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A B S T R A C T

Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of
three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network
(ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation
from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed
with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient
of determination (R2). The performance assessment indicates that the SVM technique with requirements of
daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better
performance than the other techniques and may be a promising alternative to the usual approaches for
predicting solar radiation.

1. Introduction

Solar radiation is the principal renewable energy source for many
applications, including agricultural, ecological, hydrological and soil-
vegetation-atmosphere transfer models (Liu et al., 2009). Solar re-
searchers have developed many empirical correlations to estimate solar
radiation using different meteorological, astronomical and geometrical
factors (Besharat et al., 2013). Three major methods include models
derived from satellite data, stochastic algorithms and empirical rela-
tionships. The satellite-derived method is promising for estimating
solar radiation data over large regions, but it is relatively new and may
suffer from a shortage of available data. Stochastic weather generators
are useful for generating daily estimates from historic averages, but
cannot be used for model validation if measured data are not available.
Finally, the third approach involves a general practice of using
empirical relationships to estimate solar radiation using other readily
available meteorological data, such as sunshine duration, maximum
and minimum temperatures, precipitation, and humidity. Previous
studies have shown that estimates from solar radiation models using
insolation performed better than those using other meteorological data.
However, because insolation data are inaccessible in some locations,
many temperature-based models have been proposed, and numerous
evaluations and modifications have subsequently been made (Chen
et al., 2011; Olatomiwa et al., 2015b).

Another set of techniques estimate solar radiation with soft-
computing techniques. These techniques are within the framework of
artificial intelligence that has received much attention for dealing with
practical problems (Gopalakrishnan et al., 2011). Soft computing
includes artificial neural networks (ANN), genetic algorithms (GAs),
fuzzy logic (FL), adaptive neuro fuzzy inference systems (ANFIS),
support vector machines (SVM) and data mining (DM). These methods
offer advantages over conventional modeling, including the ability to
handle large amounts of noisy data from dynamic and nonlinear
systems, especially when the underlying physical processes are not
fully understood (He et al., 2014).

Several soft computing techniques have been used in recent years to
estimate global solar radiation, with ANFIS and ANN being the most
popular. Mohammadi et al. (2015) applied ANFIS and SVM techniques
to predict global solar radiation based on air temperatures in Bandar
Abbas, located in the southern of Iran. The results showed that the
SVM models outperform the ANFIS. Chen and Li (2014) investigated
the ability of different SVM models in global solar radiation modeling
for 15 synoptic stations with different climate conditions located in
China. The results conclude that the SVM models could be used
successfully in modeling global solar radiation. Piri et al. (2015)
performed a comparative investigation between four sunshine dura-
tions based on empirical models and SVM models to estimate global
solar radiation in two cities (Zahedan and Bojnurd) of Iran. Their
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results indicated that all SVM models they used outperformed the
empirical models. Olatomiwa et al. (2015a) compared the accuracy of
SVM with ANFIS models and one empirical model for global solar
radiation modeling in a semi-arid environment in Nigeria. They found
that the SVM models performed better than the ANFIS and the
empirical models. Ramedani et al. (2014) presented a radial basis
SVM (SVM_rbf) model to predict global solar radiation over Teheran,
Iran. The SVM_rbf prediction was compared with ANFIS and ANN
models. The results demonstrated that the SVM_rbf have higher
performance over the other models. Olatomiwa et al. (2015b) devel-
oped a novel method at the Chongqing meteorological station, China,
by hybridizing SVMs with the Firefly Algorithm (FFA) to predict the
monthly average global solar radiation using sunshine hours, max-
imum temperature and minimum temperature as inputs. The results
indicate that the hybrid model can be used as an efficient machine
learning technique for accurate estimation of global solar radiation.

Şenkal (2015) modeled global solar radiation using measured data
of five stations in Turkey. He used an ANN technique with resilient
propagation (RP) in the training phase with geographical and meteor-
ological data as the input variables. The ANN technique had better
results compared to other algorithms and input variables. Kumar et al.
(2015) compared several models based on regression and ANN models
to predict global solar radiation. In general, the ANN models had better
results than the regression techniques. Sumithira et al. (2012) con-
ducted a comparative study between ANFIS and other soft computing
model techniques for estimating global solar radiation in Tamilnadu,
India. The ANFIS model had promising results when compared to
other models in the literature.

In the Yucatán Peninsula, several studies have been carried out to
estimate solar radiation by using empirical or semi-empirical equations
based on available meteorological parameters. However, there have
been no studies that have estimated global solar radiation with soft
computing techniques and where the precipitation factor in humid
climates may play an important role in the modulation of the solar
radiation produced by abundant cloud cover. In the present work,
ANFIS, SVM and ANN techniques are used to predict daily global solar
radiation in six cities of the Yucatán Peninsula. The objective is to
evaluate the accuracy and performance of each technique using
measured meteorological variables, including daily values of maximum
and minimum air temperature, precipitation, and extraterrestrial solar
radiation.

2. Methodology

2.1. Study area and climate dataset

This study was carried out using measured data set from six
automatic weather stations located in the Yucatán Peninsula, México.
The measured daily values used in this study are: minimum and
maximum air temperatures, rainfall and global solar radiation. The
measured data were provided by the Mexican National Meteorological
Service (SMN; Servicio Meterológico Nacional) and Instituto Nacional
de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) for six
locations. Table 1 shows the geographical location of these stations, as
well as the time periods of data used to evaluate and establish the

models.
The climate in the Yucatán Peninsula is classified as tropical

savanna (Aw) according to the Köppen system (Koppen, 1936) with a
rainy summer and dry winter. Long term annual average temperature
ranges from 25.8 °C to 26.3 °C; rainfall occurs in summer and autumn
with a gradient of minimum rainfall in the northwest (600 mm/year) to
higher quantities toward the southeast (1400 mm/year).

2.2. Missing data analysis

Incorrect and missing records in the database are mainly related to
malfunction of the measuring instruments. To cope with this problem,
a quality control test was conducted by the following procedure (Jiang,
2009; Khorasanizadeh and Mohammadi, 2013).

a) To identify erroneous or outlier data of air temperature and
precipitation, two methods were used, which may be distinguished
as follows: (a) analysis of standardized residuals (Norusis, 2008)
and (b) adjusted functional boxplots technique (Sun and Genton,
2012).

b) Incorrect records of the global solar radiation are revealed using
daily clearness index (KT) as an indicator. KT is calculated as the
ratio of measured daily global solar radiation intensity to the daily
extraterrestrial solar radiation on a horizontal surface (Badescu,
2014). The upper and lower limits for KT represent a clear sky and
completely cloudy sky, respectively. When the daily clearness
indices were outside the range of 0.015–1, the data were considered
erroneous and deleted.

c) Missing or incorrect records for more than 5 consecutive days in a
month were removed completely. In cases when less than five
consecutive missing or incorrect records are found within a period
of one month, the Piecewise Cubic Hermite Interpolating
Polinomials (PCHIP) interpolation method (Fristch and Carlson,
1980; Kahaner et al., 1989) was used to fill in missing or replace
incorrect values. Overall, deleted and missing data accounted for
approximately 2% of the database.

2.3. Artificial neural network (ANN)

An artificial neural network is an abstract computational model that
follows the behavior of the human brain (Haykin and Lippmann,
1994). ANN can be defined as “structures comprised of densely
interconnected adaptive simple processing elements (called artificial
neurons or nodes) that are capable of performing massively parallel
computational data processing and knowledge representation”
(Basheer and Hajmeer, 2000). Every neuron in the network computes
a weighted by wij sum of its p input signal yi, for i=0,1,2,…n hidden
layer and then applies a non-linear activation function to produce an
output signal uj. The form of this function is:

∑u w y=j
i

n

ij i
=0 (1)

The ANN method most commonly used for estimating solar
radiation has been the multi-layer feed forward neural network
(MLF) with the back propagation (BP) algorithm (Yadav and
Chandel, 2014; Qazi et al., 2015; Rezrazi et al., 2015). This method
is popular due to its ability to model problems that are not linearly
separable.

The MLF consists of an input layer, an output layer and usually one
or more hidden layers. In practice, only a three-layer feed forward
neural network (FFNN) is usually necessary as seen in Fig. 1, where the
first layer is the input layer representing input variables (i), the second
layer is the hidden layer (j), and the third layer is the output layer (k).
Each layer is interconnected by weights Wij and Wjk, and every unit
sums its inputs, adds a bias or threshold term to the sum and

Table 1
Geographic information of the study weather stations.

Weather station Longitude (°W) Latitude (°N) Altitude (m) Time period

Calakmul −89.8925 18.3650 28 2003–2014
Campeche −90.5072 19.8361 11 2001–2014
Celestún −90.3831 20.8580 10 2000–2014
Efraín Hernández −89.8925 18.1935 90 2006–2014
Mérida −89.6517 20.9463 18 2000–2006
Tantakín −89.0472 20.0303 30 2003–2011



nonlinearity transforms the sum to produce an output. This nonlinear
transformation is called the activation function of the node. The output
layer nodes often have linear activations. In MLFs, the logistic sigmoid
function (Eq. (2)) and linear function (Eq. (3)) are generally used in the
hidden and output layer respectively (Rezrazi et al., 2015).

f w e( )=1/(1 + )w− (2)

f x x( )= (3)

where w is the weighted sum of the input and x is the input to the
output layer.

The procedure for updating the synaptic weights is called back-
propagation (BP). BP refers to the way error computed at the output
side is propagated backward from the output to the hidden layer(s),
and finally to the input layer (Esmaeelzadeh et al., 2014). The error is
minimized across many training cycles called epochs. During each
cycle, the network reaches a specified level of accuracy. Generally, the
error estimator used here is the sum of the squared error (SSE). In
conjunction with the BP procedure, the following algorithms can be
used as a second training algorithm: Gradient Descent [Gradient
Descent back-propagation algorithm (traingd), Gradient Descent with
Momentum (traingdm), Resilence back-propagation (trainrp)],
Conjugate Gradient algorithms [Scaled conjugate Gradient (trainscg),
Conjugate Gradient back-propagation with Fletcher-Reeves Updates
(traincgf), Conjugate Gradient back-propagation with Polak-Riebre
Updates (traincgp)], and Quasi-Newton algorithms [Broyden-
Fletcher-Goldfarb-Shanno (trainbfg), Levenberg–Marquardt back-pro-
pagation (trainlm)]. Selection of an appropriate training algorithm,
transfer function and number of neurons in the hidden layer are
fundamental characteristics of the ANN model. Each training algo-
rithm has its own characteristics that must be adjusted according to a
particular model.

2.4. Adaptive neuro fuzzy inference system (ANFIS)

ANFIS, proposed by Jang (1993), is a hybrid model composed of a
fuzzy and artificial neural network, where the nodes in the different
layers of a feed-forward network handle fuzzy parameters. This is
equivalent to fuzzy inference systems (FIS) with distributed para-
meters. At its core, the technique splits the representation of prior
knowledge into subsets in order to reduce the search space, and uses
the back propagation algorithm to adjust the fuzzy parameters. The
resulting system is an adaptive neural network functionally equivalent
to a first-order Takagi-Sugeno inference system, where the input-
output relationship is linear.

In a first-order Sugeno system, a typical rule set with two fuzzy IF/
THEN rules can be expressed as:

y x y• Rule 1. If x is A and is B , then f = p + q + r1 1 1 1 1 1 (4)

x y• Rule 2. If x is A and y is B , then f = p + q + r2 2 2 2 2 2 (5)

where x and y are the crisp inputs to node i, Ai and Bi are the fuzzy sets
in the antecedent, fi is the output within the fuzzy region specified by
the fuzzy rule; and pi, qi and ri are the design parameters that are
determined during the training process.

2.4.1. ANFIS structure for two inputs
ANFIS structure consists of five layers, namely: fuzzy layer, product

layer, normalized layer, de-fuzzy layer and total output layer. The
ANFIS structure for two inputs, one output and two rules is shown in
Fig. 2. Each layer performs a particular task in the fuzzy inference
system. For identification, the adaptive nodes are represented by
squares, and fixed nodes are represented by circles.

Abdulshahed et al. (2015) describes the ANFIS structure as follows:
Layer 1. (Fuzzy layer): Each node i in this layer (denoted with a

square) represents a node function:

μ μO = (x), for i = 1, 2,…,n O = (y), for i = 1, 2,…,ni Ai i Bi1, 1, −2

(6)

where x (or y) is the input to node i, and Ai or (Bi-2) is the linguistic
label (small, large, etc.) characterized by appropriate membership
functions (MF's) μAi(x) and μBi-2(y). The MF's can take any shape or
function such as triangular, trapezoidal, Gaussian, or bell-shaped

Fig. 1. A three-layer artificial neural network structure.

Fig. 2. Basic structure of ANFIS.

Table 2
The basic MF's used in the study.

Name of MFs Equation

Triangular MF

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭μ x max min x a
b a

c x
c b

( ) = −
−

, −
−

,0Ai
(7)

Trapezoidal MF

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭μ x max min x a
b a

d x
d c

( ) = −
−

,1, −
−

,0Ai
(8)

Gaussian MF

μ x e( ) =Ai

x c
σ

−( − )
2

2
2 (9)

Bell-Shaped MF

μ x( ) = 1
1+Ai x c

a
b− 2

(10)

a b c d{ , , , } is the parameter set that changes the shapes of the MFs with maximum 1 and

minimum 0.



(Table 2). The parameters of the MF's in this layer are named as
premises.

Layer 2. (Product layer): This layer has the circle nodes represented
with Π in Fig. 1. In this layer, the rule operator (AND/OR) is applied to
get one output that represents the results of the antecedent for a fuzzy
rule that multiplies the incoming signals, such as:

O w μ x μ y for i= = ( ) * ( ), = 1, 2.i i Ai Bi2, (11)

whereO i2, is the output of the layer, and the output signalwi represents
the firing strength of the rule.

Layer 3. (Normalized layer): The nodes in this layer are denoted
with N and they calculate the ratio of the i th rule's firing strength to the
sum of firing strengths of all rules by:

O w w
w w

for i= =
+

, = 1, 2.i
i

3,
1 2 (12)

where the O3,i is the output of Layer 3. The quantity w is known as the
normalized firing strength.

Layer 4. (De-fuzzy layer): The nodes in this layer are denoted with a
square and they calculate the weighted output of each linear function as
follows:

O w f w x y for i= . = (p + q + r ), = 1, 2.i i i i i i i4, (13)

where w is the output of layer 3, and {p , q , r },i i i are the coefficients of
a linear combination in the Sugeno inference system. These parameters
of this layer are referred to as the consequent parameters.

Layer 5. (Total output layer): The single node denoted with an Σ
computes overall output as follows:

∑O w f
w f

w
f out Estimated overall output= . =

∑ .
∑

= =i i i
i i i

i i
5,

(14)

ANFIS uses a hybrid learning algorithm for estimation of the
premise and consequent parameters. The hybrid learning algorithm
procedure estimates the consequent parameters in a forward pass and
the premise parameters in a backward pass. In the forward phase, the
information propagates forward until layer 4, where the consequent
parameters are optimized by a least square regression algorithm. In the
backward phase, the error signals propagate backwards and the
premise parameters are updated by a gradient descent (GD) algorithm
(Jang et al., 1997). This error measure is usually defined by the sum of
the squared difference between measured and modeled values and is
minimized to a desired value.

The final overall output in Fig. 1 can be rewritten as:

f out w x w y y w w x w y y w= ( . )p + ( . )q + ( )r + ( . )p + ( . )q + ( )r1 1 1 1 1 1 2 2 2 2 2 2

(15)

where x and y are the input parameters of the model, w w,1 2 are the
normalized firing strengths of fuzzy rules and (p ; q ; r ; p ; q ; r )1 1 1 2 2 2 are the
consequent parameters.

2.5. Support vector machines (SVM)

A support vector machine (SVM) was introduced by Vapnik (2013)
and is a supervised learning technique from the field of machine
learning theory and structural risk minimization, applicable to both
classification and regression. SVMs are essentially a sub-discipline of
machine learning. SVMs are derived from the concept of structural risk
minimization hypothesis to minimize both empirical risk and the
confidence interval of the learning machine, which in turn helps to
produce good generalization capability.

In addition to their solid mathematical foundation in statistical
learning theory, SVMs have demonstrated highly competitive perfor-
mance in numerous real-world applications. Initially developed for
solving classification problems, SVM techniques can also be success-
fully applied in regression problems, usually called SVR (support vector
regression). A regression is estimated by using SVM for a data set

x y N i{( , )} / = 1i i , where xi is the input vector, yi is the output value and
N is the total number of data sets by mapping x into a feature space via
a nonlinear function φ x( ), and then finding a regression function as
follows:

f x ω φ x b( )= . ( )+ (16)

which can best approximate the actual output y with an error tolerance
ε, where ω and b are regression function parameters known as weight
vector and bias value, respectively. φ is known as a nonlinear mapping
function.

The coefficients b and ω are calculated by minimizing the following
regularized risk function:

∑R C C L f x y ω( )= ( ( ), ) 1
2i

N

ε i i
2

(17)

where the term ω1
2

2 improves the generalization of the SVM by
regulating the degree of model complexity, which denotes the
Euclidean norm. C is a positive trade-off parameter that determines
the degree of the empirical error in the optimization problem that is
chosen by the user. The most important difference with respect to
classic regression is the use of a novel loss function (ε). This is the
Vapnik's linear loss function with ε-insensitivity (tube size of SVM)
zone defined as:

⎧⎨⎩L f x y
for f x y ε

f x y ε otherwise
( ( ), ) =

0 ( ) − ≤
( ) − −ε i i

i i

(18)

Thus, the loss is equal to 0 if the difference between the predicted
and the measured value is less than ε. If the predicted value is within
the tube, the loss error is zero. For all other predicted points outside the
tube, the loss equals the magnitude of the difference between the
predicted value and the radius ε of the tube. To avoid outliers, slack
variables ξ and ξ* are introduced for measurements “above” and
“below” of the ε tube respectively. Both slack variables are positive
values.

The risk is minimized as follows:
minimize

∑R ξ ξ ω b ω C ξ ξ( , *, , )= 1
2

+ ( + *)
i

n

i i
2

=1 (19)

⎧
⎨⎪
⎩⎪

y ωϕ x b ε ξ
ωϕ x b y ε ξ
ξ ξ

subjected to
− ( ) − ≤ +
( ) + − ≤ + *

, * ≥ 0

i i i i

i i i i

i i

where the C ξ ξ∑ ( + *)i
n

i i=1 controls the degree of empirical risk.
To solve the optimization problem, Lagrange multipliers α and α*

are added to the condition equations, and the equation can be written
in its dual form:

∑ ∑

∑ ∑

R α α y α α ε α α

α α α α K x x

( , *) = ( − *) − ( − *)

− 1
2

( − *)( − *) ( , )

i

n

i i i
i

n

i i

i

n

j

n

i i j j i j

=1 =1

=1 =1 (20)

with constraints:

∑ α α α C α Ci n( − *)=0 0 ≤ ≤ , 0≤ *≤ =1, 2,……,
i

n

i i i i
=1

where αi and αi* are Lagrange multipliers to be solved, and K x x( , )i j is
called a kernel function and is calculated by K x x φ x φ x( , )= ( ). ( )i j i j on the
feature space. The kernel allows SVMs to form nonlinear boundaries;
in other words, it provides the SVM the ability to model complicated
separating hyperplanes.

After calculating Lagrange multipliers, an optimal desired weights
vector of the regression hyperplane is found as follows:



∑ω α α φ x= ( − *) ( )
i

n

i i
=1 (21)

and Eq. (16) can be rewritten as follows:

∑f x α α α α K x x b( , , *)= ( − *) ( , )+
i

n

i i i j
=1 (22)

where n is the number of support vectors, (αi - αi*) are their Lagrange
multipliers, the term K(xi, xj) is the kernel function in the input space
and the bias b is calculated from training samples.

In general, mathematically, a basic function for the statistical
learning process in SVM is

∑y f x α φ x φ x= ( )= ( )=w ( )
i

M

i
=1 (23)

where the output is a linearly weighted sum of M. The nonlinear
transformation is carried out by φ x( ).

The decision function of SVM is represented as

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∑y f x α K x x b= ( )= ( , ) −

i

N

i i
=1 (24)

where K is the kernel function, αi and b are parameters, N is the
number of training data, xi are vectors used in the training process, and
x is the independent vector. The parameters αi and b are derived by
maximizing their objective functions. A suitable choice of kernel allows
the data to become separable in the feature space despite being non-
separable in the original input space. The four basic kernel functions
are showed in the Table 3.

2.6. ANN, ANFIS and SVM models’ implementation for estimating
daily global solar radiation

We conducted computer simulations of ANFIS and ANN techniques
using two script files written in MATLAB 2015b software version. The
SVM technique was applied using an open source software package
named LIBSVM 3.2 (Chang and Lin, 2001) that included the sequential
minimal optimization (SMO) algorithm that was implemented using R
(RDevelopment, 2012; Meyer and Wien, 2014).

For all three techniques, the daily global solar radiation (H) variable
was defined as the dependent variable. The daily minimum tempera-
ture (Tmin), daily maximum temperature (Tmax), rainy days [(W)
defined as a binary variable (i.e., rainfall > 0, W=1; rainfall=0,
W=0)], and daily extraterrestrial radiation (H0), were used as input
to the ANFIS, ANN and SVMmodels forHmodeling. TheH0 value was
calculated as a function of the day of year, site latitude and solar angle
according to the equation proposed by Allen et al. (1998).

Two scenarios were evaluated in this study by considering the actual
Tmin, Tmax, W and H0: (1) Tmin, Tmax, W, and H0 were used for the SVM1,
ANFIS1 and ANN1 models; (2) Tmin, Tmax and H0 were used for the
SVM2, ANFIS2 and ANN2 models. The rainfall parameter (W) was
included in scenario 1, but not in scenario 2 in order to evaluate its effect
on the models. The H measured was used as target values for all models.

In order to preclude the possibility of overfitting, all data in the
measured dataset were normalized to the range from zero to one.
Moreover, to ensure the representativeness of the dataset, the database
was split into two subsets randomly, using 70% for training, and the
remaining 30% was used to validate the model. The training dataset
was used to train all the models, while validation dataset was used to
verify the performance of the trained models.

2.6.1. ANN model architecture
This investigation used a three-layer or FFNN for H simulation,

where the first layer is the input layer representing input variables, the
second layer is the hidden layer, and the third layer is the output layer.
This topology has proved its ability in modeling many real-world
functional problems (Ata, 2015; Piotrowski et al., 2015; Antonopoulos
and Antonopoulos, 2017). The selection of hidden neurons is the tricky
part in ANN modeling, as it relates to the complexity of the system
being modeled. In this study, the optimum numbers of neurons in the
hidden layer was determined by a simple trial and errors process. A
range of 2–80 neurons were evaluated until a minimum acceptable
error was achieved between the predicted and observed output. The
next step was to choose the transfer functions for the hidden and
output layers. In this study, the logistic sigmoid (Logsig) Eq. (2) was
used as the transfer function in the hidden layer and the linear transfer
function (Pureline) Eq. (3) was applied in the output layer. Table 4
shows the ANN features for each model and station.

The neural networks were trained using backpropagation (BP) with
the Levenberg-Marquardt (LM) algorithm, which is considered to be one
of the faster and more accurate algorithms. It combines the speed of the
Newton algorithm with the stability of the steepest decent method
(Wilamowski et al., 1999). The LM algorithm uses Newton's method to
calculate Jacobian matrices without computing the hessian matrices. This
makes the LM algorithm have a faster convergence with minimal error.

2.6.2. ANFIS model architecture
The ANFIS technique was used for H modeling, in which a set of

parameters in ANFIS were identified through a hybrid learning rule

Table 3
Different kernel functions used in the study.

Name of kernel
function

Equation

Radial basis
function(RB-
F)

K x x γ x x γ( , )=exp(− − ), >0i j i j
2 (25)

Polynomial

K x x γx x r γ( , )=( . + ) , >0i j i j
d (26)

Linear

K x x x x( , )= .i j i j (27)
Sigmoid

K x x γx x r( , )=tanh ( . + )i j i j (28)

x andxi j are vectors in the input space, d, r, and γ are the kernel parameters.

Table 4
Features of the ANN models.

Station/Model ID Activation functions Number of hidden layer units

Hidden layer Output layer

Campeche
ANN1 Logsig Pureline 13
ANN2 Logsig Pureline 12

Calakmul
ANN1 Logsig Pureline 37
ANN2 Logsig Pureline 26

Celestún
ANN1 Logsig Pureline 27
ANN2 Logsig Pureline 52

Efraín Hernández
ANN1 Logsig Pureline 19
ANN2 Logsig Pureline 24

Tantakín
ANN1 Logsig Pureline 18
ANN2 Logsig Pureline 32



that combined the back-propagation gradient descent and a least
square method. The choice of appropriate membership function
(MFs) and a given number of fuzzy IF-THEN rules for each variable
is essential to achieve good estimates during training. In the present
study, the bell-shaped function (Eq. (10)) better represented the
variability of data points and was used for the MFs. The bell-shaped
function was chosen by an arbitrary process of testing the four types of
MFs cited in Table 2. The “IF” part of fuzzy rules is related to input
variables to MF's and is called premise or antecedent; the “THEN” part,
which is related to the output variable for the MFs, is called the
conclusion or consequent part of the rule (Cobaner, 2011). The number
of fuzzy IF-THEN rules in a system depends on the number of MFs and
the number of input variables. So, two IF-THEN rules were employed
for each input variable, since the best results were obtained with this
value as determined by iterative processes. The grid partition method
on the data was used to generate the Takagi-Sugeno fuzzy inference
system (FIS) structure (Cobaner, 2011; Shiri et al., 2012). In the grid
partition method, the input is divided into different spaces using the
axis–paralleled method in which each input represents a fuzzy MF.

2.6.3. SVM model architecture
ForHmodeling, the SVMs were trained using the LIBSVM software

with ε − SVregression. There are four major kernels predominantly
used in SVMs such as linear, polynomial, radial basis and sigmoid
which are shown in Table 3. In this study, the radial basis function
(RBF) kernel was chosen as the best after a process of trial and error
experiments. The SVM hypothesis suggested that the performance of
SVM depends on the slack parameter (ε), the cost factor (C), and kernel
parameter (γ) while using RBF as the kernel function. The C assigns a
penalty for the number of vectors falling between the two hyperplanes
in the hypothesis. The C suggests that if the data are of good quality,
the distance between the two hyperplanes is narrower. If the data are
noisy it is preferable to have a smaller value of C that will not penalize
the vectors. So it is important to find the optimum C value for SVM
modeling. In this study, these parameters (ε, C, γ) were optimized by
using the genetic algorithm (GA) with five-fold cross-validation (CV),
varying the ε values between ε=0.002 to ε=2, and the varying the C
parameters between C=0.0001 to C=10. In addition, the parameter γ of
the kernel function is adjusted via GA, varying the γ values between
γ=0.0001 to γ=2. GA is a search-based optimization technique based
on the principles of genetics and natural selection. GA combines
selection operators, generation, crossover and mutation for identifying
the best solution for the optimization problem (Antonanzas-Torres
et al., 2015; Zhang et al., 2015).

The optimized parameters to train the SVMmodels are presented in
Table 5.

2.7. Model performance evaluation

The performance of the models was evaluated using the following
statistical tests: root mean squared error (RMSE; Eq. (29)), mean
absolute error (MAE; Eq. (30)) and coefficient of determination (R2;
Eq. (31)).
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where n represents the total number of evaluating data, Hm, Hc and
Hm,avg are the measured, calculated and mean of measured H values,
respectively.

Smaller values of RMSE and MAE imply closer approximation of
measured values by the models. Larger R2 values indicate a stronger
matching of trends in the measured data by the model results. The
RMSE and MAE are widely used basic metrics for assessing the
performance of prediction models (Teke et al., 2015).

3. Results

The SVM, ANFIS and ANN computing techniques were used for H
prediction in six meteorological stations located in the Yucatán
Peninsula, México. The statistical performance measures for each
model are presented in Table 6 for both training and testing data sets.
In the first scenario, when rainfall data are included, the SVM1 model
achieved the best performance for all locations in the testing phase
according to mean performance statistics (R2=0.689,
RMSE=2.678 MJ m−2 day−1 and MAE=1.973 MJ m−2 day−1), followed
by ANN1 (R2=0.652, RMSE=2.775 MJ m−2 day−1 and
MAE=2.150 MJ m−2 day−1). The ANFIS1 model had a similar perfor-
mance to the ANN1 (R2=0.645, RMSE=2.801 MJ m−2 day−1, and
MAE=2.153 MJ m−2 day−1).

In the second scenario, the SVM2 model with inputs of Tmin, Tmax,
and H0 performed the best for all locations according to overall mean
errors (R2=0.624, RMSE=2.877 MJ m−2 day−1, MAE=2.203 MJ m−2

day−1), and the ANN2 and ANFIS2 had similar performance measures
(R2=0.596, RMSE=3.023 MJ m−2 day−1, MAE=2.352 MJ m−2 day−1

for ANN2 and R2=0.587, RMSE=3.052 MJ m−2 day−1,
MAE=2.365 MJ m−2 day−1 for ANFIS2). In all cases, the first scenario
models performed better than the second scenario models.

Estimated daily solar global radiation values by the SMV1 models
for the testing phase are plotted against the measured values for the six
meteorological stations in Fig. 3. Table 6 also shows the statistical
results for the data set during the training phase. The superiority of the
SVM technique over the ANFIS and ANN techniques is evident from
the performance measures.

The MAE and RMSE values found in this study are similar to those
found by other authors (Tabari et al., 2012; Mohammadi et al., 2015).
The results demonstrate the ability of SVM1 models to adapt to existing
conditions in Yucatán.

Table 5
Optimum SVM parameters obtained by the GA-based.

Station/Model ID Optimum values

C γ ℇ

Campeche
SVM1 1.423 0.532 0.407
SVM2 2.779 0.147 0.495

Calakmul
SVM1 1.162 0.358 0.342
SVM2 2.293 0.465 0.474

Celestún
SVM1 1.084 0.409 0.533
SVM2 3.662 0.518 0.519

Efraín Hernández
SVM1 3.675 0.235 0.287
SVM2 3.295 0.466 0.512

Mérida
SVM1 6.514 0.046 0.437
SVM2 1.308 0.702 0.423

Tantakín
SVM1 9.747 0.132 0.453
SVM2 5.826 0.128 0.275



Thus, according to the statistical indicators, the SVM approach
performed better than the ANN and ANFIS models. In addition, the
rainfall input parameter had a positive effect on model performance in
estimating daily solar radiation for this tropical area.

4. Discussion and conclusions

In this study, we compared the performance of SVM, ANFIS and ANN
techniques to predict daily global solar radiation in Yucatán, Mexico. Tmin,
Tmax, W and H0 were used as explanatory variables. Three statistical
indicators (R2, RMSE andMAE) were used to evaluate model performance.

The results indicated that the SVM technique with RBF kernel is
superior to other approaches for estimating global solar radiation in
Yucatán, Mexico. Therefore, it can be used successfully to estimate
daily solar radiation in Mexican sub-humid tropics environments.

Moreover, the results are generally in accordance with the recent
published studies, which mostly concluded that SVM technique for
estimating solar radiation are superior to the ANN and ANFIS methods.
The SVM technique is able to select an optimal hyperplane in the training
process as its support vector and remove the nonsupport vector from the
model, resulting in fast training and low computational cost. This makes
the model cope well with noisy conditions (Tabari et al., 2012), such as the

Table 6
The R2, RMSE and MAE statistics for each model during training and testing phases for six locations in Yucatán, Peninsula, México.

Station/Model ID Training data Testing data

R2 RMSE MAE R2 RMSE MAE
(MJ m−2d−1) (MJ m−2d−1) (MJ m−2d−1) (MJ m−2d−1)

Campeche
SVM1 0.674 2.701 1.999 0.663 2.786 2.049
SVM2 0.573 3.089 2.295 0.562 3.171 2.326
ANFIS1 0.644 2.851 2.046 0.652 2.769 2.057
ANFIS2 0.571 3.132 2.234 0.539 3.188 2.364
ANN1 0.642 2.704 2.112 0.655 2.758 2.064
ANN2 0.562 2.988 2.366 0.535 3.206 2.419

Calakmul
SVM1 0.697 2.158 1.650 0.698 2.142 1.668
SVM2 0.679 2.128 1.706 0.643 2.330 1.809
ANFIS1 0.640 2.271 1.001 0.636 2.423 1.888
ANFIS2 0.638 2.361 1.799 0.597 2.549 1.999
ANN1 0.678 2.222 1.003 0.644 2.406 1.871
ANN2 0.656 2.300 1.761 0.623 2.477 1.952

Celestún
SVM1 0.666 2.604 1.001 0.635 2.827 2.164
SVM2 0.552 3.223 2.275 0.517 3.320 2.493
ANFIS1 0.648 2.656 1.979 0.513 3.381 2.715
ANFIS2 0.560 3.133 2.336 0.483 3.668 3.017
ANN1 0.650 2.804 2.010 0.526 3.344 2.706
ANN2 0.546 3.036 2.371 0.497 3.614 2.982

Efraín Hernández
SVM1 0.709 2.745 2.126 0.732 2.697 2.103
SVM2 0.654 2.992 2.345 0.701 2.972 2.350
ANFIS1 0.688 2.936 2.368 0.718 2.884 2.200
ANFIS2 0.643 3.100 2.510 0.672 3.081 2.399
ANN1 0.694 2.688 2.185 0.727 2.824 2.189
ANN2 0.649 2.904 2.364 0.671 3.105 2.422

Mérida
SVM1 0.737 2.509 1.918 0.704 2.535 1.933
SVM2 0.661 2.837 2.169 0.653 2.914 2.232
ANFIS1 0.697 2.704 2.019 0.689 2.561 1.935
ANFIS2 0.608 3.097 2.295 0.617 2.849 2.150
ANN1 0.715 2.499 2.000 0.697 2.526 1.952
ANN2 0.670 2.807 2.139 0.625 2.818 2.113

Tantakín
SVM1 0.719 2.418 1.883 0.700 2.482 1.918
SVM2 0.691 2.538 1.974 0.667 2.556 2.010
ANFIS1 0.651 2.810 2.234 0.660 2.788 2.121
ANFIS2 0.639 2.894 2.307 0.616 2.976 2.259
ANN1 0.705 2.390 1.928 0.661 2.795 2.116
ANN2 0.681 2.487 2.019 0.626 2.921 2.222

Overall average
SVM1 0.700 2.523 1.763 0.689 2.578 1.973
SVM2 0.635 2.801 2.127 0.624 2.877 2.203
ANFIS1 0.661 2.705 1.941 0.645 2.801 2.153
ANFIS2 0.610 2.953 2.247 0.587 3.052 2.365
ANN1 0.680 2.551 1.873 0.652 2.775 2.150
ANN2 0.627 2.753 2.170 0.596 3.023 2.352



local events of rain or cloudiness. In addition, the SVM solves a convex
optimization problem which will always converge to a global minimum.

The low values of R2 are likely due to the type of sub-humid
environment with abundant rainfall or cloudiness events that occur mainly
during the summer and autumn. Other studies with higher R2 values have
occurred mainly in arid and semi-arid climates where annual precipitation
is less than 300 mm (Tabari et al., 2012; Antonanzas-Torres et al., 2015;
Mohammadi et al., 2015; Belaid and Mellit, 2016), but few, if any, studies
have been conducted in wetter climates. The effect of climate is supported
by the improved performance of the models when information of rainfall
was added as compared to the models based solely on temperatures and
extraterrestrial radiation. ANFIS and ANN techniques had similar results,
but did not perform as well as the SVM technique. Thus, the results of this
study indicate that SVM increases the prediction accuracies of global solar
radiation estimations in tropical warm sub-humid climates such as the
Yucatán in México, especially when precipitation is included in the model.
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