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The biological action of androgens is mediated through the
androgen receptor (AR). Androgen-bound AR functions as a
transcription factor to regulate genes involved in an array of
physiological processes, most notably male sexual differenti-
ation and maturation, and the maintenance of spermatogen-
esis. The transcriptional activity of AR is affected by coregu-
lators that influence a number of functional properties of AR,
including ligand selectivity and DNA binding capacity. As the
promoter of target genes, coregulators participate in DNA
modification, either directly through modification of histones
or indirectly by the recruitment of chromatin-modifying com-

plexes, as well as functioning in the recruitment of the basal
transcriptional machinery. Aberrant coregulator activity due to
mutation or altered expression levels may be a contributing
factor in the progression of diseases related to AR activity, such
as prostate cancer. AR demonstrates distinct differences in its
interaction with coregulators from other steroid receptors due
to differences in the functional interaction between AR do-
mains, possibly resulting in alterations in the dynamic interac-
tions between coregulator complexes. (Endocrine Reviews 23:
175–200, 2002)
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I. Introduction

ANDROGENS MEDIATE A wide range of developmen-
tal and physiological responses and are especially

important in male sexual differentiation and pubertal sexual
maturation, the maintenance of spermatogenesis, and male
gonadotropin regulation (1–4). The effects of androgens are
mediated through the androgen receptor (AR), a 110-kDa
ligand-inducible nuclear receptor that regulates the expres-
sion of target genes through binding to an androgen response
element (5–9). Mutations of the AR that alter its ability to bind
androgens, or alter its transcriptional activity after ligand
binding, may result in male infertility or complete or partial
androgen insensitivity (10–14). Somatic AR mutations have
also been found in some prostate tumors (15).

It has become clear that the transcriptional activity of AR, as
well as other members of the nuclear receptor superfamily, is
modulated by coregulatory proteins. Coregulators are broadly
defined as proteins that interact with nuclear receptors to en-
hance transactivation (coactivators) or reduce transactivation
(corepressors) of target genes but do not significantly alter the
basal transcription rate (16). Steroid receptors have been shown
to interact with other DNA-binding proteins, resulting in mod-
ulation of steroid receptor transcriptional activity. AR has been
found to interact with a number of transcription factors includ-
ing AP-1 (17), Smad3 (18, 19), nuclear factor �B (NF�B) (20, 21),
sex-determining region Y (SRY) (22), and the Ets family of
transcription factors (23). Although AR is normally thought to
function as a homodimer, it has been found to heterodimerize
with other nuclear receptors including the estrogen receptor
(ER) (24), glucocorticoid receptor (GR) (25), and testicular or-
phan receptor 4 (TR4) (26). While the interaction between AR
and other transcription factors or nuclear receptors has been
shown to alter AR transcriptional activity, these interacting
proteins are not considered to be either type I or type II co-
regulators (as defined below). Coregulators are not generally
considered to possess specific DNA binding affinity (27, 28).

Abbreviations: AF, Activation function; ANPK, androgen receptor-
interacting nuclear kinase; CAK, cdk-activating kinase; CBP, CREB-binding
protein; cdk, cyclin-dependent kinase; CREB, cAMP response element-
binding protein; DBD, DNA-binding domain; DHT, dihydrotestosterone;
DRIP, VDR interacting protein; ECM, extracellular matrix; f-actin, filamen-
tous actin; FAK, focal adhesion kinase; GSK3, glycogen synthase kinase-3;
GST, glutathione-S-transferase; GTF, general transcription factor; HAT,
histone acetyltransferase; HMG, high-mobility group; LBD, ligand-binding
domain; NCoR, nuclear receptor corepressor; NF�B, nuclear factor �B; NLS,
nuclear localization signal; PBP, PPAR� binding protein; p/CAF, p300/
CBP-associated factor; PTEN, phosphatase and tensin homologue deleted
from chromosome 10; PIAS, protein inhibitor of activated STAT; pol II,
polymerase II; RTS, Rubinstein-Taybi Syndrome; SET, Su(var)3–9,
Enhancer of Zeste, and Trithorax; Rb, retinoblastoma gene product; SMRT,
silencing mediator of retinoid and thyroid hormone receptor; SRC, steroid
receptor coactivator; STAT, signal transducer and activator of transcription;
TAF, TBP-associated factor; TBP, TATA-binding protein; TCF/LEF, T cell
factor and lymphoid enhancer factor; TFIID, transcription factor IID; TIF,
transcriptional intermediary factor; TRAP, TR-associated protein; TR2 and
TR4, testicular orphan receptors 2 and 4.

0163-769X/02/$20.00/0 Endocrine Reviews 23(2):175–200
Printed in U.S.A. Copyright © 2002 by The Endocrine Society

175

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/23/2/175/2424160 by guest on 20 August 2022



Coregulators are now known to use multiple mechanisms
to influence nuclear receptor transcription and can be cate-
gorized based on their functional characteristics. Coregula-
tors can be divided into two major types. Type I coregulators
function primarily with the nuclear receptor at the target
gene promoter to facilitate DNA occupancy, chromatin re-
modeling, or the recruitment of general transcription factors
associated with the RNA polymerase II holocomplex. The
functional characteristics of this type of coregulator have
recently been reviewed (29). Examples of this type of co-
regulator are cAMP response element binding protein
(CREB)-binding protein (CBP)/p300 and SRC-1, which both
possess histone acetyltransferase (HAT) activity (30, 31) and
interact with the basal transcriptional machinery (32, 33).
Other type I coregulators include the tissue- and transcrip-
tion factor-restricted TATA-binding protein (TBP)-associ-
ated factors (TAFs) (34, 35), the DRIP/TRAP/Mediator com-
plex (36–38), and the SWI/SNF chromatin remodeling
complex (reviewed in Ref. 29). While these factors have been
found to function as coregulators of some nuclear receptors,
they have not been characterized as AR coregulators. It re-
mains to be established whether this represents a genuine
difference in the control of AR transcription. The type II
coregulators function primarily to enable the nuclear recep-
tor to be competent to direct target gene expression by mod-
ulating the appropriate folding of AR and ligand binding or
facilitating NH2/COOH-terminal interaction. These actions
may contribute to AR protein stability in the presence of
agonistic ligands or influence the subcellular distribution of
AR, resulting in an overall influence on AR transcriptional
activity. This category includes coregulators that stabilize the
ligand-bound receptor, such as ARA70 (39–41), and coregu-
lators such as filamin (42) that facilitate the translocation of
the ligand-bound receptor to the nucleus. However, it is
important to note that the relative importance of many of the
identified AR coregulators has not yet been examined in
intact animal models, and therefore their true physiological
relevance in normal and pathological conditions remains to
be established.

II. The Androgen Receptor (AR)

The AR is a member of the nuclear receptor superfamily,
members of which function as ligand-inducible transcription
factors that mediate the expression of target genes in re-
sponse to ligands specific to each receptor, including ste-
roids, retinoids, vitamin D, thyroid hormone, hydrocholes-
terol metabolites, and xenobiotic agents. Nuclear receptors
can be subdivided into three general types (16, 43, 44). The
classical steroid receptors such as AR, the ER, progesterone
receptor (PR), GR, and mineralocorticoid receptor (MR) are
grouped as type 1 receptors. These nuclear receptors typi-
cally form ligand-induced homodimers, binding to inverted
repeat DNA response elements. The type 2 nuclear receptors
dimerize with the 9-cis retinoic acid receptor (RXR) and in-
clude the receptors for vitamin D3 (VDR), thyroid hormone
(TR), all-trans retinoic acid (RAR), and the peroxisome
proliferator-activated receptors (PPAR). The DNA response
elements of this group of nuclear receptors are characteris-

tically direct repeats. The third type of nuclear receptors are
the orphan receptors, such as TR2, TR4, and chicken oval-
bumin upstream promoter transcription factor (COUP-TF)
(45–47), the ligands for which remain unclear. Although AR
is normally thought to function as a homodimer, hetero-
dimers between AR and TR4 (26), or ER� (24), have been
reported and in both cases result in a decrease in AR tran-
scriptional activity. Phosphorylation has been shown to
modify the ligand-induced activity of steroid receptors,
notably AR (48–52) and ER (53), as well as other members of
the nuclear receptor superfamily (54). However, it has be-
come apparent recently that at least some nuclear receptors
may also become transcriptionally active independently of
their cognate ligand through phosphorylation (28, 55, 56),
although the physiological impact of ligand-independent
activation has yet to be established.

AR, in common with other members of the nuclear recep-
tor superfamily, can be subdivided into four functional do-
mains: the NH2-terminal transactivation domain (or A/B
domain), the DNA-binding domain (DBD), hinge region, and
ligand-binding domain (LBD). Using deletion and muta-
tional analyses of nuclear receptors in transfection experi-
ments, two transcriptional activation functions have been
identified. An NH2-terminal activation function (AF-1) func-
tions in a ligand-independent manner when artificially sep-
arated from the LBD, creating a constitutively active receptor
(57, 58). A ligand-dependent AF-2 function is located in the
LBD, and mutation or deletion of the AF-2 domain dramat-
ically reduces transcriptional activation in response to ligand
(58–63).

The NH2-terminal domain is the most variable between
nuclear receptors in terms of both length and sequence. In the
case of AR, there are two discrete regions within the NH2
terminus that contribute to transactivation. The full-length
receptor requires a region primarily located between amino
acids 141 and 338 for full ligand-inducible transcriptional
activity (64, 65). This region contains a polymorphic poly-
glutamine repeat that ranges from 8 to 31 repeats in normal
individuals, with a modal length of 20 (6, 66). Charged,
glutamine-rich regions are found in a number of coactivators
and transcription factors, including SRC-3, CBP, TAFII130,
and Sp1, and are thought to modulate protein-protein inter-
actions (67–69). Longer polyglutamine tract length results in
decreased AR transcriptional activity in vitro (70, 71). Clin-
ically, men whose AR has a polyglutamine tract length at the
long end of the normal range (�28) have an increased inci-
dence of impaired spermatogenesis and infertility (72). Ex-
pansion of the polyglutamine tract to more than 40 repeats
causes the rare neuromuscular disorder, spinal and bulbar
muscular atrophy (SBMA or Kennedy’s disease), which is
also associated with decreased virilization, testicular atro-
phy, reduced sperm production, and infertility (73). The
polyglutamine tract forms part of the interaction surface for
the AR coactivator ARA24 and expansion of the polyglu-
tamine tract from 25 to 49 repeats results in a reduction of
AR-ARA24 interaction, possibly because the expanded glu-
tamine repeats result in an abnormal conformation of the AR
NH2-terminal (74). The ligand-independent AF-1 region of
the AR NH2-terminal is located from amino acids 360–494
(57). The transactivational activity of the AR AF-1 region is
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only detected in AR fragments lacking the LBD and is
thought to function in this context by recruiting coactivators
and/or general transcription factors (GTFs). However,
amino acid substitutions in the AF-1 domain have been iden-
tified in patients suffering from complete androgen insen-
sitivity (75, 76) and in patients with oligospermia (77),
indicating the importance of this region in function of
the full-length AR. A motif within the AF-1 domain,
433(WXXLF)473, has been shown to interact with the AR
LBD (78). The AR NH2/COOH-terminal interaction has been
shown to be facilitated by several coactivators and is impor-
tant in stabilizing bound ligand (62, 79, 80). It is possible that
in the full-length AR protein, the AF-1 domain functions to
interact with coactivators and provides an interaction surface
for the AR COOH terminus. Because AR has two separate
NH2-terminal transactivational domains, it is possible that
each domain interacts with different coregulators or tran-
scription factors, possibly in a promoter context-dependent
manner (57).

The DBD of all members of the nuclear receptor super-
family consists of two zinc fingers that recognize specific
DNA consensus sequences. AR binds as a dimer to the con-
sensus inverted repeat androgen response element, GGTA-
CAnnnTGTTCT, as well as to more complex response ele-
ments (81–85). Some coregulators exert their function on AR
transcription by modulating the ability of AR to bind its
recognition sequence, a function that is considered to be one
of the characteristics of a type I coregulator (29). The AR
corepressor calreticulin inhibits AR transactivation by inter-
acting with the AR DBD to prevent DNA binding (86). Al-
ternatively, the coactivator RAF binds to the NH2-terminal
domain of AR but exerts its effect by enhancing AR DNA
binding (87).

As the name implies, the hinge region of hormone recep-
tors links the DBD and LBD. AR, in common with other
steroid receptors, has a ligand-dependent bipartite nuclear
localization signal (NLS) located in the COOH terminus of
the DBD and the hinge domain (88, 89). The hinge NLS of GR
has been shown to interact with importin � to mediate nu-
clear trafficking (90). In AR, the NLS is located between
amino acids 617 and 633 (88, 89). Clinically, an arginine-to-
proline substitution at position 617 (R617P) of AR has been
observed in two unrelated patients with partial or complete
androgen insensitivity (91, 92) and as a somatic mutation in
a metastatic prostate cancer specimen (93). This mutation
does not alter the apparent dissociation constant (Kd) for
dihydrotestosterone (DHT) or effect DNA binding, but abol-
ishes transcriptional activation in response to DHT (91, 92).
It is therefore possible that the R617P mutation inhibits the
ability of AR to translocate to the nucleus.

The LBD of AR, in addition to forming the ligand-binding
pocket, mediates the interaction between AR and heat shock
proteins (94) and interacts with the AR NH2 terminus to
stabilize bound androgen (62). X-ray crystallographic studies
indicate that the LBD has a similar structure between nuclear
receptors, with the ligand-binding pocket formed by 11–13
�-helices (95–97). By convention, the LBD �-helices are num-
bered according to those of the RXR� crystal structure (98,
99). X-ray crystallographic studies demonstrate that AR, sim-
ilar to PR, ER�, and ER�, lacks a helix 2 (95, 97, 100, 101).

Comparison of the crystal structures of receptors in the ab-
sence of ligand and in the ligand-bound state show that
ligand binding induces a conformational change in which
helix 12 and the AF-2 domain fold back across the ligand-
binding pocket (97, 99). Crystallographic analysis of AR
bound to the synthetic androgen R1881 demonstrates that it
closely resembles the structure of PR (100). However, the AR
helix 12 is split into two shorter helical segments in this
structure, which is not observed in PR (100). It is unclear
whether this conformation of the AR helix 12 is ligand spe-
cific, since the structure of AR bound to DHT showed a
continuous helix 12 (101). In the case of some nuclear recep-
tors, including PPAR� (96) and ER� (102), the conformation
of helix 12 upon ligand binding generates a ligand-depen-
dent interaction surface for coregulators (99). Although the
crystal structure of AR suggests that ligand binding induced
a LBD conformation similar to ER and potentially generates
a similar coregulator interaction surface, functional analyses
of the full-length receptors suggest that distinct differences
exist between the coregulator interaction domains of AR and
ER. This may be because the interaction between the AR NH2
terminus and the LBD generates a potential coregulator in-
teraction surface that differs from that of ER. Unfortunately,
to date, the three-dimensional structure has not been deter-
mined for any full-length nuclear receptor.

Members of the SRC family of coactivators [SRC-1, tran-
scriptional intermediary factor 2 (TIF-2), and SRC-3] typi-
cally interact with the LBD of nuclear receptors through
LXXLL motifs (where L is leucine and X is any amino acid)
that form amphipathic �-helices. The LXXLL domains of the
coactivator interact with the nuclear receptor partly through
the hydrophobic surface of the receptor AF-2 domain (103,
104). However, the AF-2 of AR is relatively weak compared
with ER and GR. In transfection experiments, the NH2 ter-
minus of AR is able to mediate transcription of a reporter
gene to the same extent as the full-length receptor in the
presence of androgen (65). While SRC-1 and TIF-2 interact
with the AR AF-2, this interaction is not essential for coac-
tivation (62, 63). Instead, SRC-1 and TIF-2 primarily interact
with the AR NH2 terminus and possibly the DBD. This in-
teraction, in contrast to several other nuclear receptors, does
not require the coactivators to contain intact LXXLL motifs
(62, 63) (Fig. 1). A SRC-1 mutant carrying no functional
LXXLL motifs was able to potentiate AR transcriptional ac-
tivity to the same extent as wild-type SRC-1 (63). However,
the absence of LXXLL motifs abolishes the ability of SRC-1
to enhance ER transactivation (63, 105). Mammalian two-
hybrid assays and glutathione-S-transferase (GST) pull-
down interaction studies suggest that the AR NH2 and
COOH termini interact directly and that this interaction is
mediated through LXXLL-like motifs present in the AR NH2
terminus interacting with the AR AF-2 domain (62, 78, 106).
It is possible that the AR NH2 terminus competes with
LXXLL-containing coactivators for binding to the AR AF-2
(78, 106). The type II coregulator ARA70 contains an LXXLL
motif that forms part of the interaction surface with PPAR�
and RXR� (107). However, mutation of the ARA70 LXXLL
motif does not alter its ability to interact with AR (S. Yeh and
C. Chang, manuscript in preparation). Point mutagenesis
studies within the AR LBD suggest that the NH2/COOH-
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terminal interaction positions or stabilizes helix 12 across the
ligand-binding pocket, resulting in a reduced dissociation
rate of bound androgen (62). In the case of ER, SRC-1 interacts
with the LBD to stabilize this interdomain interaction (108).
In contrast, SRC-1 and TIF-2 do not stabilize the NH2/
COOH-terminal interaction of AR (62). Instead, this stabili-
zation may be mediated by CBP (80).

While the AR NH2/COOH-terminal interaction may re-
duce the importance of LXXLL motifs in AR coregulators, it
is possible that similar short motifs may function in coregu-
lator-AR interactions. Using a peptide library to screen for
AR-interacting peptides, we have found that FXXLF motifs
(where F is phenylalanine) strongly interact with AR. A
FXXLF motif is present in the AR NH2 terminus and is
necessary for the NH2/COOH-terminal interaction (78). This
motif is also present in several AR coregulators including
ARA70, ARA55, ARA54, and FHL2. Mutation of the FXXLF
motif to FXXAA in ARA70 and ARA55 reduces their ability
to enhance AR transcription. The functional interaction be-
tween coregulator FXXLF motifs and the AR NH2 and COOH
termini is currently under investigation (C.-L. Hsu and C.
Chang, manuscript in preparation).

III. Interaction of AR with General Transcription
Factors (GTFs)

Transcriptional activation by steroid receptors ultimately
requires the recruitment of RNA polymerase II (pol II) to the
promoter of target genes. Transcription initiation has been
extensively reviewed elsewhere and will be summarized
here only briefly (109). Pol II recruitment is mediated through
the assembly of GTFs to form the preinitiation complex, the

first step of which is the binding of TBP near the transcrip-
tional start site. TBP is part of a multiprotein complex, tran-
scription factor IID (TFIID), which also contains general and
promoter-specific TBP-associated factors (the TAFII pro-
teins). TBP binding induces DNA bending, bringing se-
quences upstream of the TATA element in closer proximity,
presumably enabling interaction between GTFs and steroid
receptor-coregulator complexes. TFIIB binds directly to TBP
and functions to recruit the TFIIF-pol II complex. TFIIF do-
mains, in addition to interacting with TFIIB and pol II, ap-
parently also serve in transcription initiation and elongation.
The ATPase and kinase TFIIE and the helicase TFIIH are then
recruited to pol II to facilitate DNA strand separation before
transcription initiation.

While one mechanism of coregulator action is to facilitate
or prevent communication between the nuclear receptor and
the transcriptional machinery, nuclear receptors have been
shown to directly interact with various GTFs (35, 110–112).
GTFs themselves are not considered coregulatory proteins
because they influence the basal transcription rate (16). We
and others have shown that the AR NH2 terminus is able to
recruit TFIIF directly (113, 114). AR and RAR� have both
been demonstrated to interact directly with TFIIH through
their NH2-terminal domains (110, 114). TFIIH is a multisub-
unit factor consisting of six core subunits (p89, p80, p62, p52,
p44, and p34) and a protein kinase moiety CAK [cyclin-
dependent kinase (cdk)-activating kinase]. CAK itself is com-
posed of three catalytic subunits, MAT1, cyclin H, and cdk7
(115). Immunoprecipitation of endogenous AR and CAK
subunits in the prostate cancer cell line LNCaP demonstrated
that AR interacts with cdk7. The ability of the AR interaction
with CAK to enhance AR transcription in response to an-
drogen was demonstrated in cotransfection experiments in
prostate cancer cells in which transfection of all three CAK
catalytic subunits resulted in a 2- to 3-fold increase in AR
transactivation (114). In the case of CAK interaction with
RAR�, cdk7 functions to phosphorylate RAR� at Ser-77, a
residue known to be critical for RAR� AF-1 activity (110).
Phosphorylation of AR is known to modulate AR transcrip-
tional activity, but it is not yet known whether CAK enhances
AR transcription by phosphorylation of the AR NH2 termi-
nus or through other mechanisms. It has been found recently
that AR interacts with the general elongation factor PITALRE
[(pro-ile-thr-ala-leu-arg-glu) kinase] (116), suggesting that
the interaction of AR with TFIIF and TFIIH may assist in the
recruitment of elongation factors to AR target promoters. It
should be noted that the ability of AR to bind its response
element and recruit GTFs is not necessarily sufficient to allow
transcription to occur. The suppression of NF�B transcrip-
tion by GR results from the prevention of pol II phosphor-
ylation after NF�B has bound to its response element and
recruited the GTFs of the preinitiation complex (29, 117).

The AR coactivator ARA160 was initially isolated as a
factor capable of inhibiting TBP activation of the human
immunodeficiency virus 1 long terminal repeat (118, 119).
However, ARA160 enhances the ligand-dependent transac-
tivation of AR, GR, and PR (119). While the mechanism of
these divergent effects is unclear, it is possible that ARA160
is capable of regulating TFIID by altering the DNA binding
of TBP (118). ARA160 is a target of the FER nuclear tyrosine

FIG. 1. Members of the SRC family of coactivators interact differ-
ently with AR and ER. The receptor LBD, DBD, and NH2 terminus
(N) are indicated. The ER dimer binds to SRC-1 through an interac-
tion between the ER LBD and the LXXLL motifs of SRC-1 (ligand
bound to the LBD is represented by a black dot; the contacting LXXLL
motifs are represented by open rectangles) (108, 185). The LXXLL
motifs of SRC-1 interact with the ligand-bound LBD of AR, but this
interaction is not required for SRC-1 to enhance AR transcription
(indicated by solid rectangles) (63). However, the interaction between
SRC-1 and the AR NH2 terminus is necessary for SRC-1 function.
SRC-1 interacts with AR through a glutamine-rich region (indicated
by open circles) located NH2 terminal to the LXXLL motifs (63).
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kinases (120), suggesting that ARA160 may modulate AR
transcription by coordinating a kinase signal cascade with
the basal transcriptional machinery.

IV. AR Coactivators

Steroid receptor coregulators were initially postulated to
exist on the basis of transcriptional interference (or squelch-
ing) in transfection experiments (121, 122). The ligand-
induced transcriptional activity of a receptor was found to be
decreased in the presence of a different transfected, ligand-
bound receptor. The magnitude of the transcriptional inter-
ference, as well as the receptor domains that mediated the
interference, were found to vary between receptors and be-
tween cell types (121). These observations suggested the
presence of limiting mediators of steroid receptor transcrip-
tion and indicated that these mediators vary between cell
types. In confirmation of this hypothesis, biochemically de-
fined receptor interacting proteins were subsequently iden-
tified (123, 124). In the past few years, a large number of
nuclear and steroid receptor coactivators have been cloned
and have been shown to augment receptor-mediated trans-
activation (reviewed in Refs. 16 and 28).

As shown in Table 1, many coactivators have been iden-
tified as enhancing the ligand-induced transcriptional activ-
ity of AR. However, the relative importance of these coac-
tivators for any particular cell type remains unclear. A
demonstration of the transcriptional effect of a newly iso-
lated coregulator is typically done in transient transfection
experiments that examine the ability of the putative coregu-
lator to alter the transcriptional activity of an endogenous or
transfected nuclear receptor on an artificial reporter con-
struct. The milieu of endogenous coregulators will obviously
influence the ability of an exogenous coactivator to enhance
transcription and may account for many of the differences
observed between cell lines (for example, Refs. 119 and 125).
Even within the same cell line, cell density and culture con-
ditions are known to alter steroid responsiveness (126). Ad-
ditionally, the relative promoter strength or design of the
expression vectors used, and the receptor-coregulator ratio,
may affect the ability of the of the coregulator being exam-
ined to counteract the influences of the endogenous coregu-
lators. These combined factors may explain the divergent
results that have been reported for several coactivators (40,
127–129). Genetic manipulation of the mouse will be helpful
in determining the extent to which the function of any one
coregulator can be complemented by others and will assist
in defining the relative importance of a given coregulator in
particular tissues and in the transcriptional regulation by
different steroid receptors. To date, relatively few coregula-
tors have been targeted for disruption. Disruption of SRC-1
results in partial hormone resistance, particularly to thyroid
hormone (130, 131). SRC-3 was shown to have particular
importance in mammary gland development in SRC-3 null
mice (132). In contrast, mice null for the PBP/DRIP205/
TRAP220 (the PPAR� binding protein) coregulator, the
member of the DRIP/TRAP complex that serves as a coac-
tivator for a number of nuclear receptors (37, 133, 134), die
at midgestation (135). While this demonstrates the impor-

tance of the DRIP/TRAP complex, this complex has not yet
been characterized as a coregulator of AR.

One of the major mechanisms through which coregulators
were initially envisaged to function was by forming a bridge
between the DNA-bound nuclear receptor and the basal tran-
scriptional machinery, a characteristic now considered to be
one of the classifications of a type I coregulator (29). By
stabilizing or recruiting the RNA pol II holoenzyme complex
to the nuclear receptor target gene, such a coactivator would
be able to enhance transcription. Although a wide range of
interacting proteins has been shown to coactivate nuclear
receptors, relatively few coactivators have been demon-
strated to function in precisely this manner. CBP and the
p300/CBP-associated factor (p/CAF) have been copurified
with the RNA pol II holoenzyme complex (32, 136), and in
GST pull-down assays SRC-1 has been shown to interact with
TBP and TFIIB (33). As indicated below, a number of AR
coactivators have been characterized as interacting with CBP
and/or p/CAF and may therefore link AR to the basal tran-
scriptional machinery through these proteins. It has been
postulated that coregulators exist in partially assembled ho-
locomplexes in the nucleus, similar to the RNA pol II holo-
complex (29, 137). These coregulator holocomplexes are
suggested to be composed of specific combinations of coac-
tivators that are differentially located in the nucleus (29). In
this model, a dynamic association between coactivator ho-
locomplexes mediating chromatin modification or recruit-
ment of the basal transcription factors occurs with the DNA-
bound receptor to allow transcription from the target gene
(29, 137). Support for this model in terms of steroid receptors
has come from chromatin immunoprecipitation, chromatin
reconstitution, and fluorescent recovery assays examining
the dynamics of coactivator association with ER� (138–140).
In the presence of estradiol (E2), DNA-bound ER� rapidly
associates with SRC-3, PBP, and p300 and subsequently re-
cruits pol II (139). After the initiation of transcription, ER�,
SRC-3, and PBP cease to be associated with the promoter,
presumably to begin another cycle of reinitiation (139). Sim-
ilar results have been found for PR in chromatin reconsti-
tution experiments (141). As indicated above, the manner in
which AR interacts with SRC proteins is different from ER,
and PBP has not yet been characterized as an AR coregulator.
It is therefore possible that the initial coactivator holocom-
plex that associates with the DNA-bound AR is different
from the initial ER� holocomplex.

Coregulator mutations that prohibit the appropriate mul-
tiprotein complex assembly would be expected to inhibit
steroid receptor transcriptional activation, possibly in a dom-
inant manner. The type I coregulator ARA54, a coactivator of
AR and PR (142), functions as a dimer (143). A COOH-
terminal truncation of ARA54 and a COOH-terminal trun-
cation carrying a glutamic acid to lysine mutation at amino
acid 472 function as dominant negative mutants of AR tran-
scription. In addition, these mutations inhibit androgen-
induced prostate cell growth (143). Mutations of the coregu-
lator ARA70 that prevent dimerization and interaction with
other coregulatory proteins also exert a dominant-negative
affect on AR transactivation (M. Rahman and C. Chang,
unpublished observations).

Coactivators may also function to facilitate ligand binding,
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TABLE 1. AR coactivators

Coactivator Region Comments Selected references

ANPK (PKY) DBD Serine/threonine kinase that does not phosphorylate AR.
Enhances AR protein stability.

(160)

ARA24 (Ran) NH2-term. Interacts with the NH2-terminal domain that contains
the polyglutamine repeat. Expansion of the AR
polyglutamine tract from 25 to 49 results in a 50%
reduction in AR-ARA24 interaction.

(74)

ARA54 LBD Enhances AR(T877S) transcription in response to DHT,
E2, and HF. wtAR transcription is only enhanced by
ARA54 in the presence of DHT. Contains a RING
finger and B-box domain. Also coactivates PR.

(142)

ARA55 (Hic5) LBD Contains a LIM domain. The mouse homolog is inducible
by TGF�1. Enhances wtAR transcription in response
to DHT and AR(T877A) in response to DHT, E2, and
HF. Also coactivates GR and PR.

(263, 272)

ARA70 (RFG,
ELE1)

DBD-LBD Enhances the transactivation of both wtAR and
AR(T877A) in response to DHT and E2; enhances
wtAR and AR(T877S) in response to androstenediol,
HF, and casodex. Also coactivates PPAR�, shows
marginal enhancement of ER and GR. May function as
a bridging factor to p/CAF and TFIIB. Functions
synergistically with ARA160 to enhance AR
transcription. A chromosomal translocation resulting
in the production of an ARA70 NH4-terminal-Ret
thymidine chimeric protein is oncogenic in papillary
thyroid carcinomas.

(40, 41, 107, 125, 127, 186,
202, 322)

ARA160 (TMF) NH2-term. Shows a greater than additive interaction with ARA70.
Also enhances transcription by GR and PR.

(119)

ARA267
(NSD1)

NH2- and COOH-
term.

Contains SET and PHD domains. Also interacts with
RAR, RXR, ER, and TR.

(224, 225)

ARIP3
(PIAS�x)

DBD Facilitates the interaction between the AR NH2- and
COOH-terminals. Represses AR mediated transcription
of the probasin promoter at a high ratio (1:200
AR:coactivator).

(79)

BAG-1L a Also functions to regulate hsp70 (184)

�-Catenin a Enhances the transcription of AR(T877A) in response to
androgen. Enhances wtAR transcription in response to
T, androstenedione, and E2. �-Catenin also reduces
the antagonistic effect of bicalutamide on AR in the
presence of androgen. Activated by the Wnt pathway
to complex with TCF transcription factors.

(162, 170)

BRCA1 NH2- and COOH-
term.

Breast cancer susceptibility gene. Interacts with CBP.
Enhances AR transcription synergistically with ARA70
and ARA55. Disease-associated mutations of BRCA1
reduce its ability to enhance AR transcription.

(314, 323–325)

Caveolin-1 NH2-term. and
LBD

Membrane protein associated with caveoli membrane
structures.

(326)

CBP NH2-term. DBD Facilitates AR NH2/COOH-term. interaction. Possesses
acetyltransferase activity. Interacts with members of
the SRC family. Coactivates multiple transcription
factors. Mutated in RTS.

(21, 80, 144, 241–243, 310,
327)

Cyclin E NH2-term. Enhances AR transcriptional activity independently of
cell cycle progression.

(328)

E6-AP a Contains separable coactivation and ubiquitin ligase
domains. Also interacts with PR, GR, and ER.

(254)

FHL2 (DRAL) Requires intact
AR

Expressed predominantly in the heart; expression also
seen in the epithelia and stroma of the prostate. LIM
only protein without an LXXLL motif.

(275)

Gelsolin LBD Enhances AR transcription in prostate and muscle cells.
Also functions as an actin filament severing and
capping protein.

(K. Nishimura and C. Chang,
manuscript in preparation)
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promote receptor nuclear translocation, or mediate signal
transduction. Figure 2 depicts the multiple mechanisms that
type I and type II coregulators may use to ultimately influ-
ence AR transcriptional activity. A number of AR coactiva-

tors can be grouped into families on the basis of structural
and functional homology. Such families include members of
the SRC family and some filamentous actin (f-actin)-binding
proteins. However, not all AR coactivators have been found

TABLE 1. Continued

Coactivator Region Comments Selected references

HMG-1/-2 a HMG-1 and HMG-2 represent separate gene products
with extensive sequence identity. Also enhances
transactivation by PR and GR. Enhances DNA binding
of AR, PR, ER, and GR. Is found as an abundant
chromatin-associated protein that does not bind a
specific DNA recognition sequence.

(212)

hsp40 (dnaJ,
ydj1p)

LBD Member of the chaperone heterocomplex. Mutation of
hsp40 in yeast reduces AR transcriptional activation.

(329)

PGC-1 (LEM6) a General nuclear receptor coactivator. Originally
identified in mouse as a cold-induced coregulator in
brown fat. In human tissue, the predominant site of
expression is in skeletal muscle.

(330–332)

PIAS1 DBD-LBD Expression in the rat testes coincides with the onset of
spermatogenesis. Also coactivates GR but functions as
a corepressor of PR.

(159)

RAF (IDE) NH2-term. Enhances AR and GR DNA binding. (87, 333)

Rb NH2-term.-DBD Tumor suppressor. Enhances transcription of wtAR and
AR(T877S). Interacts with the TR coactivator Trip230
to repress TR transcription.

(313, 334)

RIP140 NH2-term.-DBD
(LBDb)

Functions as a coactivator at low receptor-coactivator
ratios, but as a repressor at a high ratio. Influences
the transcriptional activity of ER, PPAR�, and PPAR�.

(63, 80, 322)

SNURF (RNF4) DBD RING finger protein; may recruit the chromatin
remodeling factor HMGI(Y). Also interacts with ER
and PR.

(335, 336)

SRA a Also enhances transcription by PR, GR, and ER.
Enhances transactivation through the AF-1 domain of
GR and PR. Functions as a RNA transcript and
associates with a SRC-1 containing coregulator
complex.

(337)

SRC-1 (NCoA-1) NH2-term.-DBD
(LBDb)

Unlike other nuclear receptors which interact with SRC-
1 through their LBD, AR interacts through its NH2-
terminal and DBDs. Enhances AR NH2/COOH-term.
interactions. Interacts with CBP/p300. General nuclear
receptor coactivator. Possesses weak acetyltransferase
activity.

(31, 62, 80, 128, 144, 262,
338)

SRC-3 (Rac3,
ACTR, AIB1,
p/CIP, TRAM1)

a Also enhances transcription by TR, PR, and RAR.
Interacts with CBP/p300. Possesses acetyltransferase
activity.

(41, 67, 146, 153, 339)

Supervillin NH2- and COOH-
term.

Actin-binding protein. Also interacts with GR. (175)

TIF2 (GRIP1,
NCoA-2, SRC-
2)

NH2-term.-DBD General nuclear receptor coactivator. Mutations of AR
that interrupt NH2/COOH domain interactions also
disrupt AR interactions with TIF2.

(62, 151, 340, 341)

Tip60 Hinge-LBD Member of the MYST/SAS family of histone
acetyltransferases. Also coactivates PR and ER.

(298)

Ubc9 DBD-hinge Covalently links the ubiquitin-like molecule SUMO-1 to
target proteins. This activity is separable from
coactivation. Also interacts with GR.

(342)

Zac-1 LBD Can function as a coactivator of AR in HeLa cells but as
a corepressor in 1471.1 cells. Also interacts with ER�,
TR, and GR. In HeLa cells, coactivation is synergistic
with TIF2.

(343)

term., Terminal; HF, hydroxyflutamide; wtAR, wild-type AR.
a Although interaction with AR has been demonstrated, the precise domain of AR that interacts with the coregulator has not yet been determined.
b This domain has been found to interact with the coregulator but this interaction is not essential for coregulation.
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to be members of distinct protein families. These coactivators
will be grouped, for the purpose of this review, by the mech-
anisms through which they have been found to enhance AR
transcriptional activity. It is important to note that many
coactivators may ultimately be found to use multiple mech-
anisms to influence AR transcription and that further char-
acterization will reveal that some coactivators integrate a
number of functions.

A. The steroid receptor coactivator (SRC) family

The members of the SRC family of nuclear receptor co-
regulators are among the most extensively characterized;
because their characteristics have been reviewed recently
(16), they will be discussed here only briefly. SRC-1 was
initially isolated from a yeast two-hybrid screen as a protein
that interacted with the PR LBD (128) and has subsequently
been shown to enhance the ligand-dependent transcription
of a number of nuclear receptors, including AR (62, 80, 144).
The other SRC family members, TIF-2 and SRC-3, share a
similar structural organization to SRC-1. All SRC coactiva-
tors are characterized by NH2-terminal tandem basic helix-
loop-helix and PAS (Per/Arnt/Sim homology) domains,
contain three LXXLL motifs in the central portion of the
protein, and carry a COOH-terminal glutamine-rich region.

The SRC coactivators are able to recruit additional nuclear
receptor coregulators including CBP and p/CAF (105, 145,
146). Additionally, SRC-1 has been found to interact with
TFIIB and TBP (33). As described above, the interaction be-
tween SRC coregulators and AR differs from that of ER, GR,
RAR, PPAR�, and PPAR� (96, 103–105, 147, 148). AR inter-
action does not require that SRC-1 or TIF-2 carry intact
LXXLL motifs, although other nuclear receptors require that
at least a subset of SRC-1 or TIF-2 LXXLL motifs be present
for interaction and coactivation (62, 63, 148, 149). While the
AF-2 domain of AR is capable of interaction with SRC-1 and
TIF-2, this interaction is weak compared with the LBD-AF-2
of GR and ER (62, 63). Mutagenesis studies additionally
suggest that SRC coregulators are recruited to AR by the AR
NH2-terminal and DBD (62). SRC-1 and SRC-3 have both
been characterized as HATs with the acetyltransferase do-
main located in the COOH terminus of the protein partially
overlapping the glutamine-rich region (31, 146). While TIF-2
contains a COOH-terminal domain that is 38% identical with
the HAT domain of SRC-1 at the amino acid level (146), it has
not yet been established that TIF-2 is also an acetyltrans-
ferase. Increased histone acetylation is correlated with tran-
scriptional activity (150), and the presence of HAT activity in
coactivators suggests that they may play a role in establish-
ing or maintaining a transcriptionally open chromatin struc-

FIG. 2. Integration of different coactivator functions to enhance AR transcriptional activity. The chaperone heterocomplex, including the type
2 coactivators hsp40 and BAG-1L, assist in the appropriate folding of AR to a conformation permissive to ligand binding. DHT binding promotes
receptor dimerization and NH2/COOH-terminal interaction. Ligand binding is stabilized by type 2 coactivators such as ARA70. Interaction of
some coactivators, such as ARA55, may be altered by kinases. As depicted, activation of the PYK2 kinase blocks ARA55 association with AR.
Type 2 coregulators may also influence the ability of AR to be translocated to the nucleus, here shown by the f-actin binding protein filamin
(FM). Binding to the promoter of target genes is assisted by certain type 1 coactivators (shown here is RAF). Separate type 1 coactivator complexes
are recruited to facilitate transcription. After transcriptional initiation, AR may be recycled from the promoter. See text for a detailed discussion.
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ture at the promoter of nuclear receptor target genes. Because
of the ability of at least some of the SRC family members to
recruit the basal transcriptional machinery and function as
HATs, the SRC proteins are considered to be type I coregu-
lators (28, 29).

Although all members of the SRC family have been shown
to enhance AR transcription in transfection assays (41, 62,
151), targeted disruption of SRC-1 in mice does not cause a
significant androgen-insensitive phenotype (131), suggest-
ing that other coactivators are able to substantially compen-
sate for the loss of SRC-1. Male SRC-1 null mice show normal
fertility (131), suggesting that the extremely androgen-
sensitive process of spermatogenesis is not substantially al-
tered. However, the testes of SRC-1 null mice were observed
to be 19% smaller as a proportion of body weight compared
with wild-type controls. Androgen responsiveness in SRC-1
null males was assessed by measuring prostate growth in
castrated mice in response to androgen administration. After
7 d of testosterone (T) treatment, prostate plus urethral
weight was 34% less than wild-type control-treated mice,
again suggesting a mild androgen resistance (131). The SRC
family of coactivators has recently been found to be func-
tionally redundant to each other for enhancement of ER�
transactivation (152). It is therefore possible that TIF-2
and/or SRC-3 can compensate for the loss of SRC-1 in vivo.
The TIF-2 mRNA level is increased in the testes of the SRC-1
knockout mice, possibly compensating for the absence of
SRC-1 and enabling spermatogenesis to continue (131).
SRC-3 is known to localize to the AR-positive Sertoli cells of
the testes (153, 154) and may also contribute to the mainte-
nance of AR function in the absence of SRC-1. However,
given the number and diversity of AR coregulators, it is
possible that other, non-SRC coactivators may also contrib-
ute to the compensation for the lack of SRC-1.

B. The PIAS [protein inhibitor of activated signal
transducer and activator of transcription (STAT)] family

The PIAS family comprises a number of related genes, the
first member of which was cloned by its ability to interact
with the STAT1 transcription factor (155). The STAT tran-
scription factor family members are phosphorylated by the
JAK nonreceptor tyrosine kinases in response to cytokine or
growth factor stimuli, such as interferon, interleukins, and
epidermal growth factor. STAT phosphorylation causes fac-
tor dimerization and translocation to the nucleus where
STAT dimers regulate target gene transcription (156). PIAS1,
however, functions to modulate this activation pathway by
interacting with phosphorylated STAT1 to prevent DNA
binding (155). Similarly, PIAS3 binds to phosphorylated
STAT3 to inhibit its ability to bind DNA (157). The PIAS
proteins, however, function not only to inhibit DNA binding
of their interaction partners. PIASx� (Miz1) has been shown
to interact with the homeobox protein Msx2 to enhance the
affinity of Msx2 for its DNA recognition sequence (158).

Two PIAS family members have been shown recently to
interact with and coactivate AR. PIAS1 was isolated in a yeast
two-hybrid screen as a factor capable of interacting with AR
in an androgen-dependent manner. The interaction with AR
occurs through the PIAS1 NH2 terminus, which contains

three LXXLL motifs (159). PIAS1 is predominantly expressed
in the testes with expression observed in the Sertoli and
Leydig cells as well as in spermatogenic cells (159). In ad-
dition, PIAS1 may be a target of another AR coactivator and
kinase ANPK (androgen receptor-interacting nuclear kinase)
(160). PIASx� (ARIP3) has also been found to be an AR
coregulator and, like PIAS1, is primarily expressed in the
testes (79). PIASx� also interacts with AR and appears to
enhance AR transactivation through facilitating AR NH2/
COOH-terminal interaction rather than DNA binding affin-
ity (79). While both PIAS1 and PIASx� contain multiple
LXXLL motifs, it has not yet been determined whether the
LXXLL motifs are important for interaction with AR. If so,
this would be in contrast to members of the SRC family,
which apparently do not require intact LXXLL domains to
enhance AR transcription (62, 63). It is presently unclear
whether the PIAS inhibition of STAT and coactivation of AR
represent distinct regulatory pathways or whether PIAS pro-
teins mediate cross-talk between cytokine (161) and andro-
gen signaling in the testes. Because the PIAS proteins influ-
ence the DNA binding ability of the STAT transcription
factors, they may be considered type I coregulators. How-
ever, it remains to be established whether the PIAS coregu-
lators demonstrate other characteristics of type I coregulators
in the context of AR, such as recruitment of chromatin-
remodeling proteins or GTFs, or whether, when bound to
AR, they function as type II coregulators.

C. Filamentous actin (f-actin)-binding proteins

Actin forms a major structural component in eukaryotic
cells. The organization and reorganization of f-actin in the
cytoskelton and membrane skeleton are involved in diverse
cellular aspects and processes including cell morphology,
migration, adhesion, and apoptosis (42, 162–164). f-Actin-
binding proteins mediate the ability of actin to form bundles
or arrays defining the morphology of cells and regulate actin
polymerization and depolymerization through severing ac-
tin filaments or sequestering actin monomers (165). Several
proteins initially characterized as actin-binding proteins or
involved in actin-binding complexes have been found to
coactivate transcriptional regulators, including AR (Fig. 3).
Both type I and type II coregulators have been found to be
actin-binding proteins.

�-Catenin plays an important role in cell-cell adhesion by
linking the actin cytoskeleton to adherens junctions formed
by cadherin and �-catenin (162, 166). In addition to this
structural role, �-catenin is a downstream effector of the Wnt
signaling pathway that regulates a number of cellular pro-
cesses including cellular differentiation, proliferation, and
migration (167). Activation of the Wnt pathway results in
inactivation of the glycogen synthase kinase-3 (GSK3) kinase,
causing an increase in available cytoplasmic �-catenin (Fig.
3), which forms a complex with members of the TCF/LEF (T
cell factor and lymphoid enhancer factor) family of tran-
scription factors in the nucleus and allows transcriptional
activation by TCF/LEF (168), suggesting that, in this context,
�-catenin functions as a type I coregulator. The activities of
�-catenin in cell adhesion and gene expression can be sep-
arated in that �-catenin mutants that are unable to interact
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with �-catenin are still able to transduce the Wnt signal (169).
In addition to the TCF/LEF transcription factors, �-catenin
has been shown recently to function as a transcriptional
coactivator of AR in prostate cancer cells (170). However, it
has not yet been determined whether the coactivator function
of �-catenin with AR occurs in response to Wnt signaling or
other extracellular stimuli.

The f-actin-binding protein gelsolin regulates actin poly-
merization and depolymerization through its ability to se-
quester actin monomers and sever and cap actin filaments
(165). The activity of gelsolin is inhibited by the phospho-
inositide phosphatidylinositol 4,5-bisphosphate (171) and ac-
tivated by calcium (172). However, gelsolin can also be ac-
tivated to sever actin filaments in a calcium-independent
manner through cleavage by the apoptosis effector caspase-3
(164). Hippocampal neurons and neutrophils from gelsolin
knockout mice are resistant to apoptotic stimuli (164, 173,
174), suggesting that the cleavage of gelsolin is a critical
element in apoptosis. In a yeast two-hybrid screen, gelsolin
has been identified as an AR interacting protein. Gelsolin
interacts with AR in a T-dependent manner and enhances AR
transactivation in the prostate cancer cell line DU145 (K.
Nishimura and C. Chang, manuscript in preparation). The
mechanism through which gelsolin enhances AR transcrip-

tion and whether this function is separate from the gelsolin
actin-severing activity remains to be determined.

Supervillin, an actin-binding protein with structural ho-
mology to gelsolin and villin, has also been identified as
coactivator of AR and GR (175–177). The prostate cancer cell
lines DU145 and PC-3 express a low level of endogenous
supervillin. Cotransfection of supervillin with AR into these
cells results in a 2- to 3-fold enhancement of AR transcription
in response to 1 nm T (175). Supervillin shares 50% homology
to the regions of gelsolin and villin that bind f-actin. How-
ever, supervillin lacks the amino acids found in gelsolin to be
involved in actin severing, suggesting that supervillin lacks
this activity (176). Cytologically, supervillin is localized to
the plasma membrane at sites of intercellular contact (176).
In MDBK epithelial cells grown at low density, supervillin is
also localized in the cytoplasm and nucleus, showing a punc-
tate distribution. At high density, supervillin is localized
almost exclusively at the plasma membrane (176). These
observations suggest that supervillin may transduce signals
from sites of cellular adhesion to the nucleus during cellular
proliferation or migration (Fig. 3). Alternatively, supervillin
may have a dual function in cytoskeletal architecture and
gene transcription, analogous to �-catenin.

Nuclear translocation of a subset of nuclear receptors ap-

FIG. 3. Model of actin-associated pro-
teins as AR coactivators. When phos-
phorylated by GSK, �-catenin is asso-
ciated with �-catenin (�) and cadherins.
Inactivation of GSK results in an in-
creased cytoplasmic availability of
�-catenin, allowing it to associate with
AR and function as a type I coregulator
(162, 166, 170). Supervillin (SV) asso-
ciates with actin and cadherins (176).
The precise mechanism through which
supervillin enhances AR transcription
has not yet been determined. However,
because supervillin can localize to the
nucleus under some cellular conditions
(176), it is possible that it functions in a
manner similar to �-catenin. Filamin
(FM) functions as a type II coregulator
to faciliate AR translocation to the nu-
cleus upon binding to androgen.
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pears to be mediated partly by a cytoskeleton-associated
network. While disruption of microtubules or actin-contain-
ing microfilaments does not influence the ability of PR to
translocate to the nucleus (178), disruption of the cytoskel-
eton blocks okadaic acid inhibition of GR nuclear localization
in response to dexamethasone (179). Microtubule disrupting
agents inhibit VDR nuclear localization and transactivation
in response to 1,25-dihydroxyvitamin D3, suggesting VDR
utilizes a nuclear import mechanism that is associated with
the cytoskelton (180, 181). Recently, the f-actin cross-linking
protein filamin has been found to interact with the AR hinge
domain (42) to function as a type II coregulator (Fig. 3).
Mutant filamin inhibits AR transcriptional activity, and AR
is unable to translocate to the nucleus and activate transcrip-
tion in response to androgen in the filamin-negative M2 cell
line. AR is able to translocate and activate a reporter gene
upon androgen treatment in M2 cells stably transfected with
filamin, demonstrating that this cell line is not lacking other
factors necessary for AR transcription (42).

D. Coactivators that mediate ligand binding and
receptor stability

The ability of nuclear receptors to bind ligand and the
protein stability of nuclear receptors are apparently interre-
lated. The ligand binding ability of nuclear receptors requires
appropriate folding of the receptor, a process that is facili-
tated through the chaperone heterocomplex (182). Upon li-
gand binding, AR dimerizes allowing the NH2 and COOH
termini of the receptor to interact. Pulse chase experiments
indicate that the rate of AR protein turnover is decreased in
the presence of ligand and that ligands with a higher affinity
to AR confer a greater stabilizing effect (183). Additionally,
AR mutations that reduce the NH2/COOH terminus inter-
action increase the ligand dissociation rate and decrease AR
protein stability (62, 183). Therefore, coregulators that influ-
ence AR protein folding, ligand binding, and NH2/COOH-
terminal interaction could affect AR protein stability and
thus the observed transcriptional activation. Coregulators
that function primarily in this manner can be classified as
type II coregulators.

Several AR coactivators that modulate at least some of
these processes have been identified. One of the components
of the Hsp90 chaperone heterocomplex, BAG-1L, enhances
AR transactivation in the presence of androgen, presumably
by promoting the appropriate folding of AR (184). SRC-1
peptides that interact with the ER LBD have been reported
to decrease the dissociation rate of ER agonists, suggesting
that at least part of the mechanism through which SRC-1
enhances nuclear receptor transcription may be through sta-
bilizing the interaction between the receptor and its ligand
(185). However, because AR apparently interacts with SRC-1
in a different manner than ER, SRC-1 may enhance AR-
mediated transcription primarily through other mecha-
nisms, such as its HAT activity (discussed below) (31, 62).
The AR coactivator ARA70 may play a unique role in AR
ligand binding. ARA70 was initially identified as an AR
coactivator that interacted with AR and induced AR-medi-
ated transcription in response to both T and DHT (40). While
ARA70 was originally characterized as an AR coactivator in

prostate cancer cells, ARA70 has been shown by others to
enhance AR transcription up to 8-fold in the fibroblastic
COS-1 cell line (186). The interaction of ARA70 with DHT-
bound AR enhances AR protein stability above DHT binding
alone (S. Yeh and C. Chang, unpublished observations). In
transfection experiments, ARA70 enhances AR transcription
in response to the normally weak androgen �5-andro-
stenediol (125). E2 normally binds AR with a 100-fold lower
affinity than DHT (126) and does not normally activate AR
transcription in transfection assays at concentrations up to
100 nm (41, 187). However, in the presence of exogenous
ARA70, AR transcription is activated in DU145 prostate can-
cer cells in the presence of 1–10 nm E2 (41). Using PC3 cells,
Greenberg and colleagues (188) also demonstrate that
ARA70 can enhance E2-induced AR transactivation. Simi-
larly, Weigel and colleagues (189) have shown that ARA70N
(amino acids 1–401 of ARA70) promotes AR transcription in
the presence of 10 nm E2 in HeLa cells. ARA70N slows the
dissociation of E2 from AR, suggesting that the AR-ARA70
interaction stabilizes the binding of E2 to AR (T. H. Thin and
C. Chang, unpublished observations). The physiological im-
portance of the induction of AR transactivation by E2 in the
presence of ARA70 has not yet been established. Because the
level of E2 required to induce AR�ARA70 transcription is
within the normal physiological range for premenopausal
women (190), it is possible that AR transcription may be
induced by E2 in tissues with high endogenous ARA70 ex-
pression or in pathological conditions associated with in-
creased ARA70 expression. Although the E2 level in adult
males is substantially lower than premenopausal females,
local tissue levels of E2 can be relatively high. Bovine pros-
tatic fluid has been found to contain 0.5 nm E2 (191). Several
studies have found an elevated level of aromatase, the en-
zyme responsible for metabolizing T to estrogen, in the
stroma of benign prostatic hypertrophy and some prostate
cancer samples (192–195), although this is not a universal
observation (196, 197). It is therefore possible that E2 in the
prostate may be elevated above adult male serum levels,
particularly in benign prostatic hypertrophy. Under these
circumstances, AR activity may be induced by E2. The ex-
pression of ARA70 itself is induced by E2 and inhibited by
antiestrogens (198), suggesting that an increase in local E2
levels may enhance AR transcriptional activity in response to
any agonistic ligand by an increase in the abundance of
ARA70. Pharmacological doses of estrogens have been used
to suppress pituitary LH release and lower serum androgen
levels in the treatment of prostate cancer (199). Although
estrogen therapy is not generally considered to be the treat-
ment of choice due to cardiovascular side effects, estrogen
treatment of prostate cancer continues in developing coun-
tries due to its low cost (199, 200). It remains to be determined
whether prolonged estrogen treatment in these patients in-
fluences ARA70 expression and contributes to prostate can-
cer progression.

In addition to enhancing AR transactivation in response
to normally weak agonists, ARA70 has also been shown to
enable the AR antagonists hydroxyflutamide and casodex
to behave as AR agonists (201, 202). This is of particular
relevance to prostate cancer where androgen antagonists are
often used as part of androgen ablation therapy. In a pro-
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portion of patients treated with antiandrogens, antiandro-
gens fail to suppress tumor growth and may in fact promote
tumor growth (203). One mechanism through which this
effect could be mediated is by an elevation of ARA70 within
the tumor. Partial support for this model comes from analysis
of the CWR22 xenograft system in mice. The CWR22 prostate
xenograft model mimics human prostate cancer progression
in that the human prostate cancer-derived CWR22 cells are
initially androgen dependent in mice but androgen-inde-
pendent tumors recur several months after castration. In this
system, ARA70 mRNA levels decrease shortly after castra-
tion but are elevated in the recurrent, androgen-independent
tumor (204).

E. Coactivators that influence nuclear-cytoplasmic
trafficking of AR

Nuclear receptor transcriptional activity could potentially be
increased by type II coactivators that facilitate the nuclear lo-
calization of ligand-bound receptors. This could be effected
either by retaining the receptor in the nucleus or by enhancing
the rate of transit to the nucleus. However, relatively little is
known about receptor interacting proteins that mediate the
subcellular distribution of nuclear receptors. Although two nu-
clear receptor coactivators, TRIP230 and ASC-1, are known to
alter their subcellular distribution in response to physiological
conditions or cell cycle progression (205, 206), there is no evi-
dence that these coactivators facilitate the nuclear localization
of steroid receptors. However, as discussed above, mutation of
the f-actin-binding protein filamin prevents AR nuclear trans-
location in the presence of androgen, suggesting that filamin is
important in the normal nuclear-cytoplasmic trafficking of AR
(42). Recently we have found that the AR coactivator ARA70
increases the amount of nuclear localized AR upon ligand treat-
ment in transfected COS-1 cells (S. Yeh and C. Chang, manu-
script in preparation). However, because ARA70 enhances the
protein stability of ligand-bound AR, it is unclear whether the
increased localization is the result of an increased amount of
ligand-bound AR protein. ARA70 is normally localized to the
cytoplasm and remains cytoplasmic after androgen-bound AR
translocates to the nucleus. ARA70 has been reported to interact
with other coactivators such as p/CAF (127, 207), suggesting
that it possibly forms a cytoplasmic molecular platform that is
involved with the transition of the unliganded receptor asso-
ciated with the Hsp90 chaperone heterocomplex to associating
with at least a subset of coregulators upon ligand binding. The
ARA70N translocates to the nucleus with androgen-bound AR,
implying that the COOH-terminal domain of ARA70 contains
a cytosolic retention signal. ARA70N is a stronger transcrip-
tional coactivator than the full-length ARA70, possibly because
it continues to provide a molecular platform for AR coactivators
while in the nucleus.

The AR coactivator ARA24 (74) is identical to the general
nuclear export factor RanGTPase (208) although the manner
in which ARA24/Ran enhances AR-mediated transcription
has not yet been determined. ARA24/Ran is responsible for
the nuclear export of the importin proteins that mediate
nuclear import (208, 209). It is possible that an increase in
ARA24/Ran results in a more rapid return of importins to the
cytoplasm, increasing the efficiency of translocation of pro-

teins into the nucleus. ARA24/Ran also exports mRNA com-
plexed with ribonuclear proteins (208), and therefore an el-
evation of ARA24/Ran could enhance the export of AR
mRNA to the cytoplasm for translation. It is also possible that
accelerated export of nuclear AR results in more efficient
receptor recycling and thus a greater responsiveness to an-
drogen. However, ARA24/Ran has also been found to be
involved in nonexport functions such as nucleation of mi-
crotubules during mitosis (210). This raises the possibility
that ARA24/Ran enhances AR transcription through mech-
anisms separate from its nuclear export function.

F. Chromatin remodeling and coactivators

The packaging of chromosomal DNA is broadly defined as
chromatin of which the basic unit is the nucleosome. The
nucleosome core particle is an octomer made up of two
copies of each of the histone H2A, H2B, H3, and H4. Higher
order DNA packaging is mediated by DNA architectural
proteins, and the largest eukaryotic family of architectural
proteins is the high-mobility group (HMG) proteins (211).
The highly homologous HMG-1 and HMG-2 proteins can
enhance transactivation by AR and other steroid receptors by
stimulating receptor DNA binding, possibly by stabilizing
the receptor response element in an energetically favorable
conformation for receptor binding (212, 213).

The higher order folding of chromatin is disrupted in the
promoters of transcriptionally active genes. The known chro-
matin remodeling or modifying complexes act upon the nu-
cleosome by disrupting the histone-DNA interaction or
through controlling the acetylation status of histones. This
disrupted chromatin structure allows transcription factors to
bind more readily to DNA and facilitates transcriptional
activation. Transcription by nuclear receptors is thought to
be a multistep process wherein the agonist-bound receptor
binds to the target DNA recognition sequence and coacti-
vators assist in establishing or maintaining an open chro-
matin structure either through direct modification of nucleo-
somes or by recruiting chromatin modifying complexes (214,
215). As indicated in the introduction, coregulators that par-
ticipate in the modification of chromatin can be considered
type I coregulators. Experiments in yeast have suggested that
chromatin modification is itself a sequential process. Chro-
matin immunoprecipitation of the HO promoter has shown
that an enhancer-bound transcription factor first recruits the
SWI/SNF nucleosome remodeling complex, followed by re-
cruitment of histone acetylation complexes (216, 217). It is
possible that an analogous mechanism operates with nuclear
receptor-directed transcription.

The SWI/SNF complex contains a DNA-dependent
ATPase subunit necessary for chromatin modification and is
one of the best characterized of the chromatin remodeling
complexes (reviewed in Ref. 218). This complex functions to
perturb the conformation of the nucleosome in an ATP-
dependent manner, resulting in a greatly diminished inter-
action between the histones and DNA (219, 220). Compo-
nents of the SWI/SNF complex have been shown to interact
with ER and GR, and mutations in the SWI/SNF genes in
yeast prevent transcriptional activation by GR (221, 222). It
is possible that the recruitment of the SWI/SNF complex to

186 Endocrine Reviews, April 2002, 23(2):175–200 Heinlein and Chang • AR Coregulators

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/23/2/175/2424160 by guest on 20 August 2022



steroid receptors is facilitated by coactivators. �-Catenin in-
teracts with Brg-1, a component of the SWI/SNF complex,
and this interaction is necessary for �-catenin-mediated en-
hancement of transactivation by the TCF/LEF transcription
factors (223). It is possible that it functions in a similar man-
ner to coactivate AR. Another candidate for such an activity
may be NSD1, a coregulator that contains conserved motifs
found in proteins involved in chromatin modification (224).
The human homolog NSD1, ARA267�, has recently been
identified (225). NSD1 contains a SET domain, named after
the Drosophila proteins in which it was first identified [Su-
(var)3–9, Enhancer of Zeste, and Trithorax] (224, 226). The
SET domains of trithorax and the human transcription factor
ALL-1 have been found to interact with SWI/SNF compo-
nents (227), raising the possibility that NSD1 also functions
in this manner. NSD1 has been found to physically interact
with RAR, RXR, TR, and ER, although the consequence of
this interaction in mammalian cells has not yet been deter-
mined (224). Using mammalian two-hybrid and GST inter-
action assays, an isoform of NSD1/ARA267�, referred to as
ARA267�, also interacts with AR and enhances DHT-
induced transcription (225). The ARA267� isoform lacks the
most NH2-terminal 269 amino acids of NSD1/ARA267�,
possibly due to the presence of a secondary transcription
initiation sequence. In transfection assays, ARA267� en-
hances AR transcription of the endogenous prostate-specific
antigen gene in LNCaP cells and from the mouse mammary
tumor virus promoter in transfected PC3 cells (225). How-
ever, it remains to be determined whether the SET domain
of NSD1/ARA267 functions to recruit the SWI/SNF complex
to AR.

The acetylation of the lysine residues of the NH2-terminal
histone tails is correlated with active genes. Acetylation re-
duces the positive charge of the histone tails, which may
result in the disruption of chromatin structure by reducing
or preventing nucleosome-nucleosome contacts (228). The
coactivators p/CAF, CBP/p300, SRC-1, and SRC-3 have all
been demonstrated to have HAT activity (30, 31, 146, 229).
The particular histone substrate specificity of each of these
coactivators is different. While SRC-1 and CBP/p300 are able
to acetylate all of the histones in nucleosomes, p/CAF and
SRC-3 preferentially acetylate nucleosomal histone H3 (230).
However, the functional consequences of this target speci-
ficity has yet to be determined. A biochemical approach has
been used to demonstrate that p/CAF is part of a large
multiprotein complex, and the HAT activity of the p/CAF
complex is significantly higher toward nucleosomal histones
than p/CAF alone (231). Although the p/CAF complex ap-
parently does not contain CBP/p300 or SRC family members,
p/CAF has been shown to interact with SRC-1, SRC-3, and
CBP (146, 231–233). Progesterone-bound PR preferentially
recruits an SRC-1 complex in T47D cells, suggesting the
p/CAF complex may be recruited to steroid receptors via
other coactivators (232).

G. AR coactivators as mediators of signal transduction

Transcriptional activity of AR has been found to be influ-
enced by growth factors and cytokines through the stimu-
lation of multiple signal transduction cascades (Fig. 4) (re-

viewed in Refs. 234 and 235). The stimulation of kinase
cascades may affect AR transcription through phosphoryla-
tion of AR, AR interacting proteins, or coregulators. The
growth factor receptor-mediated phosphorylation of two AR
interacting proteins, Smad3 and STAT3, has been found to
influence AR transcription. However, because STAT3 and
Smad3 are transcription factors, they are not considered to be
type I or type II coregulators. Phosphorylation of the tran-
scription factor STAT3 in response to IL-6 allows STAT3 to
interact with AR and enhance AR transcription (236, 237).
TGF�-induced phosphorylation of the transcription factor
Smad3 also results in interaction between Smad3 and AR, but
the overall effect of this interaction may be cell type specific,
possibly as a result of differential availability of other AR
and/or Smad3 interacting proteins such as Smad4 (H.-Y.
Kang and C. Chang, manuscript in preparation). In the pros-
tate cancer cells DU145 and PC3, Smad3 enhances AR tran-
scriptional activity (19). However, in CV-1 cells, Smad3 has
a suppressive effect on AR activity (18).

The direct phosphorylation of AR has been shown to in-
fluence its ability to interact with coregulators. AR is a direct
target of the kinase Akt, one of the kinases of the PI3K signal
transduction pathway. Phosphorylation of AR by Akt results
in a decrease in AR transcriptional activity and is associated
with a decrease in the ability of AR to interact with ARA70
(48). In contrast, stimulation of MAPK by overexpression of
ErB2/Her2/Neu enhances AR transcription through phos-
phorylation of AR and facilitates AR-ARA70 interaction (52).
MAPK phosphorylation of ER� or the orphan receptor SF-1
also stimulates coactivator recruitment by these receptors
(55, 238).

A number of nuclear receptor coregulators, including CBP
and �-catenin, have been shown to mediate the effects of
signal transduction pathways. In theory, the function of ei-
ther type I or type II coregulators could be influenced by
alterations in phosphorylation or acetylation in response to
extracellular signals. A number of coregulators themselves
perform enzymatic activities such as phosphorylation or
acetylation, modifying either the chromatin surrounding the
promoter of the target gene or other coregulators. The pro-
totypic coactivators of this type are CBP and the closely
related p300. CBP was initially identified as a coactivator of
CREB that regulates cAMP-inducible promoters (239). Sub-
sequent studies have shown that CBP can function as a co-
activator of other transcription factors, such as NF�B (240),
and of nuclear receptors including AR (241–243). CBP ad-
ditionally interacts with the SRC coactivators (243–245) and
has been purified with the RNA pol II holoenzyme complex
(32, 136). Biochemical studies have suggested that in the case
of PR, SRC-1 and/or TIF-2 may bind the receptor and recruit
a CBP-containing complex (that may contain RNA pol II) to
the target promoter (232). It has not yet been determined,
however, whether other AR coactivators function in a similar
manner. The observation that the DRIP/TRAP complex does
not contain CBP (38, 246), and may recruit RNA pol II by a
separate mechanism (38), suggests that multiple coactivator
complexes may exist in the cell, although it is unclear to what
extent these complexes interact.

Acetyltransferase activity has been demonstrated for
CBP/p300 (30, 247) and the CBP-associated factor and nu-
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clear receptor coactivator p/CAF (229), SRC-1 (31), and
SRC-3 (146). The acetylation targets originally identified for
these coactivators were histones, suggesting that these co-
activators may function in part through chromatin modifi-
cation. However, CBP/p300 has been found to acetylate non-
histone proteins. Acetylation of SRC-3 by CBP disrupts the
interaction between SRC-3 and ER, resulting in a reduction
in hormone-mediated transcription (248). The general tran-
scription factor TFIIE, involved in the recruitment of helicase
to the promoter, and TFIIF, the factor involved in targeting
RNA pol II to the promoter, have both been shown to be
acetylated by p300 and p/CAF, although the functional con-
sequences of these modifications have not yet been deter-
mined (249). Although CBP/p300 acetylation enhances the
DNA binding ability of p53 (250), it has not yet been deter-
mined whether nuclear receptors themselves are targets for
acetylation by their coregulators. CBP acetyltransferase ac-
tivity is enhanced by phosphorylation by cyclin E-cdk2 (251).

Because CBP acetyltransferase activity is not required for its
ability to coactivate all of the transcription factors with which
CBP interacts (233), CBP phosphorylation may provide a
mechanism for differential transcriptional enhancement. Re-
cently, CBP/p300 has been found to be methylated by
CARM1 (252, 253). CARM1 increases the ability of CBP/p300
to enhance RAR/RXR transcription; however, CARM1 in-
hibits the ability of CBP to enhance CREB transactivation
(252). It remains to be determined whether CBP methylation
influences AR transcriptional activity.

Ubiquitin ligase activity has been identified for two AR
coactivators, ARA54 and E6-AP (254, 255). The ubiquitina-
tion of cellular proteins is important for multiple cellular
processes, including cell cycle regulation and response to
extracellular signals (256, 257). The major role of ubiquiti-
nation is to target substrate proteins for proteosomal deg-
radation (258), and it is therefore somewhat unexpected that
ubiquitin ligase activity has been identified in proteins that

FIG. 4. Multiple signal transduction pathways are involved in the regualtion of AR and AR coregulator function. The activation of the MAPK
and PI3K signal cascades occurs in response to multiple growth factor stimuli. For simplicity, IL-6 and Her2 induction of these pathways is
depicted here. MAPK can directly phosphorylate AR to enhance AR interaction with coactivators and can phosphorylate coactivators, such as
SRC family members, to facilitate transcription. Akt phosphorylation of AR represses AR transcription, at least in part, through reduction of
AR-coactivator interaction. In addition to SRC, the coregulators �-catenin and ARA55 are targets of phosphorylative regulation as discussed
in the text.
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enhance steroid receptor transcription. ARA54 was initially
identified as a coregulator of AR and PR and contains a RING
finger domain (142). Recently, ARA54 has been found to be
able to ubiquitinate itself in vitro, contributing to its proteo-
somal degradation (255). The RING finger of ARA54 medi-
ates the interaction between ARA54 and ubiquitin-conjugat-
ing enzymes and is necessary for its autoubiquitination (255).
However, it has not yet been determined whether ARA54
targets other proteins for ubiquitination and degradation.
E6-AP was originally characterized as a ubiquitin ligase (259,
260), and mutation or loss of E6-AP is associated with the
inherited disorder, Angelman’s syndrome (257). E6-AP func-
tions as a coactivator of AR, PR, GR, and ER, as well as the
transcription factor Sp1 (254). However, mutants of E6-AP
lacking ubiquitin ligase activity are still able to coactivate PR
to the same degree as wild-type E6-AP in transfection assays,
suggesting that the coactivation and ubiquitin ligase func-
tions of E6-AP are distinct (254). It is possible that coactiva-
tors with ubiquitin ligase activity contribute to nuclear re-
ceptor transcription through targeting the degradation of
corepressors, as has been reported for nuclear receptor core-
pressor (NcoR) (261). Alternatively, after the initiation of
transcription by steroid receptors, targeted degradation of
the preinitiation complex by ubitiquitin ligase coactivators
may facilitate reinitiation of transcription.

Although phosphorylation is known to modify the tran-
scriptional activity of the AR (50–52), the potential involve-
ment of kinase and phosphatase modulation of SRCs has
only recently been addressed. SRC-1 can be phosphorylated
at seven sites, two of which have been demonstrated to be
phosphorylated by ERK-2, a member of the MAPK family
(262). Stimulation of the MAPK signal transduction pathway
enhanced the ability of SRC-1 to coactivate PR (262). As
indicated above, the AR coactivator �-catenin mediates sig-
naling through the Wnt pathway to coactivate TCF tran-
scription factors (162, 170). However, it is not known whether
�-catenin also mediates AR transcription in response to
growth factor stimulation. The coactivator ANPK is itself a
Ser/Thr kinase that does not phosphorylate AR (160). It is
possible that ANPK enhances AR transcription as part of a
yet undetermined signal pathway.

ARA55, a coactivator of AR, GR, and PR (263, 264), po-
tentially mediates the transduction of signals from cellular
focal adhesions with the extracellular matrix (ECM) to the
nucleus. In prostate-derived DU145 cells, ARA55 is a stron-
ger coactivator for AR than for GR or PR (263). Although
ARA55 is able to enhance AR transcription in response to the
antiandrogen hydroxyflutamide, it does so to a lesser extent
than ARA70 (207). ARA55 has been localized immunocyto-
chemically to the nuclear matrix and focal adhesions (264,
265). Focal adhesions are the points at which the cell mem-
brane contacts the ECM via the transmembrane integrin re-
ceptors. The cytoplasmic domain of the integrins interacts
with microfilaments or intermediate filaments through a va-
riety of cytoskeletal proteins (266, 267). The focal adhesion
plaque is formed by a clustering of ligand-bound integrins
and cytoskeletal proteins with focal adhesion kinase (FAK)
through a process mediated by the RhoGTPase. Integrin-
mediated phosphorylation and activation of FAK stimulates
the MAPK pathway (267). Growth factor receptors have been

shown to be recruited to the focal adhesions, resulting in an
enhanced cellular response to exogenous growth factors
(268). ARA55, in addition to its function as an SRC, has been
shown to interact with FAK (265) and with the FAK-related
PYK2 kinase (269). Activation of PYK2 results in an increase
of cellular phosphorylated ARA55 and in phosphorylated
ARA55 coimmunoprecipitating with PYK2 (269), suggesting
that ARA55 functions in a signaling pathway downstream of
PYK2 or FAK. ARA55 also interacts with the cytoplasmic
tyrosine kinase Csk, although the functional consequence of
this interaction has not been established (265). It is currently
unknown whether phosphorylated ARA55 serves a solely
cytoplasmic function or whether it translocates to the nucleus
to modulate gene transcription. The integrins play a role in
diverse cellular processes including anchorage-dependent
growth, differentiation, and apoptosis (266), and ECM or
integrin alterations have been implicated in a wide variety of
cancers, including those of the breast and prostate (270, 271).
The potential importance of ARA55 in these processes is
demonstrated by the observation that human tumor-derived
cell lines have a low or absent level of ARA55 (272, 273).
Overexpression of ARA55 in immortalized human fibro-
blasts results in growth retardation and a senescent mor-
phology and pattern of gene expression (274). The conver-
gence of growth factor receptors with integrins in focal
adhesions associated with ARA55 phosphorylation by FAK
or PYK2 suggests that cycles of ARA55 phosphorylation or
dephosphorylation could be involved in regulating cellular
growth and migratory responses. In this model, the loss of
ARA55 expression in tumors would remove a growth-
regulatory process and favor an amplified response to ex-
ogenous growth factor stimulation. One mechanism through
which ARA55 may function in this manner is through the
alteration of the ability of ARA55 to function as a coactivator,
possibly by alteration of the phosphorylation status of
ARA55. In normal cells in the absence of growth factor or
integrin stimulation, ARA55 may by hypophosphorylated
and able to function as an AR coactivator to maintain normal
androgen-mediated transcription in androgen target tissues,
such as the prostate. Upon phosphorylation of ARA55 in
response to exogenous stimulation, ARA55 may no longer
function as an AR coactivator contributing to a modulation
of the growth response. Tumor cells lacking ARA55 would
be expected under this model to be more susceptible to
proliferative or migratory responses with growth factor stim-
ulation or abnormal integrin signaling. Partial support for
this model comes from the observation that overexpres-
sion of PYK2 inhibits androgen-induced AR transcription
(L. Wang and C. Chang, unpublished observations).

ARA55, in common with FHL2, is a LIM domain protein
(264, 274, 275). LIM domains are cysteine- and histidine-
rich regions that mediate protein-protein interactions
(276). The four LIM domains of ARA55 are similar in
sequence and organization to the LIM cytoskeleton bind-
ing proteins paxillin and zyxin (277), consistent with the
localization of ARA55 to the nuclear matrix and focal
adhesions (264, 265). LIM domain-containing proteins
have been found to function as bridging molecules be-
tween transcription factors (278). A number of additional
coregulators have been identified that interact with LIM
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proteins to modulate their effect on transcription (279 –
281). It remains to be determined whether ARA55 recruits
LIM coregulators or other transcription factors as part of
the mechanism through which it regulates AR transacti-
vation and conveys extracellular signals.

V. AR Corepressors

Most of the coregulators identified to date have been
shown to enhance transcription of a subset of both classical
steroid receptors and the type 2, RXR heterodimerizing
receptors. However, transcriptional repression by these
two receptor types appears to operate through distinct
mechanisms. When not bound to an agonist, the type 1,
classical steroid receptors are complexed with heat shock
proteins preventing DNA binding in vivo and are therefore
transcriptionally silent. In contrast, the type 2 receptors are
capable of binding to DNA in the absence of ligand, re-
sulting in transcriptional repression (44). Corepressors
were originally identified as proteins associated with un-
liganded type 2 nuclear receptors that mediate transcrip-
tional repression, possibly through the formation of a non-
productive interaction with general transcription factors
(282) or through recruitment of histone deacetylase com-
plexes (283–285). The two best characterized corepressors,
NCoR and silencing mediator of retinoid and thyroid hor-
mone receptor (SMRT), do not interact with ER, GR, or PR
in the absence of ligand (286, 287). However, both NCoR
and SMRT interact with ER when bound to the mixed
agonist tamoxifen, an ER ligand that acts as an agonist or
antagonist in a tissue-specific manner, and overexpression
of either corepressor abolishes tamoxifen agonist activity
(288). Similarly, NCoR and SMRT preferentially interact
with PR in the presence of the antagonists RU486 and
ZR98299 and can repress the partial agonist action of
RTI-020 (287). The interaction between AR and NCoR or
SMRT has not yet been examined, although it might be
expected that these corepressors could only interact with
an antagonist-bound AR by analogy to other steroid re-
ceptors. NCoR and SMRT interact with nuclear receptors
through motifs similar to the LXXLL motifs found in some
coactivators (289, 290). The corepressor interaction motifs
are able to interact with a subset of the same receptor LBD
residues that interact with coactivators (289 –292). The
binding of an agonistic ligand alters the conformation of
the LBD, repositioning the coregulator interacting resi-

dues to stabilize the binding of coactivators and sterically
inhibit NCoR or SMRT binding (289, 292). AR interacts
differently than ER or PR to some LXXLL motif-containing
coactivators (62, 63), at least partly due to the nature of the
AR NH2-terminal interaction with the AR LBD (78). AR
NH2/COOH terminus interaction is induced by some an-
tiandrogens, including cyproterone acetate (293), but it is
not known whether the AR NH2-terminal would block the
ability of NCoR or SMRT to interact with the LBD.

Three corepressors of androgen-bound AR have been
identified to date, cyclin D1, calreticulin, and HBO1 (Table 2).
However, relatively little is known about the mechanism of
their repressive effect. Cyclin D1 reduces AR transcription in
the presence of the synthetic androgen R1881 (294). The
D-type cyclins bind to and activate the cyclin-dependent
kinases CDK4 and CDK6 to promote cell cycle progression
through the G1 phase. The CDK4-cyclin D1 complex func-
tions to phosphorylate and inactivate Rb (retinoblastoma
gene product). Mutations in cyclin D1 that abolish its
ability to interact with CDK4 do not influence the ability
of cyclin D1 to reduce AR transcription. Similarly, cyclin
D1 is able to repress AR transcription in Rb-negative cells
(294). These observations suggest that cyclin D1 inhibits
AR transactivation through a mechanism independent of
its function in cell cycle regulation. The calcium-binding
protein calreticulin has also been characterized as a co-
repressor of AR. Calreticulin inhibits AR transcription in
response to R1881 and prevents AR binding to its response
element (86). Cytologically, calreticulin is localized to the
endoplasmic reticulum and nucleus (295), although the
physiological role of calreticulin-mediated repression of
AR remains to be determined.

The AR corepressor HBO1 is a member of the MYST pro-
tein family that is characterized by a homologous zinc finger
and carries an acetyltransferase domain (296). The MYST
family includes both transcriptional silencers, such as the
yeast SAS2 and SAS3 genes, and transcriptional activators,
including the AR coactivator Tip60 (Table 1) (297, 298).
Acetyltransferase domains are more typically thought to be
associated with coactivators, and HBO1 only weakly acety-
lates histones (299). However, it is possible that HBO1 func-
tions to acetylate other nonhistone proteins involved in AR
transcriptional regulation and that acetylation by HBO1 re-
duces the ability of these proteins to facilitate androgen-
induced AR transactivation.

TABLE 2. Corepressors of the AR

Corepressor Region Comments Selected references

Calreticulin DBD Inhibits DNA binding and transcription. Also functions as a
corepressor of RAR:RXR and GR. Nuclear localization is
enhanced in some cell types by interaction with holo-GR.

(86, 295, 344)

Cyclin D1 a Reduces AR ligand-dependent transcription in a cell cycle-
independent manner. Functions as a coactivator of ER.

(294, 345)

HBO1 DBD-LBD Member of the MYST/SAS family of proteins. Reduces AR
transcription in the presence of DHT but does not influence ER
or TR� transactivation. Carries a functional HAT domain.

(296)

a Although interaction with AR has been demonstrated, the precise domain of AR that interacts with the coregulator has not yet been
determined.
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VI. AR Coregulators and Cancer

Androgens, functioning through the AR, are essential for
the normal development and maintenance of the prostate
(300, 301). However, the progression of prostate cancer is also
sensitive to androgens. The removal of testicular androgens
by castration has long been recognized to result in tumor
regression (302), and surgical and/or pharmacological an-
drogen ablation remain the predominant form of treatment
for advanced prostate cancer (199, 203). Androgen ablation
therapy is often combined with treatment with nonsteroidal
antiandrogens, such as hydroxyflutamide, to block residual
adrenal androgen action. While 70–80% of patients initially
respond to androgen ablation therapy, tumors ultimately
become resistant and may, in fact, proliferate in response to
antiandrogens (203). Because AR is generally expressed in
prostate tumors and their metastases (303), aberrant regu-
lation of AR activity by coregulators may contribute to pros-
tate cancer progression or the acquired agonist effect of an-
tiandrogens. Alterations in �-catenin expression have been
found in multiple tumor types (304–306), and mutations of
�-catenin have been identified in primary prostate cancers
(307). One of these mutant �-catenin alleles (�-catenin S33F)
enhances AR sensitivity to the normally weak adrenal an-
drogens androstenedione and DHEA, allowing AR tran-
scriptional activation in response to these ligands compara-
ble to that induced by DHT or T (170). �-Catenin S33F also
enhances AR transcription in response to E2 (170). These
observations suggest that mutation of �-catenin in the pro-
gression of prostate cancer could enable the cancer cells to
survive in the presence of low serum levels of testicular
androgens (170, 307). The AR coactivator ARA70 has been
extensively characterized as having the capacity to enhance
AR transcriptional activity in response not only to normally
weak adrenal androgens (40, 125), but also to the antiandro-
gens hydroxyflutamide and casodex (202). In the CWR22
prostate xenograft system, in which the CWR22 tumors
progress from androgen dependent to androgen indepen-
dent after castration, ARA70 mRNA is elevated in the re-
current androgen-independent tumors (204). It is possible
that ARA70 expression is elevated in a subset of human
prostate tumors and may contribute to tumor progression
after androgen ablation therapy by allowing AR to become
transcriptionally active in response to adrenal androgens or
antiandrogens. The possibility that ARA70 is amplified or
overexpressed in prostate tumors is currently under inves-
tigation. The amplification of coregulator genes is not with-
out precedent in tumors. SRC-3 and PBP/DRIP205/
TRAP230 are frequently amplified and overexpressed in
breast tumors, suggesting that these coregulators may con-
tribute to breast carcinogenesis through their function as ER�
coactivators (67, 308). The agonistic effect of antagonists in
prostate cancer could also be due conceivably to the reduc-
tion of corepressor expression. In a mouse model of mam-
mary tumors, the acquisition of tumor proliferation in re-
sponse to the antiestrogen tamoxifen was accompanied by a
decrease in the expression of the corepressor NCoR (309). An
analogous mechanism may function in prostate cancer.

Mutation of the coactivator CBP causes the human auto-
somal dominant disorder Rubinstein-Taybi syndrome (RTS)

(310). RTS is characterized by facial abnormalities, broad toes
and thumbs, and mental retardation, as well as an elevated
incidence of malignant and benign tumors of the brain and
neural crest derivatives (311). However, male RTS patients
do not show symptoms of androgen insensitivity, and RTS-
associated tumors occur at similar frequencies in both gen-
ders (311), suggesting that this syndrome results primarily
from the disruption of CBP coactivation of transcription fac-
tors other than AR.

AR has also been shown to be coactivated by the known
tumor suppressor genes Rb and BRCA1 (312–314). Epide-
miological evidence suggests that aberrations in the inter-
action between AR and the breast cancer susceptibility gene
BRCA1 may contribute to breast cancer progression in some
patients. Women who inherit germline BRCA1 mutations
and who carry a less transcriptionally active AR allele show
an earlier age of breast cancer development (315). Androgens
acting through AR have been shown to inhibit breast cancer
proliferation clinically and in animal models. We have
shown that BRCA1 physically associates with AR to regulate
endogenous genes in breast cancer cells (314), and the anti-
proliferative effects of androgens in breast cancer may be
mediated in part through BRCA1 coactivation of AR. Rb
functions in the control of cellular differentiation and pro-
liferation (316). Inactivating mutations of Rb are frequently
(60%) observed in both early-stage and low-grade prostate
tumors and advanced disease (317). The prevalence of Rb
mutations early in prostatic tumorigenesis may indicate that
Rb normally functions with AR during the controlled de-
velopment of the prostate or in the maintenance of the pros-
tate. The phosphatase PTEN (phosphatase and tensin ho-
mologue deleted from chromosome 10) functions as a tumor
suppressor, and loss of PTEN function is observed in a num-
ber of human cancers, including prostate cancer (318–320).
PTEN has been found to suppress AR transcriptional acti-
vation (49) by reducing the rate of AR nuclear translocation
and/or altering AR protein stability (H.-K. Lin and C. Chang,
manuscript in preparation). Because type II coregulators
such as ARA70 and filamin influence the ability of AR to
translocate to the nucleus in response to androgen (42), it is
possible that PTEN exerts its effect on AR through the mod-
ulation of AR-coregulator interaction. Finally, the loss or
reduction of ARA55 expression in tumor-derived cell lines of
multiple origins and in some primary prostate tumors (263,
272), as well as the observation that overexpression of ARA55
induces growth inhibition and senescence in immortalized
cells (274), raises the possibility that ARA55 is itself a tumor
suppressor.

VII. Conclusion and Future Directions

The continuing study of AR coregulators has suggested
multiple mechanisms through which the transcriptional ac-
tivity of AR may be regulated. However, for many coregu-
lators, the mechanism of action and relative in vivo impor-
tance have yet to be established. Coregulators are typically
identified on the basis of interaction studies and their influ-
ence is gauged in transient transfection studies. The mech-
anism of action is often inferred from the presence of con-
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served protein motifs or other characterized functions of the
protein. This leaves many unanswered questions about a
coregulator’s role in development, in response to normal
physiological stimuli, and in pathological conditions. Con-
tinuing investigation of AR coregulators will hopefully fur-
ther define their roles in these processes.

However, the available information on AR coregulators
suggests a tantalizing array of mechanisms through which
they may function to regulate AR transcriptional activity.
The ability of AR to interact directly with components of the
general transcriptional machinery and with coregulator com-
plexes that modify the chromatin of the target gene or form
a bridge between the receptor and the GTFs provides insight
into the process of transcriptional initiation and the perpet-
uation of transcription from target promoters. Initial obser-
vations suggest a stepwise association of coregulators and
coregulator complexes with the DNA-bound AR. However,
it remains to be determined to what degree these complexes
exist preassembled in the cell and their relative importance
for different AR target genes. Recent investigation of co-
regulators suggests that they may play an increasingly im-
portant role as physiological integrators of signal transduc-
tion. A number of coregulators are known to mediate growth
factor signaling, such as the PIAS family. Still others have
been shown to be phosphorylation targets of kinase cascades
or are kinases themselves. The action of coregulators such as
ARA70 can broaden the spectrum of ligands capable of evok-
ing AR-mediated transcription with implications for the bio-
logical effects of steroids in both normal and pathological
conditions. There is also the perhaps surprising involvement
of actin-binding proteins in AR transcription, possibly
facilitating communication from the ECM to the plasma
membrane and ultimately to the nucleus. It is possible that
such communication is important in androgen-mediated
developmental processes or in the metastasis of prostate
cancer. The differential tissue distribution of AR coregu-
lators has provided an additional factor in examining
tissue differences in androgen action other than the level
of AR protein. Animal models, including targeted disrup-
tion of coregulators, will be important for determining the
relative importance of AR coregulators in a particular
tissue or pathological condition. Further clinical studies
examining the relative expression level, phosphorylation
status, or presence of mutations in AR coregulators in
histological samples such as prostate cancer specimens,
will also help contribute to an understanding of the in-
volvement of AR in human disease. A comparison of the
role of a coactivator in normal and disease states is im-
portant to establish a more complete picture of the relative
importance of a coregulator in vivo, as exemplified by
SRC-1. The lack of SRC-1 is substantially compensated by
other coactivators in knockout mice, but overexpression of
SRC-1 is associated with a population of recurrent prostate
cancers (131, 321). The interaction between AR and its
coregulators is a clearly developing field, and the obser-
vations already made indicate that the biology of the
androgen receptor is more complex and interesting than
was suspected when it was initially cloned (5, 7–9).
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