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Abstract

Acute coronary syndromes (ACS) are a leading cause of deaths worldwide, yet the diagno-

sis and treatment of this group of diseases represent a significant challenge for clinicians.

The epidemiology of ACS is extremely complex and the relationship between ACS and

patient risk factors is typically non-linear and highly variable across patient lifespan. Here,

we aim to uncover deeper insights into the factors that shape ACS outcomes in hospitals

across four Arabian Gulf countries. Further, because anemia is one of the most observed

comorbidities, we explored its role in the prognosis of most prevalent ACS in-hospital out-

comes (mortality, heart failure, and bleeding) in the region. We used a robust multi-algorithm

interpretable machine learning (ML) pipeline, and 20 relevant risk factors to fit predictive

models to 4,044 patients presenting with ACS between 2012 and 2013. We found that in-

hospital heart failure followed by anemia was the most important predictor of mortality. How-

ever, anemia was the first most important predictor for both in-hospital heart failure, and

bleeding. For all in-hospital outcome, anemia had remarkably non-linear relationships with

both ACS outcomes and patients’ baseline characteristics. With minimal statistical assump-

tions, our ML models had reasonable predictive performance (AUCs > 0.75) and substan-

tially outperformed commonly used statistical and risk stratification methods. Moreover, our

pipeline was able to elucidate ACS risk of individual patients based on their unique risk fac-

tors. Fully interpretable ML approaches are rarely used in clinical settings, particularly in the

Middle East, but have the potential to improve clinicians’ prognostic efforts and guide policy-

makers in reducing the health and economic burdens of ACS worldwide.
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Introduction

Cardiovascular diseases are responsible for one-third of deaths worldwide, with projected

mortalities of up to 7.8 million in 2025 [1]. Besides the costs of treatment and intervention pro-

grams, premature deaths due to cardiovascular disease cause substantial global economic

losses due to lost productivity [2]. Effective primary prevention is often difficult due to the

complexity of cardiovascular disease epidemiology and the dynamic nature of risk profiles that

are rapidly changing in response to increasing urbanization and globalization and shifts in

demography [3,4]. This is particularly true for Acute coronary syndromes (ACS) that is an

important category of cardiovascular disease that includes unstable angina and myocardial

infarction. The complexity of the epidemiology of ACS poses a significant challenge to the

prognostic capacities of primary and secondary care clinicians leading to a higher frequency of

negative in-hospital outcomes. Large population-level studies provide critical insights on ACS

risk factors, however, non-linear relationships and complex interactions between ACS risk fac-

tors make inference and prediction difficult. Machine Learning (ML) algorithms can capture

these complex relationships to build powerful predictive models that have provided important

insights into the clinical epidemiology of cardiovascular diseases generally [5,6]. However, ML

models are often considered ‘black box’ and can be difficult to interpret. Interrogating these

‘black box’ models with advances in interpretable machine learning can help gain mechanistic

insights into predictions in a variety of systems (Molnar, 2018, Fountain-Jones et al). Interpret-

able machine learning methods, however, are rarely used to help predict and interpret ACS

risk.

ACS diagnosis and treatment are significant challenges for clinicians due to the significant

overlap in symptoms between ACS patients and non-patients [7]. Despite the availability of

many ACS diagnostic tools (e.g., coronary angiography, cardiac markers, and electrocar-

diographic), nearly two to five percent of ACS true cases were wrongly discharged from the

emergency room due to the false indications of non-cardiac disease [8,9]. This diagnostic error

is a leading cause of ACS mortalities worldwide, causing severe public health and economic

implications [9]. However, the risk stratification approach [10], significantly helped clinicians

improve their diagnostic and prognostic efforts of ACS events over the past few decades. Risk

stratification is defined as formal prediction procedure of ACS events according to the individ-

ual patients’ risk at the time of presentation [11], and include many tools such as Thrombolysis

in Myocardial Infraction (TIMI) [12], the Evalution of Methods of Management of Acute Cor-

onary Syndrome (EMMACE) [13,14], and the Global Registry of Acute Coronary Events

(GRACE) [15–17]. These tools rely on calculations from data on patient’s presenting symp-

toms, historical information available at the time of presentation, and laboratory result studies

[12].

Anemia is one of the most observed comorbidities, with an estimated worldwide prevalence

of 10%-43% in patients with ACS. Anemia can aggravate ACS outcomes due to the twin effect

of the decreased overall oxygen content of the blood leading to ischemic myocardial tissue and

subsequently increased cardiac output to sustain a sufficient oxygen supply [18]. Therefore,

anemia is an independent predictor of adverse cardiovascular events in patients with ACS

[18]. There is some evidence that anemia is strongly associated with severe hemorrhagic com-

plications and short and long-term mortality in ACS [19]. Further, older ACS patients with

chronic anemia typically suffer from other co-morbidities such as chronic heart failure and

kidney disease when compared to their counterparts with normal hemoglobin levels [20]. Ane-

mia can also compromise or delay interventional procedures such as coronary angiography

and percutaneous coronary intervention (PCI), leading to potential cardiac complications

[21,22]. While research on the relationship between anemia and ACS outcomes is limited in
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the Middle East, the Gulf Registry of Acute Coronary Events–II (GULF RACE II) study found

that nearly 28% of ACS patients were anemic at the time of admission [23]. Additionally, most

of their anemic patients suffered from multiple in-hospital ACS related complications [23].

The inherent limitations of population-based studies from registries or clinical trials may

partially pose an obstacle to improving ACS diagnostic and prognostic performance. For

example, the generalizability of inferences from such studies may not realistically reflect all the

patients with ACS or represents populations with special risk factors [24]. While risk stratifica-

tion tools such as major adverse cardiovascular event (MACE) or Thrombolysis in Myocardial

infarction (TIMI) can tailor personalized interventions based on individual patient-level pre-

dictions, they mainly depend on regression scoring systems that primarily assume linear rela-

tionships between the outcome and its predictors on a population level [11,12]. Additionally,

traditional statistical linear models are susceptible to overfitting and tend to underperform

with large datasets collected by registries, partially due to the high correlations between vari-

ables [25]. In contrast, ML algorithms require minimal statistical assumptions, can explore

large data sets, and accommodate thousands of variables of different varieties (e.g., genomic

data, medical images). ML algorithms can also efficiently and robustly quantify complex inter-

actions between variables providing the ability to infer novel insights into the clinical epidemi-

ology of ACS. Further, ML algorithms can outperform traditional statistical methods in

individual-level predictions, rendering them the most suitable tools for improving clinical per-

formance [5,6]. Yet, ML algorithms have not been widely adopted in clinical practice, particu-

larly in countries in the Middle East where ACS is common.

Here, we apply a newly developed multi-algorithm ML ensemble pipeline to the Gulf locals

with ACS events (Gulf COAST) registry to identify which factors shaped the risk of different

in-hospital ACS events among four Gulf countries. More specifically, we used patient charac-

teristics data to build interpretable predictive risk models for three in-hospital ACS events,

including heart failure, bleeding, and mortalities, to identify and compare their unique

requirements for onset in a clinical setting. Further, we explore the role of patients’ initial

hemoglobin values upon admission (i.e., admission anemia), and their interactions with other

relevant factors for each selected ACS event. Moreover, we extend and evaluate our models in

the context of in-hospital individual level prognosis to address the utility and limitations of

interpretable ML models compared to traditional risk stratification methods.

Methods

Data source

We retrieved our data from the Gulf locals with acute coronary syndromes events (Gulf-

COAST registry), which comprises 4,044 records of patients admitted with a diagnosis of ACS

to 29 hospitals between January 2012 and January 2013 in Bahrain, Kuwait, Oman, and the

United Arab Emirates. A detailed description of the design and implementation of the registry

is available elsewhere [26]. We used the world health organization (WHO) definition of ane-

mia in adults (Males<13 g/dl, Females <12 g/dl) in our study [27]. We selected variables

(hereafter ‘features’) that were found to be significantly associated with ACS events including

variables capturing patient demographics, past medical history, medical status upon admission

and in-hospital ACS outcomes (Table 1) [28–30]. We used infarction/reinfarction, percutane-

ous coronary intervention (PCI), heart failure, stroke, bleeding, and mortality as independent

outcomes for our predictive models (6 ML models in total). Also, we reused these in-hospital

outcomes as independent features for predicting the risk of each corresponding ACS event

(e.g., using in-hospital bleeding as an independent predictor of mortality).
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Data processing

We used the ML pipeline proposed by Fountain-Jones et al., which constructs predictive models

and compares four popular supervised algorithms, including random forest (RF), support vector

machine (SVM), gradient boosting (GBM), and logistic regression (LR). ML algorithms construct

classification models using different approaches (see Fountain-Jones et al.), and comparing perfor-

mance across algorithms is important to optimize importance. We excluded features with the larg-

est mean absolute correlation (ρ> 0.9) and applied the ‘Boruta’ R package to eliminate further

features to just those relevant for prediction to boost the performance of our ML algorithms [31].

Table 1. Baseline characteristics of Gulf-COAST patients.

Study population n = 4,044 (%)

Demographics and hemoglobin on admission
Country

UAE 691 (17.14)

Kuwait 1,230 (30.51)

Oman 1,481 (36.74)

Bahrain 629 (15.60)

Sex (Female) 1,354 (33.59)

Age, mean ± SD (years) 60.33 ± 12.69

Anemia (at admission) 1,713 (42.36)

Initial hemoglobin, mean ± SD (g/dl) 13.26 (2.06)

Smoking 1,593 (39.52)

Alcohol consumption 126 (3.13)

Age, mean ± SD (years) 60.33 ± 12.69

Past Medical History
Hypertension 2,612 (64.80)

Dyslipidemia 2,277 (56.49)

Diabetes mellitus 2,179 (54.06)

Previous history of CVD 2,354 (58.40)

Stroke or TIAb 290 (7.19)

Chronic renal failure 292 (7.24)

Cancer 44(1.09)

In-hospital outcomes
Infarction/reinfarction 71 (1.76)

PCIc 14 (0.35)

Heart Failure 521 (12.92)

Stroke 36 (0.89)

Bleeding 119 (2.95)

Mortality 167 (4.14)

Length of hospital stay, mean ± SD (days) 5.90 (7.36)

Prevalence of In-hospital ACSd per subtypes

LBBB MI 3/30 (10.00)

STEMI 436/997 (43.73%)

NSTEMI 763/1,916 (39.82%)

Unstable Angina 351/1,101 (31.88%)

aCardiovascular Disease;
bTransient Ischemic Attack;
cPercutaneous Coronary Intervention; ACS; Acute Coronary Syndrome.

https://doi.org/10.1371/journal.pone.0262997.t001
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We controlled for class imbalance using a down-sampling procedure that randomly down

samples the majority class to match its frequency to the minority class (i.e., patients discharged

with ACS events). We then randomly partitioned the dataset into a training (80%) and testing

(20%) sets and used the K-fold cross-validation (K = 10) procedure to train the ML algorithms.

All of our statistical analyses were conducted in the R software environment [32].

Model training and evaluation

We trained our ML algorithms using the complete set of features for each ACS in-hospital

event (Table 1). We ran the GBM, SVM, and LR algorithms using the ‘Caret’ R package while

we used the ‘random Forest’ R package to run the RF algorithm [33–35]. We estimated the per-

formance parameters of each model, including the area under the curve through a receiver

operator characteristic (ROC), accuracy (Acc), specificity (Sp), and sensitivity (Se) using the

10-fold cross-validation approach. These parameters were calculated using the average confu-

sion matrix across all folds of the cross-validation. Here, we used the 10-fold cross-validation

procedure to avoid overfitting due to the use of the same data for training and validation, as

well as to prevent artificial inflation of the accuracy. Default grid parameter settings were used

in the training process of all algorithms. We then compared the estimated validation parame-

ters of each model using the testing dataset to select the best performing algorithm in predict-

ing the probability of an in-hospital ACS event.

Model interpretation

We interrogated our best-performing models feature importance, partial dependence, feature

interaction strength and the relationships between features and the ACS events on randomly

selected individual patients. We used Breiman’s permutation procedure to compute feature

importance, which is implemented in the ‘iml’ R package [33,36]. This method quantifies the

expected loss in predictive performance (i.e., how the algorithm classifies the occurrence of

patients ACS events) for a pair of observations compared to the full model when a specific fea-

ture has been switched [33,37]. Thus, the feature is deemed unimportant when the permuta-

tion procedure does not affect model performance. We used partial dependence (PD) plots

and centred individual conditional expectation (ICE) to estimate the global and individual

effects of each important feature on the response, and each observation, respectively [38]. Fea-

ture interaction strength was quantified using Friedman’s H-statistic, which accounts for the

portion of variance explained by the interaction through a partial dependency decomposition

procedure [39]. Finally, following a game theory approach, we calculated Shapley values (ϕ),

from the final selected models. This unique approach quantifies individual-level predictions

for randomly selected patients and the contribution of each feature to those predictions [40].

Results

For both in-hospital mortality and bleeding models, the RF algorithm slightly outperformed

other algorithms in terms of performance parameters (i.e., AUC, Acc, Sp, Se) and correctly

predicted 85% and 75% of death and bleeding events, respectively (AUCs = 0.85 & 0.75;

Table 2). In contrast, the GBM algorithm slightly outperformed other algorithms and correctly

predicted heart failure 77% of the time (AUC = 77.44; Table 2). While LR model consistently

had poor performance (AUCs < 0.5; Table 2) and was leaning toward random prediction for

all ACS outcomes. Also, for all in-hospital events models, LR performance parameters were

notably lower than other ML algorithms (Table 2). Overall, the mortality model had the high-

est performance parameters when compared to both heart failure and bleeding models
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(Table 2). Our models were not able to accurately predict the need for PCI, stroke, and infarc-

tion models.

Our ML approach revealed that in-hospital heart failure followed by initial hemoglobin val-

ues at admission and age, were the most important features for predicting the risk of mortality

(Fig 1A). Notably, hemoglobin was the most important predictor for both in-hospital heart

failure and bleeding events (Fig 1B and 1C). However, in-hospital infraction and bleeding

were the second and third important predictors for heart failure, respectively (Fig 1B). In con-

trast, age and heart failure were the second and third important predictors for bleeding,

respectively (Fig 1C).

Table 2. Cross-validation summary results for GBM, RF and SVM models.

Model AUCa ± SEb Accuracy (%) ± SE Specificity (%) ± SE Sensitivity (%) ± SE

Mortality
RFc 0.85 ± 0.02 79.18 ± 1.17 79.21 ± 1.19 74.15 ± 3.58

GBMd 0.81 ± 0.01 78.72 ± 2.12 78.73 ± 2.14 75.86 ± 2.95

SVMe 0.82 ± 0.00 76.29 ± 1.70 72.28 ± 1.75 79.54 ± 2.91

LRf 0.69 ± 0.00 60.19 ± 2.35 55.29 ± 1.99 69.71 ± 2.34

Heart Failure
RF 0.68 ± 0.00 62.24 ± 1.39 62.18 ± 1.42 65.92 ± 1.25

GBM 0.77 ± 0.01 68.76 ± 1.69 69.67 ± 1.74 70.66 ± 1.71

SVM 0.71 ± 0.02 62.55 ± 1.76 62.46 ± 1.82 67.50 ± 1.59

LR 0.58 ± 0.10 63.89 ± 2.66 61.79 ± 1.34 58.15 ± 1.88

Bleeding

RF 0.76 ± 0.01 70.57 ± 3.21 72.11 ± 3.23 57.81 ± 5.06

GBM 0.65 ± 0.02 64.58 ± 3.14 64.60 ± 3.16 58.64 ± 4.58

SVM 0.63 ± 0.00 77.06 ± 2.79 77.09 ± 1.75 66.87 ± 1.75

LR 0.54 ± 0.00 66.11 ± 4.33 55.78 ± 3.99 56.72 ± 3.83

aArea Under the Curve,
bStandard error,
cRandom Forest,
dGradient Boosting,
eSupport Vector Machine,
fLR: Logistic Regression. Model highlighted in gray is the best performing model.

https://doi.org/10.1371/journal.pone.0262997.t002

Fig 1. Important Features that Contribute to the Prediction of Three In-Hospital ACS Related Outcomes, Including (A) mortality, (B) heart failure, and (C) Bleeding. A

classification error loss function (“ce”) was used to calculate feature importance. Black dots indicate median “ce,”. CVD: Cardiovascular disease. TIA: Transient ischemic

attack.

https://doi.org/10.1371/journal.pone.0262997.g001
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PD plots consistently showed that the risk of all ACS outcomes increased when patients

with initial hemoglobin values of equal or less than 10 g/dl are more likely to be discharged

dead, had heart failure or developed bleeding (Fig 2B–2D). Our PD plots also show that

patients with in-hospital heart failure (Fig 2A) and those aged over 75 years (Fig 2G) are more

likely to be discharged dead. Further, patients having in-hospital infarction (Fig 2E) and bleed-

ing (Fig 2H) are more likely to experience an in-hospital heart failure (Fig 2H). However, in

Fig 2. Centred Individual Conditional Expectation (ICE) plots for the top three important features that contribute to the prediction of three in-hospital ACS

outcomes, including (A, D, G) mortality, (B, E, H) heart failure, and (C, F, I) bleeding. The plots show the relationship between the predicted risk of ACS outcomes and

each corresponding feature. The black lines indicate the predicted risk in each patient, while the red line indicates the partial dependence calculated as the average risk

across all patients.

https://doi.org/10.1371/journal.pone.0262997.g002
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the bleeding model the effect of age was inconclusive with no distinct trends (Fig 2F). Yet,

patients having in-hospital heart failure are more likely to experience bleeding events (Fig 2I).

Initial hemoglobin on admission had the strongest interactions with the other features in

shaping the risk of in-hospital deaths and heart failure events (Fig 3A and 3D). However,

chronic renal failure had the strongest overall interaction strength, among other features for

shaping the risk of bleeding (Fig 3G). Nevertheless, the interaction between admission hemo-

globin and age (Fig 3B) was the strongest for predicting the risk of death from an ACS event, in

which the majority of the patients aged above 75 years with hemoglobin values close to or less

Fig 3. Feature interaction plots calculated using Friedman’s H-statistic. (A-C) indicate the mortality model; (D-F) indicate the heart failure model; (G-I) indicate

the bleeding model. The three plots on the top (A, D, G) showing the overall interaction strength of each feature with the other features. Plots (B & E) demonstrates the

overall interaction strength of hemoglobin with the other features, while plot (H) demonstrate the overall interaction strength of chronic renal failure with the other

features. Partial dependence plots at the bottom (C, F, I) represent the top interactions that shaped the risk of the three acute coronary syndromes outcomes. (C)

interaction between age and initial hemoglobin for the mortality model. The heat matrix corresponds to the risk of death, in which lighter shades of red indicate lower

risks of death, and darker shades of reds indicate higher risks of death. The bar on the right indicates (y hat) the relative risk of being dead with all other feature

combinations marginalized. (F) interaction between sex and initial hemoglobin for the heart failure model. (I) interaction between chronic renal failure initial

hemoglobin for the bleeding model. Red and green partial dependence curves represent different sexes (F) and the status of chronic renal failure (I), while the y-axis

indicates the predicted risk of heart failure or bleeding. CVD: Cardiovascular disease. TIA: Transient ischemic attack.

https://doi.org/10.1371/journal.pone.0262997.g003
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than 10 g/dl are at high risk of death from an ACS event (Fig 3C). For the heart failure model,

the interaction between admission hemoglobin and sex was the strongest among other interac-

tions (Fig 3E). Further, notable declines in risk were inferred for both males and females at

hemoglobin values greater than 10 g/dl, but with a sharp increase at hemoglobin valuesffi 20 10

g/dl (Fig 3F). However, the risk of heart failure in males at lower hemoglobin values was slightly

higher than in females (Fig 3F). For the bleeding model, the interaction between hemoglobin

and chronic renal failure was the strongest among other interactions (Fig 3H), in which anemic

patients with chronic renal failure are more likely to experience bleeding events (Fig 3I).

The game-theoretic approach we used provided more insight into how the best performing

model predicted ACS outcomes at an individual patient level (Fig 4). Patients with hemoglobin

values of 10 g/dl or less were observed with ACS, and the models predicted that they are more

likely to experience either death, heart failure, or bleeding (probabilities > 0.8; Fig 4A–4C).

Conversely, patients with hemoglobin values higher than 10 g/dl were also observed, and the

models predicted that they are less likely to experience either death, heart failure, or bleeding

(probabilities = 0.0; Fig 4D–4F).

Discussion

Using our integrated ML pipeline and the Gulf COAST data, we uncovered deeper insights

into the factors that shape the outcome of ACS in the Gulf countries. We also revealed the

Fig 4. Value contributions for the respective risk of acute coronary syndromes (ACS) based on Shapley Values (φ) for Six Individual Patients. (A) a patient

discharged dead; (B) a patient with an in-hospital heart failure; (C) a patient with an in-hospital bleeding; (D) a patient discharged alive; (E) a patient discharged alive

with no in-hospital heart failure; and (F) a patient discharged alive with no in-hospital bleeding. Red bars indicate positive outcomes, and blue bars indicate negative

outcomes. Positive Shapely value indicates that this feature increased the risk of ACS outcome, whereas negative values indicate that this feature decreased the risk of

ACS outcome. The values next to each feature name indicate the observed value of that feature for that patient. �CVD: Cardiovascular disease; �TIA: Transient ischemic

attack.

https://doi.org/10.1371/journal.pone.0262997.g004
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unique and complex role of anemia on admission in the prognosis of different ACS outcomes.

Overall, we found that the initial hemoglobin values at admission were the most important

variables shaping the risk of ACS in-hospital outcomes. Notably, the relationship between

admission anemia and other baseline characteristics was non-linear in shaping the risk of in-

hospital events. These rigorous interpretable insights generated by our ML approach can not

only improve clinicians’ prognostic efforts but assist with reducing the public health and eco-

nomic implications of this important cardiovascular disease.

Our ML algorithms consistently identified admission hemoglobin values and in-hospital

cardiovascular disease events as the most important predictors for the risk of in-hospital mor-

talities, heart failure, and bleeding (Fig 1). Our results were consistent with past studies in

terms of the critical role of anemia in shaping the risk of ACS in-hospital outcomes [41,42].

We found that hemoglobin values on admission equal to or less than 10 g/dl increases the risk

of in-hospital death, heart failure, and bleeding (Fig 2B–2D). This finding has also been

observed in previous studies since anemia causes hypo-oxygenation to major organs, including

the heart, leading to compromise of cardiac function and sterile inflammation, which acceler-

ates atherosclerosis and promotes thrombosis [43]. Further, cICE plots (Fig 2D–2F) and fea-

ture interaction plots (Fig 3) show that the relationship between anemia and the risk of several

ACS outcomes is non-linear and far more complex [20,42]. These results indicate that anemia

on admission has both a direct and indirect role in the prognosis of ACS and that the combina-

tion of anemia and other baseline characteristics shaped the risk of in-hospital outcomes.

While we were unable to quantify a distinct relationship between the risk of mortality and

bleeding with age (Fig 2F), the individual interaction between mortality and age showed that

patients aged greater than 75 years old with initial hemoglobin value less than 10 g/dl are more

likely to die from ACS related complication (i.e., darker shades of red tend to accumulate

across the spectrum of hemoglobin values; Fig 3C). This also confirms the complex non-linear

relationship between hemoglobin and age in shaping the risk of ACS events [44].

Furthermore, our models demonstrate that males are more likely to experience heart failure

than females if initial hemoglobin values were less than 10 g/dl (Fig 3F), which agrees with the

notion that sex is an important modifier and contributor to the development of heart failure

[44]. We also show that anemic patients with chronic renal failure are more likely to develop a

bleeding event (Fig 3I). This could be because a patient with chronic renal failure suffers from

severe albuminuria, which is an important facilitator of bleeding events [45]. These findings

are expected since anemia is often associated with other comorbidities such as infections,

chronic inflammatory conditions, chronic renal failure and neoplastic diseases [42]. Yet,

unlike past studies, we found a slight non-linear increase in the risk of ACS outcomes at hemo-

globin thresholds greater than 15 g/dl, particularly in the mortality and bleeding models (Fig

2C and 2D). This U-shaped trend is notably distinct in the individual interactions between

hemoglobin on one side and age, sex, and chronic renal failure on the other (Fig 3C, 3F and

3I). These findings strongly quantify the notion of the role of polycythemia in shaping the risk

in-hospital ACS events with other risk factors in the higher dimensional space [46,47]. Indeed,

past studies confirmed that polycythemia could cause both thrombosis and bleeding events in

the same patients with ACS [48,49]. Additionally, polycythemia can cause ischemia which

leads to the development of arterial or venous thrombosis, myocardial, or heart failure [49].

One important limitation of the Gulf COAST registry is the population size, and therefore

generalizability of our findings might be biased toward the population included in our analy-

ses. Yet, many of our ML inferences agrees with the findings of the GULF RACE II study in

terms of the role of anemia in ACS patients, which included these three Gulf countries [23].

Nevertheless, ML predictive models are mainly meant to reveal complex relationships in the

available data that might guide and improve future prognostic efforts of ACS events in the
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same population where the data have been collected. While our predictive models have not

been validated on recent ACS registries, the use of the k-fold cross-validation approach

reduces the chances of overfitting and strengthens the validity of their subsequent inference.

The inability to fit valid predictive models for other ACS related outcomes such as infarction/

reinfarction, PCI, and stroke is another limitation of the present study since the number of the

cases were substantially less than the other selected outcomes (Table 1). Indeed, the prevalence

of PCI in the COAST registry was substantially low (0.35%; Table 1); this is due to the limited

availability of facilities for such procedures in the selected countries, as well as most of the

selected patients did not need that procedure [26]. Yet, future studies should focus on evaluat-

ing the impact of hemoglobin level on other common ACS events when sufficient data is avail-

able. It is worth noting that the number of mortalities (n = 167; Table 1) was substantially less

than the heart failure events (n = 521; Table 1).

In contrast, the predictive power of our mortality model was remarkably higher than the

heart failure model (Table 2). Therefore, our ML analytical pipeline is insensitive to the num-

ber of event outcomes in the dataset but can be more sensitive to selected features or to the

way how the features were coded and calibrated [50]. Thus, our selected features were better

predictors of motilities than other ACS events, and future efforts should attempt to either add

other relevant features or calibrate the selected features to improve the performance of these

predictive models.

The complexity of ACS epidemiology coupled with the increasing size of registry data, as

well as the highly non-linear relationships between admission anemia, other baseline charac-

teristics, and ACS in-hospital events, highlight the strength of our ML analytical pipeline. Our

selected ML algorithms were shown to outperform commonly used algorithms such as logistic

regression, as well as risk stratification tools like TIMI, EMMACE, and the GRACE models,

due to their flexibility in quantifying non-linear relationships with minimal underlying statisti-

cal assumptions. [5,6,51]. Past ACS studies that used similar ML algorithms were mainly

focused on comparing their predictive power (i.e., black-box approach) to traditional risk

stratification tools rather than their interpretability in a clinical setting [6,51]. Hence, provid-

ing an interpretable predictive model will further help to improve the in-hospital decision

making and, ultimately, the overall prognosis of ACS. Thus, our study represents the first

attempt to implement an interpretable ML pipeline focused on unveiling complex relation-

ships in the higher dimensional space to improve clinicians’ ACS prognostic efforts, particu-

larly in the Middle East.

Further, we illustrated the remarkable applicability of Shapley values to elucidate in finer

scales what each model means in terms of predicted risk of different ACS events (e.g., why a

specific patient developed an ACS outcome, while the other did not?). This unique and intui-

tive attribute can be used to improve in-hospital clinician’s prognoses and subsequently reduce

the implications of different ACS outcomes. For example, for a randomly selected patient who

had been discharged dead (Fig 4A), having low initial hemoglobin values (< 10 g/dl) and

bleeding put that patient at high risk of in-hospital death (probability > 0.8). Conversely, the

other selected patient who was discharged alive (Fig 4D) completely lacks such risk factors.

Thus, patients with a similar Shapley profile of the dead patient (Fig 4A) should be targeted

with rigorous interventions to reduce the risk of in-hospital mortalities or other ACS events

(Fig 4B and 4C). Finally, future studies of ML applications in clinical settings should explore

such methods for resources allocation within health care systems [52]. For example, length of

stay is an important outcome that requires substantial resources when the duration of patient

stay in the hospital is long. Therefore, the ML model’s predictive ability can help guide the

mobilization of clinical resources to targeted patients that are expected to stay longer due to

their clinical profile.
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Conclusion

This study represents a unique attempt to implement an interpretable ML pipeline focused on

revealing the complex relationship between ACS events and the role of anemia in predicting

multiple ACS outcomes. We showed that anemia was the most important predictor of mortal-

ity, heart failure, and bleeding and had remarkably non-linear relationships with both ACS out-

comes and patients’ baseline characteristics. We demonstrated how our ML pipeline

outperformed commonly used statistical and risk stratification methods due to its minimal sta-

tistical assumptions and ability to elucidate the predicted risk of each individual patient based

on their unique risk factors in finer scales. To the authors’ knowledge, a fully interpretable ML

pipeline has not been yet implemented widely in clinical settings, particularly in the Middle

East. Therefore, our ML models can improve clinicians’ prognostic efforts and be used to guide

policymakers in reducing the burdens of ACS on public health and the economy worldwide.
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