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Abstract

We present a novel negotiation model that allows an agent to learn how to negotiate dur-
ing concurrent bilateral negotiations in unknown and dynamic e-markets. The agent uses 
an actor-critic architecture with model-free reinforcement learning to learn a strategy 
expressed as a deep neural network. We pre-train the strategy by supervision from syn-
thetic market data, thereby decreasing the exploration time required for learning during 
negotiation. As a result, we can build automated agents for concurrent negotiations that can 
adapt to different e-market settings without the need to be pre-programmed. Our experi-
mental evaluation shows that our deep reinforcement learning based agents outperform two 
existing well-known negotiation strategies in one-to-many concurrent bilateral negotiations 
for a range of e-market settings.

Keywords Multi-agent negotiation · Deep reinforcement learning · Concurrent bilateral 
negotiation

1 Introduction

Negotiation is a process in which different parties exchange offers in order to mutually 
explore the likelihoods of reaching agreements [17]. As such a process can be time-con-
suming for humans, and consequently expensive [19], automating it saves both time and 
money. To address this problem, autonomous agent systems have been advocated as a key 
technology for automating human negotiations [23]. In automated negotiation of this type, 
humans state their goals and agents engage in strategic interactions with other agents to 
achieve them. This approach has many advantages due to the adaptive and multi-process-
ing capabilities of autonomous agents. For example, in e-commerce marketplaces [21, 41], 
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autonomous agents offer systematically all possible outcomes achieving better cost and 
time efficiency than a human agent [16, 26, 32–34].

In this paper, we are more interested in open and dynamic e-markets such as E-bay.1 
In such a type of e-markets, buyer agents are engaged in concurrent bilateral negotiations 
with unknown seller agents using strategies to anticipate the opponent’s actions or inten-
tions automatically, without the need to be pre-programmed. However, the design of auton-
omous agents capable of learning negotiation strategies from concurrent interactions with 
other agents is still an important open problem. Aspects of this problem have been studied 
previously, but mainly using heuristic strategies [3, 35, 39, 55] that, as such, do not sup-
port learning. From these, strategies that can adapt to changes in the environment exist, 
for example see [55]. Approaches like [40, 61] use learning based on Genetic Algorithms 
(GA), but require a huge number of trials before obtaining a good strategy, which makes 
them infeasible for online settings. Previous works on Reinforcement Learning (RL)-based 
negotiation typically employ Q-learning [7, 10, 12, 42, 49, 53], but this type of learning 
does not support continuous actions. This is an important limitation in our setting because 
we want our agent to learn how much to concede, e.g. on the price of an item for sale, 
which naturally leads to a continuous action space.

In addition and independently of the approach, numerous works in the domain of bilat-
eral negotiation rely on the Alternating Offers protocol [45] as the negotiation mechanism. 
This, despite its simplicity, does not capture many realistic bargaining scenarios.

We propose, to the best of our knowledge, the first Deep Reinforcement Learning (DRL) 
approach for concurrent bilateral negotiations in open, dynamic and unknown e-market 
settings. In particular, we define a novel DRL-inspired agent negotiation model called 
ANEGMA which allows the buyer agent to develop an adaptive strategy to effectively use 
against its opponents (which use fixed-but-unknown strategies) during concurrent negotia-
tions in an environment with incomplete information. We choose to work with deep neural 
networks which provide a rich class of strategy functions to capture the complex decision 
logic behind negotiation.

RL approaches take long to find an optimal policy completely from scratch [60], which 
might hinder the online performance of a buyer agent. To address this problem, we pre-
train our negotiation strategies based on DRL using supervised learning (SL) from a set of 
training examples. To overcome the lack of real-world negotiation data for the initial train-
ing, we generate a synthetic dataset using the simulation environment in [1] and two well-
known strategies for concurrent bilateral negotiation described in [2] and [55], respectively. 
We observe that negotiation strategies pre-trained against a particular opponent strategy 
quickly adapt to different opponent strategies during online RL.

The contribution of this paper is mainly threefold:

– We propose a novel agent model for concurrent bilateral negotiation based on DRL and 
SL.

– To implement our model, we extend the simulation environment of [1] to support agent 
learning during concurrent bilateral negotiation.

– We perform rigorous experimental evaluations demonstrating that our approach out-
performs the current state-of-the-art in one-to-many concurrent bilateral negotiations. 
Also, the agents adopting our model can quickly adapt to a range of e-market settings.

1 https:// www. ebay. com/.

https://www.ebay.com/
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The remainder of this paper is structured as follows. In Sect. 2, we discuss previous work 
related to learning for automated negotiation. Following the limitations of related work, in 
Sect. 3, we propose a DRL-based model for agent negotiation that addresses these limita-
tions. Then, in Sect. 4, we describe how we generate synthetic supervision data, we iden-
tify performance measures, and describe the employed SL and DRL models accompanied 
with their corresponding algorithms. We, then, experimentally evaluate our proposed work 
by analysing the results we obtain using our model in Sect. 5. Finally, Sect. 6 summarises 
our conclusions and identifies directions for future work.

2  Related work

Developing models that let an agent learn a strategy during negotiation normally assumes 
the following three-phase process [25]: Phase-I (or the pre-negotiation phase) prepares the 
negotiating agent with details such as the settings and protocol, the negotiation parameters 
and number of issues, and a user preference model. It also possibly involves learning the 
user model from given partial information as well as eliciting the preferences from the user 
under uncertainty. In Phase-II (or the negotiation phase), the agent is deployed to negoti-
ate, involving offer generation and additional components such as opponent model predic-
tion, offer evaluation and acceptance. Finally, in Phase-III (or the post-negotiation phase), 
the optimality of the final agreement is assessed in terms of various metrics such as aver-
age individual or social welfare utilities, and distance to Nash equilibrium, only if an agree-
ment is reached. In this work, we focus on Phase-II in order to learn a negotiation strategy. 
As a result, we compare our work with the extant literature that significantly addresses the 
negotiation phase. Also, we acknowledge that our approach differs from existing work in 
one or more of the following aspects: the way and the type of learning used, the focus and 
goal of the research, and the application domain.

Most of the work on learning in negotiation has focused significantly on learning the 
characteristics of the opponent agents. Hindriks et  al. [20], Buffett and Spencer [9], Yu 
et al. [56], Zhang et al. [58], Li and Cao [29], and Zeng and Sycara [52, 57] propose meth-
ods that build on Bayesian learning to estimate the opponent’s preferences. A similar 
method is used by Ren and Anumba [44], and Zhang et  al. [59] to learn the opponent’s 
acceptance strategy by estimating the reservation value from previous negotiations. Naray-
anan and Jennings [38] also learn an opponent’s strategy by relying on Markov chains and 
Bayesian learning for single-issue negotiations. Bala and Mukhopadhyay [8] predicts the 
opponent’s behaviour using artificial neural networks (ANNs) trained with data collected 
from past negotiations In contrast, our work abstracts away from learning an explicit oppo-
nent model, in that the opponent behaviour is implicitly represented within the agent’s 
neural-network-based strategy. This strategy based on DRL can adapt to the behaviour of 
unseen opponent agents.

Another area of learning effort is on finding optimal offers. In this line of work, Lau 
et  al. [27] employ an evolutionary learning approach using GA to find Pareto-optimal 
offers that can be mutually acceptable by the involved negotiating parties. Likewise, Choi 
et  al. [13] in their work make an attempt to use GA to learn the opponent preferences 
based upon stochastic approximation in electronic business. Unlike other GA negotiation 
strategies, Choi et al. change the mutation rate dynamically to adapt to the environment. 
Choudhary and Bhardwaj [14] also examine GA-based learning techniques for multi-agent 
negotiation but the application domain focuses on group recommender systems, rather than 
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negotiation. Moreover, Sim et  al. [47, 48] propose a method which uses both Bayesian 
learning and GA for estimating the opponent’s reservation price and generating a proposal 
during each negotiation round, respectively. In their approach, the opponent’s decision 
function is assumed to have a particular form which is also used to directly estimate dead-
line of an opponent from the estimated reservation value. As we are interested in making 
offers using online learning, we rely on RL to obtain an optimal policy, as GAs may require 
a large number of iterations to achieve optimality, which can be time-consuming.

Moreover, much recent work has focused on applying RL in agent negotiation. Q-learn-
ing is used in [54] in single- and multi-agent settings for making economic decisions, in 
[42] for agent-human multi-issue negotiations, and in [10] to dynamically adapt the negoti-
ation tactic. Building on [4], Bakker et al. [7] propose a modular RL-based BOA (Bidding 
strategy, Opponent model and Acceptance condition) framework. This framework uses 
tabular Q-learning to learn the bidding strategy, which entails discretizing the continuous 
state/action space. This is not, however, an ideal solution for large state/action spaces as it 
may lead to the curse of dimensionality, as well as cause the loss of relevant information 
about the state/action domain structure. Razeghi et al. [43] use Deep Q Networks [36] to 
design a learnable acceptance strategy based on feedback received from the environment. 
The main difference of the above Q-learning approaches, when compared to ours, is that 
they cannot be used in continuous action spaces [31], and thus are inappropriate for our 
setting.

There are also a number of related works where RL is integrated with other approaches. 
These include: [61] which combines evolutionary algorithms and reinforcement learning, 
[49] which combines regression trees with single-agent and multi-agent Q-learning, and 
[50] which proposes a bilateral price negotiation strategy based on Bayesian classifica-
tion (for opponent modelling) and Q-learning (for generating a counter-offer). Previous 
work has also demonstrated the advantage of pre-training DRL agents using SL. Examples 
include the work of Lewis et al. [28], which is akin to ours in that they also combine SL 
and RL, but their focus is on natural language processing rather than autonomy in negotia-
tions. Our more recent work [6] also takes a similar approach and learns strategies accord-
ing to tactics, but does not consider concurrent negotiations, only single bilateral ones.

This paper is based on our previous work [5], but introduces a number of significant 
extensions as follows. Firstly, we include details of the concurrent negotiation protocol and 
background of the learning approaches used in the proposed model. Secondly, we explain 
how we extended the RECON simulation environment [1] to support strategies that are 
capable of online learning. Thirdly, we include a detailed analysis of related work in RL-
based approaches for automated negotiation. Finally, we provide a more comprehensive 
experimental evaluation, including new results that did not appear in [5].

A comparison of RL-based approaches for automated negotiation is available in Table 1. 
We classify the relevant literature using the following attributes: Continuous Action space, 
whether or not the offer space is continuous or discretized (we put an hypen where we 
could not evince this from the paper alone); concurrent negotiations, whether or not agents 
negotiate concurrently with multiple other agents; dynamic environment, whether or not 
the environment can change during the negotiation, e.g. when new/old agents can enter/
exit the environment at any time (here, Not Tested indicates that authors claim to support 
this feature, but do not test it); incomplete information, whether or not negotiating par-
ties are unaware of each other’s preferences; Adaptive, whether or not the model can adapt 
well to never-before-seen negotiation settings (Not Tested is meant as per above); agent-

agent negotiation, as opposed to human-agent negotiation; use of DRL, as opposed to RL 
approaches that do not rely on deep learning; and multi-issue negotiation, as opposed to 
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negotiating over a single issue. Regarding the last attribute, we have tested our ANEGMA 
model only for single-issue negotiations, but our approach can be extended to multi-issue 
negotiations, as we did in [6].

3  Proposed work

In this section, we formulate the negotiation environment and introduce our agent negotia-
tion model called ANEGMA (Adaptive NEGotiation model for e-MArkets).

3.1  Negotiation environment

We consider e-marketplaces like E-bay where the competition is visible, i.e. a buyer 
agent can observe the number of competitors that are dealing with the same resource 
from the same seller. We assume that the environment consists of a single e-market m 
with P agents, with a non-empty set of buyer agents B

m
 and a non-empty set of seller 

agents S
m
—these sets need not be mutually exclusive. For a buyer b ∈ B

m
 and resource 

r, we denote with St

b,r
⊆ S

m
 the set of seller agents from market m which, at time point 

t, negotiate with b for a resource r over a range of issues I. The buyer agent b uses |St

b,r
| 

negotiation threads, in order to negotiate concurrently with each seller in St

b,r
 . We assume 

that no agent can be both buyer and seller for the same resource at the same time, that 
is, ∀b, r, t. s ∈ S

t

b,r
⟹ St

s,r
= � . The set C

t

b,r
= {b� ≠ b ∈ B

m
∣ S

t

b� ,r
∩ S

t

b,r
≠ �} includes 

the competitors of b, i.e., those agents negotiating with the same sellers and for the same 
resource r as those of b.

We adopt the negotiation protocol of [2], since it supports concurrent bilateral nego-
tiations, and we are interested in realistic settings where one buyer negotiates with sev-
eral sellers concurrently before making a final decision. In general, a negotiation protocol 
describes the set of rules that each buyer b and seller s should follow during a negotiation 
thread, including the valid moves agents can take at any state of the negotiation. The pro-
tocol is known to all agents in advance. The protocol, illustrated in Fig. 1, assumes an open 
e-market environment, i.e., where agents can enter or leave the negotiation at their own 
will. We assume each negotiation focuses on a single resource characterized uniquely by 
a class and a fixed, non-negotiable, set of properties. The class ‘laptop’ with properties 
‘Lenovo/16 GB RAM/500 GB HDD’ is an example of a resource r which can be used 
during negotiation between two agents. For such a resource r, we negotiate over a sin-
gle issue, namely, price. We further assume that negotiation is represented internally for a 
buyer agent as a dialogue with a unique identifier so that the agent can distinguish between 
different negotiations for the same resource originating from different sellers. It is beyond 
the scope of this work to deal with multiple resources.

Furthermore, a buyer agent b always starts the negotiation by making an offer. With 
t
start

 we denote the start time of the negotiation, and with t
b
 the maximum duration of any 

negotiation, which for simplicity, is the same for all the agents during all the negotiation 
sessions irrespective of which resource these agents are negotiating for. The deadline for b 
is, thus, t

end
= t

start
+ t

b
.

Information about the deadline t
b
 , Initial Price IP

b
 and Reservation Price RP

b
 is private 

to each b ∈ B
m
 . Each seller s also has its own Initial Price IP

s
 , Reservation Price RP

s
 and 

maximum negotiation duration parameter t
s
 (which are not visible by other agents). The 
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protocol is turn-based and allows agents to take actions from a pool Actions at each nego-
tiation state (from S1 to S5, see Fig. 1):

where

– offer(x) The offer made by b or s, where x is the price.
– accept On performing this action, b or s agrees to the last offer made by their coun-

terpart. When performed by the buyer, an accept leads to successful completion of 
the negotiation (see states S2 and S5). When performed by the seller, the buyer either 
acknowledges it with a confirm action or can buy more time with a reqToReserve 
action.

(1)Actions = {offer(x), reqToReserve, reserve, cancel, confirm, accept, exit},

Fig. 1  Negotiation protocol [2]
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– reqToReserve After s makes a counter-offer (state S2) or accepts b’s offer (state S3), 
b can perform this action to request s to reserve the resource with the latest offer. By 
not committing immediately to accepting the offer, b can wait for a better offer from 
another seller (and negotiation thread) s� ∈ S

t

b,r
�{s}.

– reserve It is used by s to acknowledge and agree to a reqToReserve action from b.
– cancel It allows both b and s to cancel their reserved offers. The cancelling agent pays a 

penalty to the other negotiating agent to avoid unnecessary cancellations and bias. Can-
celling leads to no agreement.

– confirm With this action, buyer b acknowledges that the seller has accepted b’s offer, 
and the negotiation terminates with an agreement. When dealing concurrently with dif-
ferent sellers for the same resource, b is allowed to send a confirm action only to one 
seller to reach an agreement.

– exit It allows both b and s to withdraw from the negotiation at any time (without notify-
ing the opponent) implying that negotiation has failed.

An outcome is either Fail if b or s performs an exit or cancel; or it is Succeed if b accepts 
or confirms the current offer.

3.2  ANEGMA components

Our proposed agent negotiation model supports learning during concurrent bilateral nego-
tiations with unknown opponents in dynamic and complex e-marketplaces. In this model, 
we use a centralized approach in which the coordination is done internally to the agent 
via multi-threading synchronization. This approach minimizes the agent communication 
overhead and thus, improves the run-time performance. The different components of the 
proposed model are shown in Fig. 2 and explained below.

3.2.1  Physical capabilities

The sensors of the agent enable it to access an e-marketplace. They allow a buyer b to 
perceive the current (external) state of the environment s

t
 and represent that state locally in 

the form of internal attributes as shown in Table 2. Some of these attributes ( NS
r
 , NC

r
 ) are 

perceived by the agent using its sensors, some of them ( IP
b
 , RP

b
 , t

end
 ) are stored locally in 

its knowledge base and some of the them ( Sneg , Xbest
 , Tleft ) are obtained while interacting 

with other seller agents during a negotiation. At time t, the internal agent representation of 
the environment is s

t
 , which is used by the agent to decide what action a

t
 to execute using 

its actuators. Action execution then changes the state of the environment to s
t+1

.

3.2.2  Learning capabilities

The foundation of our model is a component providing learning capabilities similar to 
those in the Actor-Critic architecture of [31]. It consists of three sub-components: Negotia-

tion Experience, Decide and Evaluate.
Negotiation Experience stores historical information about previous negotiation experi-

ences N which involve the interactions of an agent with other agents in the market. Experi-
ence elements are of the form ⟨s

t
, a

t
, r

t
, s

t+1⟩ , where s
t
 is the internal representation of the 

e-market environment state perceived by the agent at time t, a
t
 is an action performed by 
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b at s
t
 , r

t
 is a scalar reward or feedback received from the environment and s

t+1
 is the new 

e-market state after executing a
t
.

Fig. 2  The architecture of ANEGMA 

Table 2  Agent’s state attributes

Attribute Description

NS
r

Number of sellers that b is concurrently dealing for resource r at time t ( |St

b,r
|)

NC
r

Number of buyer agents competing with b for resource r at time t ( |Ct

b,r
|)

Sneg Current state of the negotiation protocol (S1–S5, see Fig. 1)

X
best

Best offer made by either b or s in Sneg

Tleft Time left for b to reach t
end

 after the last action of s

IP
b

Minimum price which b can offer at the start of the negotiation

RP
b

Maximum price which b can offer to s
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The negotiation strategy is enacted by the decide component. At any given state s
t
 , the 

strategy determines the optimal action for b, choosing among the available set of actions 
Actions, see (1). In particular, the strategy builds on two functions fa and fo . Function fa takes 
state s

t
 as an input and returns a discrete action among offer(x), accept, confirm, reqToReserve 

and exit, see (2). When fa decides to perform an offer(x) action, fo is used to compute, given 
an input state s

t
 , the value of x, see (3). The functions fa and fo belong to Machine Learning 

decision box of sequence diagram presented in Fig. 3.

Evaluate refers to a critic which helps b learn and evolve the strategy for unknown and 
dynamic environments. It is a function of K (where K < N ) randomly selected past nego-
tiation experiences. The learning process of b is retrospective since it depends on the feed-
back (or scalar rewards) obtained from the e-market environment by performing action 
(either discrete or continuous) a

t
 at state s

t
 . Our design of reward functions accelerate agent 

learning by allowing b to receive rewards after every action it performs in the environment 
instead of receiving only at the end of the negotiation. The reward at time t, r

t
 is given by:

(2)fa(st) = at, where at ∈ Actions

(3)fo(st) = x, where x ∈ [IPb, RPb]

(4)r
t
=

⎧
⎪
⎨
⎪
⎩

U
b
(x, t), if Succeed

−1, if Fail

r�
t

if a
t
= offer( x)

0, otherwise

, where

Fig. 3  Sequence diagram of ANEGMA 
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The reward values r
t
 and r′

t
 computed in (4) and (5) evaluate the discrete action decided 

by fa and continuous action decided by fo at time t respectively. Function U
b
(x, t) , see (6), 

refers to the utility of offer x = fo(st) at time t and is calculated using Initial Price ( IP
b
 ), 

Reservation Price ( RP
b
 ), offer x, and a temporal discount factor d

t
∈ [0, 1] to penalize 

delays in negotiation, which was set to 0.6 in our experiments. Higher d
t
 value implies 

higher penalty due to delay. The reward r′
t
 in (5) helps b learn that it should not offer more 

than what active sellers have already offered: O
t
 is a list of preferred offers received from 

sellers s ∈ S
t

b,r
 at time t, which b maintains during the negotiation. To sum up, our reward 

function is designed to encourage (i.e returns a positive reward value) our agent to con-
clude successful negotiation timely and discourage (i.e. returns a negative reward value) no 
deal or when our buyer agent offers more than any of the offers proposed by active sellers. 
Otherwise, it is neutral to all other actions (i.e. returns 0 reward).

4  Methods

In our approach, we first use SL to pre-train the ANEGMA agent using supervision exam-
ples collected from existing negotiation strategies. Such pre-trained strategy is then 
evolved via RL using experience and rewards collected while interacting with other agents 
in the negotiation environment. This combination of SL and RL approaches enhances the 
process of learning an optimal strategy. This is because applying RL alone from scratch 
would require a large amount of experience before reaching a reasonable strategy, which 
might hinder the online performance of our agent. On the other hand, starting from a pre-
trained policy ensures quicker convergence (as demonstrated empirically in Sect. 5). In this 
section, we describe the methods for collection of supervision examples and the relevant 
learning techniques.

4.1  Data set collection

In order to collect the data set for pre-training the ANEGMA agent via SL, we have used the 
RECON simulation environment [1]. A key advantage of this solution is that we can gen-
erate arbitrarily large sets of synthetic negotiation data, and for different choices of buyer 
and seller strategies. While, in principle, real-world market data could be used for this pur-
pose as well, to the best of our knowledge, no publicly available datasets exist that fit our 
settings. In particular, in our experiments we generate supervision data using the buyer 
strategies of [2] and [55] (see Sect. 5). RECON supports concurrent negotiations between 
buyers and seller agents and is built on the top of GOLEMlite [37],which is a Java library 
for managing e-markets and extract relevant negotiation statistics.

RECON consists of the following three phases as shown in Fig.  4: Phase 1 (Config-

uration) allows the user to define simulation parameters such as market density, market 
ratio, Zone of Agreement (ZoA), deadline, number of simulation runs, types of negotiating 

(5)r
�

t
=

{

U
b
(x, t), if x ≤ min(O

t
)

−1, if x > min(O
t
)

and

(6)U
b
(x, t) =

(

RP
b
− x

RP
b
− IP

b

)

.

(

t

t
end

)dt

.
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agents and their initial and reservation prices. Phase 2 (Simulation) conducts the actual 
negotiations between market agents (buyer agents and seller agents) based on the infor-
mation from Phase 1 (Configuration). These negotiations are managed with the help of 
two infrastructure agents called Market Controller and Market Broker. The prime role of 
the Market Controller is to oversee the simulations. This involves initializing the simula-
tions, creating the market agents and saving the negotiation logs at fixed time intervals. The 
market broker helps in notifying each agent about the entry of new agent in an e-market. 
Finally, Phase 3 (Analysis) analyses the negotiation logs to evaluate the performance of 
negotiations in terms of the various metrics defined by the user such as average utility rate 
and average negotiation time. We have substantially extended the RECON environment by 
adding a learning component to Phase 2 (Simulation), motivated by our ANEGMA model. 
During each simulation run, our buyer agent maintains a Concurrent Hash Map of nego-
tiation IDs and a stack of past experiences while negotiating with different sellers concur-
rently, which is eventually added to a global memory Negotiation Experience at the end of 
each run. These past experiences are used by the buyer agent to learn and update the nego-
tiation strategy and use it during new simulation runs. We have further extended RECON’s 
market controller to handle the whole learning process during all simulations.

4.2  Strategy representation

We represent both strategies fa and fo (see Eqs. 2 and 3) using ANNs [18], as these are 
powerful function approximators and benefit from extremely effective learning algorithms. 
From a machine learning perspective, approximating fa amounts to solving a classification 
problem because of fa ’s discrete output domain, see (2). On the other hand, approximating 
fo corresponds to solving a regression problem because of fo ’s continuous output, see (2).

In particular, we use feed-forward neural networks, i.e., functions organized into sev-
eral layers, where each layer comprises a number of neurons that process information 
from the previous layer. Formally, let l be the total number of layers in the network, which 
includes l − 1 hidden layers and one output layer. Let n

i
 be the number of neurons in layer 

Fig. 4  Modified architecture of RECON simulation environment. Here, buyer agent stores the negotiation 
experience w.r.t. different sellers concurrently from each run in a global database (Negotiation Experience) 
to use the updated negotiation strategy (learned from past experiences) in new simulation runs
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i ( i = 1,… , l ), where n
0
 be the number of neurons in the input layer (i.e., the input dimen-

sionality). For input x ∈ ℝ
n

0 , the function computed by a feed-forward neural network F is

where f (i) ∶ ℝ
ni−1 → ℝ

ni is the function computed by the ith layer, which is given by

where pi−1
∈ ℝ

ni−1 is the output vector of layer i − 1 , W (i,i−1) ∈ ℝ
n

i
×n

i−1 is the weight matrix 
connecting pi−1

 to the neurons of layer i, b(i) ∈ ℝ
n

i is the bias vector of layer i, and g(i) is the 
activation function of the neurons of layer i. For our experiments, we used softmax acti-
vation function for classification and linear activation function for regression at the final 
output layer of our models fa [i.e. classification (4)] and fo [i.e. regression (5)] respectively.

Learning an ANN corresponds to finding values of its weights and biases that minimize 
a given loss function. The learnable parameters are typically updated via some form of gra-
dient descent, where the gradient of the loss function w.r.t. the parameters is computed via 
back-propagation [18].

In supervised learning, the loss function captures the deviation between the supervision 
data and the corresponding model’s predictions. We used cross-entropy and mean square 
error to approximate fa and fo respectively.

For each data sample x ∈ ℝ
n

0 , the network’s prediction is compared to the actual known 
target value of that data sample (discrete or continuous value). The function parameters 
(weights and biases) are also learned and modified during training so to minimize the loss. 
These modifications are performed in the backward direction from the output layer through 
each hidden layer down to the first hidden layer.

To reduce over-fitting and generalization error, during the training of the ANN we 
applied regularization techniques, drop-out in particular.

4.3  Reinforcement learning

During our experiments, sellers and competitor buyers use fixed strategies that are 
initially unknown to the buyer. As these strategies are fixed, they will be learned by 
ANEGMA later, after a number of simulation runs. Thus after a number of negotiation 
simulation runs our environment can be considered fully-observable. In addition, as our 
environment is dynamic (agents can leave and enter the market at any time) and episodic 
(the negotiation terminates at some point), we use a model-free, off-policy RL approach 
which generates a deterministic policy based on the policy gradient method [51] to sup-
port continuous control. More specifically, we use the Deep Deterministic Policy Gra-

dient algorithm (DDPG) [30] which is an actor-critic RL approach and generates a 
deterministic action selection policy. We consider a model-free RL approach because 
our problem is how to make an agent decide what action to take next in a negotiation 
dialogue rather than predicting the new state of the environment. In other words, we are 
not learning a model of the environment, as the strategies of the sellers and the com-
petitor buyer agents are not observable properties of the environment’s state. For this, 
we use a market broker that notifies the negotiating parties about the number of active 
sellers and active competitors at a particular time. Thus, our buyer agent’s emphasis is 
more on learning what action to take next and not the state transition function of the 

(7)F(x) = f (l)
(

f (l−1)
(

…
(

f (1)(x)
)

…
))

(8)f (i)(pi−1) = g(i)(W (i,i−1)
⋅ p(i−1) + b(i)), i = 1,… , l
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environment. We consider the off-policy approach (i.e. an agent attempts to evaluate or 
improve the policy which is different from the one that was used to take an action) for 
independent exploration of continuous action spaces [31].

When being in a state s
t
 , DDPG uses a so-called actor network � to select an action 

a
t
 , and a so-called critic network Q to predict the value Qt at state s

t
 of the action 

selected by the actor:

In (9) and (10), �� and �Q are, respectively, the learnable parameters of the actor and critic 
neural networks. The parameters of the actor network are updated by the Deterministic 
Policy Gradient method [46]. The objective of the actor policy function is to maximize the 
expected return J calculated by the critic function:

To this purpose, the parameters of � are updated (via gradient ascent) using the gradient of 
J w.r.t. the actor policy parameters. In particular, the expectation in (11) is approximated 
using the average of K randomly selected past experiences (or mini-batches) (s

i
, a

i
, r

i
, s

i+1).

The critic network Q should predict the expected return obtained by performing action a
t
 

at state s
t
 and thereafter follow the policy entailed by the actor � . For this purpose, [30] 

shows that Q can be derived, using K random mini-batches, by minimizing the following 
loss function:

and � ∈ (0, 1) is a discount factor. Since the target Q-value yi used to update Q depends on 
Q itself, which might cause divergence, DDPG employs two additional neural networks 
called actor target network �′ and critic target network Q′ in place of � and Q in (14). These 
are copies of � and Q which are updated in a soft manner, i.e., by slowing tracking � and Q 
rather than exactly copying them, which the effect of regularizing learning and increasing 
stability. See [30] for further details.

5  Experimental setup and results

In this section, we experimentally evaluate our ANEGMA approach in negotiations 
against unknown opponents during concurrent bilateral negotiations in different e-mar-
ket settings.

(9)a
t
=�(s

t
∣ ��)

(10)Qt(st, at ∣ �
Q) =Q(st,�(st ∣ �

�) ∣ �Q)

(11)J = �[Q(s, a|�Q)|s=st ,a=�(st)
].

(12)∇��J ≈
1

K

K∑

i=1

[
∇aQ(s, a|�Q)|s=si,a=�(si)

∇���(s|��)|s=si

]

(13)L =
1

K

K∑

i=1

(yi − Q(si, ai|�Q))2, where

(14)yi = ri + �Q(si+1,�(si+1|�
�)|�Q),
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5.1  Experimental settings

We consider the following buyer strategies:

– CONAN [2] A heuristic strategy which uses a weighted combination of agent’s internal 
state attributes as well as environmental parameters (in which agent situates) to cal-
culate the concession rate. This strategy lets the agent negotiate with multiple sellers 
concurrently without the help of an additional coordinator.

– Williams [55] A strategy performing Gaussian process for predicting the seller agent’s 
future utility while bidding a counter-offer. This strategy is originally used to negotiate 
with multiple opponents for the same item over multiple issues with the help of a coor-
dinator. The coordinator is responsible for finding the best of all deals with different 
opponents based on time and utility.

– SL-C2 An ANN-based strategy obtained using supervised learning from CONAN data.
– SL-W2 An ANN-based strategy obtained using supervised learning from Williams’ 

data.
– DRL A DRL strategy initialized with an ANN with random parameters.
– ANEGMA-C Our ANEGMA strategy obtained via DRL and initialized with the ANN 

pre-trained with CONAN data (SL-C).
– ANEGMA-W Our ANEGMA strategy obtained via DRL and initialized with the ANN 

pre-trained with Williams data (SL-W).

For carrying out the experiments, we have used the RECON simulation environment [1] 
and extended it to support online agent learning as shown in Fig.  4.

Performance evaluation measures  To successfully evaluate the performance of 
ANEGMA (ANEGMA-C and ANEGMA-W) and compare it with other negotiation 
approaches, we selected the following widely adopted metrics [2, 15, 39, 55]: Average util-

ity rate (Uavg), Average negotiation time (Tavg) and Percentage of successful negotiations 

(S%), which are described in Table 3.
Seller strategies  We consider two widely-known and standard groups of fixed seller 

strategies developed by Faratin [15]: Time-Dependent and Behaviour-Dependent, 
each consisting of three different types of seller strategies. In time-dependent strat-
egies (Linear, Conceder and Boulware), the seller considers the remaining negotia-
tion time for calculating the counter-offer value and the acceptance value for the offer 
received from the buyer. On the other hand, in behaviour-dependent strategies (Rela-

tive tit-for-tat, Random Absolute tit-for-tat and Averaged tit-for-tat), the seller imitates 

Table 3  Performance evaluation metrics

Metric Definition Ideal value

Uavg Total negotiation utility averaged over the successful negotiations High (1.0)

Tavg Total time taken by the buyer agent (in milliseconds) averaged over all 
successful negotiations to reach the agreement

Low ( ≈ 1000 ms)

S% Proportion of successful negotiations High (100%)

2 SL-X is identical to pre-training phase of ANEGMA-X.
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the observed behaviour of the buyers in order to compute the counter-offer. During 
experimentation, the same private deadlines were used for both sellers and buyer. 
Other parameters such as IP

s
 and RP

s
 are determined by the ZoA parameter, as shown 

in Table 4.
Competitor strategies  All competitor strategies are chosen randomly between Sim-

ple Buyer (which generates offers randomly) and Nice Tit for Tat (which reproduces 
the opponent’s behaviours of the previous negotiation rounds by reciprocating the 
opponent’s concessions).

Simulation parameters  We assume that the buyer negotiates with multiple sellers 
concurrently to buy a second-hand laptop ( r = Laptop ) based only on a single issue 
Price ( I = {Price} ). We stress that the single-issue assumption is not unrealistic for 
e-markets like e-Bay, where sellers advertise a product with a fixed set of issues (e.g. 
Lenovo, 16 GB RAM, 250 GB HDD, i7 processor) and the only issue being negotiated 
is price. The simulated market allows the agents to enter and leave the market at their 
own will. The maximum number of agents allowed in the market, the demand/supply 
ratio, the buyer’s deadline and the ZoA s are simulation-dependent.

As in [2], three qualitative values are considered for each parameter during simula-
tions, e.g., High, Average and Low for MD or t

end
 . Parameters are reported in Table 4. 

The user can select one of such qualitative values for each parameter. Each qualitative 
value corresponds to a set of three quantitative values, of which only one is chosen at 
random for each simulation (e.g., setting High for parameter MD corresponds to choos-
ing at random among 30, 40, and 50). The only exception is parameter ZoA , which 
maps to a range of uniformly distributed quantitative values for the seller’s initial price 
IP

s
 and reservation price RP

s
 (e.g., selecting Average for ZoA leads to a value of IP

s
 

uniformly sampled in the interval [580, 630]). Therefore, the total number of simula-
tion settings is 81, as we consider 3 possible settings for each of MD , MR , t

end
 , and 

ZoA (see Table 4).
Neural network architecture We represent the supervised learning policy as a neural 

network with 2 fully-connected hidden layers of 64 units and one output layer. The 
hidden layers use ReLU (Rectified Linear Unit) activation function whereas the out-
put layer uses softmax and linear activation functions for classification and regression 
respectively. For DDPG, we represent deep neural networks with the same above men-
tioned neural networks.

Table 4  Simulation parameter values

Parameter Values range

100% ZoA (high) 60% ZoA (average) 10% ZoA (low)

IP
b

[300−350] [300−350] [300−350]

RP
b

[500−550] [500−550] [500−550]

IP
s

[500−550] [580−630] [680−730]

RP
s

[300−350] [380−430] [480−530]

MD {30, 40, 50} {18, 23, 28} {8, 10, 12}

MR {10 ∶ 1, 1 ∶ 1, 1 ∶ 10} {5 ∶ 1, 1 ∶ 1, 1 ∶ 5} {2 ∶ 1, 1 ∶ 1, 1 ∶ 2}

t
end

[151–210 s] [91–150 s] [30–90 s]
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5.2  Experimental hypotheses

With our experiments, we aim to demonstrate the following hypotheses:
Hypothesis A  The Market Density (MD), the Market ratio or Demand/Supply Ratio 

( MR ), the Zone of Agreement ( ZoA ) and the Buyer’s Deadline (t
end

 ) have a considerable 
effect on the success of negotiations. Here,

– MD is the total agents in the e-market at any given time dealing with the same resource 
as that of our buyer.

– MR is the ratio of the total number of buyers over the sellers in the e-market.
– ZoA refers to the intersection between the price ranges of buyers and sellers for them to 

agree.

In practice, buyers have no control over these parameters except the deadline ( t
end

 ), 
which can be decided by the user, or constrained by a higher-level goal the buyer is try-
ing to achieve. While this hypothesis is not directly concerned with the performance of 
ANEGMA, it establishes that, for an adequate performance evaluation, it is necessary to fix 
a particular choice of these parameters. Otherwise, the performance variability will be too 
high to make any useful assessment.

Hypothesis B The ANEGMA buyer outperforms the SL-only, DRL-only, CONAN, and 
Williams’ negotiation strategies in terms of Uavg , Tavg and S% in a range of e-market settings.

Hypothesis C An ANEGMA buyer if trained against a specific seller strategy, still per-
forms well against other unknown seller strategies. This shows that the ANEGMA agent 
behaviour is adaptive in the sense that the agent transfers knowledge from previous experi-
ence to unknown e-market settings.

5.3  Empirical evaluation

We evaluate and discuss the three research hypotheses introduced at the beginning of the 
section.

5.3.1  Hypothesis A ( MD , MR , ZoA and tend have significant impact on negotiations)

We experimented with 81 different e-market settings over 500 simulations using the 
CONAN buyer strategy. Both time-dependent and behaviour-dependent seller strategies 
were considered for each setting. These experiments suggest that MD and ZoA have a con-
siderable effect on S% (Figs. 5, 6, 7, 8). In Fig. 5, we observe that the agents reach more 
negotiation agreements when MD is low. This suggests that in small markets offering the 
required resource, the number of successful deals is maximised, which in turn implies that 
being in a large market isn’t always better. Also, there is not much difference in the agree-
ment rate for 60% and 100% ZoA when MD is low. The small number of successful nego-
tiations for 10% ZoA is not unexpected since only a minority of agents is willing to concede 
more in such a small ZoA . On the other hand, MR and t

end
 have , according to our experi-

ments, a comparably minor impact on the negotiation success (see Figs. 7, 8). Also, only 
some effect of MR on S% is observed under low MD against behaviour-dependent strategies 
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Fig. 5  Effect of market density and ZoA on percentage of successful negotiations

Fig. 6  Effect of market density and market ratio on percentage of successful negotiations
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Fig. 7  Effect of market ratio and ZoA on percentage of successful negotiations

Fig. 8  Effect of deadline and ZoA on percentage of successful negotiations
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as shown in Fig. 6). Moreover, we performed significance tests (i.e. Z-tests for independent 
proportions) for all the relevant pair-wise comparisons. All the differences in the propor-
tions of successful runs were found significant at p < 2.12E − 13.3

5.3.2  Hypothesis B (ANEGMA outperforms SL, CONAN and Williams’)

We performed simulations for our ANEGMA agent in low MD , 60% and 100% ZoA, high 
MR , and a long t

end
 because these settings yielded the best performance in terms of S% in 

our experiments for Hypothesis A. To test how our strategy learns against two different cat-
egories of fixed seller strategies (i.e. Time-dependent and Behaviour-dependent) as well as 
to limit the experiments, we randomly choose Conceder Time Dependent and Relative Tit 

for Tat Behaviour Dependent seller strategies in the above simulation settings.
Firstly, we collected training data for ANN using two distinct strategies for supervision, 

viz. CONAN [2] and Williams’ [55]. Both were run for 500 simulations and with the same 
settings. Table 5 compares the performances of CONAN’s and Williams’ models. CONAN 
outperforms Williams’ strategy in these settings in terms of Uavg and S%.

Then, the resulting trained ANN models—called SL-C and SL-W respectively—were 
used as the initial strategies in our DRL approach (based on DDPG), where strategies 

Table 5  Performance comparison of CONAN and Williams’ model for both 60% and 100% ZOA 

Best results are in bold

Metric CONAN Williams’

Conceder time dependent seller strategy

60% ZoA 100% ZoA 60% ZoA 100% ZoA

Uavg �.�� ± �.�� �.�� ± �.�� 0.18 ± 0.08 0.17 ± 0.04

Tavg ������.�� ± �����.�� 174611.43 ± 15139.52 177091.09 ± 15304.90 ������.�� ± �����.��

S% 80.80 79.00 78.20 78.00

Relative tit for tat behaviour seller strategy

Uavg �.�� ± �.�� �.�� ± �.�� 0.22 ± 0.05 0.21 ± 0.06

Tavg ������.�� ± �����.�� 179529.47 ± 14165.15 176334.65 ± 14683.03 ������.�� ± �����.��

S% 81.80 79.80 73.00 73.21

Table 6  Training accuracy’s 
of ANN (in % ) when trained 
using datasets collected by 
negotiating CONAN (i.e. SL-C) 
and Williams’ (i.e. SL-W) 
buyer strategy (for different 
ZoA s) against time-dependent 
and behaviour-dependent seller 
strategies

ZOA (%) Conceder time dependent Relative tit for tat 
behaviour dependent

SL-C SL-W SL-C SL-W

10 93.88 94.73 94.65 94.77

60 97.65 97.88 97.68 97.86

100 95.96 96.23 96.88 95.73

3 For each ZoA=H,A,L, we tested (MD=H vs. MD=A) and (MD=A vs. MD=L). For each MD=H,A,L, 
we tested (ZoA=L vs. ZoA=A) and (ZoA=L vs. ZoA=H).
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evolved using negotiation experience from additional 500 simulations. In the remainder, 
we will abbreviate these models by ANEGMA-C and ANEGMA-W respectively.

Finally, we used test data from 101 simulations involving online learning to compare the 
performance of such derived ANEGMA-C and ANEGMA-W buyers against CONAN, Wil-
liams’, SL-C, SL-W, and the so-called DRL model which used DDPG but initialized with 
a random strategy.

According to our results shown in Tables 7 and 8, the performance of SL-C is compa-
rable to that of CONAN for both 60% and 100% ZoA s (see Table 5). We observe the same 
for SL-W and the William’s strategy. So, we conclude that our approach can successfully 
produce ANN strategies which are able to imitate the behaviour and performance of the 
CONAN and Williams’ models (the training accuracies were in the range between 93.0% 
and 98.0% as shown in Table 6).

Even more importantly, the results demonstrate that ANEGMA-C (i.e. DDPG initialized 
with SL-C) and ANEGMA-W (i.e. DDPG initialized with SL-W) improve on their respec-
tive initial ANN strategies obtained by SL, and outperform DRL initialized at random for 
both 60% and 100% ZoA s, see Tables 7 and 8. This proves that both the evolution of the 
strategies via DRL and the initial supervision are beneficial. Furthermore, ANEGMA-C and 
ANEGMA-W also outperform the existing “teacher strategies” (CONAN and Williams’) in 
terms of Uavg used for the initial supervision and hence can improve on them, see Table 5.

Moving further, we observe that our agent ANEGMA becomes selective and learns to 
focus on how to obtain maximum utility from the end agreement (by accepting or propos-
ing a bid only if a certain dynamic threshold utility is met). Thus, the successful negotia-
tion rate is lower as compared to SL agents that seek to maximize the average utility rate. 
This could be a reason why SL-W seems to outperform ANEGMA-W in terms of success-
ful negotiation rate. Although we could incorporate the number of successful negotiations 
in the reward function to bias our learning to optimize this metric, we have opted for the 
simple and commonly used reward function related to utility value only.

5.3.3  Hypothesis C (ANEGMA is Adaptable)

In this final test, we evaluate how well our ANEGMA agents can adapt to environments 
different from those used at training-time. Specifically, we deploy strategies trained using 
Conceder Time Dependent opponents into an environment with Relative Tit for Tat Behav-

iour Dependent opponents, and vice-versa. The ANEGMA agents use experience from 
500 simulations to adapt to the new environment. Results are presented in Table  9 and 
show clear superiority of the ANEGMA agents over the SL-C and SL-W strategies which, 
without online retraining, cannot maintain their performance in the new environment. This 
confirms our hypothesis that ANEGMA agents can learn to adapt at run-time to different 
unknown seller strategies.

5.3.4  Further discussion

Pondering over the negative average utility of DRL (see Tables 7, 8), recall that we define 
utility as in Eq. (6) but without the discount factor. Therefore, if an agent concedes a lot to 
make a deal, it will collect negative utility. This is precisely what happens to the initial ran-
dom (and inefficient) strategy used in DRL. The combination of SL and DRL prevents this 
problem as it uses an initial pre-trained strategy which is much less likely to incur negative 
utility. For the same reason, we observe a consistently shorter Tavg for DRL caused by a 
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buyer that concedes more to reach the agreement without negotiating for a long time with 
the seller. Hence, a shorter Tavg alone does not generally imply a better negotiation perfor-
mance. An additional advantage of our approach is that it alleviates the common limitation 
of RL, namely, that an RL agent needs a non-trivial amount of experience before reaching 
satisfactory performance.

5.3.5  Results summary

In this sub-section, we summarize the results from Tables 7 to 9. When ZoA is 60% and 
100%, ANEGMA-C outperforms all other strategies in comparison w.r.t Uavg and S% . How-
ever, DRL outperforms in terms of Tavg . We have also shown the results for the adaptive 
behaviour of ANEGMA when ZoA is 60%, which also reflects the same outcomes, i.e. 
ANEGMA-C outperforms all other agents in terms of average utility rate and number of 
successful negotiations.

6  Conclusions and future work

ANEGMA is a novel agent negotiation model supporting agent learning and adaptation 
during concurrent bilateral negotiations for an important class of e-markets. An ANEGMA 
agent derives an initial neural network strategy via SL from well-known negotiation mod-
els, and evolves the strategy via DRL. We have empirically evaluated the performance of 
an ANEGMA buyer agent against fixed but unknown to the agent seller strategies in dif-
ferent e-market settings. We have shown that ANEGMA outperforms well-known “teacher 
strategies”, the strategies trained with SL only and those trained with DRL only. Crucially, 
our model has also exhibited adaptive behaviour in that it can transfer to environments with 
unknown sellers, viz., sellers that use different strategies from those used during training.

An open problem arising from our work is how to learn transferable strategies for con-
current bilateral negotiations over multiple issues and against adaptive opponents.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
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