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Abstract
Purpose of Review Three-dimensional quantitative coronary angiography-based methods of fractional flow reserve (FFR) 
derivation have emerged as an appealing alternative to conventional pressure-wire-based physiological lesion assessment 
and have the potential to further extend the use of physiology in general. Here, we summarize the current evidence related 
to angiography-based FFR and perspectives on future developments.
Recent Findings Growing evidence suggests good diagnostic performance of angiography-based FFR measurements, both 
in chronic and acute coronary syndromes, as well as in specific lesion subsets, such as long and calcified lesions, left main 
coronary stenosis, and bifurcations. More recently, promising results on the superiority of angiography-based FFR as com-
pared to angiography-guided PCI have been published.
Summary Currently available angiography -FFR indices proved to be an excellent alternative to invasive pressure wire-
based FFR. Dedicated prospective outcome data comparing these indices to routine guideline recommended PCI including 
the use of FFR are eagerly awaited.

Keywords Angiography-based FFR · Percutaneous coronary intervention · Functional lesion assessment · Quantitative flow 
ratio · Vessel FFR · FFRangio
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Introduction

A significant body of evidence has demonstrated that 
coronary revascularization should be tailored to ischemia,  
rather than anatomy, in order to improve symptoms and 
prognosis [1–3]. Physiological lesion assessment using 
either fractional flow reserve (FFR) or instantaneous wave-
free ratio (iFR) is the current guideline-recommended 
invasive gold standard for assessing the ischemic potential 
of an angiographically intermediate coronary stenosis [4,  
5]. However, despite the robust data, the uptake of FFR in 
routine clinical practice remains low, reportedly due to need 
for hyperemia associated with patient discomfort, additional 
pressure wire instrumentation, and presumed additional time 
and costs related to invasive physiological lesion assessment  
under hyperemic conditions [6, 7]. In order to overcome  
some of the aforementioned limitations, alternative  
methods, including non-hyperemic pressure ratios (NHPR) 
and angiography-based FFR, have been proposed. Among 
angiography-based methods, 2-dimensional quantitative  
coronary angiography (2D QCA) was the first to be  
commercially available, however demonstrated to have only 
a modest correlation with physiologic indices of ischemia, 
such as FFR [8–10]. Conversely, 3D QCA proved to have 
a higher accuracy and a stronger correlation with FFR as 
compared with 2D QCA by reducing the effects of fore-
shortening and non-symmetric coronary lesions [11–14]. 
Improved understanding of the correlations between QCA 
and pressure flow measurement, advances in computational  
power, simplified computational f luid dynamics or 
flow resistance analysis, and 3D coronary angiography 

reconstructions have made the development of angiography- 
based FFR methods possible [15–17].

The Concept of Simplified Computational Fluid 
Dynamics

Computational fluid dynamics (CFD) is the most widely 
used method to solve the equations which describe the 
motion of fluids, the Navier–Stokes equations. The solution 
of these equations provides information about velocity and 
pressure at any location in the coronary artery at any point 
of time. Since the solution of Navier–Stokes equations can 
be time consuming and computationally expensive, simpli-
fied analyses using equations built on the seminal work of 
Young, Tsai, and Gould have been proposed [18, 19].

The difficulty in virtual estimation of pressure drop arises 
from the fact that hyperaemic flow, as required for FFR 
assessment, is variable and difficult to quantify for each spe-
cific artery, since flow intrinsically depends on the vasodila-
tion of the underlying myocardium and the haemodynamic 
status of the patient [20, 21].

However, the technology is quickly gaining momentum 
and several methods for FFR computation, combining the 
simplified CFD model with 3D QCA from invasive angiog-
raphy, have been proposed.

Currently Available Angiography‑Based FFR 
Solutions

To date, four angiography-based FFR methods have emerged 
and are currently commercially available (Fig. 1):

Fig. 1  Commercially available software for angiography-based FFR. 
*Data on file, unpublished data provided by CathWorks. (Photo per-
missions: FFRangio with permission from CathWorks; QFR with 

permission from Medis Medical Imaging Systems B.V.; vFFR with 
permission from Pie Medical Imaging B.V.; and caFFR with permis-
sion from RainMed Medical Technology Co., Ltd.)
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(a) FFRangio is a resting, adenosine-free angiography-based 
index, developed by CathWorks, Ltd, Kfar Saba, Israel. 
Using two or more angiographic projections at least 
30° apart, the software provides a 3D reconstruction of 
the entire coronary tree, modeled as an electric circuit 
with each segment acting as a resistor, according to its 
length and diameter. For the hemodynamic evaluation, 
the contribution of each narrowing to the total flow 
resistance is taken into account based on its impact on 
overall resistance and a subsequent lumped model is 
built, allowing the pressure drops and the flow rates to 
be estimated. Two models of the coronary tree are built, 
a first model with stenosis, and a second model without 
stenosis.  FFRangio is subsequently calculated as the ratio 
of maximal flow in the presence and absence of stenotic 
lesions [22, 23].

(b) Quantitative flow ratio (QFR) developed by Medis 
Medical Imaging System, Leiden, the Netherlands, and 
Pulse Medical Imaging Technology, Shanghai, China, is 
obtained from two diagnostic angiographic projections, at 
least 25° apart to generate a 3D QCA model. In the QFR 
model, the pressure drop is calculated for each segment 
using the stenosis geometry and mean hyperemic flow 
velocity, using the Gould formula [16]. Blood is treated  
as a homogeneous and Newtonian fluid, coronary  
pressure is assumed to be constant in the absence of 
stenosis, coronary flow velocity to be preserved along 
the coronary, and steady flow is specified as boundary 
condition at the outlet. Hence, the mass flow rate at each 
location along the interrogated vessel can be determined 
by the mean flow velocity and the vessel sizing from 3D 
QCA [13, 24]. In the FAVOR pilot study, the computation 
of the hyperemic flow was initially obtained and tested 
based on a per vessel basis using 3 different flow models: 
(1) a fixed empiric hyperemic flow velocity (fixed-flow  
QFR (fQFR)); (2) modeled hyperemic flow velocity 
on the basis of the TIMI frame count analysis without  
pharmacologically induced hyperemia (contrast-flow 
QFR (cQFR)), and (3) measured hyperemic flow velocity  
derived from coronary angiography during adenosine-
induced maximum hyperemia (adenosine-flow QFR 
(aQFR)) [24]. The authors observed good agreement 
with FFR for all the measurements (fQFR 0.003 ± 0.068, 
cQFR 0.001 ± 0.059, and aQFR 0.001 ± 0.065) [24]. 
The diagnostic accuracy of cQFR ≤ 0.80 for predicting 
FFR less than or equal to 0.80 was higher than that of 
fQFR ≤ 0.80 and comparable with that of aQFR ≤ 0.80. 
Therefore, cQFR is the currently used model [24].  
Comparative computation for QFR vs FFR was reported 
in FAVOR II Europe Japan indicating a significantly 
shorter time for QFR computation (5.0 vs 7.0  min, 
p  < 0.001). In the FAVOR III China study, QFR  
computation required 3.9 ± 1.4 min [25, 26••].

(c) Vessel fractional flow reserve (vFFR) developed by 
CAAS, Pie Medical Imaging, Maastricht, the Nether-
lands is obtained from two angiographic views with 
at least 30° difference in rotation/angulation to gener-
ate the 3D QCA. Within the CAAS workstation, CFD 
approach models flow using a simplified Navier–Stokes 
equation, applying boundary conditions as a constant 
parabolic flow profile at the inlet and a stress-free out-
let, a rigid-wall, non-slip conditions, and a Newtonian 
fluid approximation of blood. The pressure drop is cal-
culated by applying physical laws including viscous  
resistance and separation loss effects present in coronary 
flow behavior, as described by Gould and Kirkeeide  
et al. [27]. Maximum hyperaemic blood flow was 
empirically determined from clinical data and assumes 
that proximal coronary velocity is preserved along the 
coronary artery [27]. vFFR is computed automatically, 
using the invasively measured aortic root pressure as an 
input boundary condition [27]. The algorithm applies 
automated and harmonized optimal end-diastolic frame 
selection in the two orthogonal projections by ECG 
triggering and allows physiological lesion assessment 
of a specific target segment or vessel of interest, pre-
cluding the need to perform an assessment of the full 
cardiac tree or manual frame counting [27].

(d) Computational pressure-flow dynamics derived FFR 
(caFFR) developed by Rainmed Ltd, Suzhou, China is 
a technique based on the 3D reconstruction of the ves-
sel from two angiographic projections at different angles 
(≥ 30°). The resting coronary flow velocity is determined 
using the TIMI frame count while the aortic pressure is 
recorded by the FlashPressure pressure transducer con-
nected to the guide catheter and transmitted to FlashAngio 
console, which automatically determines mean aortic 
pressure over the third to eighth cycles following angiog-
raphy [28]. The flow velocity and the mean aortic pressure 
are used as an input in the FlashAngio software which 
calculates the pressure drop along the generated mesh 
of the coronary artery. Compared to the previous soft-
ware, caFFR uses a real time invasive pressure coupled 
to computation flow modeling to determine the pressure 
drop across a stenosis. This allows to take into account the 
dynamic nature of blood pressure, instead of using a static 
value of aortic pressure, and to account for energy loss in 
lumen area proximal and distal to the stenosis. The data 
are further processed with a CFD technique that provides 
the characteristics of intravascular blood flow and the 
pressure field, enabling the computation of the pressure 
gradient between the inlet and outlet of the studied coro-
nary segment [28]. Time to computation was highlighted 
in FLASH FFR, showing that caFFR analysis required a 
total operation time of less than 5 min with less than 1 min 
computation time [28].
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Interobserver Variability

A common feature of all angiography-based FFR software 
is the need for specific user interaction to refine geomet-
rical vessel parameters and to select appropriate angio-
graphic projections and frame. These changes performed 
by individual operators may affect the final physiological 
result and might have an impact on the reproducibility of 
the technology. However, data about time and amount of 
necessary manual contour corrections are provided only for 
vFFR, which showed a highly accurate contour detection, 
and a percentage of manual contouring correction needed in 
only 9.3% of vessels [29].With respect to interobserver vari-
ability, vFFR proved to have a low interobserver variability 
when performed either by experienced operators (r = 0.95), 
or when performed by a blinded CoreLab or independent 
trained local site personnel [27]. In the recently published 
FAST II study, a high reproducibility between CoreLab and 
on-site measurement (r = 0.87) was demonstrated, consistent 
among specific lesion and patient subsets [29]. In this regard, 
 FFRangio has shown good reproducibility (r = 0.88) when 
performed offline by experienced operators; however, data 
about the agreement of on-site operators reproducibility are 
lacking [22, 30]. QFR showed a good reproducibility when 
computed by two independent CoreLabs (r = 0.96) or when 
performed online versus an independent CoreLab (r = 0.91) 
[31, 32]. However, the recently published QREP study dem-
onstrated a modest reproducibility of QFR when computed 
by multiple observers, dependent on stenosis severity, angio-
graphic quality, and the observer [33].

Clinical Validation Studies

FFRangio

FFRangio showed a high diagnostic accuracy when compared 
to FFR as a reference in small exploratory studies, as well as 
in a larger validation study when performed offline by expe-
rienced operators [23, 30, 34] (Table 1). The multicenter, 
prospective observational FAST-FFR study confirmed a high 
diagnostic performance of  FFRangio when computed online 
by trained local site personnel (sensitivity 94%, specific-
ity 91%, and diagnostic accuracy 92%) that remains high 
when only considering FFR values between 0.75 and 0.85 
(diagnostic accuracy 87%) [22]. A pooled analysis of five 
prospective cohort studies reported an excellent diagnostic 
performance in a large cohort of patients, which was consist-
ent in the overall cohort (sensitivity 91%, specificity 94%, 
and diagnostic accuracy 93%) and across patients (includ-
ing age, sex, BMI, diabetes, clinical presentation, and lesion 
types) [35]. The diagnostic performance was confirmed in 
patients with multivessel disease and when compared to FFR 

in reclassification of coronary disease severity according to 
SYNTAX score [36]. In a post hoc analysis of FAST-FFR, 
 FFRangio showed a high diagnostic performance independent 
of most patient characteristic, though its specificity varied 
according to the vessel (98.7% for LAD, 86.3% for LCx, and 
84.3% for RCA; p = 0.046) [37]. Interestingly, data regard-
ing clinical outcome in a real-world population have been 
recently published, showing a low one year rate of MACE 
in patients where the treatment decision was based on the 
FFRangio results (4.1% and 2.5% for the revascularization 
and deferral groups, respectively) [38•].

Finally, in a head-to-head comparison between NHPR 
and  FFRangio in predicting FFR,  FFRangio agreed more often 
with invasive FFR than NHPRs [39].

Quantitative Flow Ratio (QFR)

Quantitative flow ratio (QFR) is currently the angiography-
based index with the largest amount of evidence. It was 
first validated in the FAVOR pilot study which assessed the 
superiority of different QFR approaches (fQFR, cQFR, and 
aQFR), computed offline, over 3D-QCA in predicting FFR 
(diagnostic accuracy of 80%, 86%, and 87% vs 65%, respec-
tively) [24].

Two multi center studies, the FAVOR II Europe-Japan and 
FAVOR II China evaluated the feasibility and the diagnostic 
performance of online QFR, demonstrating a high agree-
ment between QFR and FFR (mean difference: −0.01 ± 0.06, 
in both studies) [25, 40]. In the FAVOR II China study, the 
diagnostic accuracy of QFR on a vessel- and patient-level 
was 92.7% and 92.4% respectively, while in FAVOR II 
Europe Japan, the diagnostic accuracy of computation of 
QFR was 86.8% [25, 40].

Offline and online QFR presented high diagnostic accu-
racy ranging from 83 to 93% and good correlation compared 
with the gold-standard FFR, consistent among several pro-
spective, and retrospective studies as well as meta-analyses 
[32, 41–43]  (Table 1). Furthermore, its high diagnostic 
performance was confirmed in large real-world cohorts, 
showing a superior diagnostic accuracy in predicting FFR 
positive lesions as compared with resting Pd/Pa ratio (area 
under the curve (AUC) 0.86; 95% confidence interval (CI): 
0.83–0.89 for QFR vs 0.76; 95% CI: 0.72–0.83 for Pd/Pa; 
p < 0.001) [44]. Studies looking at the diagnostic value 
of QFR with iFR as index reference showed a good cor-
relation and diagnostic performance (r = 0.74, AUC 0.91) 
[45]. Moreover, when using both FFR and iFR as reference 
standard, QFR correlated better to FFR as compared to iFR 
(r = 0.86 with FFR vs 0.74 with iFR, p < 0.001, AUC 0.95 
vs 0.88, p < 0.001) [46].

Pooled data focusing on the diagnostic performance of 
QFR and iFR with FFR as a reference, demonstrated that 
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QFR has a higher sensitivity and specificity than iFR (sensi-
tivity 90% vs 79% and specificity 88% vs 85%, respectively, 
p < 0.001 for both) in predicting FFR [47].

Recently, there has been increasing interest in using pre-
PCI QFR virtual pullbacks in order to define the pattern of 
coronary artery disease, either focal or diffuse, and to predict 
post-PCI functional results. In this context, QFR proved to 
correctly define the physiological pattern of disease in 83.9% 
and 91.0% of cases using iFR and FFR pullbacks as refer-
ence, respectively [48]. Moreover, based on data from QFR 
computation, some angiography-derived indexes to assess 
microcirculatory resistance have been validated and proved 
to have a good diagnostic performance, as compared to wire-
based IMR, both in chronic and acute coronary syndromes 
(AUC 0.93 and 0.96) [49, 50].

Finally, the multicenter, blinded, randomized FAVOR 
III China was the first large head-to-head outcome study to 
be presented. The study demonstrated better clinical out-
comes of QFR-guided PCI as compared with angiography-
guided PCI at 1 year follow-up. Major adverse cardiac events 
(MACE) occurred in 5.8% of the patients in the QFR-guided 
group vs 8.8% in the angiography-guided group (p < 0.001), 
mainly driven by a reduced rate of periprocedural myocar-
dial infarction (MI) in the QFR arm (due to a higher number 
of lesions deferred for revascularization), reduced rate of 
MI during follow-up, and lower rates of ischemia driven 
revascularization [26••]. Moreover, QFR-guided PCI led 
to a shorter procedure time (53.7 vs 59.4 min, p < 0.001), 
reduced use of contrast media, and lower number of stents 
implanted [26••]. Of note, the remarkably low number of 
patients in which no PCI was performed (< 10%) attests to 
the selection of cases with more severe lesions as compared 
to previous physiology studies in which only about 50% of 
patients underwent revascularization [26••, 51]. Longer fol-
low up and the results of the ongoing FAVOR III Europe 
Japan trial (NCT03729739), assessing whether QFR-based 
diagnostic strategy yields non-inferior clinical outcome 
compared to an FFR-based strategy, are eagerly awaited.

Vessel Fractional Flow Reserve (vFFR)

vFFR was first validated in the retrospective FAST I study 
(n = 100), showing a high diagnostic accuracy when com-
pared to FFR, and was subsequently evaluated in a larger 
and more heterogeneous cohort of patients, confirming an 
excellent diagnostic performance among different vessel and 
anatomy subsets [27, 52] (Table 1).

These positive findings were subsequently confirmed in 
the prospective, international, and multicenter FAST II study 
which demonstrated a good correlation between vFFR as 
calculated by a blinded CoreLab and pressure wire-based 
FFR (r = 0.74; p < 0.001; mean bias 0.0029 ± 0.0642) and an 
excellent diagnostic accuracy of vFFR in identifying lesions 

with an invasive wire-based FFR ≤ 0.80 (AUC 0.93; 95% CI: 
0.90–0.96; p < 0.001) also in more complex lesions, includ-
ing bifurcations, tortuous, and calcified lesions [29].

Interestingly, in a dedicated study focusing on patients 
with left main coronary artery (LMCA) disease with good 
quality angiographic visualization and availability of intra-
vascular ultrasound (IVUS) imaging data, 3D-QCA-based 
vFFR assessment of LMCA disease was shown to correlate 
well to LMCA minimal lumen area (MLA) as assessed by 
IVUS (r = 0.79, p = 0.001). A good diagnostic accuracy of 
vFFR ≤ 0.80 in identifying lesions with MLA < 6.0 mm2 
(sensitivity 98%, specificity 71.4%, AUC 0.95; 95% CI: 
0.89–1.00, p = 0.001) was observed [53]. Moreover, vFFR 
computations in patients discussed within the Heart Team 
in whom the treatment decision was based on angiography 
alone indicated a considerable proportion (almost one third 
of the patients) were identified to present with vFFR con-
firmed lesion significance – revascularization discordance 
(Tomaniak et al. presented at EuroPCR 2019). The safety 
and efficacy of a vFFR as compared to an FFR guided revas-
cularization strategy will be assessed in in ongoing multi-
center, randomized FAST III trial (NCT04931771).

Computational Pressure‑Flow Dynamics Derived 
FFR (caFFR)

caFFR was validated in the prospective, multicenter FLASH 
FFR study, and showed a high correlation and diagnostic 
accuracy as compared with FFR (r = 0.89, diagnostic accu-
racy 96%; 95% CI: 0.93–0.98), when computed by experi-
enced operators in a low risk patients cohort, although evi-
dence about the accuracy in complex lesions is still lacking 
[28]. Interestingly, an algorithm for the assessment of micro-
vascular disease, the so called coronary angiography-derived 
index of microvascular resistance (caIMR) has been assessed 
in a small cohort of patients with angina and no obstructive 
coronary artery disease [54]. caIMR proved to be feasible, 
with a good correlation and diagnostic performance as com-
pared to wire-based IMR (r = 0.75, diagnostic accuracy 84%; 
95% CI: 72–0.93% and AUC 0.92) [54].

Gray Zone or Binary Cut‑Off

The overall diagnostic performance of angiography-based 
FFR in identifying FFR-based functional stenosis severity is 
good. However, the diagnostic accuracy may drop in around 
30 to 40% of cases, when angiography-based FFR values are 
close to the cut-off (0.80), as demonstrated for QFR values 
between 0.75 and 0.85 (AUC 0.63; 95% CI: 0.42–0.84) [25, 
52, 55].

Therefore, the idea of using a “gray zone,” in which FFR 
assessment could be used to establish stenosis severity, has 
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been proposed. In the FAST EXTEND study, a vFFR gray 
zone of 0.80 to 0.85 was found in order to have 96% diagnos-
tic accuracy, while in FAVOR II Europe-Japan a gray zone 
of 0.78 to 0.86 for QFR was defined, with similar diagnostic 
accuracy [25, 52]. As of to date, no details on the so called 
gray zone have been presented for both  FFRangio and caFFR.

Following previous discussions on the use of a gray zone 
with iFR, the concept was abandoned and future research 
continued by using a binary cut-off. As such in FAVOR III 
China, FAVOR III EU-JAPAN, and FAST III, abandoned 
binary cut-off for lesions significance of ≤ 0.80 was used. 
Future studies are needed to better understand and explore 
the relevance of discordance between angiography-based 
FFR and FFR, whereas the clinical value of angiography-
based FFR using a binary cut-off is currently being studied 
in several large clinical outcome trials (FAVOR III Europe 
Japan trial NCT0372973, FAST III NCT04931771) [26••, 
29].

Post‑PCI Physiological Assessment

Several studies demonstrated that low post-PCI FFR is linked 
to higher rates of target vessel failure [56–65]. As such, post-
PCI FFR has the potential of acting as a useful tool for the 
assessment of acute PCI results and might identify cases in 
need for additional procedural optimization [66, 67]. Despite 
these observations, post-PCI FFR is still rarely performed in 
the routine cathlab practice.

Consequently, the diagnostic option of wire-free post-
PCI physiological analysis using angiography-based FFR to 
identify individuals requiring additional diagnostics (IVUS/
OCT) and subsequent specific management (i.e., additional 
stent, post-dilatation) implies options for future procedural 
improvements.

The FAST POST was the first study to validate vFFR 
against microcatheter-based FFR in a post-PCI setting, dem-
onstrating a good correlation between conventional invasive 
post-PCI FFR and vFFR and a high diagnostic accuracy to 
identify a conventional post-PCI FFR < 0.90 (Table 2) [68].

Subsequent data from the HAWKEYE study demon-
strated that post-PCI QFR proved to be directly corre-
lated to the risk of future adverse cardiac events (Table 2)  
[69•]. The vessel-oriented composite endpoint (vessel-
related cardiac death, vessel-related myocardial infarction, 
and target vessel revascularization) was found to be threefold 
higher in cases with a post-PCI QFR was ≤ 0.89. Consistent 
observations were also reported at the Transcatheter Cardio-
vascular Therapeutics 2019 (TCT 2019) for post-PCI vFFR, 
with vessels presenting post-PCI vFFR values > 0.90 having 
lower risk of target vessel revascularization at 1 year, as 
compared to vessels with post-PCI vFFR ≤ 0.90 (1.8% vs. 
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4.2%, p < 0.05) as well as in work performed by Kogame 
et al. (Table 2) [70, 71].

Concept of ‘Virtual Stenting’ and Residual 
Angiography‑Based FFR

Recently studies by Biscaglia et al. and Shin et al. have sug-
gested that functional patterns of coronary artery disease 
categorized as focal, serial, or diffuse based on pre-PCI QFR 
analyses can predict post-PCI QFR [72, 73]. Using pre-PCI 
virtual pull backs of QFR, physiological distribution was 
determined in patients who underwent angiographically suc-
cessful PCI and post-PCI FFR measurement by pull back 
pressure gradient index to define predominant focal versus 
diffuse disease. Interestingly, cumulative incidence of TVF 
after PCI was significantly higher in patients with predomi-
nant diffuse disease [73].

Indeed, the ability to predict the functional outcomes of 
PCI may constitute another step forward in optimization of 
PCI results [74]. Recent developments in the 3D-QCA-based 
FFR software allowed to simulate the effect of ‘virtual’ PCI 
and estimate post-PCI FFR, termed residual FFR [75]. As 
of to date, the diagnostic performance of residual QFR and 
vFFR assessment using baseline angiograms has been evalu-
ated showing a good correlation between invasive post-PCI 
FFR and post-PCI QFR or vFFR values, respectively, and a 
good discriminative ability for post-PCI FFR < 0.90 [75, 76]. 
Such developments have the potential to identify patients 
expected to have a proper functional PCI outcome as well 
as those with a lower likelihood of functionally satisfac-
tory outcome, and thus, optimize the treatment and avoid 
a risk of a futile invasive procedure. Nevertheless, it has 
to be emphasized that current-generation virtual stenting 
QFR or vFFR assume an almost perfect PCI result, and 
thus, cannot account for, i.e., heavy calcifications or stent 
underexpansion.

Specific Clinical Settings: Prior MI, Severe 
Aortic Stenosis, IN‑Stent Restenosis

The performance of angiography-based FFR has been evalu-
ated in specific clinical scenarios (Table 1). In patients with 
prior MI, QFR showed a good correlation with FFR overall, 
but its diagnostic accuracy was numerically reduced in prior-
MI-related coronary arteries compared to non-prior-MI-related 
coronary arteries (diagnostic accuracy 87% vs. 92%, p 0.29) 
[77]. In the acute setting of STEMI and NSTEMI, QFR meas-
urement in non-culprit vessels appeared to be feasible, reli-
able, and showed a good diagnostic performance compared to 
QFR itself and FFR performed in a staged procedure [78–83]. 
QFR proved also to have an equivalent diagnostic efficiency 

in assessing functional relevance of in-stent restenosis as in de 
novo stenosis, though it did not appear a useful tool in predict-
ing in-stent late lumen loss [84, 85].

In patients with severe aortic stenosis, the value of pres-
sure wire-based physiological lesion assessment is still debated 
given the known attenuation hyperemic response due to 
increased left ventricle end diastolic pressures and microvas-
cular resistance. However, seminal studies on pre-transcatheter 
aortic valve implantation (TAVI) QFR showed a good perfor-
mance compared to post-TAVI FFR as reference [86].

Conclusion

Angiography-based FFR is emerging as an appealing alterna-
tive to conventional pressure-wire physiological lesion assess-
ment and has the potential to further extend the uptake of phys-
iology guided PCI. Whereas promising data have been recently 
released on the superiority of QFR vs. angiography guided PCI 
in a Chinese setting, more data is needed to extrapolate these 
findings to Western populations and guideline recommended 
invasive physiology PCI as a reference.

As such, the results of currently ongoing dedicated rand-
omized outcome trials are eagerly awaited (FAVOR III Europe 
Japan trial NCT0372973, FAST III NCT04931771) to fuel 
discussions with respect to guideline uptake and reimburse-
ment models.
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