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ABSTRACT

Context. Earth-like planets have viscoelastic mantles, whereas giant planets may have viscoelastic cores. The tidal dissipation of
these solid regions, which are gravitationally perturbed by a companion body, strongly depends on their rheology and the tidal
frequency. Therefore, modeling tidal interactions provides constraints on planets’ properties and helps us to understand their history
and evolution, in either our solar system or exoplanetary systems.
Aims. We examine the equilibrium tide in the anelastic parts of a planet for every rheology, and by taking into account the presence of
a fluid envelope of constant density. We show how to obtain the different Love numbers describing its tidal deformation, and discuss
how the tidal dissipation in the solid parts depends on the planet’s internal structure and rheology. Finally, we show how our results
may be implemented to describe the dynamical evolution of planetary systems.
Methods. We expand in Fourier series the tidal potential exerted by a point mass companion, and express the dynamical equations in
the orbital reference frame. The results are cast in the form of a complex disturbing function, which may be implemented directly in
the equations governing the dynamical evolution of the system.
Results. The first manifestation of the tide is to distort the shape of the planet adiabatically along the line of centers. The response
potential of the body to the tidal potential then defines the complex Love numbers, whose real part corresponds to the purely adiabatic
elastic deformation and the imaginary part accounts for dissipation. The tidal kinetic energy is dissipated into heat by means of
anelastic friction, which is modeled here by the imaginary part of the complex shear modulus. This dissipation is responsible for
the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which we derive the
characteristic evolution times.
Conclusions. The rate at which the system evolves depends on the physical properties of the tidal dissipation, and specifically
on (1) how the shear modulus varies with tidal frequency, (2) the radius, and (3) the rheological properties of the solid core. The
quantification of the tidal dissipation in the solid core of giant planets reveals a possible high dissipation that may compete with
dissipation in fluid layers.

Key words. planets and satellites: general – planets and satellites: physical evolution – planets and satellites: individual: Jupiter –
planets and satellites: dynamical evolution and stability – planets and satellites: individual: Saturn – planet-star interactions

1. Introduction and general context

Since 1995, a large number of extrasolar planets have been dis-
covered, which have displayed a wide range of physical parame-
ters (Santos et al. 2007). The question has arisen quite naturally
of their habitability, i.e. whether they could allow the develop-
ment of life. Determining factors are the presence of liquid water
and a protective magnetic field, properties that are closely linked
to the values of the rotational and orbital elements of the plan-
etary systems. These elements strongly depend on the action of
tides. Once a planetary system is formed in a turbulent accretion
disk, its fate is determined by the initial conditions and the mass
ratio of the planet to its hosting star. Through tidal interaction
between components, the system evolves either to a stable state
of minimum energy (where all spins are aligned, the orbits are
circular, and the rotation of each body is synchronized with the
orbital motion) or the companion tends to spiral into the parent

body. By converting kinetic energy into heat by means of internal
friction, tidal interactions modify the orbital and rotational prop-
erties of the components of the considered system, and thus their
structure through internal heating. This mechanism depends sen-
sitively on the internal structure and dynamics of the perturbed
body.

Studies have been carried out on the tidal effects in fluid
bodies such as stars and envelopes of giant planets (Ogilvie &
Lin 2004–2007; Ogilvie 2009; Remus et al. 2012). However, the
planetary solid regions, such as the mantles of Earth-like planets
or the rocky cores of giant planets, when present (e.g. Guillot
1999; Gaulme et al. 2011), may also contribute to tidal dissi-
pation. The first study of a tidally deformed elastic body was
done by Lord Kelvin (1863), who applied it to an incompress-
ible homogeneous Earth. Further developments were made by
Love (1911), who introduced a set of dimensionless numbers,
the so-called Love numbers, to quantify the tidal perturbation.
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More recently, Greff-Lefftz (2005) generalized these results to
the case of a spheroidal rotating Earth. As for Dermott (1979), he
considered a two-layer model and studied the impact of a tidally
deformed static fluid shell on the deformation of an elastic solid
core.

If the body is not perfectly elastic, i.e. if its internal structure
is anelastic, the tidal deformation presents a lag with respect to
the tension exerted by the tidal force, and causes the dissipa-
tion of kinetic energy. Several studies have addressed this prob-
lem of tidal dissipation using linear viscoelastic models. Peale
& Cassen (1978) evaluated the tidal dissipation in the Moon
by considering various models of internal structure. Tobie et al.
(2005) applied the Maxwell rheological model to evaluate the
dissipation in Titan and Europa; Ross & Schubert (1986) com-
pared three different linear models of viscoelasticity (Kelvin-
Voigt, Maxwell, and standard anelastic solid), to which Henning
et al. (2009) added the Burgers body. All these studies have
inspired our interest in the tidal dissipation resulting from the
anelastic deformation of the solid parts of a planet when per-
turbed by a companion.

We study here the tidal dissipation in a planet that possesses
an anelastic core consisting of a mix of ice and rock, surrounded
by a fluid envelope, such as an ocean. The planet is part of a
binary system where what we call the companion (or perturber)
may be either the hosting star or a satellite of the planet. Owing
to the tide exerted by the companion, the core of the two-layer
planet is deformed elastically, but because of the anelasticity of
the material composing the core, this deformation is accompa-
nied by a viscous dissipation that we evaluate for every rheology.
As an illustration, we present our results for a Maxwell body. We
then compare the value of the tidal dissipation in the presence of
a fluid envelope with that achieved by the fully solid planet, and
examine the dependence of the results on the relative sizes of the
core and the planet, the relative densities, and the viscoelastic
parameters. In the last section, we establish the equations gov-
erning the dynamical evolution of the system, from which we
deduce the characteristic times of circularization, synchroniza-
tion, and spin alignments.

2. Elastic deformations of a solid body under tidal

perturbation

2.1. The system

We consider a planet A of mass MA, consisting of a rocky (or
icy) core and a fluid envelope, rotating at the angular velocity Ω
and tidally perturbed by a point-like body of mass MB moving
around A on a Keplerian orbit, of semi-major axis a and eccen-
tricity e, at the mean motion n. We locate any point M in space by
its usual spherical coordinates (r, θ, ϕ) in a spin equatorial refer-
ence frame RE : {A, XE,YE, ZE} centered on body A and whose
axis (A, ZE) has the direction of the rotation axis of A. The cor-
responding configuration is illustrated in Fig. 1.

In Sect. 2, we first assume that planet A has no fluid layer
and its internal structure is supposed to be perfectly elastic. We
then denote by ρ its density and R its mean radius.

2.2. The tidal potential

The planet is submitted to a tidal force exerted by the per-
turber B, which derives from a perturbing time-dependent po-
tential U (r, t). Following Zahn (1966a,b) and generalizing it by
using Kaula (1962), Lambeck (1980), Yoder (1995–1997), and
Mathis & Le Poncin (2009, hereafter MLP09) in the studied case

Fig. 1. Spherical coordinates system attached to the equatorial refer-
ence frame RE : {A, XE,YE, ZE} associated with body A. A point M is
located by its position vector r ≡ (r, θ, ϕ); the point mass body B by
rB ≡ (rB, θB, ϕB).

of a close binary system where spins are not aligned, the com-
ponents are not synchronized with the orbital motion, and the
orbit is not circular, we expand the tidal potential U in spherical
harmonics Ym

l
(θ, ϕ) in RE.

Before we proceed, we need to define the Euler angles
that link both the spin equatorial frame RE : {A, XE,YE, ZE} of
the central body A and the orbital frame RO : {A, XO,YO, ZO}
to the quasi-inertial frame RR : {A, XR,YR, ZR} whose axis ZR
has the direction of the total angular momentum of the whole
system.

We need the three following Euler angles to locate the orbital
reference frame RO with respect to RR:

– I, the inclination of the orbital plane of B;
– ω∗, the argument of the orbit pericenter;
– Ω∗, the longitude of the orbit ascending node.

The equatorial reference frameRE is defined by three other Euler
angles with respect to RR:

– ε, the obliquity of the rotation axis of A;
– Θ∗, the mean sideral angle defined by Ω = dΘ∗/dt;
– φ∗, the general precession angle.

We refer to Fig. 2 for an illustration of the relative position of
these three reference frames and their associated angles. For con-
venience, all our following developments are made in the spin
equatorial frame RE of A (as in MLP09).

All of our following results are derived from the Kaula’s
transform (Kaula 1962), which is used to explicitly express the
whole generic multipole expansion in spherical harmonics of the
perturbing potential U in terms of the Keplerian orbital elements
of B in the equatorial A-frame

1

rl+1
B

Pm
l (cos θB) eimϕB =

1
al+1

l∑

j=−l

l∑

p=0

∑

q∈Z

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2l + 1

4π
(l − | j|)!
(l + | j|)!

× dl
j,m(ε) Fl, j,p(I) Gl,p,q(e) eiΨl,m, j,p,q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(1)
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Fig. 2. Inertial reference (RR), orbital (RO), and equatorial (RE) rotating
frames, and associated Eulers angles of orientation.

where θB and ϕB are respectively the colatitude and the longitude
of the point mass perturber B, and the phase argument is given by

Ψl,m, j,p,q(t) = σl,m,p,q(n,Ω) t + τl,m, j,p,q (ω∗,Ω∗, φ∗) . (2)

We defined here the tidal frequency

σl,m,p,q(n,Ω) = (l − 2p + q) n − mΩ, (3)

and the phase

τl,m, j,p,q = (l − 2p)ω∗ + j(Ω∗ − φ∗) + (l − m)
π

2
· (4)

We consider binary systems that are close enough for the tidal
interaction to play a role, but also where the companion is far
away (or small) enough to be treated as a point mass. We are
then allowed to assume the quadrupolar approximation, where
we only keep the first mode of the potential, l = 2

U(r, θ, ϕ, t) = Re

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∑

m=−2

2∑

j=−2

2∑

p=0

∑

q∈Z

×Um, j,p,q(r) Pm
2 (cos θ) eiΦ2,m, j,p,q(ϕ,t)

⎫⎪⎪⎬⎪⎪⎭ (5)

where

Φ2,m, j,p,q(ϕ, t) = mϕ −Ψ2,m, j,p,q(t). (6)

The functions Um, j,p,q (r, θ) may be expressed in terms of the
Keplerian elements (the semi-major axis a of the orbit, its eccen-
tricity e, and its inclination I) and the obliquity ε of the rotation
axis of A, as

Um, j,p,q(r) = (−1)m

√
(2 − m)! (2 − | j|)!
(2 + m)! (2 + | j|)!

× GMB

a3

[
d2

j,m(ε) F2, j,p(I) G2,p,q(e)
]

r2, (7)

where G is the gravitational constant.
The obliquity function d2

j,m(γ) is defined, for j � m, by

d2
j,m(γ) = (−1) j−m

[
(2 + j)!(2 − j)!

(2 + m)!(2 − m)!

] 1
2

×
[
cos

(
γ

2

)] j+m [
sin

(
γ

2

)] j−m

P( j−m, j+m)
2− j

(cosγ), (8)

Table 1. Values of the obliquity function d2
j,m

(ε) in the case where j � m
obtained from Eq. (8) (from MLP09).

j m d2
j,m

(ε)

2 2
(
cos ε2

)4

2 1 −2
(
cos ε2

)3 (
sin ε2

)

2 0
√

6
(
cos ε2

)2 (
sin ε2

)2

1 1
(
cos ε2

)4
− 3

(
cos ε2

)2 (
sin ε2

)2

1 0 −
√

6 cos ε
(
cos ε2

) (
sin ε2

)

0 0 1 − 6
(
cos ε2

)2 (
sin ε2

)2

Table 2. Values of the inclination function F2, j,p(I) (from MLP09).

j p F2, j,p (I)

0 0 3
8 sin2 I

0 1 − 3
4 sin2 I + 1

2
0 2 3

8 sin2 I

1 0 3
4 sin I (1 + cos I)

1 1 − 3
2 sin I cos I

1 2 − 3
4 sin I (1 − cos I)

2 0 3
4 (1 + cos I)2

2 1 3
2 sin2 I

2 2 3
4 (1 − cos I)2

Notes. Values for indices j < 0 can be deduced from Eq. (10).

Table 3. Values of the eccentricity function G2,p,q(e) (from MLP09).

p q p q G2,p,q(e)
0 –2 2 2 0
0 –1 2 1 − 1

2 e + · · ·
0 0 2 0 1 − 5

2 e2 + · · ·
0 1 2 –1 7

2 e + · · ·
0 2 2 -2 17

2 e2 + · · ·
1 –2 1 2 9

4 e2 + · · ·
1 –1 1 1 3

2 e + · · ·
1 0

(
1 − e2

)−3/2

where Pα,β
l

(x) are the Jacobi polynomials (cf. MLP09). The val-
ues of these functions, for indices j < m, are deduced from
d2

j,m
(π + γ) = (−1)2− jd2

− j,m
(γ) or from their symmetry proper-

ties: d2
j,m(γ) = (−1) j−md2

− j,−m
(γ) = d2

m, j(−γ); moreover, we know

that d2
j,m(0) = δ j,m. Values are given in Table 1.

We also define, the inclination function F2, j,p(I)

F2, j,p(I) = (−1) j (2 + j)!
4 p! (2 − p)!

[
cos

(
I

2

)] j−2p+2 [
sin

(
I

2

)] j+2p−2

× P( j+2p−2, j−2p+2)
2− j

(cos I), (9)

with the symmetry property

F2,− j,p(I) =

[
(−1)2− j (2 − j)!

(2 + j)!

]
F2, j,p (I) . (10)

Values are given in Table 2.
The eccentricity functions G2,p,q(e) are polynomial functions

of eq (see Kaula 1962). Their values for the usual sets {2, p, q}
are given in Table 3, where we know that in the case of weakly
eccentric orbits, the summation over a small number of values
of q is sufficiently accurate (q ∈ � − 2, 2�). In the following, we
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denote by I = � − 2, 2� × � − 2, 2� × �0, 2� × Z the set in which
the quadruple {m, j, p, q} takes its values.

If we simplify the expansion of the potential to the case
where spins are aligned and are perpendicular to the orbital plan,
where obliquity ε and orbital inclination I are zero, Eq. (5) re-
duces to the expression of the potential given by Zahn (1977).

The tidal force induces a displacement of each particle con-
stituting the planet, thus causing some deformations. In partic-
ular, the core’s surface is deformed as described by the Love
theory (Love 1911).

2.3. Dynamical equations for a solid body and their boundary
conditions

To describe the internal evolution of the main component A sub-
mitted to the perturbations induced by the tidal potential pre-
sented above, we use the Eulerian formalism (Dahlen et al.
1999). The system of equations, needed to follow the motion
of a particle, is composed by the Eulerian momentum (11a) and
mass (11b) conservation laws, and the Poisson Eq. (11c) satis-
fied by the potential Φ of self-gravitation

ρ
∂2

s

∂t2
= ∇∇∇ · ¯̄σσσ + ρ∇∇∇ (Φ + U) , (11a)

∂ρ

∂t
+∇∇∇ ·

(
ρ
∂s

∂t

)
= 0, (11b)

∇∇∇2
Φ = −4πGρ, (11c)

where s designates the displacement vector and ¯̄σσσ is the stress
tensor. We complete this system with the constitutive equation
linking the stress exerted on the body to the resulting deforma-
tion. Assuming that the tidal effect corresponds to a traction ap-
plied to the body, with no rotational contribution, the deforma-
tion tensor reduces to the strain tensor ¯̄ǫǫǫ

¯̄ǫǫǫ =
1
2

[
∇∇∇s + (∇∇∇s)T

]
, (11d)

where ¯̄hhh
T

designates the transposed tensor of ¯̄hhh. We then get a
relation linking the stress tensor ¯̄σσσ to the strain tensor ¯̄ǫǫǫ that ac-
counts for the rheology of the body, and that we represent by a
function Frh

¯̄σσσ = Frh(¯̄ǫǫǫ). (11e)

To solve this system of Eq. (11), we need to apply boundary
conditions to the five previous equations, assuming that there is
neither a displacement (Eq. (12a)) nor an attraction (Eq. (12b)) at
the center of mass r = 0, that the gravitational potential is contin-
uous (Eq. (12c)), and that the Lagrangian traction vanishes (12d)
at the surface r = R such that

s|r=0 = 0, (12a)

(Φ + U)|r=0 = 0, (12b)

[Φ]R+

R− = 0, i.e.:

[
∂Φ

∂r
+ 4πG ρ sr

]R+

R−
= 0, (12c)

(
er · ¯̄σσσ

)∣∣∣
r=R
= 0. (12d)

2.4. Linearization of the system

Assuming that tidal effects, and thus the resulting elastic de-
formation, are small amplitude perturbations to the hydrostatic
equilbrium, we are allowed to linearize the system of Eq. (11)

and its boundary conditions in Eq. (12). To do so, we expand a
scalar quantity X as

X (r, θ, ϕ, t) = X0(r) + X′ (r, θ, ϕ, t) , (13)

where X0 designates the spherically symmetrical profile of X,
and X′ represents the perturbation due to the tidal potential. The
displacement s and the tidal potential U are also considered as
perturbations. Thus, to first order in ||s||, we obtain the following
form of the system of Eq. (11):

ρ0
∂2

s

∂t2
= ∇∇∇ · ¯̄σσσ + ρ0∇∇∇

(
Φ′ + U

)
+ ρ′∇∇∇Φ0, (14a)

ρ′ +∇∇∇ · (ρ0 s) = 0, (14b)

∇∇∇2
Φ′ = −4πGρ′, (14c)

¯̄σσσ =

(
K − 2

3
µ

)
tr
( ¯̄ǫǫǫ) ¯̄III + 2µ ¯̄ǫǫǫ, (14d)

where we have made use of Hooke’s law in Eq. (14d), which is
a linear constitutive law that governs elastic materials as long as
the load does not exceed the material’s elastic limit, in the case
of an isotropic material (i.e. whose properties are independent of
direction in space). This means that the strain is directly propor-
tional to stress, through the bulk modulus K and the shear mod-
ulus µ. The reference state, drawn from an up-to-date planetary
structure model, is governed by the Poisson and static momen-
tum equations

∇∇∇2
Φ0 = −4πGρ0, (15a)

∇∇∇P0 = ρ0∇∇∇Φ0, (15b)

where we have made use of the convention for the gravity g0 =

∇∇∇Φ0.

2.5. Analytical solutions for a homogeneous incompressible
body

To solve the linear system of Eq. (14), we expand all scalar quan-
tities in spherical harmonics Ym

l
(θ, ϕ). Moreover, as all vecto-

rial quantities that intervene in Eqs. (14a), (14b) are poloidal,
we may expand them in the vectorial spherical harmonics basis[
R

m
l

(θ, ϕ), Sm
l

(θ, ϕ)
]
, where R refers to the radial part and S to the

spheroidal part of a given vector (Rieutord 1987; Mathis & Zahn
2005)

∀(l,m) ∈ N × � − l, l�,

⎧⎪⎪⎨⎪⎪⎩
R

m
l (θ, ϕ) = Ym

l (θ, ϕ) er,

S
m
l (θ, ϕ) = ∇∇∇S

[
Ym

l (θ, ϕ)
]
,

(16a)

(16b)

where∇∇∇S designates the horizontal gradient

∇∇∇S =
∂ ·
∂θ

eθ +
1

sin θ
∂ ·
∂ϕ

eϕ. (17)

We introduce six radial functions ym
{1...6}(r) (Takeuchi & Saito

1972) to expand all quantities in spherical harmonics, at the
quadrupolar approximation (l = 2), namely

– the displacement

s(r, θ, ϕ, t) =
∑

(m, j,p,q)∈I

[
ym

1 (r) R
m
2 (θ, ϕ)

+ ym
3 (r) S

m
2 (θ, ϕ)

]
eiΨ2,m, j,p,q(t); (18a)
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– the total potential

(U + Φ′)(r, θ, ϕ, t) =
∑

(m, j,p,q)∈I
ym

5 (r) Ym
2 (θ, ϕ) eiΨ2,m, j,p,q(t); (18b)

– the Lagrangian traction

er · ¯̄σσσ(r, θ, ϕ, t) =
∑

(m, j,p,q)∈I

[
ym

2 (r) R
m
2 (θ, ϕ)

+ ym
4 (r) S

m
2 (θ, ϕ)

]
eiΨ2,m, j,p,q(t); (18c)

– the Lagrangian attraction (introduced to express the continu-
ity of the gradient of the potential)

∀m ∈ � − 2, 2�, ym
6 (r) =

d
dr

[
ym

5 (r)
]
− 4πGρ0y

m
1 (r). (18d)

The linear system governing the radial functions ym
{1...6}(r) is

given in Appendix. In the case of an incompressible (K → +∞)
and homogeneous body (µ, ρ0 = const.), the system of Eq.(14)
constrained by boundary conditions in Eq. (12) admits the so-
lutions, based on the expansions in Eq. (18): ∀m ∈ � − 2, 2�,

ym
1 (r) =

∑

j,p,q

k2

r R gs

(
8
3

R2 − r2

)
Um, j,p,q(r), (19a)

ym
2 (r) =

∑

j,p,q

[
2µ

k2

r2 R gs

(
8
3

R2 +
1
2

r2

)

+
4
3
πGρ2 k2

R gs

(
8
3

R2 − 1
2

r2

)

− ρ(1 + k2)

]
Um, j,p,q(r), (19b)

ym
3 (r) =

∑

j,p,q

k2

r R gs

(
4
3

R2 − 5
6

r2

)
Um, j,p,q(r), (19c)

ym
4 (r) =

∑

j,p,q

8µ
3

k2

r R gs

(R2 − r2) Um, j,p,q(r), (19d)

ym
5 (r) =

∑

j,p,q

(1 + k2) Um, j,p,q(r), (19e)

ym
6 (r) =

∑

j,p,q

[
2(1 + k2)

r

+4πGρ0
k2

r R gs

(
r2 − 8

3
R2

)]
Um, j,p,q(r), (19f)

where we have introduced the acceleration of gravity at the sur-
face gs and the second-order Love number k2. The latter com-
pares the perturbed part Φ′(R) of the self-gravitational potential
at the surface of a fully-solid planet of mean radius R, deformed
by tidal force, with the tidal perturbing potential U(R)

k2
def
=
Φ′(R)
U(R)

· (20)

The expression of k2 is established in Sect. 3, for an ocean-free
planet (Eq. (61)) or a two-layer planet (Eq. (63)).

3. Modified elastic tidal theory in presence of a fluid

envelope

We now assume that planet A is not entirely solid, but has
a static fluid envelope. We follow the method proposed by

Dermott (1979) to evaluate how the anelastic dissipation is mod-
ified by the presence of a fluid layer surrounding the solid re-
gion. The first step consists in determining the behavior of the
elastic response in this configuration. We denote by Rc (respec-
tively (resp.) Rp) the mean radius of the solid core (resp. of the
whole planet, including the height of the fluid layer) while ρc and
ρo designate the density of the core and the ocean respectively,
which are both assumed to be uniform, as a first step. More gen-
erally, all quantities are written with a “c” subscript when evalu-
ated at the core boundary and with a “p” subscript if taken at the
surface of the planet. The evolution of the system is described
in the orbital frame RO : {A, XO,YO, ZO} centered on A and co-
moving with the perturber B. We use polar coordinates (r,Θ) to
locate a point P, where r is the distance to the center of A, and Θ
is the angle formed by the radial vector and the line of centers.

3.1. Vertical deformation at the boundary of the core

In RO, the tidal potential takes the form (Dermott 1979)

U(r) = −ζ(r) g(r) P2(cosΘ) = −ζc gc
r2

R2
c

P2(cosΘ), (21)

where we have introduced the tidal height

ζ(r) =
MB

M(r)

(
r

a

)3
r, (22)

and the gravity

g(r) =
GM(r)

r2
, (23)

where M(r) is the fraction of mass of the planet inside the ra-
dius r.

The expression of the tidal potential in the rotating frame
of B (Eq. (21)) is linked to its expression in the equatorial inertial
frame (Eq. (5)), through the Kaula’s transform (Eq. (1)). The
Legendre polynomial summation formula

P2(cosΘ) = Re
⎡⎢⎢⎢⎢⎢⎢⎣

2∑

m=0

(2 − m)!
(2 + m)!

(2 − δ0,m) Pm
2 (cos θ) eimϕ

× Pm
2 (cos θB) e−imϕB

⎤⎥⎥⎥⎥⎥⎦ (24)

involves the term Pm
2 (cos θB) e−imϕB in Eq. (21),which has to be

transformed following Eqs. (1), (2) to obtain Eq. (5).
In this section, we are interested in the modication of Love

numbers caused by the presence of a fluid envelope on top of the
solid core. Thus, we focus on the deformations of the core’s sur-
face, particularly the vertical displacements. Love (1911) proved
that tidal deformations could be described by the same harmonic
function as the tidal potential causing it. Therefore, the equations
of the core and planet boundaries are respectively of the form

rc ≡ Rc + sr(Rc) = Rc [1 + S 2 P2(cosΘ)] , (25a)

rp = Rp [1 + T2 P2(cosΘ)] . (25b)

Thus, sr(Rc) = Rc S 2 P2(cosΘ) represents the radial displace-
ment at the core’s boundary corresponding to the vertical tidal
deformation of amplitude S 2 P2(cosΘ). In 1909, Love defined
the number h2, as the ratio of the amplitude of the vertical dis-
placement at the surface of the planet to the equilibrium tidal
height (the disturbing potential divided by the undisturbed sur-
face gravity, both taken at the surface of the core) in the case of
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Fig. 3. Left: tidal displacement s. Middle: equatorial slice of s. Right: meridional slice of s. The orange arrow indicates the direction of the perturber
B, and the red one corresponds to the rotation axis of A. The two slices are planes of symmetry.

a fully-solid planet. Solving the whole system of equations, he
determined its expression as

h2
def
=

sr(Rc)
U(Rc)/gc

≡ Rc S 2

ζc
=

5
2

1
1 + µ̄

(26)

where µ̄ is called the effective rigidity, in the sense that it evalu-
ates the relative importance of elastic and gravitational forces as

µ̄ =
19µ

2ρcgRc
· (27)

In the presence of the fluid envelope, the ratio of the amplitude
of the tidal surface vertical displacement to the tidal height is
modulated by a multiplicative factor F, owing to the additional
loading exerted by the tidally deformed fluid layer. We may then
introduce a new notation hF

2 for the modified Love number in the
presence of a fluid envelope

hF
2

def
=

sr(Rc)
U(Rc)/gc

≡ Rc S 2

ζc
= F h2 = F × 5/2

1 + µ̄
· (28)

We have now to express this factor as a function of the parame-
ters of the system. To do so, we have to list all the forces acting
on the surface of the core. Before carrying out the study of these
forces, we introduce a specific notation. All physical quantities
X(r) are separated into two terms: the first corresponds to the
constant part that does not depend on where the quantity is cal-
culated; the second one, called the “effective deforming” contri-
bution and denoted X′(r)), is a term proportional to the spherical
surface harmonic P2 (see Eq. (24)).

3.2. Gravitational forces acting on the surface of the core

The planet is not only subjected to the direct action of the tidal
potential U, but also to the self-gravitational potential Φ per-
turbed by the first. In calculating the latter, we have to consider
the contributions of both the solid core and the fluid envelopeΦc
and Φo, respectively.

At any point r of the core, Φc(r) corresponds to the internal
potential created by the core

Φc(r) = − gc

Rc

(
3R2

c − r2

2
+

3
5

r2 S 2 P2

)
. (29)

At the same point r, Φo(r) is the internal potential created by the
fluid shell of density ρo and of lower and upper surface bound-
aries rc and rp respectively:

Φo(r) = −ρo

ρc

gc

Rc

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
3R2

p − r2

2
+

3
5

r2 T2 P2

⎞⎟⎟⎟⎟⎟⎠

−
(
3R2

c − r2

2
+

3
5

r2 S 2 P2

)]
. (30)

Therefore, at any point r inside the core, V(r) = U(r) + Φc(r) +
Φo(r) has the following expression

V(r) = −1
2
gc

Rc

⎡⎢⎢⎢⎢⎢⎣−r2 + 3R2
c

⎛⎜⎜⎜⎜⎜⎝1 −
ρo

ρc
+
ρo

ρc

R2
p

R2
c

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ − V ′(r), (31a)

where the effective deforming potential is expressed by

V ′(r) = −Z r2 P2, (31b)

where Z is a constant that depends on the characteristics of the
planet

Z =
gc

Rc

[
ζc

Rc
+

3
5
ρo

ρc
(T2 − S 2) +

3
5

S 2

]
. (31c)

We then obtain its expression, which is correct to first order in
S 2P2 or T2P2, at any point rc = rc er of the surface of the core:

V(rc) = −gc Rc

⎡⎢⎢⎢⎢⎢⎣
(
1 − 3

2
ρo

ρc

)
+

3
2
ρo

ρc

R2
p

R2
c

⎤⎥⎥⎥⎥⎥⎦ + V ′(rc), (32a)

where

V ′(rc) = −Zc R2
c P2, (32b)

and Zc is a constant that depends on the characteristics of the
planet:

Zc =
gc

Rc

[
ζc

Rc
+

3
5
ρo

ρc
(T2 − S 2) − 2

5
S 2

]
. (32c)

Chree (1896) showed that the deformation of the core’s surface
under the gravitational forces, that derive from the effective de-
forming potential V ′, is the same as the deformation that would
result from the outward normal traction f

TN

1 applied at its mean
surface r = Rc

f
TN
1 (Rc) = ρc Z R2

c P2. (33)
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3.3. Total effective normal traction acting on the surface
of the core

The mean surface of the core is subjected to two additional
forces induced by both the loading of the core and the loading of
the ocean which is tidally deformed.

First, the pressure due to the differential overloading of the
deformed elastoviscous matter on the mean surface of radius Rc
is given by the product of the local gravity gc, the density of the
core ρc, and the solid tidal height RcS 2

f
TN

2 (Rc) = −ρc gc Rc S 2 P2. (34)

We also have to take into account the oceanic hydrostatic pres-
sure. Following Zahn (1966a,b) and Remus et al. (2012), we ex-
press all scalar quantities X(r,Θ) as the sum of their spherically
symmetrical profile X0(r) and their perturbation X′(r,Θ) due to
the tidal potential U(r,Θ) ∝ P2(cosΘ)

X(r,Θ) = X0(r) + X′(r,Θ) ≡ X0(r) + X̂(r) P2(cosΘ). (35)

The perturbations of pressure P′(r, θ) obey the relation of hydro-
static equilibrium, which is to first order in P2(cosΘ):

∇P′ = ρo ∇V ′ + ρ′o ∇V0. (36)

Therefore, the Θ-projection of (36) leads to

P′(r,Θ) = ρo V ′(r,Θ). (37)

Finally, since only the variable part of the pressure, i.e. P′, con-
tributes to the normal effective traction f

TN

3 acting on the mean
surface of the core, this latter takes the following expression

f
TN

3 (Rc) = P′(rc) = ρo V ′(rc) = −ρo Zc R2
c P2. (38)

The sum of these three forces, represented in Fig. 4, corre-
sponds to the total normal effective traction f TN (Rc) = f

TN

1 (Rc)+
f

TN

2 (Rc) + f
TN

3 (Rc) that deforms the mean surface of the core.
Using Eqs. (33), (34), (38), we get

f TN (Rc) = (ρc Z − ρo Zc) R2
c P2 − ρc gc Rc S 2 P2, (39)

where the expressions of Z and Zc are given by Eqs. (31c)
and (32c) respectively, so that

f TN (Rc) = X P2(cosΘ), (40)

where we have denoted by X the quantity

X =
2
5
ρc gc Rc

(
1 − ρo

ρc

) [
5
2
ζc

Rc
− S 2 +

3
2
ρo

ρc
(T2 − S 2)

]
. (41)

3.4. Amplitude of the vertical deformation

According to Melchior (1966), a deforming potentialU2 of sec-
ond order produces a deformation at each point rc of the surface
of the core whose radial component takes the form

ǫrr =

(
8R2

c − 3r2
c

)

19µ
ρcU2

r2
c
· (42)

To first order in P2, recalling that rc = Rc (1 + S 2P2), this re-
duces to

ǫrr =
5

19µ
ρcU2, (43)

Fig. 4. Balance of forces acting on the mean surface of the core r = Rc,
where f

TN

1 (Rc) are the gravitational forces, f
TN

2 (Rc) the loading of the
solid tide, and f

TN

3 (Rc) the hydrostatic pressure.

where ρcU2 is the deforming traction f T,N(Rc) = XP2 applied on
the core. Furthermore, since the amplitude of the displacement
is also given by ǫrr = S 2P2 (Eq. (25a)), we have the following
equality

S 2P2 =
5

19µ
XP2. (44)

Therefore the relation in Eq. (27) between µ and µ̄ and the ex-
pression in Eq. (41) for X enable us to relate the deformation of
the surfaces of the core (S 2) to those of the ocean (T2) as

S 2 =
1
µ̄

(
1 − ρo

ρc

) [
5
2
ζc

Rc
− S 2 +

3
2
ρo

ρc
(T2 − S 2)

]
. (45)

By definition, given in Eq. (28), the impedance F is of the form

F =
2
5

(1 + µ̄)
Rc

ζc
S 2. (46)

Since the surface of the planet is an equipotential, the total po-
tential V takes a constant value at any point rp of the surface of
the ocean

V(rp) ≡ U(rp) + Φ(rp) = const. (47)

As V − V ′ = const. by definition, we get the simpler condition

V ′(rp) ≡ U(rp) + Φ′(rp) = const. (48)

At a point r of the ocean, Φc(r) corresponds to the external po-
tential created by the core

Φc(r) = −gc R2
c

(
1
r
+

3
5

R2
c S 2

r3
P2

)
. (49)

At the same point r, Φo(r) is the internal potential created by the
fluid shell of density ρo and of lower and upper surface bound-
aries rc and rp, respectively:

Φo(r) = − gc

R3
p

Rc

ρo

ρc

⎛⎜⎜⎜⎜⎜⎝
3R2

p − r2

2R3
p
+

3
5

r2T2

R3
p

P2

⎞⎟⎟⎟⎟⎟⎠

+ gc R2
c
ρo

ρc

(
1
r
+

3
5

R2
c S 2

r3
P2

)
. (50)
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Therefore, V(r) = U(r) + Φc(r) + Φo(r), at any point r inside the
ocean, is given by

V(r) = −gc R2
c

⎡⎢⎢⎢⎢⎢⎣
(
1 − ρo

ρc

)
1
r
− ρo

ρc

r2

2R3
c
+

3
2
ρo

ρc

R2
p

R3
c

⎤⎥⎥⎥⎥⎥⎦ + V ′(r), (51a)

where the effective deforming potential is expressed by

V ′(r) = −gc R2
c W(r) P2, (51b)

W being a function of the distance r to the center of the planet

W(r) =
ζc

Rc

r2

R3
c
+

3
5
ρo

ρc

r2

R3
c

T2 +
3
5

(
1 − ρo

ρc

)
R2

c

r3
S 2. (51c)

We then obtain its expression at a point rp = rp er of the surface
of the planet

V(rp) = −gc

⎡⎢⎢⎢⎢⎢⎣
(
1 − ρo

ρc

)
R2

c

Rp
+
ρo

ρc

R2
p

Rc

⎤⎥⎥⎥⎥⎥⎦ + V ′(rp), (52a)

where

V ′(rp) = −gc Wp P2, (52b)

Wp being a constant that depends on the planet’s characteristics

Wp =
R2

p

R2
c
ζc +

⎡⎢⎢⎢⎢⎣
3
5

(
1 − ρo

ρc

)
R4

c

R3
p

⎤⎥⎥⎥⎥⎦ S 2

+

⎡⎢⎢⎢⎢⎢⎣−
2
5
ρo

ρc

R2
p

Rc
−

(
1 − ρo

ρc

)
R2

c

Rp

⎤⎥⎥⎥⎥⎥⎦ T2. (52c)

The condition in Eq. (48) then takes the form

ζc

Rc
= −3

5

(
Rc

Rp

)5 (
1 − ρo

ρc

)
S 2 +

2
5
ρo

ρc
αT2 , (53)

where

α = 1 +
5
2
ρc

ρo

(
Rc

Rp

)3 (
1 − ρo

ρc

)
· (54)

We can then eliminate the variable T2 thanks to Eq. (45)

2
5
ρo

ρc
αT2 =

2
5 α(

α + 3
2

) (
1 − ρo

ρc

)

×
⎡⎢⎢⎢⎢⎢⎣1 + µ̄ −

ρo

ρc
+

3
2
ρo

ρc

(
1 − ρo

ρc

)
+

3
2

(
Rc

Rp

)5 (
1 − ρo

ρc

)2⎤⎥⎥⎥⎥⎥⎦ S 2. (55)

Inserting this relation into Eq. (53) for ζc/Rc, and the resulting
relation into Eq. (46) for F, we finally get

F =

(
1 − ρo

ρc

)
(1 + µ̄)

(
1 + 3

2α

)

1 + µ̄ − ρo

ρc
+ 3

2
ρo

ρc

(
1 − ρo

ρc

)
− 9

4α

(
Rc
Rp

)5 (
1 − ρo

ρc

)2
· (56)

In the case of a shallow oceanic envelope (Rp ≃ Rc), the height of
the oceanic tide is then given by Rc(T2−S 2) at the surface of the
core. Using Eqs. (53), (45), we obtain the classical expression of
the height of oceanic tide

Rc(T2 − S 2) =
µ̄ζc

1 − ρo

ρc
+ µ̄

(
1 − 3

5
ρo

ρc

) · (57)

Fig. 5. Factor F, accounting for the overloading exerted by the tidally
deformed oceanic envelope on the solid core, in terms of the ocean
depth through the ratio Rc/Rp for three types of planet. Parameters are
given in Tables 4–6: for Earth-, Jupiter-, and Saturn-like planets, we
assume respectively that Rp = {1, 10.97, 9.14} (in units of R⊕p ), Mp =

{1, 317.83, 95.16} (in units of M⊕p ), Rc = {0.99, 0.126, 0.219} × Rp,
Mc = {0.33, 6.41, 18.65} (in units of M⊕p ), and µ = 5 × 1010 (Pa) for
all cores. Note that this figure is similar to that in Dermott (1979), any
differences being caused by the use of different values of the parameters.

Table 4. Earth parameters.

Quantity Value Reference

M⊕p (kg) 5.9736 × 1024 ⎫⎪⎪⎪⎬⎪⎪⎪⎭

http://nssdc.gsfc.nasa.gov/

planetary/factsheet/

earthfact.html

R⊕p (m) 6371 × 103

M⊕c (kg) M⊕p − 1.4 × 1021

R⊕c (m) R⊕p − 3682 × 103 Charette & Smith (2010)

Table 5. Mass and mean radius of Jupiter and Saturn.

Quantity Jupiter Saturn Reference

Rp (m) 10.973 × R⊕p 9.140 × R⊕p http://nssdc.gsfc.nasa.
gov/planetary/factsheet/Mp (kg) 317.830 × M⊕p 95.159 × M⊕p

The height of the solid tidal displacement is given by RcS 2.
Using Eqs. (57), (53), (45), we obtain its classical expression

RcS 2 =

5
2ζc

(
1 − ρo

ρc

)

1 − ρo

ρc
+ µ̄

(
1 − 3

5
ρo

ρc

) , (58)

which reduces to

RcS 2 =

5
2ζp

1 + µ̄
(59)

for an ocean-free planet (ρo = 0), corresponding to that given by
Lord Kelvin (1863). Thus, recalling Eq. (46), we deduce that for
an oceanless planet, F is unity.

Figure 5 displays the value of F for three types of planets
(i.e. Earth-, Jupiter-, and Saturn-like planets), with a given core
(of fixed size, mass, and shear modulus) and a fluid shell of fixed
density but variable depth, such that the size and mass of the
whole planet also varies. The variation of F is represented in
function of Rc/Rp: the smaller this ratio, the greater the ocean
depth.

For the Earth, all parameters are well-known (see Table 4).
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Table 6. Mass and mean radius of Jupiter’s and Saturn’s cores.

Rc (m) Mc (kg) Reference

Jupiter 0.126 × Rp 6.41 × M⊕p
http://www.oca.eu/guillot/

jupsat.html (Guillot 1999)

Saturn 0.219 × Rp 18.65 × M⊕p Hubbard et al. (2009)

The values of the ocean density for the Jupiter- and Saturn-
like planets correspond to the ones we may deduce from the
well-known values of their global size and mass (see Table 5),
and the much more poorly constrained values of the core size
and mass (see models A of Table 6). We use the shear modulus
taken as reference by Henning et al. (2009) when studying the
tidal heating of terrestrial exoplanets, i.e. µ = 5 × 1010 Pa. These
models of planets are used as starting points to compare the influ-
ence that the ocean depth has on core deformation for different
types of planets. Since we do not try to estimate this deformation
for realistic planets, we do not discuss in this section the validity
of the values we use for the parameters.

Figure 5 shows that for a planet with a shallow fluid shell
(i.e. when Rc � a × Rp, where a = {0.840, 0.915, 0.937} for an
Earth-, Jupiter-, and Saturn-like planet respectively), F is less
than unity, which means that the ocean exerts a loading effect
on the solid core that is stronger than the gravitational forces
and opposed to it. This is the case for the Earth where the depth
of the oceanic envelope does not exceed 1% of the size of the
planet, but giant planets are supposed to have a solid core no
bigger than the third of the planet size. According to Fig. 5, F
may reach values of up to 2.3 for this kind of planets, meaning
that for a planet with a deep fluid envelope, the ocean tide has
no loading effect on the core but exerts a gravitational force that
amplifies the tidal deformation. We refer the reader to Dermott
(1979) for a complete discussion.

3.5. Modified Love numbers

From Eq. (56), we deduce the Love number hF
2 (cf. Eq. (28)),

which measures the surface deformation:

hF
2 =

5
2

(
1 − ρo

ρc

) (
1 + 3

2α

)

1 + µ̄ − ρo

ρc
+ 3

2
ρo

ρc

(
1 − ρo

ρc

)
− 9

4α

(
Rc

Rp

)5 (
1 − ρo

ρc

)2
· (60)

We give here the expression of the second-order Love num-
ber (20) associated with the solid core. First of all, we recall
its value for an ocean-free planet. According to Eq. (29) with
r = Rc, we get

k2 =
3
5

h2 =
3
2

1
1 + µ̄

· (61)

In the presence of an ocean on top of the solid core, we may also
introduce the modified Love number

kF
2

def
=
Φ′(Rc)
U(Rc)

=
V ′(Rc) − U(Rc)

U(Rc)
=

V ′(Rc)
U(Rc)

− 1, (62)

where V ′(Rc) and U(Rc) are obtained from Eqs. (31b) and (21),
respectively, with r = Rc. Thus, expressing ζc/Rc as a func-
tion of the modified second-order Love number hF

2 according
to Eq. (28), and using Eq. (45), we obtain the expression of kF

2
in terms of hF

2

kF
2 =

⎛⎜⎜⎜⎜⎜⎝1 +
2
5
µ̄

1 − ρo

ρc

⎞⎟⎟⎟⎟⎟⎠ hF
2 − 1. (63)

In this section, we have studied the impact of the presence of a
fluid envelope on the determination of the deformation imposed
on an elastic core under tidal forcing. In the following, we con-
sider that the solid core also has viscous properties such that
its response to the tidal force exerted by the perturber is no more
immediate, thus inducing dissipation. The next section addresses
the quantification of this conversion of energy, which drives the
dynamical evolution of the whole system.

4. Anelastic tidal dissipation: analytical results

Assuming that the anelasticity is linear, the correspondence prin-
ciple established by Biot (1954) allows us to extend the formu-
lation of the adiabatic elastic problem to the resolution of the
equivalent dissipative anelastic problem. For initial conditions
taken as zero and similar geometries, the Laplace and Fourier
transforms of the anelastic equations and boundary conditions
are identical to the elastic equations, if the rheological param-
eters and radial functions are defined as complex numbers. We
then denote as

≈
σσσ ≡ ¯̄σσσ1 + i ¯̄σσσ2 (64)

the complex stress tensor, and as

≈
ǫǫǫ ≡ ¯̄ǫǫǫ1 + i ¯̄ǫǫǫ2 (65)

the complex strain tensor.
The perturbative strain is cyclic, with tidal pulsations

σ2,m,p,q. For sake of clarity, we use the generic notation
ω ≡ σ2,m,p,q, recalling that there is a large range of tidal frequen-
cies for each term of the expansion of the tidal potential. The
stress and strain tensors take the form

≈
σσσ(ω) = ( ¯̄σσσ1 + i ¯̄σσσ2) eiωt, (66a)
≈
ǫǫǫ(ω) =

≈
ǫǫǫ0 eiωt. (66b)

The complex rigidity

µ̃(ω) ≡ µ1(ω) + i µ2(ω), (67)

where µ1 represents the energy storage and µ2 the energy loss of
the system, is defined by

µ̃(ω) ≡
≈
σσσ(ω)
≈
ǫǫǫ(ω)

· (68)

We may also define the complex effective rigidity

µ̂(ω) ≡ µ̄1(ω) + i µ̄2(ω) (69)

by

µ̂(ω) = γ µ̃(ω), (70)

where (see Eq. (27))

γ =
µ̂

µ̃
≡ µ̄
µ
=

19
2ρcgcRc

· (71)
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4.1. Case of a fully-solid planet

The complex Love number k̃2 may be expressed in terms of the
complex effective rigidity µ̂, by:

k̃2(ω) =
3
2

1
1 + µ̂(ω)

,

=
3
2

1
1 + γ

[
µ1(ω) + iµ2(ω)

] , (72)

in the case of a completely solid planet.
The real part of k̃2 characterizes the purely elastic deforma-

tion, since −Im (k̃2) gives the phase lag due to the viscosity.
Therefore, we define the factor of tidal dissipation Q, which rep-
resents the dissipation rate due to viscous friction, by

Q−1(ω) = −Im k̃2(ω)∣∣∣k̃2(ω)
∣∣∣
· (73)

From Eq. (72), we then deduce that

Q(ω) =

√

1 +

[
1
µ̄2(ω)

+
µ̄1(ω)
µ̄2(ω)

]2

· (74)

4.2. Case of a two-layer planet

We introduce the quantities

A =

(
1 − ρo

ρc

) (
1 +

3
2α

)
, and (75a)

B = 1 − ρo

ρc
+

3
2
ρo

ρc

(
1 − ρo

ρc

)
− 9

4α

(
Rc

Rp

)5 (
1 − ρo

ρc

)2

, (75b)

into Eq. (56) for F

F =
A(1 + µ̄)

B + µ̄
, (76)

and we define its complex equivalent

F̃ =
A(1 + µ̂)

B + µ̂
· (77)

The determination of how the presence of an oceanic envelope
can modify the tidal dissipation consists in the determination of
k̃F

2 , which is defined as the complex Love number k̃2 in presence
of the fluid envelope. According to the correspondence princi-
ple, this number is given by the complex Fourier transform of
Eq. (63), i.e.

k̃F
2 (ω) =

⎛⎜⎜⎜⎜⎜⎝1 +
2
5
µ̂(ω)

1 − ρo

ρc

⎞⎟⎟⎟⎟⎟⎠ h̃F
2 (ω) − 1. (78)

From (63) we get then

k̃F
2 (ω) =

1

(B + µ̄1)2 + µ̄2
2

×
{[

(B + µ̄1)

(
C +

3
2α
µ̄1

)
+

3
2α
µ̄2

2

]
− iA D µ̄2

}
, (79)

where we have used the dimensionless quantities α, A, and B
previously defined (see respectively Eqs. (54) and (75)), where
C and D are given by

C =
3
2

(
1 − ρo

ρc

) (
1 − ρo

ρc
+

5
2α

)
+

9
4α

(
Rc

Rp

)5 (
1 − ρo

ρc

)2

, (80a)

D =
3
2

(
1 − ρo

ρc

) ⎡⎢⎢⎢⎢⎢⎣1 +
3

2α

(
Rc

Rp

)5⎤⎥⎥⎥⎥⎥⎦ · (80b)

Finally, the dissipation factor Q̂, defined here by

Q̂−1(ω) = −
Im k̃F

2 (ω)∣∣∣k̃F
2 (ω)

∣∣∣
, (81)

is of the form

Q̂(ω) =

√√√√
1+

9
4α2A2D2

⎡⎢⎢⎢⎢⎢⎢⎣1+
(B + µ̄1(ω))

(
2αC

3 + µ̄1(ω)
)

µ̄2(ω)

⎤⎥⎥⎥⎥⎥⎥⎦

2

· (82)

Thanks to the correspondence principle, one is able to derive this
general expression of the tidal dissipation, which is valid for any
rheology. The dependence on the tidal frequency ω ≡ σ2,m,p,q of
the derived formulae is clearly evident, as shown, for example,
by Remus et al. (2012), and Ogilvie & Lin (2004–2007) for fluid
layers.

4.3. Implementation of an anelastic model

Since the factor Q depends on the real and imaginary compo-
nents µ̄1 and µ̄2 of the complex effective shear modulus µ̂, we
need to define the rheology of the studied body to express it in
terms of the constitutive parameters of the material.

The anelasticity of a material is evaluated by a quality factor
Qa defined by

Qa(ω) =
µ1(ω)
µ2(ω)

· (83)

We can express the solid tidal dissipation, given by Q (Eq. (74)),
for a fully-solid planet and Q̂ (Eq. (82)) in the case of a two-layer
planet, in terms of Qa, as

Q(ω ≡ σ2,m,p,q) =

√

1 +

[
1
µ̄2(ω)

+ Qa(ω)

]2

, (84)

and

Q̂(ω ≡ σ2,m,p,q)

=

√

1+
9

4α2A2D2

[
1+

(
B

µ̄2(ω)
+Qa(ω)

) (
2
3
αC

µ̄2(ω)
+Qa(ω)

)]2

.

(85)

All previous results are independent of the viscoelastic rheolog-
ical model. We now apply these general expressions to a specific
rheology that depends on the physical properties of the material.
Given our lack of knowledge of the internal structure of giant
planets, we implement the simplest model, namely the Maxwell
model, which has the advantage of involving only two parame-
ters and is thus easy to use (Tobie 2003; Tobie et al. 2005). A
critical overview of the four main rheological models was done
by Henning et al. (2009), thus we refer the reader to the three
aforementioned papers for a detailed comparison.

4.4. The Maxwell model

This model considers a viscoelastic material as a spring-dashpot
series. The instantaneous elastic response is characterized by a
shear modulus G , and the viscous yielding is represented by a
viscous scalar modulus η (see Fig. 6). Note that the shear moduli
G and µ (introduced in Sect. 2.4) designate the same quantity. We
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Fig. 6. Representation of the Maxwell model and its corresponding no-
tations.

Fig. 7. Anelastic quality factor Qa of the Maxwell model in function of
the tidal pulsation ω for different values of the viscosity η. G is taken
equal to 5 × 1010 Pa (see Henning et al. 2009). Qa is represented on a
logarithmic scale.

change here the notation to avoid any confusion with the com-
plex shear modulus µ̃ used to study the anelastic tidal dissipation,
whose real and imaginary parts involve both G and η.

The constitutive equation is given by Henning et al. (2009)

G
≈
σσσ(ω) + η

≈̇
σσσ(ω) = G η

≈̇
ǫǫǫ(ω), (86)

where the time derivative of a given quantity is denoted by a dot.
Recalling Eq. (68), this equation becomes

G
≈
ǫǫǫ(ω) µ̃(ω) + η

d
dt

[
µ̃(ω)

≈
ǫǫǫ(ω)

]
= G η

≈̇
ǫǫǫ(ω). (87)

Therefore the real part µ1 and the imaginary part µ2 of the com-
plex shear modulus µ̃ are given by

µ1(ω) =
η2 Gω2

G2 + η2 ω2
, (88a)

µ2(ω) =
ηG2 ω

G2 + η2 ω2
· (88b)

The anelastic quality factor Qa is then given by

Qa(ω) =
µ1(ω)
µ2(ω)

=
ηω

G
≡ ωτM, (89)

where τM = η/G is the characteristic time of relaxation of the
Maxwell model. As confirmed by Fig. 7, Eq. (89) shows that Qa
increases linearly with the frequency of the cyclic tidal strain:
the shorter the oscillation period, the lower the dissipation due
to the intrinsic viscoelastic properties of the material. Moreover,
the anelastic quality factor is proportional to τM = η/G, such
that it dissipates more if it is more rigid and less viscous.

Thus, we may express µ2 (Eq. (88b)) in terms of the anelastic
quality factor Qa (Eq. (89))

µ2(ω) =
G

(ωτM)−1 + ωτM
· (90)

Fig. 8. Relative difference between
∣∣∣k̃F

2

∣∣∣/Q̂ and
∣∣∣k̃2

∣∣∣/Q. We may dis-
tinguish two regimes: for 0 < Rc < 0.661 Rp the fluid envelope in-
creases the tidal dissipation; above this value, tidal dissipation is lower
than it would have been without a fluid shell. Parameters are given
in Tables 5–7 for a Saturn-like planet perturbed at the tidal frequency
of Enceladus (ω = 2.25 × 10−4 rad s−1): Rp = 9.14 R⊕p , Mp = 95.16 M⊕p ,
Rc = 0.219 R⊕p , Mc = 18.65 M⊕p , G = 5 × 1010 (Pa), and η = 1015 (Pa s).

Table 7. Tidal frequencies considered in numerical applications.

Planet Jupiter Saturn
Satellite Io Enceladus
ω (rad s−1) 2.79 × 10−4 2.25 × 10−4

Reference Ioannou et Lindzen (1993) Lainey et al. (2012)

In the case of a fully-solid body, we get, from Eqs. (83) and (90),
the imaginary part of the complex Love number k̃2 (72)

Im
[
k̃2(ω)

]
= −3γ

2
GωτM

1 + (ωτM)2 (1 + γG)2
· (91)

Therefore, the dissipation factor Q defined by Eq. (74) is of the
form

Q(ω ≡ σ2,m,p,q) =

√

1+

{
1

Gγ

[
(ωτM)−1+ωτM

]
+ωτM

}2

. (92)

In the more general case of a two-layer body, the imaginary part
of the complex Love number k̃F

2 given by Eq. (79), takes a differ-
ent form than Eq. (91) because of the presence of the fluid enve-
lope, as does the two-layer dissipation factor Q̂ in Eq. (82) with
respect to its oceanless form in Eq. (92). To obtain them, one
needs to replace the shear modulus µ̃ and the anelastic quality
factor Qa by their expression in the case of the Maxwell model
(Eqs. (88) and (89), respectively).

Figure 8 compares the dissipation of the solid core with
and without a fluid envelope of variable depth for a Saturn-like
planet, using the parameters given by Tables 5–7: as expected,
the difference between the two dissipations decreases with the
size of the fluid envelope to about 0.34 × Rp; but for a thiner
fluid shell, the dissipation get lower than it would be without it.

5. Anelastic tidal dissipation: role of the structural

and rheological parameters

Owing to our choice of the Maxwell model to represent the rhe-
ology of the solid parts of the planet, the dissipation quality fac-
tor Q̂ depends on both the tidal frequency ω and four structural
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and rheological parameters: the relative size of the core (Rc/Rp),
the relative density of the envelope with respect to the core
(ρo/ρc), the shear modulus (G), and the viscosity of the core (η).
Our present knowledge of extrasolar giant planets, in addition
to the planets of our solar system like Jupiter or Saturn, is af-
fected by some uncertainties in the values of these parameters,
such that their ranges are poorly constrained. Moreover, even
if the presence of a core in Jupiter has not yet been confirmed
(see Guillot 1999–2005), seismological data may provide more
constraints on giant-planet internal structure (see Gaulme et al.
2011). Nevertheless, we explore the resulting tidal dissipation
in these bodies around values of the structural and rheological
parameters taken as reference and corresponding to those of the
literature.

5.1. Baseline structural and rheological parameters

As reference models, we chose Jupiter and Saturn, although their
core parameters remain uncertain. The values of the global sizes
and masses of these planets are those of Table 5.

5.1.1. Size and mass of the core

Two main types of models are presently available for Jupiter’s
interior. The NHKFRB group1 uses a three-layer model with
a thin radiative zone, close to previous models by Saumon &
Guillot (2004), whereas the MHVTB group2 proposes a new
type of Jupiter model that has only two layers (see Militzer
et al. 2008). As explained in Militzer & Hubbard (2009), the
crucial difference between the two lies in their treatments of the
molecular-to-metallic transition in dense fluid hydrogen, leading
to very different conclusions. The first group predicts a core that
is smaller than 10 M⊕p (Saumon & Guillot 2004), while the sec-
ond one obtains a larger core of 14–18 M⊕p (Militzer et al. 2008).
Among all these models of Jupiter’s interior, we choose as ref-
erence the adiabatic model with plasma phase transition (PPT)3

of Guillot (1999), which is of the first type. It predicts a core
of radius Rc = 0.126 × Rp and mass Mc = 6.41 × M⊕p . Only the
mass of the core of this reference model is used in what follows.
The core radius just serves as a first approximation, as a starting
point in our study, since we present our results for several core
sizes.

There are also different models of Saturn’s interior.
According to the model of Guillot with PPT3, Saturn’s core may
have a mass of Mc = 6.55 × M⊕p and a size of Rc = 0.174 × Rp.
Hubbard et al. (2009) infered, from Cassini-Huygens data, that
Saturn has a larger core in the range Mc = 15-20×M⊕p and a cor-
responding radius of more than 20% of the planet size. We adopt
this latter as reference model of Saturn, with Mc = 18.65 × M⊕p
and Rc = 0.219 × Rp.

All these models assume that core accretion is the standard
process for the formation of giant planets, the corresponding
parameters being listed in Table 6.

5.1.2. Rheological parameters of the core

The main uncertainties concern the viscoelastic properties of the
core, namely its shear modulus G and its viscosity η. At high

1 Nettelmann, Holst, Kietzmann, French, Redmer and Blaschke
(Nettelmann et al. 2008).
2 Militzer, Hubbard, Vorberger, Tamblyn, and Bonev (Militzer et al.
2008).
3 The model is available at http://www.oca.eu/guillot/jupsat.
html. It is constructed with CEPAM, Code d’Évolution Planétaire
Adaptatif et Modulaire (Guillot & Morel 1995).

pressure and temperature, theoretical models and experiments
show that G and η values depend on temperature and pressure.
however, no experiments are available at the very-high pressures
and temperatures we may expect in Jupiter’s and Saturn’s cores
(Guillot 2005). Nevertheless, geophysical and experimental data
allow to constrain the rheology of the icy satellites of Jupiter,
since their ranges of pressure and temperature are similar to
those of the outer mantle of the Earth (Tobie 2003). Then, keep-
ing in mind that these values may differ by several orders of
magnitude in our case, we adopt reference values based on these
data, assuming that Jupiter’s and Saturn’s cores are made of ice
and rock. We then explore, in Sect. 5.2, the variation of the tidal
dissipation for a large range of values of the rheological param-
eters around those taken as reference.

We thus assume that the shear modulus G is in the range
[Gice = 4 × 109 (Pa), Gsilicate = 1011 (Pa)] (Henning et al. 2009).

The viscosity η has values in the range [ηice = 1014Pa s,
ηsilicate = 1021 Pa s] for the icy satellites of Jupiter at high pres-
sure (Tobie 2003). We expand this range, by reducing its lower
boundary by two orders of magnitude. This is in line with the
discussion of Karato (2011), which seems to indicate that, at the
very high pressures, viscosity in the deep interior of super-Earths
may decrease by two or three orders of magnitude. We refer the
reader to Karato (2011) for an overview of all plausible mecha-
nisms that may change the viscous-pressure relationship at very-
high pressures.

5.2. Dependence of tidal dissipation on rheology

Since tidal dissipation causes exchange of angular momentum in
the system, it may be quantified by monitoring carefuly the or-
bital motion of the system. Using astrometric data covering more
than a century, Lainey et al. (2009–2012) succeeded in determin-
ing from observations the tidal dissipation in Jupiter and Saturn:
namely, QJupiter = (3.56 ± 0.56) × 104 determined by Lainey
et al. (2009), and QSaturn = (1.682 ± 0.540) × 103 determined
by Lainey et al. (2012) and requireded by the formation scenario
of Charnoz et al. (2011). However, with this method, the differ-
ent contributions to the global tidal dissipation, from each layer
constituting the planet, are combined together. Equations of the
dynamical evolution (Eqs. (99) to (103)) link the observed evo-
lution rates of the rotational and orbital parameters to both the
observed tidal dissipation and system characteristics. Since all
these rates are proportional to R5

p, where Rp is the planet radius,
we introduce the associated dissipation factor4

Q̂eff =

(
Rp

Rc

)5

×
|k̃F

2 (Rp)|
|k̃F

2 (Rc)|
× Q̂, (93)

where |k̃F
2 (Rc)| can be deduced from Eq. (81), and |k̃F

2 (Rp)| des-
ignates the modulus of the second order Love number of the
planet’s surface that is obtained from Eqs. (52) and (21)

k̃F
2 (Rp) =

V ′(Rp)

U(Rp)
−1 =

ρo

ρc
−
(

Rc
Rp

)3 (
1− ρo

ρc

)

2
5
ρo

ρc
α− 3

5

(
Rc
Rp

)5 (
1− ρo

ρc

)2 ρo

ρc

(
α+ 3

2

)
1
H

, (94)

where H accounts for the quantity

H = 1 + µ̃ − ρo

ρc
+

3
2
ρo

ρc

(
1 − ρo

ρc

)
+

3
2

(
Rc

Rp

)5 (
1 − ρo

ρc

)2

· (95)

4 This can also be demonstrated by calculating the perturbation of the
gravific potential at the surface of the planet, adapting the theory of
Zahn (1966a,b) to take into account the boundary conditions at the core
surface.
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Fig. 9. Dissipation quality factor Q̂eff of the Maxwell model as a function of the viscoelastic parameters G and η. Top: for a Jupiter-like two-layer
planet tidally perturbed at the Io’s frequency ω ≃ 2.79 × 10−4 rad s−1. Bottom: for a Saturn-like two-layer planet tidally perturbed at the Enceladus’
frequency ω ≃ 2.25 × 10−4 rad s−1. The red dashed line corresponds to the value of Q̂eff = {(3.56 ± 0.56) × 104, (1.682 ± 0.540) × 103} (for Jupiter
and Saturn, respectively) determined by Lainey et al. (2009–2012). The blue lines corresponds to the lower and upper limits to the reference values
taken by the viscoelastic parameters G and η for an unknown mixture of ice and silicates. We assume the values of Rp = {10.97, 9.14} (in units of
R⊕p ), Mp = {317.8, 95.16} (in units of M⊕p ), and Mc = {6.41, 18.65} × M⊕p given in Tables 5, 6.

Since we have weak constraints on the viscoelastic parameters
of giant-planet cores (Guillot 2005), we thus have to explore a
large range of values. Figure 9 shows the tidal dissipation factor
Q̂eff around the reference values presented in Sect. 5.1, where
we expand the range by up to about ±2–4 orders of magnitude
for G and η. In the middle region (inside the blue rectangle on
Fig. 9), where η and G correspond to the reference values, the
dissipation factor Q̂eff of Saturn (resp. Jupiter) may reach values
of the order of 103 (resp. 104), and in the whole field it varies up
to a value of 1020.

From Fig. 9, we deduce that the tidal dissipation of the core
may reach the values observed for Jupiter (Lainey et al. 2009)
and Saturn (Lainey et al. 2012) assuming that Jupiter’s core
(resp. Saturn’s core) has a radius 34.92% (resp. 18.72%) larger
than this of Guillot 1999 (resp. Hubbard 2009).

Therefore, we can evaluate the real part of the second or-
der Love numbers k̃F

2 (Rc) and k̃F
2 (Rp), accounting respectively

for the deformation of the core’s and planet’s surface, for pa-
rameters whose values are compatible with the tidal dissipation
observations (Lainey et al. 2009–2012). For Jupiter and Saturn,
in this order, assuming that Rc = {0.170, 0.260} × Rp, G =

{4.85, 4.45} × 1010 Pa and η = {1.26, 1.78} × 1014 Pa s, we obtain
that Re

[
k̃F

2 (Rc)
]
= {3.21, 3.31} and Re

[
k̃F

2 (Rp)
]
= {1.37, 0.24}.

These estimations at the planet’s surface can be compared to the
value of Gavrilov & Zharkov (1977) of k2 = 0.379 for Jupiter

and k2 = 0.341 for Saturn obtained for stratified models. As
discussed in the aforementioned paper, the differences between
both evaluations are linked to the degree of stratification: the
more the planet interior is stratified, the smaller the second order
Love number (we recall that the second order Love number of a
homogeneous fluid planet is 3/2).

5.3. Dependence of tidal dissipation on both the size
of the core and the tidal frequency

In Fig. 10, the values of the viscoelastic parameters G and η,
and the core size Rc are based on the results in Fig. 9: they
were chosen to ensure that the tidal dissipation factor Q̂ reaches
the observed values of Lainey et al. (2009–2012) on the con-
dition that the rheological parameters are in the more realistic
domain defined by the lowest and highest values of the ice and
rock viscoelasticities taken as reference. Taking into account the
global dissipation values obtained by Lainey et al. (2009–2012)
for Jupiter and Saturn, we can infer some constraints on both the
viscoelastic parameters and the size of the core (looking at the
red dashed line in Fig. 9). We thus assume that they take values
that allow for such a dissipation:

– we first chose a core slightly larger than that assumed until
now: Rc = 0.170 × Rp for Jupiter, and Rc = 0.260 × Rp for
Saturn;
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Fig. 10. Dissipation quality factor Q̂eff normalized to the size of the planet for Jupiter-like and Saturn-like giant planets. Note that all curves
are represented on a logarithmic scale. Left: dependence on the perturbative strain pulsation ω, with Rc = {0.17, 0.26} × Rp. Right: depen-
dence on the size of the core, with ω ≃ 2.25 × 10−4 rad s−1 (tidal frequency of Enceladus) for the blue curve associated with a Saturn-like
planet, and ω ≃ 2.79 × 10−4 rad s−1 (tidal frequency of Io) for the red curve associated with a Jupiter-like planet. The green curve corresponds
to the prescription of Goodman & Lackner (2009) (see plain text for details). The red and blue dashed lines correspond to the value of
Q̂eff = {(3.56 ± 0.56) × 104, (1.682 ± 0.540) × 103} (for Jupiter and Saturn, respectively) determined by Lainey et al. (2009–2012). Their zone of
uncertainty is also represented by the corresponding color. We assume the values of Rp = {10.97, 9.14} (in units of R⊕p ), Mp = {317.8, 95.16} (in
units of M⊕p ), and Mc = {6.41, 18.65} × M⊕p given in Tables 5, 6. We also assume the viscoelastic parameters, for Jupiter and Saturn respectively,
G = {4.85, 4.45} × 1010 (Pa), and η = {1.26, 1.78} × 1014 (Pa s).

– we then fixed the value of the shear modulus G to the
lowest value needed to reach the observed tidal dissipation
of Lainey et al. (2009–2012), i.e. G = 4.85 × 1010 Pa for
Jupiter, and G = 4.45 × 1010 Pa for Saturn;

– we finally searched the more realistic value of the vis-
cosity which corresponds to the observed tidal dissipations
of Jupiter and Saturn: η = 1.26 × 1014 Pa s for Jupiter, and
η = 1.78 × 1014 Pa s for Saturn.

For the present model, Fig. 10 explores, the dependence of Q̂eff
on the pulsation ω and the size of the core Rc normalized by the
size of the planet Rp. With these parameters, the figure indicates
that Saturn dissipates slightly greater than ten times more than
Jupiter, since (Rc)Saturn > (Rc)Jupiter and (ρc)Saturn < (ρc)Jupiter. For
the range of tidal frequencies of Jupiter’s and Saturn’s satellites
(2.25 × 10−4 rad s−1 < ω < 2.95 × 10−4 rad s−1, Lainey et al.
2009–2012), the effective dissipation factor Q̂eff remains almost
constant, although it strongly depends on the size of the core, de-
creasing up to six orders of magnitude between a coreless planet
and a fully-solid one. One can note that for a given core (where
Mc, Rc, and then ρc are fixed) and a given mass of the planet Mp,
the density of the fluid envelope ρo, which varies with its height
Rp − Rc, cannot exceed ρc. Since

ρo (Rc) =
Mp − Mc

4/3 π
(
R3

p − R3
c

) , (96)

this condition gives a limit to the core size of
(

Rc

Rp

)

sup

=

(
Mc

Mp

)1/3

· (97)

In 2004, Ogilvie & Lin also studied tidal dissipation in giant
planets, particulary the tidal dissipation resulting from the exci-
tation of inertial waves in the convective region by the tidal po-
tential for rotating giant planets with an elastic solid core. They
obtained a decrease in the quality factor Q of one order of mag-
nitude for the dynamical tide, caused by inertial modes, relative
to the equilibrium one, from Q = 106 to Q = 105. This was not,
however, efficient enough to explain the observed tidal dissipa-
tion in Jupiter or Saturn, which is of 1–2 orders of magnitude

higher (Lainey et al. 2009–2012). Moreover, they showed that
the dissipation resulting from the resonance between fluid tide
and inertial modes depends strongly on the tidal frequency in
the range of inertial waves, as in the case of the coreless models
(Wu 2005). This disagrees with the weak frequency-dependence
inferred from astrometry (Lainey et al. 2012).

By discussing the size of the core, Goodman & Lackner
(2009) found a higher quality factor Q in the range 107−108 ×
(0.2 Rp/Rc)5, which disagrees with the observed value of the
tidal dissipation of Saturn (see Fig. 9).

The present two-layer model proposes an alternative pro-
cess to reach such a high dissipation with a smooth frequency-
dependence of Q̂. However, the uncertainties in the structural
and rheological parameters do not allow us to firmly conclude
that the tidal dissipation of the core can explain on its own the
tidal dissipation observed in giant planets of our solar system by
Lainey et al. (2009–2012).

On the basis of these expressions of the tidal dissipation,
which are closely linked to the internal structure of the planet
and its rheological properties, we are able to derive the equa-
tions of the dynamical evolution of the system in terms of its
explicit dependence on the tidal frequency.

5.4. Comparison with previous work of Dermott

The difference between our study and Dermott (1979) is the
treatment of tidal dissipation.

Dermott based his formulae on an evolution scenario of
Saturnian and Jovian systems. He assumed that the satellites of
Jupiter and Saturn were formed 4.5 × 109 ago, and that their
semi-major axis have changed by 10% since their formation be-
cause of a old stable resonance between the main satellites of
Jupiter (Io, Europa and Ganymede) but a young resonance be-
tween the satellites Mimas and Thetys of Saturn. Dermott also
assumed an average value of the tidal dissipation which where
independent of frequency and time. All these assumptions led
Dermott (1979) to a tidal dissipation factor Q that only depends
on the mass Mc, the size Rc, the elasticity µ of the core, and a di-
mensionless coefficient K that is characteristic of the evolution
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Fig. 11. Tidal interaction involving a solid body. Body B exerts a tidal
force on body A, which adjusts itself with a phase lag 2 δ, because of
internal friction in the anelastic core. This adjustment may be separated
into an adiabatic component, corresponding to the elastic deformation,
that is in phase with the tide, and a dissipative one, resulting from the
viscous internal frictions, which is in quadrature.

scenario of the planet. In particular, his tidal factor Q is directly
proportional to R5

c (Eq. (27) of Dermott 1979), such that the tidal
dissipation gets lower as the core size increases (see Fig. 4 of
Dermott 1979), where one should expect an opposite behavior.

Our model is instead based on physical considerations of the
internal structure and properties of the core. In particular, we
derived our tidal dissipation factor Q̂ with no assumption about
the evolution of the Jovian and Saturnian systems. To do so, we
used the correspondence principle of Biot (1954), which allowed
us to obtain an expression for the tidal dissipation factor that is
valid for any rheological model of planets’ cores. Moreover, our
expression in Eq. (82) for Q̂ depends not only on the mass Mc,
size Rc, and elasticity G ≡ µ of the core, but also on the tidal
frequency ω and viscosity η. We note, in particular, that tidal
dissipation increases when the size of the core increases, in con-
trast to Dermott’s strange result.

6. Equations of the dynamical evolution

Mass redistribution due to tides generates in turn a tidal torque
of a non-zero average that induces an exchange of angular mo-
mentum between the orbital motion and the rotation of each
component. As shown in MLP09 & Remus et al. (2012), this
tidal torque is proportional to the tidal dissipation ratio

∣∣∣k̃F
2

∣∣∣ /Q
(see also Correia & Laskar 2003; Correia et al. 2003; Murray &
Dermott 2000). One can note that for a perfectly elastic mate-
rial, the core is elongated in the direction of the line of centers,
inducing a torque,

∫
V r ∧ (ρc∇∇∇U) dV, with periodic variations

in the zero average, such that no secular exchanges of angular
momentum are possible (see Zahn 1966a; Remus et al. 2012).
However, if the core is anelastic, the deformation of the core re-
sulting from the equilibrium adjustment presents a time delay ∆t
with respect to the tidal forcing, which may also be measured by
the tidal lag angle 2δl or equivalently by the quality factor Q (see
Ferraz-Mello et al. 2008; or Efroimsky & Williams 2009)

sin
[
∆t × σ2,m,p,q

]
= sin

[
2δ

(
σ2,m,p,q

)]
=

1

Q
(
σ2,m,p,q

) · (98)

Thus, the tidal bulge is no more aligned with the line of centers,
as shown in Fig. 11.

The resulting tidal angle produces a torque of non-zero av-
erage that in turn causes an exchange of spin and orbital angular
momentum between the components of the system.

The evolution of the semi-major axis a, the eccentricity e,
the inclination I, the obliquity ε, and the angular velocity Ω

(where ĪA denotes the moment of inertia of A), is governed by
equations, established in MLP09 and Remus et al. (2012),

d
(
ĪAΩ

)

dt
= −8π

5

GM2
B
R5

eq

a6

×
∑

(m, j,p,q)∈I

⎧⎪⎪⎨⎪⎪⎩

∣∣∣k̃F
2 (Rp, σ2,m,p,q)

∣∣∣
Q̂eff(σ2,m,p,q)

[
H2,m, j,p,q(e, I, ε)

]2
⎫⎪⎪⎬⎪⎪⎭ , (99)

ĪAΩ
d (cos ε)

dt
=

4π
5

GM2
B
R5

eq

a6

×
∑

(m, j,p,q)∈I

⎧⎪⎪⎨⎪⎪⎩( j + 2 cos ε)

∣∣∣k̃F
2 (Rp, σ2,m,p,q)

∣∣∣
Q̂eff(σ2,m,p,q)

[
H2,m, j,p,q(e, I, ε)

]2
⎫⎪⎪⎬⎪⎪⎭ ,

(100)

1
a

da

dt
= −2

n

4π
5

GMBR5
eq

a8

×
∑

(m, j,p,q)∈I

⎧⎪⎪⎨⎪⎪⎩(2−2p+q)

∣∣∣k̃F
2 (Rp, σ2,m,p,q)

∣∣∣
Q̂eff(σ2,m,p,q)

[
H2,m, j,p,q(e, I, ε)

]2
⎫⎪⎪⎬⎪⎪⎭ ,

(101)

1
e

de

dt
= −1

n

1 − e2

e2

4π
5

GMBR5
eq

a8

×
∑

(m, j,p,q)∈I

⎧⎪⎪⎨⎪⎪⎩

[
(2 − 2p)

(
1 − 1
√

1 − e2

)
+ q

]

×
∣∣∣k̃F

2 (Rp, σ2,m,p,q)
∣∣∣

Q̂eff(σ2,m,p,q)

[
H2,m, j,p,q(e, I, ε)

]2
⎫⎪⎪⎬⎪⎪⎭ , (102)

d (cos I)
dt

=
1
n

1
√

1 − e2

4π
5

GM2
B
R5

eq

a8

×
∑

(m, j,p,q)∈I

⎧⎪⎪⎨⎪⎪⎩
[
j + (2q − 2) cos I

]

×
∣∣∣k̃F

2 (Rp, σ2,m,p,q)
∣∣∣

Q̂eff(σ2,m,p,q)

[
H2,m, j,p,q(e, I, ε)

]2
⎫⎪⎪⎬⎪⎪⎭ , (103)

where the functions Hm, j,p,q(e, I, ε) are expressed in terms of
d2

j,m(ε), F2, j,p(I), and G2,p,q(e), which are defined in Sect. 2.2

H2,m, j,p,q(e, I, ε) =

√
5

4π
(2 − | j|)!
(2 + | j|)!

× d2
j,m(ε) F2, j,p(I) G2,p,q(e), (104)

and Req designates the equatorial radius of body A.
From these equations, one may derive the characteristic

times of synchronization, circularization, and spin alignment

1
tsync

= − 1
Ω − n

dΩ
dt
= − 1

ĪA (Ω − n)

d
(
ĪAΩ

)

dt
, (105)

1
tcirc
= −1

e

de

dt
, (106)

1
talignA

= −1
ε

dε
dt
=

1
ε sin ε

d (cos ε)
dt

, (107)

1
talignOrb

= −1
I

dI

dt
=

1
I sin I

d (cos I)
dt

· (108)
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7. Conclusion

We have studied the tidal dissipation in a two-layer planet con-
sisting in a rocky/icy core and a fluid envelope, as one expects
to be the case in Jupiter, Saturn, and many extrasolar planets.
We have considered the most general configuration, where the
perturber (star or satellite) moves on an elliptical and inclined
orbit around the planet that rotates about an inclined axis. We
have expanded the tidal displacement in the Fourier series and
spherical harmonics, each term of the expansion having a ra-
dial part that is proportional to the corresponding term of the
tidal potential, which depends on the eccentricity, inclination and
obliquity. We followed the method of Dermott (1979) to derive
the modified Love numbers hF

2 and kF
2 accounting for the tidal

deformation at the boundary of the solid core. As in Dermott,
we made the simplifying assumption that the core and enve-
lope have a constant density. Then, generalizing the results of
his work invoking the correspondence principle, we obtained the
tidal dissipation rate of the core expressed by |kF

2 |/Q̂, where Q̂
is the quality factor. This ratio depends on the tidal frequency
and the rheological properties of the core; unlike Dermott, we
made no assumption about the formation history of the system.
As mentioned in Sect. 5.1 the rheological properties of plane-
tary cores are still quite uncertain. However, taking plausible
values for the viscoelastic parameters G and η, we obtained a
tidal dissipation that may be much higher than for a fully fluid
planet and weakly frequency-dependent. Under these assump-
tions, we found that the low value of Q = (1.682 ± 0.540) × 103,
determined by Lainey et al. (2012) and needed by Charnoz et al.
(2011) to explain the formation of all mid-sized moons of Saturn
from the rings, can be reached by taking into account the tidal
dissipation of Saturn’s core. In the same way, the dissipation in
Jupiter’s core may explain the value of the Q-factor determined
by Lainey et al. (2009), i.e. Q = (3.56 ± 0.56) × 104. However,
to do so, we need to assume a core in Jupiter and Saturn that
is slightly larger than the values resulting from the models of
Guillot (1999) and Hubbard et al. (2009). In our model, we re-
call that the density was assumed to be piecewise constant. In the
future, we will consider a non-constant density profile, to evalu-
ate the impact on our results of a realistic density stratification.
Moreover, there are many uncertainties in the determination of
the core sizes of giant planets such as Jupiter and Saturn, hence
we need more constraints on the system formation by core ac-
cretion (Pollack et al. 1996) and differenciation resulting from
the internal structure evolution (Nettelmann 2011). Furthermore,
seismology seems to offer an interesting way of improving our
knowledge of giant-planet interiors (Gaulme et al. 2011).

To conclude, we have studied tidal dissipation in the solid
parts of a simple model of a two-layer planet, and illustrated the
power of this mechanism. The results derived here are general in
the sense that no specific rheological model has been assumed.
However, owing to the lack of constraints on the rheology of
giant planet cores, we have chosen the simplest Maxwell model
to illustrate the tidal dissipation.

This work represents thus a first step toward more detailed
numerical investigations of more realistic cases.
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Appendix: elastic system

In Sect. 2.3, we gave the system of Eq. (11), with its boundary
conditions given in Eq. (12), governing an elastic planet under
tidal perturbation. Since these perturbations are of small order
of magnitude compared to the hydrostatic equilibrium, we pro-
posed in Sect. 2.4 a method to linearize the system of Eq. (14).
Thus, assuming the expansion in Eq. (18) of all quantities in
spherical harmonics, we obtain the system of equations govern-
ing the scalar radial parts of these expansions (Alterman et al.
1959; Takeuchi & Saito 1972)

ẏm
1 = −

2
(
K − 2

3µ
)

K + 4
3µ

ym
1

r
+

1

K + 4
3µ
ym

2 +
6
(
K − 2

3µ
)

K + 4
3µ

ym
3

r
,

(A.109a)
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ẏm
5 =4πGρ0y
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1 + y
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6 , (A.109e)

ẏm
6 = − 24πGρ0
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Solutions of Eq. (A.109) are given by Eq. (19).

References

Alterman, Z., Jarosch, H., & Pekeris, C. L. 1959, Roy. Soc. London Proc. Ser.
A, 252, 80

Biot, M. A. 1954, J. Appl. Phys., 25, 1385
Charnoz, S., Crida, A., Castillo-Rogez, J. C., et al. 2011, Icarus, 216, 535
Charette, M. A., & Smith, W. H. F. 2010, Oceanography, 104, 106
Chree, C. 1896, Cambridge Phil. Trans., 16, 14
Correia, A. C. M., & Laskar, J. 2003, Icarus, 163, 24
Correia, A. C. M., Laskar, J., & de Surgy, O. N. 2003, Icarus, 163, 1
Dahlen, F. A., Tromp, J., & Lay, T. 1999, Physics Today, 52, 61
Dermott, S. F. 1979, Icarus, 37, 310
Efroimsky, M., & Williams, J. G. 2009, Cel. Mech. Dyn. Astron., 104, 257
Ferraz-Mello, S., Rodriguez, A., & Hussmann, H. 2008, Cel. Mech. Dyn.

Astron., 101, 171
Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., & Jacob, C. 2011, A&A, 531,

A104
Gavrilov, S. V., & Zharkov, V. N. 1977, Icarus, 32, 443
Goodman, J., & Lackner, C. 2009, ApJ, 696, 2054
Greff-Lefftz, M., Métivier, L., & Legros, H. 2005, Cel. Mech. Dyn. Astron., 93,

113
Guillot, T. 1999, Planet. Space Sci., 47, 1183
Guillot, T. 2005, Ann. Rev. Earth Planet. Sci., 33, 493
Guillot, T., & Morel, P. 1995, A&AS, 109, 109
Guillot, T., Chabrier, G., Gautier, D., & Morel, P. 1995, ApJ, 450, 463
Henning, W. G., O’Connell, R. J., & Sasselov, D. D. 2009, ApJ, 707, 1000
Hubbard, W. B., Dougherty, M. K., Gautier, D., & Jacobson, R. 2009, Saturn

from Cassini-Huygens, 75
Karato, S.-I. 2011, Icarus, 212, 14
Kaula, W. M. 1962, AJ, 67, 300
Lainey, V., Arlot, J.-E., Karatekin, Ö., & van Hoolst, T. 2009, Nature, 459, 957

A165, page 16 of 17



F. Remus et al.: Anelastic tidal dissipation in multi-layer planets

Lainey, V., Karatekin, Ö., Desmars, J., et al. 2012, ApJ, in press
[arXiv:1204.0895]

Lambeck, K. 1980, The Earth’s Variable Rotation (Cambridge University Press)
Love, A. E. H. 1911, Some Problems of Geodynamics (Cambridge University

Press)
Mathis, S., & Le Poncin-Lafitte, C. 2009, A&A, 497, 889
Mathis, S., & Zahn, J.-P. 2005, A&A, 440, 653
Melchior, P. 1966, The Earth Tides (New York: Pergamon)
Militzer, B., & Hubbard, W. B. 2009, Ap&SS, 322, 129
Militzer, B., Hubbard, W. B., Vorberger, J., Tamblyn, I., & Bonev, S. A. 2008,

ApJ, 688, L45
Murray, C. D., & Dermott, S. F. 2000, Solar system Dynamics (Cambridge

University Press)
Nettelmann, N. 2011, Ap&SS, 336, 47
Nettelmann, N., Holst, B., Kietzmann, A., et al. 2008, ApJ, 683, 1217
Ogilvie, G. I. 2009, MNRAS, 396, 794
Ogilvie, G. I., & Lin, D. N. C. 2004, ApJ, 610, 477
Ogilvie, G. I., & Lin, D. N. C. 2007, ApJ, 661, 1180
Peale, S. J., & Cassen, P. 1978, Icarus, 36, 245

Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62
Remus, F., Mathis, S., & Zahn, J.-P. 2012, A&A, accepted
Rieutord, M. 1987, Geophysical and Astrophysical Fluid Dynamics, 39, 163
Ross, M., & Schubert, G. 1986, Lunar and Planetary Science Conference

Proceedings, 16, 447
Santos, N. C., et al. 2007, JENAM-2007, Our Non-Stable Universe
Saumon, D., & Guillot, T. 2004, ApJ, 609, 1170
Takeuchi, H., & Saito, M. 1972, Seismic surface waves, Methods Comput. Phys.,

11, 217
Thomson, W. (Lord Kelvin) 1863, Dynamical problems regarding elastic

spheroidal shells, and On the rigidity of the Earth, Phil. Trans. Roy. Soc.
London, 153, 573

Tobie, G. 2003, Ph.D. Thesis, Université Paris 7 – Denis Diderot
Tobie, G., Mocquet, A., & Sotin, C. 2005, Icarus, 177, 534
Wu, Y. 2005, ApJ, 635, 688
Yoder, C. F. 1995, Icarus, 117, 250
Zahn, J.-P. 1966a, Annales d’Astrophysique, 29, 313
Zahn, J. P. 1966b, Annales d’Astrophysique, 29, 489
Zahn, J.-P. 1977, A&A, 57, 383

A165, page 17 of 17


	Introduction and general context
	Elastic deformations of a solid body under tidal perturbation
	The system
	The tidal potential
	Dynamical equations for a solid body and their boundary conditions
	Linearization of the system
	Analytical solutions for a homogeneous incompressible body

	Modified elastic tidal theory in presence of a fluid envelope
	Vertical deformation at the boundary of the core
	Gravitational forces acting on the surface of the core
	Total effective normal traction acting on the surfaceof the core
	Amplitude of the vertical deformation
	Modified Love numbers

	Anelastic tidal dissipation: analytical results
	Case of a fully-solid planet
	Case of a two-layer planet
	Implementation of an anelastic model
	The Maxwell model

	Anelastic tidal dissipation: role of the structural and rheological parameters
	Baseline structural and rheological parameters
	Size and mass of the core
	Rheological parameters of the core

	Dependence of tidal dissipation on rheology
	Dependence of tidal dissipation on both the sizeof the core and the tidal frequency
	Comparison with previous work of Dermott

	Equations of the dynamical evolution
	Conclusion
	Appendix: elastic system
	References 

