
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

463 | P a g e
www.ijacsa.thesai.org

Android Malware Detection & Protection: A Survey

Saba Arshad
Department of Computer Science

COMSATS Institute of Information Technology
Islamabad, Pakistan

Munam Ali Shah
Department of Computer Science

COMSATS Institute of Information Technology
Islamabad, Pakistan

Abid Khan
Department of Computer Science

COMSATS Institute of Information Technology
Islamabad, Pakistan

Mansoor Ahmed
Department of Computer Science

COMSATS Institute of Information Technology
Islamabad, Pakistan

Abstract—Android has become the most popular smartphone

operating system. This rapidly increasing adoption of Android

has resulted in significant increase in the number of malwares

when compared with previous years. There exist lots of

antimalware programs which are designed to effectively protect

the users’ sensitive data in mobile systems from such attacks. In

this paper, our contribution is twofold. Firstly, we have analyzed

the Android malwares and their penetration techniques used for

attacking the systems and antivirus programs that act against

malwares to protect Android systems. We categorize many of the

most recent antimalware techniques on the basis of their

detection methods. We aim to provide an easy and concise view

of the malware detection and protection mechanisms and deduce

their benefits and limitations. Secondly, we have forecast

Android market trends for the year up to 2018 and provide a

unique hybrid security solution and take into account both the

static and dynamic analysis an android application.

Keywords—Android; Permissions; Signature

I. INTRODUCTION

Since 2008, the rate of smartphone adoption has increased
tremendously. Smartphones provide different connectivity
options such as Wi-Fi, GSM, GPS, CDMA and Bluetooth etc.
which make them a ubiquitous device. Google says, 1.3 million
Android devices are being activated each day [1]. Android
operating system left its competitors far behind by capturing
more than 78% of total market share in 2013 [2]. Gartner
report 2013 of smartphone sales shows that there is 42.3%
increase in sales of smartphones in comparison with 2012.
According to International data corporation IDC, Android OS
dominates with 82.8% of total market shares in 2Q 2015 [3].
Figure 1 shows the market shares of Android operating system
on yearly basis. It could be observed that Android has become
the most widely used operating system over the years.

Android platform offers sophisticated functionalities at
very low cost and has become the most popular operating
system for handheld devices. Apart from the Android
popularity, it has become the main target for attackers and
malware developers. The official Android market hosts
millions of applications that are being downloaded by the users
in a large number everyday [4]. Android offers an open market
model where no any application is verified by any security
expert and this makes Android an easy target for developers to

embed malicious content into their applications. The users‟
sensitive data can be easily compromised and can be
transferred to other servers. Furthermore, the existence of third
party application stores contribute in spreading malwares for
Android because Google Play also hosts the applications of
third-party developers. Android official market uses Bouncer
for protection of marketplace against malwares [5]. However,
Bouncer does not analyze the vulnerabilities of the uploaded
apps. Malware developers take advantage of vulnerabilities
among apps by repackaging the popular apps of Google Play
and distributing them on other third-party app-stores. This
degrades the reputation of the app-store and of the reputation of
the developer. Malwares includes computer viruses, Trojan
horses, adware, backdoors, spywares and other malicious
programs which are designed to disrupt or damage the
operating system and to steal personal, financial, or business
information. Malware developers use code obfuscation
methods, dynamic execution, stealth techniques, encryption
and repackaging to bypass the existing antimalware techniques
provided by Android platform.

Fig. 1. Android Market Shares

In order to prevent such malwares, it is important to have
accurate and deep understanding of them so that security
measures to protect users‟ data could be taken accordingly.
There are large numbers of attack scenarios where an attacker
can compromise a user‟s data by taking advantage of the
vulnerabilities of Android operating system. For example, a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

464 | P a g e
www.ijacsa.thesai.org

Trojan app downloads some HD wallpapers with user‟s
permission but this permission may allow this app to access the
user‟s contacts or other personal information and it leaks user‟s
confidential data to some other server from the device secretly.
In such a case, the wallpapers app will have Internet
permissions for download purpose. The user might not give
much attention towards other requested access permissions and
might grant READ_CONTATCS permission accidentally. As a
result, the app may modify the device settings, corrupt the
user‟s data and can transfer private data to some unknown
remote servers. This results in user‟s business data loss and
other personal information. The attackers can use the stolen
data for kidnapping, blackmailing or business loss purposes. In
an another attack scenario, attackers distribute the malicious
apps as a repackaged version of some popular apps which may
offer location-based services so in that scenario malicious app
kill the victim device by draining its battery with the excessive
use of GPS and radio etc. Some of the malicious programs get
the user‟s device IMEI numbers and send it to remote server.
These IMEI numbers have significant worth in black markets
where IMEI numbers of stolen devices can be altered with
user‟s IMEI [6].

There are hundreds of malware techniques identified which
attack the Android platforms in several ways such as sending
messages without the victim‟s knowledge and deleting them by
itself, sending user‟s private information to some other server
and many more. So there is a great need to protect user‟s data
from these malwares.

This ever increasing malware threats have forced the
Android antimalware industry to develop the solutions for
mitigating malicious app threat on Android smartphones and
other Android devices. Two main approaches are used for this
purpose: Static approach and Dynamic approach. Antivirus
programs use any of these approaches to protect the mobile
systems from the malware attacks. They detect the malicious
apps and notify the user about such apps and take measures to
remove these malwares. With the increasing number of threat
level, the antivirus detection rate has also increased. As a result
of threat & malware, and protection mechanism offered by
Android antimalware programs, the overall risk situation of
Android users is difficult to assess [7].

In this paper, we have analyzed different malwares, their
behaviors and techniques used by different malware types to
attack Android devices. Furthermore, the paper provides
detailed review on different antimalware techniques, their
advantages and limitations. On the basis of this review, a
hybrid solution for Android security has been proposed. The
rest of the paper is organized as follow. Section II classifies the
existing malwares on the basis of their behavior. Section III
consists of malware penetration techniques employed by the
attackers. In Section IV, a detailed analysis on the malware
detection and removal methods for the protection of Android
devices has been performed. Section V consists of performance
evaluation of antimalware mechanisms. The future trends for
Android market shares and malware growth and limitations for
existing antimalware approaches are provided in Section VI. A
solution has also been proposed in this section which is aimed
at providing better security mechanism. The paper is concluded
in Section VII.

Fig. 2. Android Malware Growth

II. ANDROID MALWARE ANALYSIS

Wide range of malwares has been detected and the number
of malwares are increasing every year. According to
TrendMicro, malwares have increased to 7.10 million in first
half (1H) of 2015 [8][9]. Figure 2 shows the increased number
of Android malwares over the years. The behavior of different
malware families is provided in subsequent sections.

A. Trojans

Trojans appear to a user as a Benign app [5]. In fact, they
actually steal the user‟s confidential information without the
user‟s knowledge. Such apps can easily get access to the
browsing history, messages, contacts and device IMEI numbers
etc. of victim‟s device and steal this information without the
consent of user. FakeNetflix [10] is an example of such
malwares that provide user interface identical to original
Netflix app and collect the user‟s login credentials. SMS
Trojans exploit the premium services to incur financial loss to
the victim. Fakeplayer is a well-known SMS Trojan that sends
messages to premium rate numbers without user awareness
[11]. Zsone [12] and Android.foney are also the examples of
such SMS Trojan apps. Malwares also capture the user‟s
banking information such as account number and password.
Zitmo and Spitmo Trojans are designed to steal the user‟s
mTANs (Mobile Transaction Authentication Number) which
then complete the transactions silently [13].

B. Backdoors

Backdoors employ the root exploits to grant root privileges
to the malwares and facilitate them to hide from antiviruses.
Exploid, Rageagainstthecage (RATC) and Zimperlich are the
top three root exploits which gain full- control of device [14].
DroidKungFu [15] uses root exploits, Exploid and
Rageagainstthecage, in an encrypted form. When
DroidKungFu executes, it first decrypts and launches the root
exploits. If the root exploit succeed to gain control over device
and root privilege, the malware become able to perform any
operation on the device even the installation of applications
keeping the user unaware of this act [16].

C. Worms

Such malwares create copies of it and distribute them over
the network. For example, Bluetooth worms spread malware
through the Bluetooth network by sending copies of it to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

465 | P a g e
www.ijacsa.thesai.org

paired devices. Android.Obad.OS is the example of Bluetooth
worm [17].

D. Spyware

Nickspy [11] and GPSSpy [18] are the examples of spyware
apps which appear as benign app, but it actually monitors the
user‟s confidential information such as messages, contacts,
bank mTANs, location etc. for some undesirable consequences.
Personal spywares can install the malicious payload without
the victim‟s knowledge. It sends the user‟s information such as
text messages, contacts etc. to the attacker who installed that
software on victim‟s device [6].

E. Botnets

Botnet is a network of compromised Android devices.
Botmaster, a remote server, controls the botnet through the
C&C network. Geinimi [11] is one of the Android botnets.

F. Ransomwares

Ransomware prevent the user from accessing their data on
device by locking the device, until ransom amount is paid.
FakeDefender.B [19] is a malware that masquerades itself as
avast!, an antivirus. It locks the victim‟s device and force the
user to pay ransom amount to unlock the device.

G. Riskwares

Riskwares are the legitimate software exploited by the
malicious authors to reduce the performance of device or harm
the data e.g., delete, copy or modify etc. [20]. Table 1 below
shows the top malware types detected in 2015 by TrendMicro
[21].

TABLE I. TOP ANDROID MALWARE TYPES IN 2015

The statistical data obtained from [21] has been computed

and plotted in Figure 3 which presents the top Android
malware families recorded by TrendMicro in second quarter
(2Q) of 2015. According to the report, 24% of the total
malwares were guided variants, which do not have any GUIs
and silently run at the background without the user‟s
knowledge.

III. MALWARE PENETRATION TECHNIQUES

A. Repackaging

Malware authors repackage the popular applications of
Android official market, Google Play, and distribute them on
other less monitored third party app-store. Repackaging
includes the disassembling of the popular benign apps, both
free and paid; append the malicious content and reassembling

of app .This process of repackaging is done by reverse-
engineering tools. During repackaging, malicious authors
change the signature of repackaged app and so the app seems
new to the antimalware. TrendMicro report have shown that
77% of the top 50 free apps available in Google Play are
repackaged [22].

B. Drive By Download

It refers to an unintentional download of malware in the
background. Drive by download attacks occur when a user visit
a website that contains malicious content and injects malware
into the victim‟s device without the user‟s knowledge.
Malware developers use Android/NotCompatible [23] which is
one of the drive-by download app.

C. Dynamic Payloads

Malwares also penetrate into Android devices through
dynamic payload technique. They encrypt the malicious
content and embed it within APK resources. After installation,
the app decrypts the encrypted malicious payload and executes
the malicious code. Some malwares, instead of embedding
payload as resource, download the malicious content from
remote servers dynamically and are not detected by static
analysis approach [24].

D. Stealth Malware Techniques

On Android device malware scanners cannot perform deep
analysis because of the availability of limited resources such as
battery. Malware developers exploit these hardware
vulnerabilities and obfuscate the malicious code to easily
bypass the antimalware. Different stealth techniques such as
key permutation, dynamic loading, native code execution, code
encryption and java reflection are used to attack the victim‟s
device.

Fig. 3. Malware families seen in 2015

IV. ANDROID MALWARE DETECTION

There are mainly two approaches to analyze the Android
malwares: Static and Dynamic Approach. We have further
categorized the antimalware using static and dynamic
approaches. Figure 4 shows the taxonomy of existing
antimalware techniques based on our study.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

466 | P a g e
www.ijacsa.thesai.org

Fig. 4. Taxonomy of Existing Android Antimalwares

A. Static Approach

Static approach is a way to check functionalities and
maliciousness of an application by disassembling and
analyzing its source code, without executing the application. It
is useful for finding malicious behaviors that may not operate
until the particular condition occurs.

1) Signature Based Approach
Signature based malware detection methods are commonly

used by commercial antimalware products. This method
extracts the semantic patterns and creates a unique signature
[25]. A program is classified as a malware if its signature
matches with existing malware families‟ signatures. The major
drawback of signature based detection is that it can be easily
circumvented by code obfuscation because it can only identify
the existing malwares and fails against the unseen variants of
malwares. It needs immediate update of malware variants as
they are detected.

Faruki et al. [26] proposed AndroSimilar, a robust
statistical signature method to detect the unknown variants of
existing malwares that are usually generated by using
repackaging and code obfuscation techniques. It generates the
variable length signature for the application under test and
compares it with the signatures in AndroSimilar malware
database and identify the app as malware and benign on the
basis of similarity percentage. Authors tested the AndroSimilar
against 1260 apps among which 6779 apps were Google Play
apps and 545 apps were from third party app store. They also
used code obfuscation techniques such as method renaming,
string encryption, control flow obfuscation and junk method
insertion techniques to change the signature of the code and
tested the effectiveness of AndroSimilar against 426 samples.
The solution detected more than 60% samples correctly.
AndroSimilar compares the signatures of the applications in
order to distinct between the malwares and benign apps but it
has limited signature database as compared to the other
antivirus solutions. So any unseen malwares will remain
undetected. Also the similarity percentage creates the false

positives as it may classify the clean apps as malicious on the
basis of percentage.

DroidAnalytics [27] is a signature based analytic system
which extract and analyze the apps at op-code level. It not only
generates the signature but also associate the malware with
existing malwares after identifying the malicious content. It
generates 3 level signatures. First it generates signature at
method level by API call tracing then combining all the
signatures of methods in a class it generates the class level
signatures and at third level it generates the application
signature by combining the signatures of the classes in the
application. Authors have used DroidAnalytics to detect 2,494
malware samples from 102 malware families and 342
repackaged malwares from other six malware families. The
limitations of this method includes, it classifies the apps as
malware on the basis of classes mostly used by malware
families but during experiment they found some signatures that
are used by both the legitimate apps and malwares. Also the
similarity score used for detection of repackaged malwares do
not provide 100% solution or it may also provide false positive,
classify the legitimate app as malware.

 Limitation of Signature Based Detection: Although
signature based detection is very efficient for known
malwares but it cannot detect the unknown malware
types. Also because of limited signature database most
of the malwares remain undetected.

2) Permission Based Analysis:
In Android system, permissions requested by the app plays

a vital role in governing the access rights. By default, apps
have no permission to access the user‟ data and effect the
system security. During installation, user must allow the app to
access all the resources requested by the app. Developers must
mention the permissions requested for the resources in the
AndroidManifest.xml file. But all declared permissions are not
necessarily the required permissions for that specific
application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

467 | P a g e
www.ijacsa.thesai.org

Ref. [28] has shown that most of the time developers have
declared the permissions that are not actually required by the
application which makes it difficult to detect the malicious
behavior of application. Antimalware analyzes the Android
Manifest.xml file where all the permissions for the resources
required by the app are mentioned. Stowaway [28] exposes the
permission over privilege problem in Android where an app
requests more permissions than it actually uses. Stowaway
performs static analysis to determine the API calls invoked by
the application and then it maps the permissions required by
the API calls. They found that one third applications are over
privileged among 940 Android application samples. It cannot
resolve the API calls invoked by applications with the use of
java reflections.

In [29], authors have proposed a light weight malware
detection mechanism which only analyze the manifest file and
extract the information such as permissions, intent filters (
action, category and priority), process name and number of
redefined permissions to detect the malicious behavior of an
application. After extracting such information, they compare it
with the keyword list provide in the proposed method and then
calculate the malignancy score. They used Weka [30] which is
a data mining tool for calculation of threshold value. At last
they compare the malignancy score with threshold value and
classify the app as malware if malignancy score exceeds
threshold value. They have used 365 samples to test the
efficiency of proposed solution and the solution provides 90%
accurate detection. It is cost saving mechanism as it only
includes the analysis of manifest file and can be implemented
in other detection architectures easily to detect malwares
efficiently. Also it can detect even those malwares that remain
undetected by signature based detection method. This proposed
solution is limited to manifest file information. Also it cannot
detect the adware samples.

C. Y. Haung et al. [31] proposed a method for better
detection of permission based malware detection which
includes the analysis of both requested and required
permissions as most of the time malware authors declare more
permissions in the manifest file than they actually require for
the application. Also it analyses the easy to retrieve features
and then labels the application as benign or malware. Three
different labeling types are used for this purpose which
includes site based labeling; scanner based labeling and mixed
labeling. In site based labeling it labels the app as benign if it is
downloaded from Google official app market and if it is
downloaded from some malicious source then the app is
labeled as malicious. In the second labeling scheme, if the
antivirus scanner declares the app as benign the app is label as
benign and same for the malware case. In the mixed labeling
the app is labeled on the basis of both site based and scanner
based labels. After labeling all the samples are divided into
three datasets and requested permissions of these datasets are
analyzed by the machine learning algorithms such as Naive
Bayes, AdaBoost, Support Vector Machine and Decision Tree
[32]. On the basis of results generated by these classifiers we
can evaluate the performance of permission based detection
method. in [31] authors have performed experiment on data set
of 124,769 benign and 480 malicious apps. They analyzed the

performance of permission based detection of malware and
showed that more than 81% of malicious apps samples can be
detected by the permission based detection method. Proposed
method provides the quick filter for malware detection but the
performance values generated by the classifiers are not perfect
and we cannot completely rely on those results.

Sanz Borja et al. [33] presented PUMA for detection of
malicious apps by analyzing the requested permissions for
application. They used permission tags such as <uses-
permission> and <uses-features> present in
AndroidManifest.xml file to analyze the malicious behavior of
apps and applied different classifier algorithms on dataset of
357 benign apps and 249 malicious apps. The solution provides
high detection rate but results generated have high false
positives rate also it is not adequate for efficient detection of
malware it still requires information related to other features
and dynamic analysis.

Shin et al. [34] used a state machine based approach and
formally analyze the permission based Android security model.
They also verified that the specified system satisfy the security
property.

Tang, Wei et al. [35] proposed a Security Distance Model
for mitigation of Android malware. Security Distance Model is
based on the concept that not a single permission is enough for
an application to threaten the security of Android devices. For
example an application requesting permission
READ_PHONE_STATE can access the phone number and
IMEI but it cannot move data out of the device. There must be
a combination of permissions to affect the security model of
device such as INTERNET permission allows to concept the
device with the network and will be needed to move data to
some remote server. The SD measure the dangerous level of
application on the basis of permissions requested by the app.
Authors classify the combinations of permissions into four
groups and assigned threat points (TP) to each group such as
TP-0, 1, 5 and 25 to Safe SD, Normal SD, Dangerous SD and
Severe SD. Before the installation of new application it
calculates the threat point from the combination of permissions
requested by the application. That helps the user to get aware
of more dangerous permissions while installation of app. It can
easily detect the unknown malwares with very high threat
points. They found 500 threat points for the Geinimi malware
which is a very clear variation from benign apps. A limitation
of this solution includes that applications with threat points
between 50 and 100 are not easy to identify as benign and
malware. They could be the benign apps with such permission
combinations or malwares.

Enck et al. [36] developed KIRIN, a tool that provides light
weight certification at installation time. It defines the security
rules and simply compares the requested permissions of app
with its security rules and certifies the app as malware if it fails
to pass all the security rules. The installation of app is aborted
if the app is attributed as malware. Authors have tested 311
applications downloaded from official Android market and
found that 5 applications failed to pass the specified rules.
Proposed solution is light weight as it only analyzes the
Menifest.xml file. The limitation of KIRIN includes that it may

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

468 | P a g e
www.ijacsa.thesai.org

also declare some legitimate applications as malware because
the information provided for application certification is not
adequate for detection of malware.

DroidMat [37] is a tool that extracts the information from
manifest file such as permissions, message passing through
intents and API call tracing to analyze the behavior of
application. It applies K-means clustering that increases the
malware detection capability and classify the applications as
benign or malware by using KNN algorithm [38]. It is more
efficient than Androgaurd [39] as it takes lesser time to identify
the 1,738 apps as malware or benign. Also it is cost saving as it
doesn‟t require dynamic simulation and manual efforts. But as
a static based detection method it cannot detect the malwares
which dynamically load the malicious content such as
DroidKngFu and BaseBridge.

 Limitation of Permission Based Detection: Permission
based detection is a quick filter for the application
scanning and identifying that whether the application is
benign or malware but it only analyses the manifest file
it do not analyze other files which contain the
malicious code. Also there is very small difference in
permissions used by the malicious and benign apps.
Permission based methods require second pass to
provide efficient malware detection.

3) Dalvik Bytecode Analysis:
In Android, Dalvik is a register-based VM. Android apps

are developed in java language, compiled in java bytecode and
then translated to dalvik byte code. Bytecode analysis helps us
to analyze the app behavior. Control and data flow analysis
detect the dangerous functionalities performed by malicious
apps.

Jinyung Kim et al. [40] developed SCANDAL, a static
analyzer that analyze the dalvik byte code of applications and
detects the privacy leakage in applications. It determines the
data flow from information source to any remote server. Dalvik
bytecode contains branch, method invocation and jump
instructions which alters the order of execution of code and
obfuscates the code. During execution, the possible paths that
an application can take can be identified by the Bytecode
analysis. In [40] Authors have examined 90 applications from
Android official market and 8 malicious applications from
third party market place. They found privacy leakage in 11
Google market applications and 8 third party market
applications. There is a need of performance optimization
techniques to implement as SCANDAL consumes more time
and memory for analysis of application. Also it does not
support the applications which use reflections for data leakage.
In the SCANDAL authors have implemented reflection
semantics manually to detect the privacy leakage in malicious
apps taken from black market.

Karlsen et al. [41] presented the first formalization of
Dalvik Bytecode along with java reflective features. They
examined 1700 popular Android Apps to determine what
Dalvik Bytecode instructions and features are mostly used by
the Android Apps. Such formalization helps to perform control
and data flow analysis in order to detect the malicious apps or
to identify the sensitive API calls invoked during execution. It
supports the dynamic dispatch and reflective features. But it

requires extension in analysis of concurrency and reflection
handling.

Zhou et al. [42] implemented DroidMOSS that extract the
Dalvik Byte code sequence and developer information of
application by using baksmali tool [43] and generate finger
prints for each app by using fuzzy hashing techniques to create
the fixed sized 80 byte signature to detect the repackaged
applications. On the basis of similarity score it identifies the
repackaged apps. Authors have applied DroidMOSS to test 200
samples from six different third party market places and
detected that 5% to 13% apps were repackaged. The proposed
solution cannot detect the repackaged apps if the original app is
not present in database. Also because of limited database most
of the malwares remains undetected. Google play store may
also contain malwares. The limitation of this solution also
includes that they have assumed all the Google Play apps as
legitimate apps and then matched the signature of the apps
taken from other app store to detect the repacked apps.

DroidAPIMiner [44], build upon Androgaurd [39],
identifies the malware by tracking the sensitive API calls ,
dangerous parameters invoked and package level information
within the bytecode. To classify the application as benign or
malware it implements KNN algorithm [38] and detected up to
99 % accuracy and 2.2% false positive rate.

Fuchs et al. [45] presented SCandroid which analyze the
Android application statically as they are installed and
performs data flow analysis to checks whether the data flow
through the applications is consistent or not. On the basis of
data flows it declares the application as safe to be run with
requested permissions. Authors use it as a security certification
tool for Android apps.

Many researchers worked on conversion of Dalvik
bytecode to Java bytecode and then performed static analysis
on java code to detect the malicious behavior of the app. ded
[46] and Dare [47] are the tools used for conversion of dalvik
bytecode into java bytecode. These tools are also useful when
developers don‟t distribute the java source code, in such case
one must analyze the source code to detect the malware
through static analysis. Dexpler tool [48] converts the Dalvik
bytecode into Jimple code which is used by static analysis
framework named Soot [49]. It makes the Soot to read the
Dalvik Bytecode directly and perform the static analysis
without converting Dalvik bytecode into java bytecode. Well
known static analysis framework used by researchers is WALA
which perform static analysis on java bytecode to detect
privacy leakage within malicious apps [50].

Chin et al. [51] presented a tool named ComDroid that
detect the communication based vulnerabilities among Android
apps. They have analyzed 20 samples and detected 34
exploitable vulnerabilities among 12 applications. It uses
Dedexer tool [52] to disassemble the dex files in the app. It
performs the static analysis on Dalvik files, analyzes the
permissions listed in the manifest.xml file of the app, performs
intraprocedural analysis and examines the Intents of the apps to
detect the communication vulnerabilities

 Limitations of Dalvik Bytecode Detection: In this
method analysis is performed at instruction level and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

469 | P a g e
www.ijacsa.thesai.org

consumes more power and storage space. As the
android devices are resource poor so they limits this
detection approach.

B. Dynamic Approach

Dynamic analysis examines the application during
execution. It may miss some of the code sections that are not
executed but it can easily identify the malicious behaviors that
are not detected by static analysis methods. Although static
analysis methods are faster to malware detection but they fail
against the code obfuscation and encryption malwares.

In [53] , Egele provided a detailed overview of different
dynamic analysis methods used for discrimination between
malware and benign apps. Dynamic analysis approach is
effective against polymorphic and metamorphic code
obfuscation techniques employed by the malwares [54] but it
requires more resources.

1) Anomaly Based Detection
Iker et al. [55] proposed CrowDroid to detect the behavior

of applications dynamically. Details of system calls invoked by
the app are collected by the Strace tool [56] and then
crowdsourcing app, which is installed on the device, creates a
log file and sends it to remote server. Log file may include the
following information: Device information, apps installed on
device and system calls. 2-mean clustering algorithm is applied
at server side to classify the application as malware or benign.
Results are stored at server database. The solution provides
deep analysis and thus require large amount of resources. The
solution requires client app to be installed on the user‟ device
and may classify the legitimate app as malware if it invoke
more system calls.

Shabtai et al. [57] proposed Andromly , a behavior based
Android malware detection system. In order to classify the
application as benign or malware it continuously monitor the
different features and patterns that indicate the device state
such as battery level, CPU consumption etc. while it is running
and then apply the machine learning algorithms to discriminate
between malicious and Benign apps. the solution can detect
continuous attacks and can notify the user about these attacks.

AntiMalDroid [58], a malware detection framework using
SVM algorithm is proposed by Zhao, can identify the
malicious apps and their variants during execution. First it
monitors the behavior of applications and their characteristics
then it categorize these characteristics as normal and malicious
behavior. Then it puts the two types of characteristics into
learning module and generates the signatures for the behavior
characteristics, produced by learning module. Then it store the
signature in database and compare it with the already existing
malware and benign app signatures. It classify the app as
benign if the signature matches with already existing benign
app‟ signatures. The solution can extend the signature database
dynamically and can provide high detection rate. But it
consumes more time while detection process.

2) Taint Analysis
Enck et al. [59] proposed TaintDroid which provides

system-wide information flow tracking for Android. It can
simultaneously track multiple sources of sensitive data such as
camera, GPS and microphone etc. and identify the data leakage

in third party developer apps. It labels the sensitive data and
keeps track of that data and app when tainted data leaves
moves from the device. It provides efficient tracking of
sensitive information but it do not perform control flow
tracking. Also it cannot track information that leaves deice and
returns in network reply.

3) Emulation Based Detection
Yan et al. [60] present Android dynamic analysis platform

DroidScope, based on Virtual Machine Introspection. As the
antimalware detect the presence of malwares because both of
them reside in the same execution environment so the
malwares also can detect the presence of antimalware.
DroidScope monitors the whole operating system by staying
out of the execution environment and thus have more
privileges than the malware programs. It also monitors the
Dalvik semantics thus the privilege escalation attacks on kernel
can also be detected. It is built upon QEMU. DroidDream and
DroidKungFu [61] were detected with this technique.

Blaising et al. [62] proposed Android Application Sandbox
(AASandbox) which detect the suspicious applications by
performing both static and dynamic analysis on them. It first
extracts the .dex file into human readable form and then
performs static analysis on application. Then it analyzes the
low level interactions with system by execution of application
in isolated sandbox environment. Actions of application are
limited to sandbox due to security policy and do not affect the
data on device. It uses Money tool to dynamically analyze the
application behavior which randomly generates the user events
like touches, clicks and gestures etc. it cannot detect the new
malware types.

V. PERFORMANCE EVALUATION & ANALYSIS

In this section, we evaluate the performance of different
parameters and provide a comprehensive comparison of
different attributes. Table 2 provides the limitations of the
static and dynamic approach of the malware detection. The
malware detection through static analysis and dynamic analysis
is provided in Table 3 and Table 4 respectively.

TABLE II. LIMITATIONS OF STATIC AND DYNAMIC APPROACHES

 Mechanism Limitations

S
ta

ti
c

Signature based
detection

Cannot detect unknown malware types.

Permission
based detection

May consider benign app as malicious because of
very small difference between permissions
requested by both types.

Dalvik bytecode
detection

More power and memory consumption.

D
y

n
a
m

ic

Anomaly
detection

Incorrect if a benign app shows same behaviors
e.g., invoke more API calls or consumes more
battery and memory.

Taint Analysis
Not suitable for real time analysis
Reduce performance. 20 times slowdown system

Emulation
based detection

More resource consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

470 | P a g e
www.ijacsa.thesai.org

On the basis of their working techniques we have deduced major limitations and benefits for each detection mechanism.

TABLE III. MALWARE DETECTION THROUGH STATIC ANALYSIS

Approach Name Goal Method Year Limitations Benefits

Signature

Based

Detection

AndroSimil
ar [26]

Detect unseen
and zero day
samples of
known
malwares.

 Creates variable length signature and
compares with signature database.

 Use fuzzy hashing technique
 Differentiates between benign and

malicious apps on the basis of similarity
percentage.

2013

 Limited signature database
 Similarity percentage may

classify benign apps as
malicious.

 Can only detect known
malware variants

 Effective against code

obfuscation and
repackaging.

DroidAnaly
tics [27]

Automatic
collection,
extraction,
analysis and
association of
Android
malwares.

 Create 3 level signatures for app on the
basis of API calls.

 Perform Op-code level analysis (method,
class, application).

 Correlate application with existing
malwares in database via similarity score
based on class level signature.

2013

 Similarity score may
classify legitimate apps as
malicious.

 Some level 2 signatures
classified as malwares are
also used by legitimate
apps.

 Cannot detect unknown
malware types.

 Effective against

mutations and
repackaged apps.

 Associates malware at
op-code level

 Easy malware and
dynamic payload
tracking.

 Also detect dynamic
malware payloads.

Permission

Based

Detection

Stowaway
[28]

Application
over privilege
detection

 API call tracing through static analysis
tool.

 Permission map to identify the
permissions required by each API cal.

2011
 Cannot resolve complex

reflective calls

 Notify about the over

privileged applications.

R.Sato [29]

Malware
detection by
manifest file
analysis.

 Analyze manifest file
 Compare extracted information with

keyword list.
 Calculate malignancy score
 Compare malignancy score with threshold

values
 Classify the app as malware if malignancy

score exceeds threshold values.

2013

 Cannot detect adware
samples

 Generates results only on
the basis of manifest file.

 Light weight approach
 Low cost
 Can detect the unknown

malwares.
 Can detect the malwares

that remain undetectable
by signature based
detection.

 Can be implemented in
other security systems
for better malware
detection.

C.Y.Haung
[31]

Performance
evaluation on
permission
based
malware
detection.

 Analyze the required and requested
permissions for application

 Analyze easy to retrieve features
 Labels apps as benign or malware using

site based, scanner based and mixed
labeling

 Use machine learning algorithms on three
data sets (on the basis of labels)

 Evaluate the permission based malware
detection performance.

2013

 Performance numbers
generated by classifiers are
not perfect.

 Cannot completely rely on
results generated by
classifiers.

 Ada Boost identifies all
apps as legitimate.

 Naïve Bayes also do not
give précised results.

 Can use different
classifiers for different
scenarios.

 Quick filter for malware
detection.

PUMA [32]
Malware
detection

 Analyze extracted permissions
 Use the <use permissions> and <use

features> tags.
 Classify apps by using machine learning

algorithms.
 Evaluate the performance by k-fold cross

validation with k=10.

2013
 High false positive rate
 Not adequate for efficient

malware detection

 High detection rate

Tang Wei
[34]

Application
assessment
and analysis to
extend
android
security

 Uses Security Distance Model to measure
dangerous level due to combination of
requested permissions.

2011

 Applications with threat
point between 50 and 100
are difficult to identify as
malware or benign apps.

 Provide malware

identification during
installations.

 Can detect unknown
malwares

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

471 | P a g e
www.ijacsa.thesai.org

Kirin [35]

Risk
assessment
and
certification of
applications at
install time.

 Uses security rules
 Compares the security configuration of

application with security rules
 Certifies the app as malware if app fails to

satisfy all the security rules.

2009

 May declare benign app as
malware because mostly
similar permissions are
requested by benign and
malicious apps.

 Light weight certification

of application at
installation time.

 Low cost.
 Block the malicious

applications.

Dalvik

Bytecode

Detection

SCANDAL
[38]

Privacy leak
detection

 Extracts bytecode of application as a
dalvik executable file

 Translates dalvik executable into dalvik
core, an intermediate language for
efficient analysis

2012

 More time and memory
consumption

 Needs performance
improvement techniques to
implement.

 Does not support
applications that use
reflections for privacy
leakage

 Does not support java
native interface libraries

 Saves the data from

privacy leakage.
 Dalvik bytecode is

always available.
 Does not need reverse

engineering tools

Karlsen
[39]

Dalvik
bytecode
formalization
and control
flow analysis

 Provides formal control flow analysis.
 Formalizes dalvik bytecode language with

reflection features.
2013

 Requires extension in
analysis of reflection and
concurrency handling.

 Supports reflection and

dynamic dispatch
features.

 Formal control flow
analysis easily traces the
API calls.

DroidMOS
S [40]

Repackaged
malicious app
detection

 Extract instructions in app and developer
information.

 Uses baksmali tool for dalvik bytecode
extraction.

 Generates fingerprint for each app by
applying fuzzy hashing techniques

 Measures similarity between apps to
detect repackaged apps

2012

 It assumes all the Google
Play apps as legitimate
apps.

 Limited database.
 Cannot detect repackaged

apps if original app is not
present in database.

 Effective detection of

repackaged apps.

DroidAPIM
iner [42]

API level
Malware
detection

 Extract API level features
 Apply classifiers for evaluation

2013

 More occurrences of false
positives

 May generate incorrect
classification.

 Better accuracy.

SCanDroid
[43]

Application
data flow
analysis and
security
certification

 Analyze data flows in app.
 Make decision to classify app as benign or

malware on the basis of data flow.
2009

 Cannot be applied to
packaged applications.

 Provide security at install

time.

ComDroid
[49]

Application
communicatio
n vulnerability
detection

 Extract dalvik executable files
 Disassemble DEX files using dedexer

tool.
 Keep logs of the communication

vulnerabilities

2011

 Does not verify the
existence of malware

 Require users to manually
investigate the warnings

 Issue warnings about

threats.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

472 | P a g e
www.ijacsa.thesai.org

TABLE IV. MALWARE DETECTION THROUGH DYNAMIC ANALYSIS

Approach Name Goal Method Year Limitations Benefits

 A
n

o
m

a
ly

 D
et

ec
ti

o
n

CrowDroid [53]

Detect
anomalously
behaving
malicious
applications

 CrowDroid client app installed on user‟
device.

 Strace tool perform system calls tracing.
 Creates a log file and send to remote server.
 Dynamic analysis is performed on the data at

server side.
 Consider that malicious apps invoke more

system calls.

2011

 Requires the
installation of
CrowDroid client
application to perform
detection.

 Results incorrect if
legitimate app invokes
more system calls.

 Provides deep
analysis.

Andromly [55]
Malware
detection

 Continuously monitor the features and events
e.g., battery level, data packets transferred
through Internet, CPU consumption and
running processes.

 Apply machine learning classifiers to
discriminate between benign and malicious
applications.

2012

 Only four artificially
created malware
instances were used for
testing the system

 Battery drainage issue.

 Can detect the
continuous attacks.

 Alerts the user
about detected
anomaly.

AntiMalDroid [56]

Malware
detection
through
characteristic
learning and
signature
generation.

 Monitor the behavior of applications and
their characteristics

 Categorize the characteristics into normal
behavior and malicious behavior

 Put these characteristic types into learning
module

 Generate behavioral characteristics.
 Generate the signatures for these behavioral

characteristics
 Store these signatures to database.
 Compares a signature with the signatures in

the database.
 Declares as a malware if signature matches

with malware signature in database.

2011
 More time

consumption.

 Can detect
unknown
malwares and their
variants in
runtime.

 Extends malware
database
dynamically.

 Higher detection
rate

 Low cost and
better
performance.

 T
a
in

t
A

n
a
ly

si
s

TaintDroid [57]

Data flow
analysis and
leakage
detection

 Automatically labels the data.
 Keeps track of the data.
 Records the label of the data, source and

destination device if the data moves out of
the device.

2010

 Only track data flows
and do not track
control flows.

 Cannot track
information that leaves
the device and return in
network reply.

 Efficient tracking
of sensitive
information

E
m

u
la

ti
o

n
 B

a
se

d
 D

et
ec

ti
o

n

DroidScope [58]
Android
malware
analysis

 System calls tracking
 Built upon QEMU (quick emulator)
 Monitors the OS and Dalvik semantics
 Perform virtual machine introspection based

dynamic analysis

2012 Limited code coverage

 Can detect
privilege
escalation attacks
on the kernel.

AASandbox [60]
Malware
detection

 Extracts a class.dex file and decompiles it
into human readable form.

 Performs static analysis on application.
 Executes the application in sandbox and

perform dynamic analysis
 Uses Monkey tool to analyze the malicious

behavior of app.

2010
Cannot detect new
malwares

Can be used to
improve the
efficiency of the
antimalware
programs for
Android OS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

473 | P a g e
www.ijacsa.thesai.org

Figure 6: Future Trends of Android Malware Growth

Fig. 5. Expected future trends of android OS market share

VI. DISCUSSION

The popularity of Android operating system is increasing
tremendously. The yearly records, presented by IDC [3], show
that Android OS market shares in second quarter (2Q) of 2015
are 82.8%, which is 2% decrease from the 2Q 2014. If the
value remains the same till the end of year and keep on
decreasing every year with the same rate then we can expect
that in 2018, the Android market shares will drop to 76.8%.
According to same record, the Android shares have increased
5% in 2014 from previous year. If it keep on increasing with
the same rate and increases up to 89.8% till the end of 2016
then we can say that the Android shares will grow up to 99.9%
in 2018. Furthermore, it is predicted that the market shares of
the Android will be on average 88.4% in 2018. The estimations
and future predictions of the Android market are computed and
plotted in Figure 5. It should be noted that with the increased
usage of the Android based devices, the number of malwares
attacking Android is increasing at an exponential rate. In 2015,
number of Android malwares spiked to 7.10 million. This
figure is 2.84 million more than the previous year [8][9]. If the
malware growth keeps on increasing with the same ratio, it is
expected that this number will be increased up to 15.8 million
in 2018. The malware growth trends are predicted and
estimated values are provided in Figure 6.

In contrast to malwares, the antimalware have been
designed and developed in a wide range in order to protect the
devices. It is inferred that an antimalware using static approach
is less efficient in detecting the malicious contents that are
loaded dynamically from remote servers. Although, the
dynamic approach is efficient as it keeps on monitoring the
application and able to detect the malicious content at
execution time. However, the portions of malicious code that
are not executed remain undetected. It is believed that any
single security solution in Android cannot provide full
protection against the vulnerabilities and malwares. It is better
to deploy more than one solution simultaneously for example,
a hybrid of two approaches, i.e. static and dynamic. The hybrid
approach will first statically analyze the application and will

then perform dynamic analysis. This hybrid solution may be an
expensive method to apply because of the limited available
resources such as battery, memory etc. However, the limitation
of this hybrid solution can be addressed in twofold. Firstly, the
static analysis can be performed locally on the Android device;
and afterwards, the dynamic analysis could be performed in a
distributed fashion by sending the malicious activity or event in
the form of a log file to a remote server. The remote server can
perform the dynamic analysis quickly and efficiently as the
server will have enough resources to perform dynamic analysis
and can generate rapid responses against the application
behavior and the user can be instantly notified. However, this
hybrid solution needs more investigation and is subject to the
design tradeoffs. The future works will focus to develop such
hybrid antimalware to provide better security for android
devices.

VII. CONCLUSION

In this paper, the malwares and their penetrations

techniques have been thoroughly analyzed. The antimalware
are categorized on the basis of detection methods they use. A
detailed performance evaluation of these antimalware

2012 2013 2014 2015 2016 2017 2018

Current 6.93 79.8 84.8 82.8

Increase 89.8 94.8 99.8 99.99

Decrease 82.8 80.8 78.8 76.8

Average 86.3 87.8 89.3 88.4

0

20

40

60

80

100

120

G
ro

w
th

 P
er

ce
nt

ag
e

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

474 | P a g e
www.ijacsa.thesai.org

techniques is also provided and the benefits and limitations of
these antimalware are deduced comprehensively. At the end, a
concept of hybrid antimalware is presented which will address
the limitations of existing static and dynamic approaches. In
future, it is aimed to implement the proposed hybrid solution
which will be a generic antimalware that will provide better
security for Android devices by firstly statically analyzing the
Android applications on local device and then it will perform
dynamic analysis on a remote antimalware server. This will
consume very small amount of memory space on the device
and the battery consumption will also be low as all dynamic
analysis will be performed at the remote server.

REFERENCES

[1] “Eric Schmidt: „There Are Now 1.3 Million Android Device Activations
Per Day.‟” [Online]. Available: http://techcrunch.com/2012/09/05/eric-
schmidt-there-are-now-1-3-million-android-device-activations-per-day/.
[Accessed: 28-Oct-2015].

[2] “Gartner Says Annual Smartphone Sales Surpassed Sales of Feature
Phones for the First Time in 2013.” [Online]. Available:
http://www.gartner.com/newsroom/id/2665715. [Accessed: 28-Oct-
2015].

[3] “IDC: Smartphone OS Market Share 2015, 2014, 2013, and 2012.”
[Online]. Available: http://www.idc.com/prodserv/smartphone-os-
market-share.jsp. [Accessed: 08-Dec-2015].

[4] “Number of available Android applications - AppBrain.” [Online].
Available: http://www.appbrain.com/stats/number-of-android-apps.
[Accessed: 28-Oct-2015].

[5] “Android and Security - Official Google Mobile Blog.” [Online].
Available: http://googlemobile.blogspot.in/2012/02/android-and-
security.html. [Accessed: 28-Oct-2015].

[6] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” Proc. 1st ACM Work. Secur. Priv.
smartphones Mob. devices - SPSM ‟11, pp. 3 – 14, 2011.

[7] R. Fedler, J. Schütte, and M. Kulicke, “On the Effectiveness of Malware
Protection on Android,” p. 36, 2013.

[8] “Mind the (Security) Gaps: The 1H 2015 Mobile Threat Landscape -
Security News - Trend Micro USA.” [Online]. Available:
http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/mind-
the-security-gaps-1h-2015-mobile-threat-landscape. [Accessed: 08-Dec-
2015].

[9] “The Mobile Landscape Roundup: 1H 2014 - Security News - Trend
Micro USA.” [Online]. Available:
http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/the-
mobile-landscape-roundup-1h-2014. [Accessed: 08-Dec-2015].

[10] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K. Datta, “Android
malware attacks and countermeasures: Current and future directions,”
2014 Int. Conf. Control. Instrumentation, Commun. Comput. Technol.,
pp. 137–143, 2014.

[11] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” 2012 IEEE Symp. Secur. Priv., no. 4, pp. 95–109, 2012.

[12] “Security Alert: Zsone Trojan found in Android Market | Lookout
Blog.” [Online]. Available:
https://blog.lookout.com/blog/2011/05/11/security-alert-zsone-trojan-
found-in-android-market/. [Accessed: 15-Dec-2015].

[13] L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi, “Over-the-Air
Cross-platform Infection for Breaking mTAN-based Online Banking
Authentication,” Black Hat Abu Dhabi, pp. 1–12, 2012.

[14] “root exploits.” [Online]. Available:
http://www.selinuxproject.org/~jmorris/lss2011_slides/caseforseandroid.
pdf. [Accessed: 15-Dec-2015].

[15] “Trojan: Android/DroidKungFu.C Description | F-Secure Labs.”
[Online]. Available: https://www.f-secure.com/v-
descs/trojan_android_droidkungfu_c.shtml. [Accessed: 15-Dec-2015].

[16] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” Proc. 19th Annu. Netw. Distrib. Syst. Secur. Symp., no. 2, pp.

5–8, 2012.

[17] “contagio mobile: Backdoor.AndroidOS.Obad.a.” [Online]. Available:
http://contagiominidump.blogspot.in/2013/06/backdoorandroidosobada.
html. [Accessed: 28-Oct-2015].

[18] C. a Castillo, “Android Malware Past , Present , and Future,” McAfee
White Pap. Mob. Secur. Work. Gr., pp. 1–28, 2011

[19] “Android.Fakedefender.B | Symantec.” [Online]. Available:
https://www.symantec.com/security_response/writeup.jsp?docid=2013-
091013-3953-99. [Accessed: 15-Dec-2015].

[20] “Riskware | Internet Security Threats.” [Online]. Available:
http://usa.kaspersky.com/internet-security-center/threats/riskware#.Vm-
5IUp97IU. [Accessed: 15-Dec-2015].

[21] “Trend Micro Q2 Security Roundup Report | Androidheadlines.com.”
[Online]. Available: http://www.androidheadlines.com/2015/08/trend-
micro-q2-security-roundup-report.html. [Accessed: 08-Dec-2015].

[22] “A Look at Repackaged Apps and their Effect on the Mobile Threat
Landscape.” [Online]. Available: http://blog.trendmicro.com/trendlabs-
security-intelligence/a-look-into-repackaged-apps-and-its-role-in-the-
mobile-threat-landscape/. [Accessed: 15-Dec-2015].

[23] “NotCompatible Android Trojan: What You Need to Know | PCWorld.”
[Online]. Available:
http://www.pcworld.com/article/254918/notcompatible_android_trojan_
what_you_need_to_know.html. [Accessed: 15-Dec-2015].

[24] New Threats and Countermeasures in Digital Crime and Cyber
Terrorism. IGI Global, 2015.

[25] A. Aiken, “Apposcopy : Semantics-Based Detection of Android
Malware Through Static Analysis,” Fse 2014, pp. 576–587, 2014.

[26] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,
“AndroSimilar: Robust Statistical Feature Signature for Android
Malware Detection,” Proc. 6th Int. Conf. Secur. Inf. Networks, pp. 152–
159, 2013.

[27] M. Zheng, M. Sun, and J. C. S. Lui, “DroidAnalytics : A Signature
Based Analytic System to Collect , Extract , Analyze and Associate
Android Malware,” 2013.

[28] Android Permissions Demystified.” [Online]. Available:
https://www.truststc.org/pubs/848.html. [Accessed: 06-Nov-2015].

[29] R. Sato, D. Chiba, and S. Goto, “Detecting Android Malware by
Analyzing Manifest Files,” pp. 23–31, 2013.

[30] “Weka 3 - Data Mining with Open Source Machine Learning Software
in Java.” [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.
[Accessed: 16-Dec-2015].

[31] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on
permission-based detection for android malware,” Adv. Intell. Syst.
Appl. - Vol. 2, vol. 21, pp. 111–120, 2013.

[32] S. Ben-david, Understanding Machine Learning : From Theory to
Algorithms. 2014.

[33] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and G.
Álvarez, “PUMA: Permission usage to detect malware in android,” Adv.
Intell. Syst. Comput., vol. 189 AISC, pp. 289–298, 2013.

[34] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “Towards formal
analysis of the permission-based security model for Android,” 5th Int.
Conf. Wirel. Mob. Commun. ICWMC 2009, pp. 87–92, 2009.

[35] W. Tang, G. Jin, J. He, and X. Jiang, “Extending android security
enforcement with a security distance model,” 2011 Int. Conf. Internet
Technol. Appl. iTAP 2011 - Proc., 2011.

[36] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” Proc. 16th ACM Conf. Comput. Commun.
Secur. - CCS ‟09, pp. 235–245, 2009.

[37] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “DroidMat:
Android Malware Detection through Manifest and API Calls Tracing,”
2012 Seventh Asia Jt. Conf. Inf. Secur., pp. 62–69, 2012.

[38] L. Kozma, “k Nearest Neighbors algorithm (kNN),” 2008.
[39] “androguard - Reverse engineering, Malware and goodware analysis of

Android applications ... and more (ninja !) - Google Project Hosting.”
[Online]. Available: https://code.google.com/p/androguard/. [Accessed:
01-Dec-2015].

[40] J. Kim, Y. Yoon, and K. Yi, “S CAN D AL : Static Analyzer for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

475 | P a g e
www.ijacsa.thesai.org

Detecting Privacy Leaks in Android Applications.”

[41] E. R. Wognsen, H. S. Karlsen, M. C. Olesen, and R. R. Hansen,
“Formalisation and analysis of Dalvik bytecode,” Sci. Comput.
Program., vol. 92, no. December 2012, pp. 25–55, 2014.

[42] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” Proc.
Second ACM Conf. Data Appl. Secur. Priv. - CODASKY ‟12, pp. 317–
326, 2012.

[43] “[Utility][Tool][Windows] Baksmali / Smali Ma… | Android
Development and Hacking.” [Online]. Available: http://forum.xda-
developers.com/showthread.php?t=2311766. [Accessed: 22-Dec-2015].

[44] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android,” Secur. Priv.
Commun. Networks, vol. 127, pp. 86–103, 2013.

[45] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid : Automated
Security Certification of Android Applications.”

[46] W. Enck, D. Octeau, and P. Mcdaniel, “A Study of Android Application
Security,” no. August, 2011.

[47] D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android applications
to Java bytecode,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering -
FSE ‟12, 2012, p. 1.

[48] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon, “Dexpler:
Converting Android Dalvik Bytecode to Jimple for Static Analysis with
Soot,” 2012.

[49] “A framework for analyzing and transforming Java and Android
Applications.” [Online]. Available: http://sable.github.io/soot/.
[Accessed: 07-Nov-2015].

[50] “Main Page - WalaWiki.” [Online]. Available:
http://wala.sourceforge.net/wiki/index.php/Main_Page. [Accessed: 07-
Nov-2015].

[51] E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” Proc. 9th …, pp. 239–252,

2011.

[52] “Dedexer user‟s manual.” [Online]. Available:
http://dedexer.sourceforge.net/. [Accessed: 08-Nov-2015].

[53] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 1–42, 2012.

[54] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
Proc. - 2010 Int. Conf. Broadband, Wirel. Comput. Commun. Appl.
BWCCA 2010, pp. 297–300, 2010.

[55] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
Based Malware Detection System for Android,” Proc. 1st ACM Work.
Secur. Priv. smartphones Mob. devices - SPSM ‟11, p. 15, 2011.

[56] “strace download | SourceForge.net.” [Online]. Available:
http://sourceforge.net/projects/strace/. [Accessed: 22-Dec-2015].

[57] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“„Andromaly‟: a behavioral malware detection framework for android
devices,” J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190, 2012.

[58] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, “AntiMalDroid: An efficient
SVM-based malware detection framework for android,” Commun.
Comput. Inf. Sci., vol. 243 CCIS, pp. 158–166, 2011.

[59] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” Osdi ‟10, vol. 49, pp. 1–
6, 2010.

[60] L. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os and
dalvik semantic views for dynamic android malware analysis,” Proc.
21st USENIX Secur. Symp., p. 29, 2012.

[61] F. Wu, H. Narang, and D. Clarke, “An Overview of Mobile Malware
and Solutions,” J. Comput. Commun., vol. 2, no. 2, pp. 8–17, 2014.

[62] T. Bläsing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An android application sandbox system for suspicious software
detection,” Proc. 5th IEEE Int. Conf. Malicious Unwanted Software,
Malware 2010, pp. 55–62, 2010.

