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Abstract
Androgens promote the growth and differentiation of prostate cells through ligand activation of the
androgen receptor (AR). Sensitization of the androgenic response by multifunctional growth factor
signaling pathways is one of the mechanisms via which AR contributes to the emergence of
androgen-independent prostate tumors. The ability of AR to cross-talk with key growth factor
signaling events toward the regulation of cell cycle, apoptosis, and differentiation outcomes in
prostate cancer cells is established. In this paper, we review the functional interaction between AR
and an array of growth factor signal transduction events (including epidermal growth factor;
fibroblast growth factor; IGF1; vascular endothelial growth factor; transforming growth factor-b) in
prostate tumors. The significance of this derailed cross-talk between androgens and key signaling
networks in prostate cancer progression and its value as a therapeutic forum targeting androgen-
independent metastatic prostate cancer is discussed.
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Introduction

Prostate cancer development and growth is dependent

on androgens and can be suppressed by androgen

ablation monotherapy. Due to the emergence of

androgen-independent prostate tumor growth however,

prostate cancer recurs as androgen-independent, highly

metastatic advanced disease (Wang et al. 2007).

Androgen functions through an axis involving testi-

cular synthesis of testosterone, conversion by 5 reductase

to the activemetabolite 5 dihydrotestosterone (DHT), and

its binding to androgen receptor (AR) to induce

transcriptional activation of target genes (Siiteri&Wilson

1974, Imperato-McGinley et al. 1985, Heinlein & Chang

2002). In the adult prostate, androgens promote survival

of epithelial cells, the primary step to malignant

transformation to prostate adenocarcinoma (De Marzo

et al. 1998). Androgen-induced prostate epithelial cell

proliferation is regulated byan indirect pathway involving

paracrine mediators produced by stromal cells, such as

insulin-like growth factor (IGF), fibroblast growth factor

(FGF), and epidermal growth factor (EGF; Cunha &

Donjacour 1989, Byrne et al. 1996). The absence of a link

between elevated serum testosterone, DHT, or adrenal

androgens and prostate cancer risk suggests that

androgens are not sufficient to promote prostate
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carcinogenesis (Roberts & Essenhigh 1986, Hsing

2001). The current evidence on the cross-talk between

AR/androgen axis and signaling effectors of growth

factors, as the contributing mechanism to prostate tumor

initiation and progression, is discussed in this review.
AR connects with EGF

EGF and its membrane receptor, the epidermal growth

factor-1 receptor (EGFR), are involved in the patho-

genesis of different tumors, including prostate cancer

(Russell et al. 1998). Both the ligand and its signaling

receptor partner are frequently up-regulated in advanced

stages of prostate cancer (Di Lorenzo et al. 2002).

Targeting EGFR with monoclonal antibodies or with

tyrosine kinase inhibitors suppresses growth and invasion

of androgen-dependent and -independent prostate cancer

cells in vitro (Bonaccorsi et al. 2004b, Festuccia et al.

2005). The involvement of EGFR in proliferation and

invasion of cancer cells have been supported by other

evidence (Wells et al. 2002). EGFR also participates in

the formation of plasma membrane structures (lamelli-

podia) that mediate migration through the basal

membrane (Rabinovitz et al. 2001). Significantly,

elevated EGFR enhances the invasion potential of
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mammary tumors by increasing cell motility, without

affecting tumor growth (Xue et al. 2006), pointing the key

role exerted by the EGF/EGFR system in invasion and

metastasis. Moreover, the robust evidence on the

interaction between EGF/EGFR and androgen signaling

provides proof of principle that engagement of multi-

crossed signals is crucial for the acquisition and the

maintenance of androgen sensitivity (Leotoing et al.

2007). Expression of the androgen-regulated prostate

specific antigen, (KLK3) gene, is induced by the

administration of interleukin-6 (IL6), which activates

EGFR (Hobisch et al. 1998, Ueda et al. 2002). This

evidence initially pointed to the contribution of EGFR in

dictatingARoutcomes in prostate cancer cells. ERBB2, a

lead member of the EGFR family of receptor tyrosine

kinases,was shown tobe overexpressed inprostate cancer

during progression to androgen-independent metastatic

disease (Heinlein & Chang 2004). The mechanistic basis

for important correlative cross-tall between AR and Erb2

has been provided by other reports indicating that

modulation of AR signaling activity by the HER-2/neu

tyrosine kinase promotes androgen-independent prostate

tumor growth in vitro and in vivo (Craft et al. 1999, Yeh

et al. 1999). More recent evidence further supports the

signaling interaction by indicating that the loss of ERBB2

by siRNA impaired prostate cancer cell growth via

targeting AR activity (Mellinghoff et al. 2004). Taken

together, these lines of evidence converge to the

recognition of the ERBB2 kinase activity being required

for optimal transcriptional activity of AR in prostate

cancer cells (Mellinghoff et al. 2004, Liu et al. 2005).

Androgens can post-transcriptionally control protein

expression by regulating the binding of endogenousHuR

to the AU-rich 30UTRs, e.g. EGF mRNA (Myers et al.

1999, Torring et al. 2003). The ability of androgens to

regulate the expression of androgen response element

(ARE)-binding proteins that bind to these instability

elements, supports an additional mechanistic involve-

ment (by androgens) in the post-transcriptional control of

EGF (Simons & Toomre 2000, DiNitto et al. 2003,

Kuhajda 2006). In a ‘reversal-of-action’ mode, EGF

reduces AR expression and blocks androgen-dependent

transcription in differentiated cells, while it activates

the AR promoter (Culig et al. 1994). This mechanistic

EGF–AR interplay is an important contributor to

prostate tumor progression, but it is not exclusive to

EGF, as AR activity can be modulated by other growth

factors (Orio et al. 2002).

AR interacts with the mitogen-activated protein

kinase (MAPK)/extracellular signaling-regulated

kinase kinase-1 (MEKK1) and the EGFR (Abreu-

Martin et al. 1999, Bonaccorsi et al. 2004a; Fig. 1).

Androgen-activated AR activates MAPK (Peterziel
842
et al. 1999) and in a ‘functional-symmetry’, EGF-

activated MAPK signaling cascade interferes with AR

function, modulating the androgen response. MAPK

extracellular kinase (MEK) inhibition reverses the

EGF-mediated AR down-regulation in differentiated

cells, thus suggesting the existence of an inverse

correlation between EGF and androgen signaling in

non-tumor epithelial cells (Leotoing et al. 2007).

Additional key signal transducers in this dynamic,

include transducer activator of transcription 3

(STAT3), most probably required for AR activation

by IL6 toward promoting metastatic progression of

prostate cancer (Abdulghani et al. 2008). Increased

levels of Stat3 have been shown to lead to Stat3–AR

complex formation in response to EGF and IL6 (as

shown on Fig. 1). Moreover, Stat3 increases the EGF-

induced transcriptional activation of AR, while

androgen pre-treatment increases Stat3 levels in an

IL6 autocrine-/paracrine-dependent manner suggesting

an intracellular feedback loop (Aaronson et al. 2007).

AR can also affect clathrin-mediated endocytosis

pathway of EGFR, an essential step in its signaling

integrity. The significance of engaging such an robust

cross-signaling by prostate cancer cells toward

determining their survival and response to the

microenvironment is established by growing evidence

(Bonaccorsi et al. 2007).

The recently identified active integration of AR and

EGFR signaling within the lipid raft microdomains

in target cells provides an intriguing topological

twist to this cross-talk. Thus, considering that the

serine–threonine kinase AKT1 is a convergence point

of the two hormonal stimuli and AR is localized in lipid

raft membranes where it is stabilized by androgens

(Freeman et al. 2007), one could easily argue that the

newly found membrane ‘domain’ harboring AR is

responsible for the non-genomic signaling by AR. The

emerging concept that AKT1 is sensitive to manipula-

tions in cholesterol levels, gains direct support from

biochemical analysis verifying that a subpopulation of

AKT1 molecules resides within lipid raft micro-

domains (Bauer et al. 2003, Zhuang et al. 2005). Dis-

tinct changes in phosphorylation state of AKT1 in

response to androgen occur quickly but temporally

independent in the raft and non-raft compartment,

implicating processing of dissimilar signals. Interest-

ingly, EGF triggers AKT1 phosphorylation via more

rapid kinetics than those induced by androgens; this

was recently documented by studies on the sensitivity

of EGFR family proteins to disruptions in cholesterol

synthesis and homeostasis, supporting the functional

significance of EGF signal transduction through lipid

rafts (Freeman et al. 2007).
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Figure 1 Growth factors cross-talk with AR in prostate cancer cells. IGF, FGF, VEGF, and TGFB secreted by the prostate stromal
cells activate their receptors and interact with AR signal axis. In prostate epithelial cells, the androgenic signal engages secreted
VEGF and TGFB which affects the prostate tumor microenvironment by inducing angiogenesis and stromal cell growth and
differentiation. EGF signaling encounters AR signal in a tight control of multiple pathways. Growth factor signaling may proceed via
AR signal and regulate the downstream effectors of AR regulating key cellular processes including proliferation, differentiation,
apoptosis, and survival of prostate cancer cells.
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AR and IGF interactions

Signaling by IGF1 is of major mechanistic and

biological significance (Burfeind et al. 1996, Pollak

et al. 1998, Wolk et al. 1998, Nickerson et al. 2001). In

a scenario, fostering AR reactivation in a low-androgen

environment (Grossmann et al. 2001), insulin resist-

ance, and hyperinsulinemia correlates with an

increased incidence of prostate cancer (Fan et al.

2007). High IGF1 levels in the serum correlate with an

increased risk of prostate cancer (Pollak et al. 1998,

Wolk et al. 1998), whereas IGF1 enhances AR

transactivation under low/absent androgen levels

(Culig et al. 1994, Orio et al. 2002) and promotes

prostate tumor cell proliferation (Burfeind et al. 1996).

Endogenous AR expression as well as AR transcrip-

tional activity is regulated by insulin via activation of

the phosphatidylinositol 3-kinase (PI3K) transduction

pathway (Manin et al. 1992, 2000, 2002). FOXO1, as a

downstream molecule becomes phosphorylated and

inactivated by PI3K/AKT kinase in response to IGF1

or insulin, and subsequently suppresses ligand-

mediated AR transactivation (Fig. 1). FOXO1 is
www.endocrinology-journals.org
recruited by liganded AR to the AR promoters and

interacts directly with the C terminus of AR in a ligand-

dependent manner disrupting ligand-induced AR

nuclear compartmentalization. This FOXO1

interference with AR–DNA interactions suppresses

androgen-induced AR activity resulting in prostate

tumor cell growth suppression (Fan et al. 2007).

An intracrine positive feedback between IGF1 and

AR signaling has been implicated in prostate cancer

cells. Liganded AR up-regulates IGF1 receptor

expression in HepG2 and LNCaP cells, presumably

resulting in higher IGF1 signaling in prostate cancer

cells (Wu et al. 2007). Two AREs within the IGF1

upstream promoter activate IGF1 expression (Wu et al.

2007). In addition, androgens can control IGF

signaling via modulation of IGF-binding proteins

(IGFBPs) in prostate epithelial cells, while both

androgens and IGF1 up-regulate IGFBP5 mRNA in

androgen-responsive human fibroblasts (Yoshizawa &

Ogikubo 2006). IGFBP5 initially binds IGFs with high

affinity, principally by an N-terminal motif, and

inhibits IGF activity by preventing IGF interaction
843
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with the type 1 receptor (Kalus et al. 1998). Taken

together, this evidence supports a ‘higher-level’

interaction between AR and the IGF signaling, via

recruitment of direct pathways toward activation,

transcriptional regulation, and protein post-trans-

lational changes, all critical to tumor cell survival.
AR and TGFb interactions: cell death and
survival partners

Transforming growth factor-b (TGFB) is a ubiquitous

cytokine that plays a critical role in numerous

pathways regulating cellular and tissue homeostasis.

The TGFB superfamily members regulate prolifer-

ation, growth arrest, differentiation, and apoptosis of

prostatic stromal and epithelial cells, as well as the

formation of osteoblastic metastases. TGFB is over-

expressed in advanced prostate cancer and exerts

diverse functions in stromal cells via both SMAD-

dependent and SMAD-independent signaling pathways

(Coffey et al. 1986, Roberts et al. 1986, Derynck &

Zhang 2003, Zhu & Kyprianou 2005). Recently, cofilin

and prohibitin, two novel signaling effectors of

TGFB1, that serve as potential intracellular effectors

of its apoptotic action were identified in human

prostate cancer cells (Zhu et al. 2006). Cancer cells

become refractory to the growth inhibitory activity of

TGFB due to the loss or mutation of transmembrane

receptors or intracellular TGFB signaling effectors

during tumor initiation (Akhurst & Derynck 2001).

During prostate tumor progression to metastatic

disease, TGFB1 ligand overexpression results in

prooncogenic rather than growth suppressive effect.

In human prostate cancer cells, TGFB signaling

proceeds via ligand binding and subsequent phos-

phorylation of TGFBR2 receptor to the TGFBR1

kinase to SMAD activation (Zhu & Kyprianou 2005).

Interaction of SMAD4, (alone or together with

SMAD3), with the AR in the DNA-binding and

ligand-binding domains, may result in the modulation

of DHT-induced AR transactivation (Zhu et al. 2008).

Interestingly, in the human prostate cancer cell lines

PC3 and LNCaP, addition of SMAD3 enhances AR

transactivation, while co-transfection of SMAD3 and

SMAD4 actually repress AR transactivation (Kang

et al. 2002). A protein–protein interaction between AR

and SMAD3 has been documented both in vitro and

in vivo via the transcription activation domain of AR

and the MH2 of SMAD3; AR repression by SMAD3 is

mediated through the MH2 domain (Hayes et al. 2001).

In PC-3 prostate cancer cells, AR expression reduces

the TGFB1/SMAD transcriptional activity and the

growth effects of TGFB1 (in the absence of DHT), thus
844
preventing TGFB1-induced growth inhibition and

apoptosis. Furthermore, TGFB1 suppresses the E2F

transcriptional activity of AR activation by DHT, an

event that is associated with a reduced c-Myc

expression. An ARE sequence in the TGFB promoter

may provide a mechanistic basis for TGFB promoter

activity toward DHT in both Huh7 and PC3/AR-

expressing cells. A direct interaction between AR and

TGFB1 has been causally implicated in other human

tumors including hepatocarcinogenesis (Yoon et al.

2006). Androgens can inhibit TGFB1-induced tran-

scriptional activity in prostate cancer cells (Chipuk

et al. 2002), an interaction that is regulated by

AR-associated protein 55 (ARA55/Hic-5; LIM protein

superfamily). Overexpression of ARA55 inhibits

TGFB-mediated up-regulation of SMAD transcrip-

tional activity in rat prostate epithelial cells, as well as

human prostate cells, via an interaction between

ARA55 and SMAD3 mediated through the MH2

domain of SMAD3 and the C terminus of ARA55

(Wang et al. 2005).

The involvement of AR in the apoptosis outcomes of

TGFB signaling in prostate cancer cells is supported by

work from this laboratory. Treatment of TGFB

receptor II overexpressing LNCaP TGFBR2 cells

with TGFB in the presence of DHT, both cell cycle

arrest and apoptosis induction are significantly

enhanced over TGFB alone, through caspase-1

activation and targeting of BCL-2 (Bruckheimer &

Kyprianou 2001). Enforced BCL2 expression signi-

ficantly inhibits the combined TGFB and DHT

apoptotic effect in prostate cancer cells (Bruckheimer

& Kyprianou 2002). An androgenic contribution, with

TGFB enhancement, on the epithelial-mesenchymal

transition (EMT) provides an attractive mechanistic

possibility in view of the assigned role of EMT during

cancer metastasis (Zavadil & Bottinger 2005), with

E-cadherin being considered as a potential target for

such a dynamic duo.
AR and FGF interactions

The FGF family is a large family of proteins with broad

spectrum of functions, including cell migration,

differentiation, and angiogenesis (Ornitz & Itoh 2001).

Changes in the expression of FGFs and/or their

receptors are involved in prostate tumor progression

toward androgen-independent disease. The estrogen

receptor (ER) can regulate the synthesis of FGF2 and

FGF7 in prostate cells, while stromal ER can mediate

the synthesis of stromally derived growth factors, both

in coordination with AR activation. AR signaling can

directly dictate dramatic changes in the expression
www.endocrinology-journals.org
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pattern of FGFs in both prostate tumor epithelial cells

and stromal cells, primarily via changes in FGF1, FGF2,

FGF8, and FGF10 (Saric & Shain 1998, Nakano et al.

1999, Rosini et al. 2002). Via a positive feedback, AR is

up-regulated by paracrine FGF10 and synergizes with

cell-autonomous activated AKT in prostate cancer cells

(Memarzadeh et al. 2007). Moreover, in response to

FGFs, AR facilitates FGF-induced survival of prostate

cancer cells, possibly through BCL2 induction and

down-regulation of AR, allowing the escape of selected

clones from androgenic control (Rosini et al. 2002,

Gonzalez-Herrera et al. 2006).
AR and vascular endothelial growth factor
(VEGF) interactions

VEGF, originally known as vascular permeability

factor, is a well-characterized angiogenic cytokine,

responsible for endothelial cell proliferation, migration,

and vessel assembly (Fong et al. 1995). Its value as a

diagnostic tool as well as a therapeutic target for

advanced metastatic prostate cancer has been examined

at the molecular and translational level.

The ‘hypoxia-response’ signaling system up-regu-

lates the expression of a network of effectors that

increase the propensity of tumor cells for survival, even

in this adverse environment (Anastasiadis et al. 2003).

Expression of VEGF is transcriptionally induced by

hypoxia-inducible factor (HIF1A) in response to

oxygen changes in the microenvironment (Delong-

champs et al. 2006). Androgen-stimulated growth of the

glandular ventral prostate is preceded by increased

VEGF synthesis, endothelial cell proliferation, vascular

growth, and increased blood flow (Joseph et al. 1997,

Franck-Lissbrant et al. 1998). The role of VEGF in

androgen-mediated prostate vascularity was further

supported by additional studies (Lissbrant et al. 2004).

In prostate cancer, the effect of androgens on

angiogenesis is mediated via their ability to regulate

VEGF through activation of HIF1A in androgen-

sensitive tumors (Boddy et al. 2005). The significant

correlation between HIF1A and HIF2A expression and

with AR and VEGF expression (Boddy et al. 2005,

Banham et al. 2007) provides firm support for such a

control system. The driving mechanism involves the

direct up-regulation of VEGF-C in response to

androgen depletion in prostate cancer cells (Rinaldo

et al. 2007), via activation of the small GTPase, RalA;

VEGF-C can increase the AR co-activator BAG-1L

expression that facilitates AR transactivation. Under

conditions of low-androgen levels, the intracellular

reactive oxygen species induce RalA activation and

VEGF-C synthesis (Rinaldo et al. 2007).
www.endocrinology-journals.org
AR and growth factor interplay in
the stroma

The stroma is a lead component of the prostate

microenvironment contributing to tumor heterogeneity

and growthdynamics. Stroma-derivedfibroblasts play an

active role in carcinogenesis in addition to structurally

supporting the epithelial cell growth (Chung et al. 1989,

1991, Camps et al. 1990, Cunha et al. 1996). Studies in

the early 1990s established that human prostate-derived

stromal cells stimulate growth of prostate cancer cells

in vitro and in vivo (Gleave et al. 1991). This evidence

widely popularized the belief that disturbance in the

epithelial–stromal interactions is most critical in the

pathogenesis of prostate cancer (Hayward et al. 1998).

Androgenic control during normal growth and differen-

tiation of the prostate gland is regulated via nuclearAR in

both stomal and epithelial cells (Sar et al. 1990). The

close association between low-AR levels in the stroma

adjacent to malignant epithelium, with a poor clinical

outcome in prostate cancer patients is of high trans-

lational value (Henshall et al. 2001). Androgens increase

VEGF transcription and active VEGF secretion from

prostatic stroma, thus indirectly enhancing prostate

cancer growth and angiogenesis (Levine et al. 1998).

DHT and FGF2 can synergistically stimulate prostate

stromal cell proliferation (Niu et al. 2001), while

androgen depletion rapidly reduces stroma IGF1

synthesis and its action in the prostate epithelium.

Close rules of compartmentalization become ‘loose’

here: although IGF1 is principally produced in the stroma

and IGF-R1 in the epithelium, both are under androgenic

regulation as stroma IGF1 mRNA is significantly

decreased after castration, correlating with epithelial

cell apoptosis (Ohlson et al. 2007).

TGFB1 is also regulator of stromal cell proliferation

and differentiation, depending on the specific stromal

cell type, microenvironment, and contributing activi-

ties of other growth factors (Sporn & Roberts 1992). A

distinct in its complexity cross-talk between androgens

and TGFB1 signaling in prostate stromal cells affects

AR localization, cell proliferation, and myodifferentia-

tion, thus defining its mechanistic contribution to the

reactive stroma. AR and TGFB1 levels significantly

correlate in the stromal component of prostatic

intraepithelial neoplasia (Cardillo et al. 2000).

Induction of rat PS-1 prostate stromal cell proliferation

by androgens can be antagonized by TGFB1. Further-

more, TGFB1 triggers a cytoplasmic translocation of

nuclear AR during myodifferentiation in the prostate

stroma (Gerdes et al. 1998, 2004), while androgens

enhance TGFB1-mediated proliferation of prostatic

smooth muscle cells PSMC1 (Salm et al. 2000).
845

Downloaded from Bioscientifica.com at 08/23/2022 01:39:24PM
via free access



M-L Zhu and N Kyprianou: AR and growth factor in prostate cancer cells
During prostate cancer progression the androgen

axis engages the growth factor network to an active

cross-talk toward conferring a survival and invasion

advantage of prostate cancer cells. The current

evidence dissecting this signaling interaction between

the AR and growth factors is discussed in this review.

Androgens can modify prostate cancer cell response to

growth factor signals from growth inhibitory to tumor

promoting during the metastatic process. A better

understanding of such cross-talk between the AR axis

and critical growth factor signaling in the context of the

tumor microenvironment, may identify a mechanism

underlying the emergence of androgen-independent

prostate cancer, and provide new opportunities for

therapeutic targeting of aggressive prostate tumors.
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