
Angerona - A flexible Multiagent Framework for
Knowledge-based Agents

Patrick Krümpelmann, Tim Janus, and Gabriele Kern-Isberner

Technische Universität Dortmund

Abstract. We present the Angerona framework for the implementa-
tion of knowledge-based agents with a strong focus on flexibility, ex-
tensibility, and compatibility with diverse knowledge representation for-
malisms. As the basis for this framework we propose and formalize a
general concept of compound agents in which we consider agents to con-
sist of hierarchies of interacting epistemic and functional components.
Each epistemic component is instantiated by a knowledge representation
formalism. Different knowledge representation formalisms can be used
within one agent and different agents in the same system can be based
on different agent architectures and can use different knowledge repre-
sentation formalisms. Partially instantiations define sub-frameworks for,
e. g., the development of BDI agents and variants thereof. The Angerona
framework realizes this concept by means of a flexible JAVA plug-in ar-
chitecture for the epistemic and the functional components of an agent.
The epistemic plug-ins are based on the Tweety library for knowl-
edge representation, which provides various ready-for-use implementa-
tions and knowledge representation formalisms and a framework for the
implementation of additional ones. Angerona already contains several
partial and complete instantiations that implement several approaches.
Angerona also features an environment plug-in for communicating agents
and a flexible GUI to monitor the multiagent system and the inner work-
ings of the agents, particularly the inspection of the dynamics of their
epistemic states. Angerona and Tweety are ready to use, well docu-
mented, and open source.

1 Introduction

A variety of logical formalisms with different expressivity and computational
properties have been developed for knowledge representation with the agent
paradigm in mind [1,2]. Especially non-monotonic formalisms are designed to
deal with incomplete information and to enable an agent to act in uncertain
environments. Moreover, the field of research on belief change has been working
for over 25 years already on solutions on how to change an agent’s beliefs in the
light of new information [3]. Yet, very little of the approaches developed in these
two fields of research are available in actual multiagent frameworks.

Our concept of component based agents and its realisation in the Angerona
framework are designed to reduce this gap, to support the development of knowl-
edge based, i. e. epistemic, agents based on logical formalisms for knowledge

representation and reasoning, and to support the use of belief change opera-
tors based on belief change theory. Moreover, it facilitates the development of
divers agents with respect to their architecture and knowledge representation.
It allows the formation of multiagent systems comprising heterogeneous agents
which interact by communicating or in a common simulated environment.

The Angerona framework is based on the conceptual work on a hierarchi-
cal component-based agent model. In this, an agent comprises an epistemic state
and a functional component that can both be composed. This model is realized
on the basis on a plug-in architecture. These are based on knowledge repre-
sentation plug-ins and on operator plug-ins respectively, and tied together by
an XML based script language and configuration files. The plug-in for the func-
tional component is based on the general Angerona operator interface and the
corresponding operators provided by the angerona framework. For the knowl-
edge representation plug-ins we integrated the Tweety library for knowledge
representation [4]. The Tweety library contains interfaces and implementations
for divers knowledge representation formalisms and inference and change oper-
ators for them. Tweety is under active development, in which we participate.
It currently contains implementations for: first-order logic, ordinal conditional
functions, relational conditional logic, probabilistic conditional logic, relational
probabilistic conditional logic, markov logic, epistemic logic, description logic,
deductive argumentation, structured argumentation frameworks, defeasible logic
programming, probabilistic argumentation, answer set programming. Confer to
[4] for details and references. Angerona is open source and available on github1,
as is Tweety on sourceforge2.

The Angerona agent architecture can be freely defined by specifying the
types of operators to be used and their order of execution. This way Angerona
allows to easily design different types of agents. Not only the used language for
knowledge representation can differ, but also to which amount an agent’s func-
tionality is logic based. It is, for instance, easily possible to realize the agent’s
deliberation and means-ends reasoning by Java operators and simple data com-
ponents, or by simple Java operators which make use of logical formalisms, e. g.
answer set programming (ASP) [5], ordinal conditional functions (OCF) [6], ar-
gumentation formalisms [7], or propositional logic or horn logic, or any other
formalism from the Tweety library.

While the general Angerona framework allows for a high degree of flexi-
bility it also allows to define partially instantiated plug-ins and default agent
configurations, which represent sub-frameworks with more predefined structure
and functionality. The latter might fix the general agent cycle by specifying the
types of operators to be used and provide different implementations for these.
Hence, the sub-frameworks provide more support for easy and rapid develop-
ment of agents. We distinguish three different types of users in the Angerona
framework: the core developer that uses Angerona as a toolkit to define its
own agent types; the plug-in developer that uses provided agent types and in-

1 https://github.com/Angerona
2 http://sourceforge.net/projects/tweety/

https://github.com/Angerona
http://sourceforge.net/projects/tweety/

stantiates them with given or its own plug-ins; and the knowledge engineer that
defines the background and initial knowledge, and all other initial instances of
the components of the agents.

Angerona provides default implementations for BDI style agents and di-
verse extensions that can be modularly used to build agents. Complete multi-
agent systems of communicating agents using answer set programming, propo-
sitional logic and ordinal conditional functions for knowledge representation,
including change operators for these based on belief change theory are imple-
mented and available. These are used in the context of secrecy preserving agents
for which scenarios and simulations are available. Angerona also features a
plug-in interface for different environments, with a communication environment
for agents implemented. A graphical user interface (GUI) allows the selection,
execution, observation, and inspection of multi-agent simulations. The GUI can
be extended by plug-ins to feature displays of specific knowledge representation
formalisms, for instance dependency graphs.

In the next section we introduce the concept of compound agents that under-
lies the Angerona framework. Following on this we describe how this is realized
in the agent framework of Angerona. Then we describe the multiagent frame-
work of Angerona in the following section. Afterwards, we briefly describe how
we used Angerona to build secrecy preserving agents. Finally, we discuss our
framework and its relation to other frameworks, and we conclude.

2 Concept of Compound Agents

Angerona agents are based on a concept of hierarchical, component-based
agent models with the goal of capturing a variety of agent architectures in a
flexible and extensible way. In the following we give an overview of the main
concepts of it. In this, a general agent instance is a tuple (K, ξ) comprising of an
epistemic state K ∈ LES from a given language LES and a functional component
ξ = (◦, act). Further, we assume the set of possible actions Act and perceptions
Per to be given. These might, for instance, be speech acts that are interchanged
by the agents. Then, we require the operators of the functional component to be
of the following types:

◦ : Per × LES → LES and act : LES → Act.

The language of the epistemic state might be a logical language, e. g. an an-
swer set program or a conditional belief base, or a Cartesian product of (logical)
languages, e. g. to represent the BDI components of an agent by the language
LB × LD × LI . The epistemic state of an agent contains representations of its
background knowledge about how the world works, and information coming from
its perceptions, as well as its goals and know-how, and potentially more. The
functional component of an agent consists of a change operator ◦, which adapts
the current epistemic state of the agent upon reception of a perception, and an
action operator act, which executes the next action based on the current epis-
temic state. The change of the epistemic state might involve different types of

reasoning, such as non-monotonic reasoning, deliberation and means-ends rea-
soning. These are partially or completely based on logical inference. This means,
that an agent’s behavior is realized in parts by the functional component, and
in parts by the knowledge representation and reasoning based on the epistemic
state. How much of the agents behavior is defined by the epistemic state and
how much by the functional component might differ largely; a pure deductive
agent’s behavior is entirely defined by its epistemic state, and a stateless agent
entirely by its functional component. To capture these different types of agents
we consider the epistemic state as well as the functional component to consist
of hierarchical components. Compositions thereof define more structured agent
models and can be further refined.

A compound epistemic state is a component, which again can either be atomic
or compound. An atomic component Ca is an element from the components
language LCa

, e. g. a belief base BB from the language P(LBB), such as an OCF-
base or an answer set program. Belief operators of the form Bel : P(LBB) →
P(LBS) are applied by other operators to belief bases to determine the current
belief set for it. For example, the (sceptical) ASP belief operator Bel : P(LaspAt)→
Lit is defined as Bel(P) = ∩AS (P), with AS (P) being the answer sets of P .
Other operators for ASP might make use of preferences or might be defined for
sequences of logic programs.

A compound component is a tuple of components, C = 〈C1, . . . , Cn〉, and
each component is an element of its language such that the language of a com-
pound component is a cartesian product of languages: LC = LC1

× · · · × LCn
.

In particular, each component can potentially have a different representation.
The interaction of the components is realized by the functional component of
the agent. In particular, for an epistemic state K ∈ LES and functional com-
ponent ξ = (◦, act) the change operator ◦ : Per × LES → LES can be realized
by a single function or by a composition of explicit sub-functions. In the latter
case sub-functions are applied to the epistemic state in sequential order. Each
sub-function modifies a single component or a set of components of the epis-
temic state. The next function operates on the epistemic state that results from
the modifications of the previous functions. This concept realizes the idea of
an agent cycle. Typical agent cycles as the one of the BDI architecture can be
easily formalized. For example, first the beliefs of the agent are modified given
a perception by some function, then another function modifies the goals of the
agent and then yet another function modifies the current plan of the agent, or
revises the agent’s plan library. Inner loops or concurrent execution of operators
can be modeled by single operators which contain loops or concurrency. The re-
sulting hierarchical agent model with compound epistemic state and compound
functional component is illustrated in Figure 1. Formally, a compound functional
component consists of a change operator ◦ that is a composition of operators,
i. e. ◦ =def ◦1 · . . . · ◦n′ , and an action function act.

We exemplify this model by showing how a basic BDI agent model can be
realized. A BDI agent is a tuple (KBDI , ξBDI). The epistemic state is of the
form KBDI = 〈B,∆, I〉 with the agent’s beliefs B ⊆ LB, a set of desires ∆ ⊆

Environment

Agent
Perception

Action

◦

◦1

◦11

. . .

◦1n1

. . .

◦n

Epistemic State K

C1

C11

. . .

C1n1

. . .

Cm

act

1

Fig. 1. Hierarchical agent model

L∆ and a set of intentions I ⊆ LI , all of which might be belief bases of a
knowledge representation formalism. We define the language of BDI epistemic
states as LBDI . A functional BDI component ξBDI = (◦, act) consists of a change
operator ◦ and an action operator act of the type ◦ : Per × LBDI → LBDI and
act : LBDI → Act. The change operation can then be represented as ◦BDI =def

◦B · ◦∆ · ◦I . That is, an BDI-epistemic-state KBDI = 〈B,∆, I〉 is changed by a
perception p such that KBDI ◦BDI p = ◦I(◦∆(KBDI ◦B p)). More details about
the concept of compound agents can be found in [8], here we continue with the
presentation of its realization in the Angerona framework.

3 Agent Framework

Angerona agents consist of agent components which can be epistemic compo-
nents, i. e. belief bases and associated operators, and other data components,
or functional components, i. e. operators used for the agent cycle. Logic based
components are based on the belief base plug-in. Operators for the agent cycle
are based on the operator plug-in. For the realization of plug-ins in Angerona
we use the Java Simple Plugin Framework (JSPF) [9].

The class diagram in Figure 2 illustrates the realization of the conceptual
model in the Angerona framework. An Angerona agent contains an epistemic
state and a list of operators. An epistemic state consists of agent components.
One type of agent components are belief bases which are defined via a belief base
plug-in. The belief base plug-in implements the interfaces of the Tweety library,
in particular those for a belief base, a formula, a revision operator and a belief
operator. Different belief operators might be available for the same formalism.

Different agents might use the same knowledge representation formalism but
different belief operators, and each agent might use different belief operators in
different situations. We use, for example, families of belief operators that are
ordered by their credulity, e. g. skeptical reasoning vs. credulous reasoning, in
the setting of secrecy preserving agents. More on this can be found in [8].

The agent cycle is realized by a sequence of operators provided by operator
plug-ins. Operators in Angerona exist on two fundamental levels of abstraction.

Fig. 2. Angerona agent simplified class diagram

Operation types represent types of operators and have three parameters, a unique
name, a set of input parameters and an output type. By means of operation
types we can define the agent cycle for an agent class without instantiating
the concrete operators to be used. An operator is a class that implements a
particular operation type, e. g. an ASP change operator. There might be several
operators with the same operation type implemented, e. g. those of [10,11,12,13].
The knowledge engineer can select which operator shall be used for which of its
agents in the respective agent configuration files.

The agent cycle of an Angerona agent is specified by means of the Angerona
Script Markup Language (ASML). ASML is an XML format, which features op-
erator invocation and basic control structures to design sequences of these. It
also supports access to variables in a given context, which is normally provided
by the agent. For the operator invocation in ASML only the operator type is
specified in the ASML file, the concrete operator instance is specified in the
agent configuration file. Listing 1.1 shows a simple ASML example script for a
BDI-style agent. The ASML language also features basic control structures such
as assertions, conditions and loops. For a full reference of ASML refer to [8].

Listing 1.1. Simple BDI Agent Cycle in ASML

1 <asml -script name="BDICycle">

2 <operation type="ChangeBeliefs">

3 <param name="perception" value="$perception" />

4 <param name="beliefs" value="$beliefs" />

5 <output >beliefs </output >

6 </operation >

7

8 <operation type="ChangeDesires">

9 <param name="beliefs" value="$beliefs" />

10 <param name="desires" value="$desires" />

11 <output >desires </output >

12 </operation >

13

14 <operation type="ChangeIntentions">

15 <param name="desires" value="$desires" />

16 <param name="intentions" value="$intentions" />

17 <output >intentions </output >

18 </operation >

19

20 <execute action="$action" />

21 </asml -script >

We implemented BDI-style agents and default operators for these. We also
implemented elaborate approaches for the generation and ordering of desires
based on the approach to motivated BDI agents presented in [14]. Further, for
the implementation of hierarchical planning for BDI agents we implemented the
approach of know-how as presented in [15] by means of answer set programming
as presented in [16]. Here, we focus on the presentation of the novel features
of the Angerona framework; that is, its support and use of knowledge rep-
resentation formalisms, non-monotonic reasoning and belief change theory. As
explained above, a belief base plug-in provides the languages to be used and the
reasoning and change operators for them. Each belief operator corresponds to
the implementation of a reasoner of the Tweety library.

Angerona provides change operators that handle incoming perceptions as
illustrated in Figure 3. It determines the affected belief bases of the agent and
calls the specialized change operators for each of these, provided by the specific
plug-ins. Each belief base change operator uses an interpretation operator and a
change operator. A perception might represent an act of communication between
agents and comprise of information about the sender of the information, the
addressees, a timestamp, and some logical content. The interpretation operator
has to process this complex information into some sentence or set of sentences
in the belief base language. The belief base is then revised by the preferred
belief base change operator as specified in the agent configuration file. After all
changes have been made, the agent’s epistemic state gets a changed beliefs event,
which might trigger further operations. That is, after all directly affected belief

Fig. 3. Change operator in detail

bases have been changed other belief bases that are dependent on these might
be changed.

We implemented general types of belief change operators in the Tweety
library. These include a selective revision operator that allow to evaluate the
new information and decide if and to what extent it should be accepted [17,18].
The result of the selection operator represents the information which shall be
accepted and thus be incorporated into the belief base with priority over the
information in the belief base. This is exactly the task mainly studied in classic
belief revision theory such that we can make use of results from that field.

Moreover, we implemented a full fledged belief base plug-in for ASP . It is
capable of using several ASP solver such as clasp, DLV , DLV-Complex , and
smodels. It provides parsers for the different language versions by means of ASP .
Different belief operators and belief change operators are implemented and can
be used, including those of [10,11,12,13]. Moreover, ASP -based version of know-
how for hierarchical planning and reasoning about know-how as presented in [16]
is implemented. For the visualization of ASPs extended dependency graphs and
explanations graphs, based on [19], are implemented as a GUI plug-in.

4 Multiagent Framework

The multiagent framework of Angerona is what is commonly referred to as
the middleware of agent programming frameworks. It organizes and starts the
execution of the individual agents and the environment and implements the
interaction between these. The execution order of the agents, the multiagent
cycle, is flexible. The default is the sequential execution of agents such that each
agent gets the perceptions from the previous multiagent cycle, and not those

created by the execution of agents in the same cycle. This way the order of the
execution of agents does not matter.

The environment in Angerona is formed by the set of agents in the system
and the environment behavior. The environment behavior might range from a
communication infrastructure that delegates the speech acts between agents, to
a simulator for physical environments. It is implemented in form of an environ-
ment plug-in which allows to use external environment simulators, or to develop
new ones. The interrelation of the environment classes is shown in Figure 2. The
default environment behavior of Angerona is a communication infrastructure
based on FIPA-style, [20], speech acts. The actions of agents are speech-acts
which are transmitted to the receiver agents as their perception. Since different
agents might use different knowledge representation formalisms in Angerona
a common logical language has to be determined for which each agent has an
appropriate translation operator. As a language which is appropriate for agents
that use such different formalisms as ASP and OCF we chose nested logic pro-
grams [21] as common language for the agents. It supports both, propositional
logic and its connectives as well as conditional or rule like connectives, and
default negation. However, this is only the default implementation, any other
language might be used as common communication language.

Angerona also features a versatile graphical user interface (GUI). It is based
on a docking panes approach which allows to display various aspect in different
panes and tiles the entire window with these panes. The tiling can be changed
individually. Panes can be grouped by means of tabs or be detached from the
main window to form new windows that might be moved to a secondary screen.
The plug-in architecture of Angerona allows for UI plug-ins which allow the

Fig. 4. Angerona GUI - Overview

development of plug-ins for the specific visualization of components stemming
from plug-ins such as the representation of belief bases specific to the used for-
malism, potentially with alternative views such as text-based and graph-based
perspectives. For example for ASP we implemented a representation based on
explanation and extended dependency graphs, as presented in [19].

Another important feature of the user interface is the report system used in
Angerona. The report defines an interface to post new report entries and to
query the existing ones. A report entry consists of the identifier of its poster,
the tick (number of multiagent cycle) and the realtime (system time) in which
it was posted, a call-stack and an optional attachment in form of an epistemic
component. Poster of report entries can be the agent, one of its operators or one
of its epistemic components. The queries to the report then allow to construct
a timeline of posts with filters based on the poster, the type of attachment and
the call-stack; for instance to inspect the changes of an agent’s beliefs during
runtime. The report system is extensively used by the GUI to allow for the
inspection on the level of an agent cycle and of a multiagent cycle. Every pane
that displays the content of an epistemic component uses the report system to
provide a timeline for its displayed component.

Fig. 5. Secrecy Scenario Ressources (left), ASP Belief Base UI Component (right)

Figure 4 shows the GUI in its start configuration after a simulation has been
selected and run. The window is tiled by three docking panes, the resource pane
to the left, the workspace pane to the right and the status pane at the bottom.
The resources are displayed in a tree-view and are given by agent configuration
files, belief base configuration files, simulations templates and resources of a
loaded simulation. The resources of a simulation are typically given by its agents
and their components. The workspace pane has its default tab, which views the
report for the current simulation. Resources of the resource pane are opened and

displayed as an additional tab of the workspace pane by double-clicking on them.
The status pane displays the current status of Angerona and holds buttons to
load and run a simulation.

Figure 5 shows how an agent component can be selected and inspected by
example of an ASP belief base. The logic program of the belief base is shown as
well as its answer sets and the corresponding belief set that is produced by the
selected belief operator. The controls at the top allow for the navigation through
the timeline of the belief base given by the current report. It is shown how many
entries for the belief base exist in the entire report, how many ticks the report
covers, and how many entries for the belief base exist in the currently selected
tick. The controls allow the navigation on the basis of these three parameters.
The changes to the belief base with respect to the previous report entry for the
belief base are shown by highlighting new parts in green and missing parts in
red. These controls and the form of display allows to not only inspect the belief
base but also to track its evolution throughout the simulation.

5 Case Study - Secrecy preserving Agents

We use the Angerona framework to implement and experiment with secrecy
preserving agents according to the concepts presented in [22,23,24]. The following
example illustrates one of the scenarios we use.

Example 1. An employee Emma is working in a company for her boss Beatriz .
She wants to attend a strike committee meeting (scm) next week and has to ask
Beatriz for a day off in order to attend. She knows that Beatriz puts everyone
who attends the scm on her list of employees to be fired next. Thus, Emma wants
to keep her attendance to the scm secret from Beatriz , but has to communicate
with her in order to achieve her goal of getting that day off.

The intuitive formulation of our notion of secrecy preservation can be formulated
as follows:

An agent D preserves secrecy if, from its point of view, none of its secrets
Φ that it wants to hide from agent A is, from D’s perspective, believed
by A after any of D’s actions (given that A does not believe Φ already).

Hence, an agent has to model other agents, the information available to them
and their reasoning capabilities. To implement such agents we use the ar-
chitecture depicted in Figure 6. It refines the belief component of BDI agents
that now consists of the agent’s view on the world, its own beliefs, views on
the world-views of other agents and a representation of its secrets. The belief
change operator then changes all components of the beliefs. In particular, the
views on the information available to other agents has to be adapted after each
execution of an action. In the deliberation process an agent has to evaluate po-
tential sub-goals with respect to secrecy. To this end we implemented a violates
operator which performs internal change operations on copies of the belief com-
ponents to determine the degrees of violation of secrets. This agent model can

Environment

Agent

Change Beliefs

Operator

Desire-Update

Operator

Intention-Update

Operator

act

Perception

Action

Epistemic State

Beliefs

World Agents Secrets

BS BS

Bel Bel

Desires

Intentions

Subgoal-Generation Operator Violates

mental action

copy

Fig. 6. Angerona BDI Secrecy Instance

then be instantiated by use of different knowledge representation formalisms.
This far, we use propositional logic, ordinal conditional functions, and answer
set programming to instantiate it and run simulations.

In this scenario we make use of several of Angerona’s particular features.
We build on the BDI sub-framework provided by Angerona and refine the
composition of the epistemic state. The views on other agents are belief bases
such that for each agent a different knowledge representation formalism and
different belief operators can be used. Changes to the views on other agents are
performed by operators from the belief base plug-in used for the respective view.
We also implemented operators that change the secrets of an agent in the light
of new information. We used different knowledge representation plug-ins for the
agent instantiations. For the ASP instance we build on the ASP know-how [16]
implementation of the intention-update operator in Angerona and extended
it to take the secrets into consideration. The report system and the GUI serve
well to inspect the evaluation process of actions with respect to secrecy since
the internal, temporary, change operations can be observed. Figure 5 shows the
resource view and an example ASP belief base view from the described secrecy
scenario. For more details on the secrecy instance refer to [23,8].

6 Related Work

A plethora of multiagent programming frameworks have been proposed. Most of
these are rather theoretical studies and relatively few, but still a lot, have been
actually implemented and are available. A good overview of the most promi-
nent available frameworks is given in [25]. An even more extensive list of such

frameworks can be found in [26]. These frameworks haven been build with very
different goals in mind and by use of very different means. In the following we
survey those coming closest to the Angerona frameworks main features. These
are:

1. to provide a means to build agents capable of using (different) non-monotonic
knowledge representation and reasoning techniques,

2. to allow for flexible agent cycles and the possibility to use widely logic based
realizations of agent cycles,

3. to allow multiple levels of use and customization of the framework,
4. to feature the development of secrecy aware and secrecy preserving agents.

We have shown in this article that and how we realized these goals. In the
following, we discuss the existing frameworks being closest to satisfying some of
these goals.

With respect to non-monotonic knowledge representation, to our knowledge,
the only formalism that has been used in actual multiagent systems is ASP.
But most implemented works on ASP agents treat only the planning problem
independently of the rest of the agent, e. g. in the APLAgent Manager [27] or
the DLVK system [28]. In the literature several proposals for the design of an
agent entirely based on ASP have been made, e. g. [29,30]. However, for these
no implemented systems or documentation on how to implement such a system
are available. To the best of our knowledge, there are only two complete and
available multiagent programming frameworks that facilitate the use of ASP for
knowledge representation, namely Jazzyk [31] and GOAL [32,33]. Both of these
also feature a modular approach wrt. knowledge representation.

A Jazzyk agent consist of several knowledge bases which are realized by
knowledge representation modules and an agent program. The agent program
consists of a set of rules of the form “when Query, then Update”. The knowledge
representation modules implement the Query and Update methods. The seman-
tics of the agent programs is based on the Behavioural State Machines approach
developed for Jazzyk, on the basis of abstract state machines. The knowledge rep-
resentation modules allow to use different knowledge representation formalisms
and an implemented ASP module is available. With respect to belief operators
it implements credulous and skeptical ASP querying. But with respect to belief
change it only supports a pure addition of new formulas to the knowledge base
and no actual belief change. The only other existing available KR module is
based on the Ruby programming language which cannot be considered as a logic
based knowledge representation formalism.

The GOAL Framework [32,33] also allows the specification of modules for
knowledge representation and allows, in principle, for the use of different knowl-
edge representation formalisms. There are general interfaces for knowledge repre-
sentation, but we could not find implementations or examples for any formalism
other than prolog. The agent programs used in GOAL feature a clear syntax
and semantics, but are rather inflexible with respect to the use of different agent
cycles and architectures. The structure is fixed, goals are defined explicitly and
are blindly committed to.

There are no other multiagent frameworks that consider the development of
secrecy aware and secrecy preserving agents with explicitly represented secrets
and views on other agents, as considered in Angerona. The closest implemented
frameworks on the consideration of privacy in multiagent systems consider rather
specific problem in distributed problem solving. The DAREC2 system [34] con-
siders the problem of a group of agents that have to collaboratively compute
consistent answers to a query and protect their private information at the same
time. Confidentiality is expressed by means of the specification of private and
askable literals which are used in a distributed abduction algorithm based on
state passing. In [35] quantitative privacy loss is considered in distributed con-
straint satisfaction problems.

7 Conclusion

We presented the Angerona framework for the implementation of knowledge-
based agents. The agent cycle in Angerona can be specified by means of the
ASML script in combination with the operator interface. The distinction between
operator types and their implementation in combination with predefined agent
cycles, e. g. the BDI cycle, allows for multiple levels of use and customization.
The Angerona framework ASP Plug-in supports the use of various ASP solvers
and different extensions thereof, such as DLV-complex. On the basis of the latter
a planning component on the basis of know-how [16,15] is implemented. Sophisti-
cated change operators on the basis of belief change theory such as [10,11,12,13]
are implemented. For the Angerona framework, plug-ins for ASP, OCF and
propositional logic are actively used in several available complete simulations.

The Angerona framework is under constant development. We are planning
to extend it and to use it as a platform for the development and evaluation of
knowledge representation and belief change formalisms in multiagent systems.
Our current focus is on the development of secrecy preserving agents. Angerona
is also already used in other domains, for instance to experiment with logic-based
reasoning on strategies for soccer robots.

Acknowledgements: This work has been supported by the DFG, Collaborative
Research Center SFB876, Project A5. (http://sfb876.tu-dortmund.de)

References

1. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Else-
vier and Morgan Kaufmann Publishers (2004)

2. van Harmelen, F., van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowl-
edge Representation. Elsevier Science, San Diego, USA (2007)

3. Fermé, E., Hansson, S.: AGM 25 years. Journal of Philosophical Logic 40 (2011)
295–331 10.1007/s10992-011-9171-9.

4. Thimm, M.: Tweety - a comprehensive collection of java libraries for logical as-
pects of artificial intelligence and knowledge representation. In: Proceedings of
the 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR’14). (July 2014)

http://sfb876.tu-dortmund.de

5. Gelfond, M., Leone, N.: Logic programming and knowledge representation: the
A-Prolog perspective. Artificial Intelligence 138 (2002)

6. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In
Harper, W., Skyrms, B., eds.: Causation in Decision, Belief Change, and Statistics.
Volume 2. Kluwer Academic Publishers (1988) 105–134

7. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171(10-15) (2007) 619–641

8. Krümpelmann, P., Janus, T., Kern-Isberner, G.: Angerona - a multiagent frame-
work for logic based agents. Technical report, Technische Universität Dortmund,
Department of Computer Science (2014)

9. R. Biedert, N. Delsaux, T.L.: Java simple plugin framework.
http://code.google.com/p/jspf/ [Online; accessed 10-December-2012].

10. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for up-
dating logic programs. In Baral, C., Brewka, G., Schlipf, J.S., eds.: Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07). Volume 4483., Springer (2007) 71–83

11. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: A general approach to
belief change in answer set programming. Computing Research Repository (CoRR)
abs/0912.5511 (2009)

12. Krümpelmann, P., Kern-Isberner, G.: Propagating credibility in answer set pro-
grams. In Schwarz, S., ed.: Proceedings of the 22nd Workshop on (Constraint)
Logic Programming (WLP’08). Technische Berichte, Martin-Luther-Universität
Halle-Wittenberg, Germany (2008)

13. Krümpelmann, P., Kern-Isberner, G.: Belief base change operations for answer
set programming. In: Proceedings of the 13th European Conference on Logics
in Artificial Intelligence (JELIA’12). Volume 7519 of Lecture Notes in Artificial
Intelligence., Springer (2012)

14. Krümpelmann, P., Thimm, M., Kern-Isberner, G., Fritsch, R.: Motivating agents
in unreliable environments: A computational model. In Klügl, F., Ossowski, S.,
eds.: Multiagent System Technologies - 9th German Conference, (MATES 2011),
Berlin, Germany, October 6-7, 2011. Proceedings. Volume 6973 of Lecture Notes
in Computer Science., Springer (2011) 65–76

15. Thimm, M., Krümpelmann, P.: Know-how for motivated BDI agents (extended
abstract). In Decker, Sichman, Sierra, Castelfranchi, eds.: Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’09). (May, 10–15 2009)

16. Krümpelmann, P., Thimm, M.: A logic programming framework for reasoning
about know-how. In: Proceedings of the 13th International Workshop on Non-
Monotonic Reasoning (NMR’10). (2010)

17. Fermé, E.L., Hansson, S.O.: Selective revision. Studia Logica 63(3) (1999) 331–342
18. Tamargo, L.H., Thimm, M., Krümpelmann, P., Garcia, A.J., Falappa, M.A.,

Simari, G.R., Kern-Isberner, G.: Credibility-based selective revision by deductive
argumentation in multi-agent systems. In E. Ferme, D. Gabbay, G.S., ed.: Trends
in Belief Revision and Argumentation Dynamics, College Publications (2013)

19. Albrecht, E., Krümpelmann, P., Kern-Isberner, G.: Construction of explanation
graphs from extended dependency graphs for answer set programs. In Hanus, M.,
Rocha, R., eds.: Post-proceedings of the 27th Workshop on Functional and Logic
Programming (WFLP 2013). Number 8439 in LNAI, Springer (2014) 1–16

20. Foundation for Intelligent Physical Agents: Fipa communicative act library speci-
fication (12 2002)

21. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25(3-4) (1999) 369–389

22. Krümpelmann, P., Kern-Isberner, G.: On agent-based epistemic secrecy. In Rossi,
R., Woltran, S., eds.: Proceedings of the 14th International Workshop on Non-
Monotonic Reasoning (NMR’12). (2012)

23. Krümpelmann, P., Kern-Isberner, G.: Secrecy preserving BDI Agents based on
Answerset Programming. In: Proceedings of the 11th German Conference on
Multi-Agent System Technologies (MATES’13). Volume 8076 of Lecture Notes in
Computer Science., Springer (2013) 124–137

24. Biskup, J., Tadros, C.: Preserving confidentiality while reacting on iterated queries
and belief revisions. Annals of Mathematics and Artificial Intelligence (2013) 1–49

25. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multiagent systems. Informatica 30 (2006) 33–44

26. Agentprogramming.com: Agent platforms
27. Baral, C., Gelfond, M. In: Reasoning agents in dynamic domains. Kluwer Academic

Publishers, Norwell, MA, USA (2000) 257–279
28. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under incomplete

knowledge. In: Computational Logic—CL 2000. Springer (2000) 807–821
29. Leite, J., Alferes, J., Pereira, L.: MINERVA - a dynamic logic programming agent

architecture. In Meyer, J.J., Tambe, M., eds.: Intelligent Agents VIII. Volume 2333
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2002) 141–157

30. Móra, M.d.C., Lopes, J.G.P., Vicari, R.M., Coelho, H.: BDI models and systems:
Bridging the gap. In: Proceedings of the 5th International Workshop on Intelligent
Agents V, Agent Theories, Architectures, and Languages (ATAL’98). ATAL ’98,
London, UK, UK, Springer-Verlag (1999) 11–27

31. Novák, P.: Jazzyk: A programming language for hybrid agents with heteroge-
neous knowledge representations. In Hindriks, K.V., Pokahr, A., Sardiña, S., eds.:
Programming Multi-Agent Systems, 6th International Workshop, ProMAS 2008,
Estoril, Portugal, May 13, 2008. Revised Invited and Selected Papers. Volume 5442
of Lecture Notes in Computer Science., Springer (2008) 72–87

32. Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.J.: Agent programming with
declarative goals. In Castelfranchi, C., Lespérance, Y., eds.: Intelligent Agents VII
Agent Theories Architectures and Languages. Volume 1986 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2001) 228–243

33. Koen V. Hindriks, W.P.: GOAL User Manual. Delft University of Technology.
(2014)

34. Ma, J., Russo, A., Broda, K., Lupu, E.: Multi-agent abductive reasoning with
confidentiality. In: AAMAS. (2011) 1137–1138

35. Wallace, R.J., Freuder, E.C.: Constraint-based reasoning and privacy/efficiency
tradeoffs in multi-agent problem solving. Artificial Intelligence 161(1–2) (2005)
209 – 227 Distributed Constraint Satisfaction.

	Angerona - A flexible Multiagent Framework for Knowledge-based Agents

