the previous match

until an equidistant pair of anchors (Fig. 1A) is found in Line 12.

The mutations in the intervening segment are counted (Line 13) and

the distance between the current and the previous match is added to

the homologous nucleotide counter (Line 14). The search for equi-

distant anchor pairs continues until the complete forward strand of

Q has been traversed. Then K(Q, S) is computed as the ratio of mu-

tations to homologous nucleotides (Line 24). This streaming of Q

against S using an enhanced suffix array is an idea we took from

vmatch (http://www.vmatch.de).

For our suffix array computation, we use the libdivsufsort

library (http://homepage3.nifty.com/wpage/software/). The function

getMatch is based on range minimum queries, for which we use an

algorithm and corresponding implementation by Fischer and Heun

(2007). The memory requirement of the resulting program andi

is dominated by the computation of the enhanced suffix array.

To minimize the memory footprint of andi, it initially streams all

sequences against the enhanced suffix array of the first sequence,

then against the enhanced suffix array of the second sequence,

and so on. Thus at any one time, only the enhanced suffix array for

a single sequence is kept in memory. This approach also allows

for easy parallelization, which we implemented using the OpenMP

framework. andi runs fastest when the number of taxa is equal to

the number of processors. In that situation, all rows of the distance

matrix are filled in simultaneously and the program takes time

proportional to the length of the longest genome.

2.3 Simulations

For simulating pairs of related DNA sequences, we used our pro-

gram simK, which is linked from the andi web page. Here is the

command for a typical simulation run

simK -l 1000000 -k 0.01 j andi

where -l is the sequence length and -k is the number of substitu-

tions per site. Time and memory consumption was measured using

commands such as

/usr/bin/time -f “\n %E elapsed,\n%M memory” \

andi sim.fa > sim.dist 2> andi.res

on a 32 core 2.3GHz AMDOpteron system with 256 GB of RAM.

2.4 Datasets

Apart from simulated data, we analysed three sets of genomes of

increasing size:

1. Twenty-nine E.coli/Shigella genomes used by Yi and Jin (2013)

for benchmarking, average length 4.9 Mbase;

2. One hundred and nine E.coli ST131 genomes, average length

5.2 Mbase (Petty et al., 2014);

3. Three thousand and eighty-five S.pneumoniae genomes, average

length 2.2 Mbase (Chewapreecha et al., 2014).

Links to these datasets are also posted on the andi web site.

2.5 Alignment

The two E.coli genome samples were aligned with mugsy, which

generates output in ‘mutation annotation format’ (maf) (Angiuoli

and Salzberg, 2011). We converted this to PHYLIP format with

our script maf2phy.awk, also posted on the andi web site.

Jukes–Cantor distances were computed using the program dna-

dist, which is part of the PHYLIP package (Felsenstein, 2005).

2.6 Phylogeny reconstruction

Distances were clustered using neighbor and the trees midpoint

rooted using retree, both also part of PHYLIP. Trees were plotted

uising njplot (Perrière and Gouy, 1996) or drawgram (PHYLIP).

Topological distances between trees were computed using the

programs rspr (Whidden et al., 2013) or treedist (PHYLIP).

3 Results

3.1 Simulations

Figure 2A shows our new distance measure da as a function of

the number of substitutions per site, K, for simulated pairs of

100 kbase sequences, which implies a minimum anchor length of 8.

Under these ideal conditions, da is an excellent estimator for a

wide range of divergence values. However, for K�0:5 the probabil-

ity increases that no anchor pair is found and da cannot be com-

puted. The proportion of failed estimations therefore grows

from 0.7% for K¼0.5 to 94% for K¼0.65 (Fig. 2B, open circles).

This might suggest that a lower minimum anchor length yields bet-

ter estimates. However, it leads to underestimation of distances

(Supplementary Fig. S1). We thus recommend using andi only for

sequences with K�0:5.

Algorithm 1 Estimate substitutions per site

Require: Q {query sequence}

Require: S {subject sequence}

Require: E {enhanced suffix array of S, forward &

reverse}

Require: l {minimum anchor length}

Ensure: K {K(Q, S), substitutions per site between Q

and S}

1: qp  qc  0 {previous and current position in Q}

2: sp  0 {previous position in S}

3: lp  0 {previous jump length}

4: s  0 {number of mutations (segregating sites)}

5: n  0 {number of homologous nucleotides}

6: a  false {no anchor found yet}

7: while qc < jQj do

8: m getMatchðE;Q½qc::jQj�Þ

9: lc  m:lengthþ 1 {jump by at least one position}

10: if m:isUniqueandm:length � l then

11: sc  E :positionðmÞ {find position of match in S}

12: if qc � qp ¼ sc � sp then

13: s  s þ countDiffðQ½qp::qc � 1�;S½sp::sc � 1�Þ

14: n  n þ qc � qp

15: a  true

16: else

17: if a ¼ true then

18: n  n þ lp � 1

19: a  false

20: qp  qc

21: sp  sc

22: lp  lc

23: qc  qc þ lc

24: K  s=n
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Our main motivation for developing da is efficiency. Figure 3

shows the time and memory consumption of andi as a function of

sequence length. The run time would ideally be linear in the size

of the input sequence, that is, time / length, which is close to the

observed run timeOðlength1:05Þ. Notice also that the more divergent

sequences with K¼0.1 take slightly longer to analyse than those

with K¼0.01. The reason for this is that the streaming of the query

against the enhanced suffix array of the subject takes time propor-

tional to the number of calls to the matching function. This in turn

depends on the number of substitutions, with divergent sequences

requiring more matching steps. Nevertheless, as a rule of thumb

andi takes 1 s/Mbase. The memory consumption shown in

Figure 3B is initially constant in the sequence length reflecting

program overheads. For longer sequences, memory consumption

is exactly linear in the size of the input data, as expected. In fact,

we observe that 45 bytes memory are used per base pair.

We conclude from our analysis of simulated data that andi

is accurate and efficient. Next, we apply andi to three samples

of genomes: 29 E.coli/Shigella genomes, 109 genomes of E.coli

ST131 (Petty et al., 2014) and 3085 genomes of S.pneumoniae

(Chewapreecha et al., 2014). Where appropriate, we compare

the results obtained by andi with those of co-phylog and align-

ment-based distances.

3.2 Application to genomes

Figure 4 shows the phylogeny of 29 E.coli/Shigella strains computed

from their complete genomes. These genomes are often used for

benchmarking (Bertels et al., 2014; Yi and Jin, 2013) and are on

average 4.9 Mbase long. Aligning them to compute the phylogeny in

Figure 4A took mugsy 5 h, 33min and 2.9 GB RAM. The corres-

ponding co-phylog computation took only 9min, 21 s and 156.8

MB RAM. The resulting tree in Figure 4B is shorter than the reference

from which it is separated by a topological distance of 3. Two of these

topological differences affect short branches in clade C. The other dif-

ference concerns the position of E.coli strain UMN026, which

switches between the two most basal clades. With 29 threads andi

took 19.8 s and 7.2 GB RAM to compute Figure 4C. Its branch

lengths are almost indistinguishable from the reference tree and its

topological distance from the reference is only one due to a difference

in clade C, where strain 536 should branch off at a more basal pos-

ition. However, the position of strain UMN026 is correct.

Figure 5 shows the andi tree constructed from 109 E.coli

ST131 strains (Petty et al., 2014) in 1min 21 s using 30 CPUs and

7.7 GB RAM. The 99 strains sequenced by Petty et al. (2014) fall

into three clades, A, B, and C, shown online in red, orange and

green, respectively. The clades identified by andi are identical to

those reported in the original publication based on a mugsy align-

ment computed on our hardware in 5.6 days using 52.7 GB RAM.

That is, andi analyses the 109 E.coli genomes approximately 6000

times faster than mugsy and uses seven times less RAM.

As the third and final challenge, we applied co-phylog and

andi to 3085 complete genomes of the human bacterial pathogen

S.pneumoniae. Its genome is 2.2 Mbase long, amounting to a dataset

comprising 6.7 Gbase. co-phylog took 36.5 days and 2.3GB

RAM to compute the pairwise distances shown in Figure 6A. With

32 threads andi took 7 h, 35min and 23.8 GB RAM to carry out

the same computation (Fig. 6B). Unfortunately, we cannot com-

pare these two trees to a reference tree. Moreover, their

A

B

Fig. 3. Time (A) and memory (B) consumption as a function of sequence

length. Single pairs of sequences were simulated with 0.01 or 0.1 substitu-

tions per site and analysed. (Color version of this figure is available at

Bioinformatics online.)

A

B

Fig. 2. Estimation of the rate of substitution on simulated pairs of 100 kbase

sequences; shown are mean6 standard deviation of 1000 iterations.

A: Substitution rates between 4� 10�5 and 0.65. B: Substitution rates �0:4

and proportion of failed estimates. (Color version of this figure is available at

Bioinformatics online.)
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Robinson–Foulds distance (Robinson and Foulds, 1981) is 4570,

which is disconcertingly large. However, we found that the average

Robinson–Foulds distance between 10 random trees with 3085

leaves is 6166. Also, the longest branches indicated by arrows

in Figures 6A and B harbour the same three strains sequenced

in lanes 6680_6#10, 6775_1#8 and 6823_7#22. It would be inter-

esting to further investigate what sets these strains apart.

4 Discussion

Our new distance measure, da, approximates local alignments by an-

choring them with long, unique matches (Fig. 1). The requirement

that the matches are equidistant in the query and the subject

(Fig. 1A) is equivalent to restricting the analysis to ungapped align-

ments. andi is therefore a cross between the early version of BLAST

(Altschul et al., 1990) and the genome aligner MUMmer (Kurtz et al.,

2004): From early BLAST it inherits the idea of ungapped local

alignments, from MUMmer the idea of looking up unique matches by

indexing the subject.

Domazet-Lošo and Haubold (2009) had previously used the

power of indexing algorithms to estimate the number of substitu-

tions from the match length distribution. Their program kr works

on the same principle as the average common substring distance

(Cohen and Chor, 2012; Ulitsky et al., 2006), except that kr imple-

ments theory by Haubold et al. (2009) to transform common sub-

string lengths to mutation rates.

Fast as the average common substring methods are, they suffer

from two disadvantages: First, local fluctuations in the mutation

rate affect the average match length. As a result, the same number of

mutations can lead to different distances depending on the degree to

which the mutations are clustered. Haubold et al. (2013) have used

this property to devise a test for recombination. andi does not have

this problem as it counts mutations directly rather than inferring

them from match lengths. The second disadvantage of match-length

based methods is that matches induced by non-homologous

Fig. 5. The phylogeny of 109 E.coli ST131 strains based on da computed from

complete genome sequences. Clades A–C colored online as defined by Petty

et al. (2014). (Color version of this figure is available at Bioinformatics online.)

A

B

C

Fig. 4. Phylogenies computed from the complete genomes of 29 strains of

E.coli/Shigella. A: Based on a mugsy alignment (Angiuoli and Salzberg, 2011);

B: based on distances computed using co-phylog (Yi and Jin, 2013);

C: based on da. Clade C differs between all three trees; the position of strain

UMN026 differs between A and B. (Color version of this figure is available at

Bioinformatics online.)
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regions are hard to distinguish from matches induced by highly di-

vergent regions. Even a moderate divergence of K¼0.1 implies an

average match length of 10. Compare this to the expected length of

a random match in a 1 Mbase sequence, which according to the the-

ory by Haubold et al. (2009) is 10.4. To overcome this limitation of

match length distances, Leimeister and Morgenstern (2014) pro-

posed a k-mismatch generalization. They show that this outperforms

the classical zero-mismatch version of their distance. However, it re-

mains unclear how to choose the critical parameter k when applying

this method.

Instead of a generalized mismatch approach, we bracket muta-

tions with paired anchors. This should give more accurate results

than kr, and andi did compute a better tree for 29 E.coli genomes

than co-phylog, which in turn gave a better tree than kr. Hence,

andi is substantially more accurate than kr.

The accuracy of andi is excellent when applied to simulated se-

quences with a wide range of substitution rates, K (Fig. 2).

However, at K>0.5 the search for suitable anchors fails increas-

ingly often (Fig. 2B), which cannot be overcome by lowering the

minimum anchor length (Supplementary Fig. S1). Hence, our

method is effectively limited to K�0:5.

To get an intuition for the evolutionary times implied by

K¼0.5, consider the average synonymous substitution rate in mam-

mals of 3:51� 10�9 (Li, 1997, p. 420). The last common ancestor

that can occur in a tree restricted to K�0:5 lived 0:5=3:51=10�9=2

¼ 71� 106 years ago. This would allow the analysis of great apes,

which diverged 15:7� 106 years ago (Hedges et al., 2006) and mice

(Muridae, 26:9� 106 years), but not of these two groups together

(92:3� 106 years).

Apart from maximizing accuracy, we strove to minimize time

and memory usage by implementing three ideas: (i) Streaming of

query against subject as first implemented in vmatch speeds up suf-

fix array construction compared with the suffix array of all input se-

quences underlying kr; it also uses much less memory. Our second

idea was (ii) to construct only as many enhanced suffix arrays as

there are genomes in the sample, rather than constructing an

enhanced suffix array for each pairwise comparison. This means

that for a sample of n genomes andi requires only n suffix array

constructions, whereas a program like mugsy requires the computa-

tion of Oðn2Þ suffix trees. The third idea was (iii) multithreading,

which allows access to the multi-processor architecture of modern

computers. However, other programmers might have chosen a

different combination of time/memory consumption. For example,

vmatch uses half as much memory as andi for suffix array

construction, but is slower than the libdivsufsort library

we used.

When clustering hundreds of genomes, efficiency becomes para-

mount. As shown in Figure 3, andi uses only 1 s/Mbase and 45

bytes/bp when applied to simulated sequences. There is an intimate

connection between the efficiency of andi and its limitation to

closely related sequences: andi approximates local alignments by

concatenating exact matches. Looking up exact matches is fast,

but this strategy breaks down for divergent sequences where

homologous matches become shorter than random matches.

This phenomenon is also the reason why fast genome alignment

programs like mauve and mugsy work best when applied to

closely related genomes (Angiuoli and Salzberg, 2011; Darling

et al., 2004).

The accuracy and efficiency observed with simulated data

carried over to the analysis of genomes. Here, we compared andi

to co-phylog as Haubold (2014) had found this to be the best

alignment-free distance estimator for long sequences. However,

andi gave a more accurate tree when compared to the tree based on

the mugsy alignment (Fig. 4). This improvement in accuracy came

without a time penalty as co-phylog computed its tree 36 times

faster than mugsy, while andi was a thousand times faster than the

alignment. The superior speed of andi comes from the structure of

its algorithm and the multithreading; without multithreading, andi

would still be 1.6 times faster than co-phylog when applied to

the 29 E.coli/Shigella genomes. The memory consumption of andi

is strictly linear in the number of threads, while time is roughly

inversely proportional to the number of threads. This gives the

A

B

Fig. 6. Phylogeny of 3085 stains of S.pneumoniae (Chewapreecha et al.,

2014). A: Based on distances computed using co-phylog (Yi and Jin, 2013);

B: based on da. Arrows highlight strains discussed in the text. (Color version

of this figure is available at Bioinformatics online.)
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user the opportunity to trade speed for memory and processors,

depending on the hardware available.

Aligning the 109 genomes of E.coli ST131 took mugsy 5.6 days

and 52.7 GB RAM. Compare this to the 5 h 33min it took mugsy

to align 29 E.coli genomes. In other words, a 3.8 times larger sample

took 24.6 times longer to align. In contrast, andi took with 1min,

21 s only 4.1 times longer, yielding the correct classification of

strains into clades A–C in Figure 5. Moreover, the memory require-

ment of mugsy grew 18-fold, while that of andi grew by only 7%

to 7.7 GB. These comments are not meant to imply that the mugsy

alignment computed in the original study was superfluous; it was

used for a number of analyses apart from phylogeny reconstruction,

including the detection of horizontal gene transfer (Petty et al.,

2014). However, quick clustering of genomes is useful, if only as a

quality control step.

For our final application, we chose the set of 3085 genomes of

S.pneumoniae, because here an alignment program like mugsy

would run far longer than anyone is willing to wait. The current

method for comparing sets of bacterial genomes this size is mapping

the reads to a reference genome. There is some debate as to the

accuracy of the resulting trees (Bertels et al., 2014). andi takes

as input assembled contigs, which are generated from the raw

reads early on in all genome sequencing projects. Given these

contigs, andi analyses them in 7 h and 35min using 23.8GB RAM

on a 32 processor computer. Such computing resources are available

in most genomics labs. The three outlier strains identified by andi

are identical to those found by co-phylog after a 36.5 days run.

This is gratifying and underlines the usefulness of our program.
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