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Abstract

The angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) pathway

is an emerging key regulator in vascular development and maintenance. Its relevance to clinicians and basic scientists as a

potential therapeutic target in retinal and choroidal vascular diseases is highlighted by recent preclinical and clinical

evidence. The Ang/Tie pathway plays an important role in the regulation of vascular stability, in angiogenesis under

physiological and pathological conditions, as well as in inflammation. Under physiological conditions, angiopoietin-1

(Ang-1) binds to and phosphorylates the Tie2 receptor, leading to downstream signalling that promotes cell survival and

vascular stability. Angiopoietin-2 (Ang-2) is upregulated under pathological conditions and acts as a context-dependent

agonist/antagonist of the Ang-1/Tie2 axis, causing vascular destabilisation and sensitising blood vessels to the effects of

vascular endothelial growth factor-A (VEGF-A). Ang-2 and VEGF-A synergistically drive vascular leakage,

neovascularisation and inflammation, key components of retinal vascular diseases. Preclinical evidence suggests that

modulating the Ang/Tie pathway restores vascular stabilisation and reduces inflammation. This review discusses how

targeting the Ang/Tie pathway or applying Ang-2/VEGF-A combination therapy may be a valuable therapeutic strategy for

restoring vascular stability and reducing inflammation in the treatment of retinal and choroidal vascular diseases.

Introduction

The angiopoietin/tyrosine kinase with immunoglobulin and

epidermal growth factor homology domains (Ang/Tie)

pathway plays an important role in the maintenance of

vascular stability. The ligand angiopoietin-1 (Ang-1) binds

to and phosphorylates the Tie2 receptor, thus activating

it and promoting cell survival and vascular stability.

Angiopoietin-2 (Ang-2), upregulated under pathological

conditions, acts as a context-dependent agonist/antagonist

of the constitutive Ang-1/Tie2 axis, promoting development

of pathological features. As such, evidence from preclinical

and early-phase clinical studies suggests that the Ang/Tie

pathway regulates vascular stability and the inflammatory

response, which could be valuable to the treatment of retinal

and choroidal diseases [1].

Retinal and choroidal vascular diseases, such as diabetic

retinopathy (DR)/diabetic macular oedema (DMO), neo-

vascular age-related macular degeneration (nAMD) and

retinal vein occlusion (RVO), are leading causes of blind-

ness and visual impairment worldwide. A common feature

of these conditions is destabilisation of the mature vascu-

lature, which is associated with increased vascular perme-

ability, inflammation and/or growth of pathological new

vessels. Treatment of retinal and choroidal vascular diseases

was revolutionised in the first decade of the 21st century

with the introduction of vascular endothelial growth factor

(VEGF)-blocking agents, which have markedly improved

outcomes for patients with these conditions [2–4]. How-

ever, some patients do not fully respond to anti-VEGF

monotherapy, and frequent injections are required to
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maintain visual gains, highlighting the multi-factorial nature

of these diseases [3, 5, 6]. A deeper understanding of retinal

biology will enable one to identify additional pathophy-

siological pathways, understand the basis of limitations of

current therapy and develop novel multi-targeted ther-

apeutic approaches for more effective treatment of retinal

and choroidal diseases.

This article reviews preclinical data on the Ang/Tie

pathway and describes its relevance both in physiological

and pathophysiological conditions, focussing on retinal

vascular and choroidal diseases.

The Ang/Tie signalling pathway in
angiogenesis

Angiogenesis is a multi-step process involving vessel

sprouting, vessel maturation and vessel remodelling [7, 8].

Vessel sprouting is mediated by collective migration of

endothelial cells (ECs) led by a ‘tip cell’ that guides ‘stalk

cells’ to elongate a vessel in the presence of factors,

including VEGF receptors and Notch ligands [7, 9, 10]

(Fig. 1). Signalling through VEGF receptors allows tip cells

to guide stalk cells along VEGF gradients [7]. As tip cells

anastomose with cells from surrounding sprouts, stalk cells

elongate and form a lumen, and proliferate to form new

vessels and branches [8]. Once these newly formed vessels

are perfused, vessel maturation occurs as ECs gain stability

and form a monolayer of quiescent phalanx cells connected

by vascular endothelial cadherin and claudins [7, 11]. For-

mation of a basement membrane and recruitment of mural

cells (vascular smooth muscle cells and pericytes), a process

regulated by platelet-derived growth factor (PDGF)/PDGF

receptor-β, Ang-1/Tie2 and transforming growth factor-β

(TGF-β) signalling further stabilises the vasculature (Fig. 1)

[7, 8]. Subsequent vascular remodelling involves regression

of redundant branches to adapt to the metabolic demands of

the tissue [12].

The Ang/Tie pathway, a key player in the multi-step

angiogenic cascade, consists of two type I tyrosine kinase

receptors (Tie1, Tie2), and four ligands (Ang-1, Ang-2,

Ang-3, Ang-4) [13]. While Ang-1 and Ang-2 have been

studied in depth, Ang-3 and Ang-4 are less well char-

acterised [1]. The receptor components of the Ang/Tie

pathway, Tie1 and Tie2, are expressed primarily in the

endothelium, although they have also been detected on

haematopoietic cells [14], and in the case of Tie2, also on

pericytes [15]. Tie1 classically has been described as an

orphan receptor that modulates surface presentation and

activation of Tie2 by Ang-1 and Ang-2 [16]. In addition, a

family of eight angiopoietin-like ligands has also been

identified. Although structurally similar to angiopoietins,

the angiopoietin-like ligands do not bind to either of the Tie

receptors, but signal through leucocyte immunoglobulin-

like receptors (LILRs) and contribute to the regulation of

angiogenesis, inflammation and metabolism [17]. Indepen-

dently of Tie2, Ang-2 can also bind to integrins to promote

vascular destabilisation [18, 19].

Ang-1 is a Tie2 receptor agonist and is expressed by

mesenchymal cells, pericytes and smooth muscle cells [1, 13].

In healthy vessels and resting ECs, Ang-1/Tie2 signalling

promotes vascular stabilisation [1, 13]. Pericyte-derived Ang-

1 binds to and induces phosphorylation and activation of Tie2

on ECs, leading to clustering of Ang-1/Tie2 complexes at

Fig. 1 Angiogenic cascade. Steps in the angiogenic cascade: forma-

tion of a stable mature vascular network requires vessel sprouting,

maturation and vessel remodelling. The collective migration of ECs is

led by a Tie2lo tip cell that guides the Tie2hi stalk cells to elongate a

vessel in response to a VEGF gradient. VEGF/VEGFR2/3 signalling

in tip cells induces Dll4 expression in these cells, which then signals

via Notch1 in stalk cells to downregulate VEGFR2/3, thereby inhi-

biting tip cell fate in stalk cells. Migrating tip cells anastomose with tip

cells from neighbouring sprouts, while the trailing stalk cells pro-

liferate to elongate the sprout and form a vascular lumen. Following

perfusion of these vessels, ECs gain stability and form a monolayer of

quiescent phalanx cells connected by vascular endothelial cadherin and

claudins. Formation of a basement membrane and recruitment of mural

cells (SMCs and pericytes) occurs in a process regulated by PDGF/

PDGFRβ, Ang-1/Tie2 and TGF-β signalling, stabilising the vascu-

lature. Cells are not represented to scale. Ang-1 angiopoietin-1, Dll4

delta-like 4, EC endothelial cell, PDGF platelet-derived growth factor,

PDGFRβ platelet-derived growth factor receptor-β, SMC smooth

muscle cell, Tie2hi tyrosine kinase with immunoglobulin and endo-

thelial growth factor homology domains 2 high, Tie2lo tyrosine kinase

with immunoglobulin and endothelial growth factor homology

domains 2 low, TGF-β transforming growth factor-β, VEGF vascular

endothelial growth factor, VEGFR vascular endothelial growth factor

receptor.
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cell–cell junctions, downstream activation of the phosphati-

dylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway

and induction of downstream survival effectors, including

endothelial nitric oxide synthase and survivin [1, 20–22].

Additionally, Tie2 activation phosphorylates transcription

factor forkhead box protein O1 (FOXO1) and prevents its

nuclear translocation, consequently inhibiting transcription of

its target genes. One of these genes is Ang-2, which competes

with Ang-1 for Tie2 and induces EC destabilisation [1, 23].

Ang-1/Tie2–mediated signalling also activates A20-binding

inhibitor of nuclear factor kappa-light-chain-enhancer of

activated B cells (ABIN), which inhibits nuclear factor kappa

B (NFκB) activation [24], and thus expression of inflamma-

tory genes, such as intracellular cell adhesion molecule-1

(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)

and E-selectin [25]. Ang-1/Tie signalling via GTPase path-

ways (Rac1/Rap1 or IQ domain GTPase-activating protein

1 [IQGAP]/Rap1) results in cortical actin cytoskeleton stabi-

lisation and improves endothelial integrity [26]. Ang-1/Tie2

signalling and its downstream effects therefore promote

EC survival and suppress further proliferation, stabilising

newly formed blood vessels and forming a more efficient and

stable vascular network [1, 13]. In migrating ECs, Tie2 is

localised at the cell–extracellular matrix interface and pre-

ferentially activates extracellular signal–regulated kinase sig-

nalling [22, 27]. Recruitment of adaptor proteins, such as

downstream of tyrosine kinase–related protein and growth

factor receptor–bound protein 14, to the Tie2 receptor sup-

ports PI3K–mediated EC migration [1, 13]. Overall, the Ang-

1/Tie2 signalling axis promotes vascular stabilisation and

quiescence under physiological conditions.

Ang-2 is produced mainly by ECs and stored in

Weibel–Palade bodies. Ang-2/Tie2 signalling in ECs leads

to pericyte detachment, which sensitises the retinal vascu-

lature to VEGF and other proinflammatory factors via

activation of FOXO1 target genes (including Ang-2,

creating a positive feedback loop), downregulation of Tie1,

and consequent suppression of Tie2 [1, 28]. A Tie2-low

environment induces Tie2-independent Ang-2 signalling

through integrins on ECs [18]. Ang-2 signalling via β1-

integrin in Tie2-silenced ECs or in Ang-2 transgenic mice

promotes changes in the actin cytoskeleton, affecting vas-

cular endothelial cadherin-mediated EC–EC adhesion and

cell–extracellular matrix adhesion, resulting in vascular

destabilisation [19]. Effects of Ang-2 signalling on ECs are

context dependent and modulated by several factors [16].

First, EC type (tip, stalk), which determines expression

levels of Tie2. In angiogenic tip cells, which express low

levels of Tie2, Ang-2 signals independently of Tie2 by

binding directly to integrins, promoting endothelial tip cell

migration and vessel sprouting via focal adhesion kinase

phosphorylation (Tyrosine 397) [18]. In stalk cells, Ang-2

expression is low while Tie2 expression is high, which

favours Ang-1/Tie2 signalling, leading to vascular remodel-

ling and stabilisation [18]. Second, presence of Tie1 might

downregulate Tie2 surface expression in tip cells and sustain

Tie2 signalling in stalk cells [29]. Under inflammatory con-

ditions, Tie1 is inactivated due to ectodomain cleavage, which

may convert Ang-2 from a Tie2 agonist to antagonist [1, 16].

Third, the ratio of Ang-1/Ang-2; in the absence of Ang-1,

Ang-2 might act as a weak agonist of Tie2 [30]. Restoring

Ang-1 signalling through Tie2 may therefore reverse the

effects of Ang-2/Tie2 signalling and contribute to the stabi-

lisation of vasculature. Finally, presence of modulators

such as vascular endothelial protein tyrosine phosphatase

(VE-PTP); VE-PTP is absent in the lymphatic endothelium,

conferring agonist properties to Ang-2. Conversely, in vas-

cular ECs, Ang-2 acts as a competitive antagonist due to

presence of VE-PTP [31] (Fig. 2).

Ang-2 produced by ECs has been suggested to activate

Tie2 receptors on pericytes in a paracrine fashion, causing

pericyte detachment, in contrast to Ang-1, which activates

pericyte Tie2, stabilising their association with ECs [15].

Retinal and choroidal vasculature under
physiological conditions

The retina is one of the most metabolically active tissues in

the body. The layered neuronal architecture of the retina

requires an extensive and stable vascular supply, which is

provided by the retinal and choroidal vasculatures. The

retinal vasculature supplies the inner two-thirds of the

retina, and exchange of nutrients with retinal tissue is highly

regulated by the inner blood–retinal barrier (BRB), formed

by tight junctions connecting retinal capillary ECs [3]. The

inner BRB is covered by astrocytes, Müller cells and a high

density of pericytes (~95% coverage) [32], which, together

with ECs, are organised in a neurovascular unit. In contrast,

the choroidal vasculature supplies the outer one-third of the

retina. The choriocapillaris is fenestrated, and pericyte

coverage is low (~11% coverage). Tight junctions con-

necting retinal pigment epithelium cells form the outer

BRB, ensuring a selective movement of solutes into the

retina [3] (Fig. 3).

Pathophysiological concepts in retinal and choroidal
diseases

Hypoxia-induced vascular leakage and ischaemia, patholo-

gical neovascularisation and chronic inflammation are

major causes of vision impairment in a wide range of retinal

and choroidal diseases, such as DR, RVO and nAMD [3].

Hypoxia induces the translocation of hypoxia-inducible

factor-1 and hypoxia-inducible factor-2 to the nucleus [33],

where they enhance the transcription of VEGF and other

proangiogenic factors, including PDGF-β, placental growth

Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of. . . 1307



factor and stromal-derived factor [34]. Sustained low-grade

inflammation in the retina and choroid is characterised by

upregulation of inflammatory cytokines (e.g. interleukin-1β,

interleukin-6, tumour necrosis factor-α [TNF-α]) and che-

mokines (e.g. monocyte chemoattractant protein-1, inter-

leukin-8) produced by activated endothelial and microglial

cells, resulting in leucocyte recruitment [35–37]. All these

pathways lead to vascular destabilisation and vascular

inflammation, with detrimental consequences for retinal

function.

In nAMD, retinal pigment epithelium damage (asso-

ciated with choriocapillaris dropout, hypoxia, oxidative

stress and other cellular insults) may be associated with

upregulation of VEGF and other proangiogenic factors that

promote growth of immature and leaky neovessels, or

choroidal neovascularisation (CNV) [38–41]. Given their

leaky and fragile nature, these neovessels contribute to

oedema, haemorrhaging and fibrosis, disrupting retinal

function [42, 43]. Animal models to study nAMD pathol-

ogy include the JR5558 mouse model, which develops

spontaneous bilateral CNV [44], and laser-induced CNV

mouse and cynomolgus monkey models [45–47].

In DR, chronic hyperglycaemia induces a proin-

flammatory state that promotes leukostasis, EC and pericyte

Fig. 2 Ang/Tie signalling pathway under physiological and

pathophysiological conditions. The Ang/Tie pathway regulates vas-

cular stability under physiological and pathological conditions. The

receptor components of the Ang/Tie pathway, Tie1 and Tie2, are

expressed primarily in the endothelium. In a healthy vessel (left),

Ang-1/Tie2 signalling at cell–cell junctions leads to downstream

activation of the PI3K/AKT pathway and induction of eNOS and

survivin, leading to EC survival. Tie2-mediated phosphorylation of

FOXO1 prevents its nuclear translocation, inhibiting transcription of

its target genes, including Ang-2, while inhibition of NFκB cells

suppresses the expression of inflammatory genes such as ICAM-1,

VCAM-1 and E-selectin. Ang-1/Tie2 signalling via GTPase pathways

(Rac1/Rap1 or Iqgap1/Rap1) results in cortical actin cytoskeleton

stabilisation. In migrating ECs, Tie2 is localised at the

cell–extracellular matrix contacts and preferentially activates ERK

signalling. Recruitment of adaptor proteins such as DOKR and GRB2

to the Tie2 receptor supports PI3K-mediated EC migration. Overall,

Ang-1/Tie2 signalling and its downstream effects promote EC integ-

rity, contributing to vascular stability. In a diseased vessel (right),

Ang-2/Tie2 signalling leads to pericyte detachment, which sensitises

the retinal vasculature to VEGF and other proinflammatory factors via

activation of FOXO1 target genes, downregulation of Tie1 and con-

sequent suppression of Tie2. Cells are not represented to scale. ABIN2

A20-binding inhibitor of nuclear factor kappa B, AKT protein kinase

B, Ang angiopoietin, Ang-1 angiopoietin-1, Ang-2 angiopoietin-2,

DOKR Dok-related protein, EC endothelial cell, eNOS endothelial

nitric oxide synthase, ERK extracellular signal–regulated kinase, FAK

focal adhesion kinase, FOXO1 forkhead box protein O1, GRB2

growth factor receptor–bound protein 2, ICAM-1 intracellular cell

adhesion molecule-1, Iqgap1 IQ domain GTPase-activating protein 1,

NFκB nuclear factor kappa B, P phosphorylated, PI3K phosphatidy-

linositol 3-kinase, Tie tyrosine kinase with immunoglobulin and

endothelial growth factor homology domains, Tyr tyrosine, VCAM-1

vascular cell adhesion molecule-1, VE-cadherin vascular endothelial

cadherin, VEGF vascular endothelial growth factor, VEGF-A vascular

endothelial growth factor-A, VEGFR vascular endothelial growth

factor receptor, VE-PTP, vascular endothelial protein tyrosine

phosphatase.
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apoptosis, BRB failure and retinal hypoxia [3, 48]. Pericyte

dropout, a hallmark of DR, contributes to vascular desta-

bilisation [28]. DMO, a vision-threatening manifestation of

DR, occurs when leakage from the retinal vasculature

causes fluid accumulation in the macula [3]. Vision loss in

DR may occur due to development of retinal capillary

nonperfusion, DMO (the most frequent cause) or neovas-

cular complications associated with proliferative DR. DR

pathophysiology has been studied mainly in rodents (e.g. in

streptozotocin-induced diabetic mouse models [49, 50] and

the ob/ob mouse model of type 2 diabetes [51]).

RVO is classified as either central RVO, hemicentral

RVO or branch RVO. Initial obstruction to venous outflow

leads to increased intravenous pressure, hypoxia in dis-

tribution of the area serviced by the occluded vessel,

upregulation of proinflammatory cytokines (including

VEGF, TNF-α and interleukin-1), inflammation and vas-

cular leakage. Development of macular oedema is the pri-

mary cause of vision loss in RVO [3, 52]. As a later

consequence, vascular remodelling or pathological neo-

vascularisation (when extensive ischaemia is persistent)

may develop. Branch and central RVO are most commonly

studied in non-human primates, followed by rodents and

pigs, all of which show retinal haemorrhages and ischaemia

characteristic of RVO [53].

Despite anti-VEGF therapy becoming the standard of

care for the treatment of nAMD and DR over the last 15

years and overall decreasing the incidence of blindness,

there is still need for additional improvements, given that

even in randomised clinical trials with intense monitoring

and frequent regimens, only about ~44% of patients

achieve minimum driving vision (best-corrected visual

acuity [BCVA] of 20/40 Snellen equivalent) [54, 55], and

over the long term, patients fail to sustain those initial

BCVA gains achieved during the core studies [56, 57].

Furthermore, >60% of patients with nAMD and DMO

showed persistent fluid and retinal thickening, respectively,

even after 2 years of anti-VEGF therapy [58, 59]. In

addition, real-world data suggest that in many cases,

patients in clinical practice do not receive optimal anti-

VEGF dosing frequency, resulting in lower BCVA gains

for patients in the real-world setting [5, 6], highlighting the

need for more durable agents that are able to provide sus-

tained efficacy through extended durability both in clinical

trials and in clinical practice. Furthermore, anti-VEGF

monotherapy does not address inflammation and fibrosis,

Fig. 3 Retinal and choroidal vasculatures, inner and outer BRB.

The retinal vasculature supplies the inner two-thirds of the retina, and

the exchange of nutrients with the retinal tissue is highly regulated by

the inner BRB, formed by tight junctions connecting retinal capillary

ECs. The inner BRB is covered by astrocytes, Müller cells and a

high density of pericytes. The choroidal vasculature supplies the outer

one-third of the retina. The choriocapillaris is fenestrated and has low

pericyte coverage. Tight junctions connecting the RPE cells form

the outer BRB. Cells are not represented to scale. BRB blood–retinal

barrier, EC endothelial cell, RPE retinal pigment epithelium,

VE-cadherin vascular endothelial cadherin.
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frequently associated with advanced stages of retinal and

choroidal vascular diseases. Given the role of the Ang/Tie

signalling pathway in the maintenance of vascular homo-

eostasis and the evidence of upregulation of Ang-2 in ret-

inal and choroidal diseases [60], new treatments targeting

this pathway may be beneficial in reducing vascular

destabilisation associated with neovascularisation as well

as inflammation.

The Ang/Tie signalling pathway under pathological
conditions and its therapeutic modulation

Leakage and neovascularisation

Intravitreal administration of Ang-1 was shown to reverse

diabetes-induced damage to the retinal vasculature in rodent

models by reducing EC injury and BRB breakdown,

accompanied by reduced retinal endothelial nitric oxide

synthase expression, nitric oxide levels, AKT and mitogen-

activated protein kinase activity and ICAM-1 expression

[61]. Furthermore, in a mouse model of nAMD, Tie2 acti-

vation via VE-PTP inhibition by its pharmacological inhi-

bitor AKB-9778 suppressed neovascularisation and

provided further evidence on modulation of the Ang/Tie

pathway and its therapeutic potential for treatment of retinal

and choroidal diseases [62].

Ang-2 overexpression under pathological conditions,

such as hyperglycaemia, mediates integrin-mediated peri-

cyte detachment and apoptosis [28, 50], which destabilises

the retinal vasculature [63]. In a transgenic mouse model

with experimentally induced DR, Ang-2 overexpression

(in mOpsinhAng2 mice) increased the number of circu-

lating pericytes in diabetic retinas by 2.3 fold versus non-

diabetic retinas (non-diabetic wild-type: 51 ± 7 and dia-

betic mOpsinhAng2 mice: 118 ± 25 pericyte per mm2 of

capillary area; P < 0.0001). This effect was not seen when

Ang-2 was absent in loss of Ang-2 function mouse models

(Ang2LacZ mice) [64]. In another induced DR mouse

model, astrocyte apoptosis and consequent retinal vascular

leakage occurred via Ang-2/integrin activation, which was

prevented by targeting this pathway [49]. At the cellular

level, elevated glucose levels decreased Ang-1–induced

phosphorylation of Tie2 and downstream AKT activation

in large-vessel human ECs, suggesting that hyperglycae-

mia inhibits the protective effect of Ang-1 and promotes

vascular destabilisation [65].

In laser-induced CNV rodent models of nAMD, mod-

ulating the Ang/Tie pathway by increasing Ang-1 levels and

inhibiting VE-PTP–stabilised retinal and choroidal vascu-

lature [45, 62, 66, 67]. Activating Tie2 through an

Ang-2–binding and Tie2-activating antibody was shown to

decrease VEGF-induced CNV leakage, relieving hypoxia

and promoting maintenance of the choriocapillaris, while

also reducing retinal pigment epithelium damage and CNV

growth [68]. Furthermore, the number of spontaneously

occurring CNV lesions was significantly reduced in JR5558

mice treated with anti–VEGF-A/Ang-2 antibody versus

anti–VEGF-A alone (P= 0.0428) and anti–Ang-2 alone or

immunoglobulin G (IgG)-treated controls (P < 0.0001).

Similarly, dual Ang-2/VEGF-A inhibition significantly

reduced CNV-induced leakage versus anti–VEGF-A alone

(P= 0.0037) and anti–Ang-2 alone or IgG-treated controls

(P < 0.0001) [47]. Similar results were obtained in a laser-

induced CNV cynomolgus monkey model [47].

Dual inhibition of Ang-2 and VEGF-A significantly

reduced pathological neovascularisation and vessel density

by >50% (P= 0.04) versus IgG controls, and enhanced

pericyte coverage on blood vessels versus IgG controls and

anti–Ang-2 or anti–VEGF-A monotherapy by approxi-

mately two-fold (P ≤ 0.04) in a human breast tumour-

bearing mouse model. These data suggest that dual targeting

of Ang-2 and VEGF-A promotes a more mature phenotype

of abnormal neovessels [69].

Synergistic effects of Ang-2 and VEGF-A in driving

vascular destabilisation, and data from preclinical studies,

suggest that combination of Ang-2 blockade with anti-

VEGF therapy could effectively reduce leakage, patholo-

gical neovascularisation and inflammation, thus potentially

improving outcomes in retinal and choroidal diseases

[70, 71] (Fig. 4).

Inflammation and neuroinflammation

The Ang/Tie pathway plays a key role in inflammation

because it induces ICAM-1 and VCAM-1 expression

through Ang-2/Tie2 signalling, promoting leucocyte adhe-

sion and transmigration into inflamed tissues in response to

inflammatory cytokines [72–74]. Previous studies in mouse

tumour models of post-surgical adjuvant therapy demon-

strated that an increase in Ang-2–mediated ICAM-1

expression contributed to the observed increase in CCL2-

induced recruitment of tumour-promoting CCR2+Tie2−

macrophages [74]. Ang-2 was also shown to promote

β2-integrin–dependent myeloid cell infiltration into various

organs in a transgenic mouse model with inducible EC-

specific Ang-2 expression [73]. In a mouse dorsal skinfold

chamber model, TNF-α–induced leucocyte adhesion to the

endothelium and subsequent tissue infiltration were reduced

in response to thioglycolate in Ang-2 knockout mice versus

controls due to reduced expression of EC adhesion mole-

cules [72]. In a different study, Ang-2–deficient mice

showed significantly reduced VEGF-induced tracheal

leakage versus wild-type controls. A similar effect on vas-

cular leakage was seen with other proinflammatory cyto-

kines, such as histamine and bradykinin [75]. Furthermore,

in mouse models of myocardial infarction [76] and multiple

1310 A. M. Joussen et al.



sclerosis [77], Ang-2 blockade decreased proinflammatory

polarisation of myeloid cells via integrins.

In retinal and choroidal diseases, including DR [28, 50],

RVO [78] and nAMD [68], Ang-2 signalling regulates

pathological events, such as pericyte detachment, increased

vascular permeability, neovascularisation and inflammation.

In rodent models of diabetes, modulating the Ang/Tie

pathway through Ang-1 overexpression suppressed leuco-

cyte adhesion by significantly reducing retinal ICAM-1 and

VEGF protein levels versus controls (both P < 0.001) [61].

In a mouse model of spontaneous CNV (JR5558 mice),

combined neutralisation of VEGF-A and Ang-2 with low,

mid and high doses (3, 5 and 10 mg/kg) of bispecific

anti–Ang-2/anti–VEGF-A antibody significantly reduced

the number of Iba1+ macrophages around CNV lesions

versus IgG controls (P < 0.0134 [low], P < 0.0078 [mid],

P < 0.0048 [high]). Treatment with anti–Ang-2 and

anti–VEGF-A alone also showed reduction in the number of

Iba1+ macrophages, although these differences were not

statistically significant versus IgG controls [47, 71].

Further evidence on benefits of dual Ang-2/VEGF-A

inhibition was obtained from a mouse model of endotoxin-

induced uveitis, in which dual Ang-2/VEGF-A inhibition

with a bispecific anti–Ang-2/anti–VEGF-A antibody

attenuated inflammatory response by reducing leucocyte

infiltration into the inner retina versus untreated controls

(P < 0.00001) or anti–VEGF-A alone (P < 0.0086) [47].

Fibrosis

Fibrosis, defined as excessive deposition of extracellular

matrix, occurs as a consequence of a chronic wound healing

response to tissue injury [79]. Even though the mechanism

of fibrosis varies in different organ systems, some signalling

pathways (e.g. TGF-β, PDGF, TNF-α, interferon gamma

and fibroblast growth factor) and macrophage heterogeneity

appear to be common mechanisms in development of

myocardial, corneal, renal and retinal fibrosis [80–83].

Involvement of Ang-1 and Ang-2 in the pathogenesis of

fibrosis was studied in transgenic mice ectopically expressing

Fig. 4 Overview of the effects of dual Ang-2/VEGF-A inhibition in

nAMD and DR. Retinal and choroidal vasculatures in a healthy eye

(left), an eye with nAMD (middle) and an eye with DR (right). Ang-2

and VEGF-A synergistically drive vascular leakage, inflammation and

neovascularisation of choroidal vessels in nAMD, and neovascular-

isation and abnormal permeability of retinal vessels in DR. Data from

preclinical studies suggest that combined blockade of Ang-2 and

VEGF-A could act synergistically to reduce these effects, improving

outcomes in retinal and choroidal diseases. Cells are not represented to

scale. AMD age-related macular degeneration, Ang-1 angiopoietin-1,

Ang-2 angiopoietin-2, BRB blood–retinal barrier, DR diabetic reti-

nopathy, nAMD neovascular age-related macular degeneration, RPE

retinal pigment epithelium, VEGF vascular endothelial growth factor,

VEGF-A vascular endothelial growth factor-A.
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Ang-1, Ang-2 or murine VEGF164 in various combinations in

cardiac tissue [84]. Double-transgenic mice with increased co-

expression of Ang-2 and VEGF-A showed aberrant angio-

genesis and severe fibrosis. Conversely, inducing Ang-1

expression (triple-transgenic mice) improved the phenotype

[84]. In another study, Ang-1–deficient mice showed a

stronger angiofibrotic response, with faster wound closure of

an ear punch versus wild-type controls, suggesting that Ang-1

is critical in controlling angiofibrotic wound healing response

[85]. Ang-1 activation of Tie2 was also shown to be critical in

controlling fibrotic response to diabetic kidney injury.

Hyperglycaemia caused only mild kidney damage in wild-

type diabetic mice; however, lethal glomerulosclerosis-

induced severe kidney failure occurred in 20% of the dia-

betic Ang-1–deficient cohort [85].

Fibrosis is a cause of irreversible vision loss in nAMD

[81]. The mechanistic understanding of subretinal fibrosis

and a potential involvement of the Ang/Tie pathway remain

poorly understood and warrant further research.

Discussion and conclusions

The Ang/Tie pathway plays an important role in the

maintenance of vascular stability, which is mediated by a

balance between the agonistic effect of Ang-1 on Tie2, and

the antagonist effect of Ang-2. Preclinical evidence suggests

that modulation of the Ang/Tie pathway, along with

VEGF-A inhibition, can restore vascular stability by

enhancing pericyte coverage and BRB integrity, thus

reducing vascular leakage, pathological neovascularisation

and tissue infiltration by inflammatory cells. In addition,

Ang-2 inhibition also reduces proinflammatory macrophage

polarisation and vascular responsiveness to VEGF and other

proinflammatory cytokines, potentially contributing to pre-

vention of sustained retinal inflammation [47, 62, 72–76].

Furthermore, modulation of the Ang/Tie pathway may have

anti-fibrotic effects [84, 85], although its relevance and

implication in retinal and choroidal diseases require further

research.

Combined Ang-2 and VEGF-A inhibition may permit the

homeostatic benefits of a neovascular response to hypoxia

while attenuating the destructive effects of uncontrolled vas-

cular permeability characteristic of macular and retinal neo-

vascularisation in nAMD and DR, respectively. Dual

inhibition of Ang-2 and VEGF-A and its effect on stabilisa-

tion of blood vessel permeability induced by inflammation,

hyperglycaemia and/or hypoxia may also help consolidate

benefits of anti–VEGF-A therapy on macular oedema of

various aetiologies, and thus promote extended durability.

This reasoning suggests that dual Ang-2/VEGF-A targeting

may be a more beneficial therapeutic approach versus anti-

VEGF monotherapy [1, 47, 60, 69, 71].

Our increasing understanding of the Ang-2/Tie pathway

has contributed to redefining the therapeutic goal in nAMD

from destruction of CNV lesions to therapy aimed at vascular

stabilisation through suppression of CNV leakage. Harnessing

the benefits of the dual inhibition approach along with Tie2

activation by Ang-1 [68] may be a desirable approach to

maintain the choriocapillaris and stabilise the pathologic vas-

culature in nAMD by suppressing CNV-induced leakage

[47, 68]. Stable CNV could potentially act as a ‘surrogate

choriocapillaris’ when the existing vasculature becomes

compromised, and attenuate long-term complications [86–89].

Rather than complete elimination of CNV lesions,

induction of maturation and normal physiological function

of the new vessels and, in the case of DMO, stabilisation

and remodelling of damaged, leaking vessels, may lead to

superior clinical outcomes versus VEGF blockade alone.

Combination therapy with Ang-2/VEGF-A blockade may

afford this opportunity in treatment of retinal diseases by

promoting perfusion of hypoxic tissue via new vessels that

have features of mature (vs. immature) vasculature or via

stabilisation of previously damaged vasculature (i.e. intact

tight junctions with no leakage or development of inflam-

mation, fibrosis and other complications in the long term).

Combination therapies to enhance anti-VEGF effects,

such as pegleranib (dual PDGF and VEGF targeting) have

been investigated previously [90]. Pegleranib aimed at

rendering vessels more susceptible to anti-VEGF action by

disrupting their pericyte coverage. However, this combi-

nation did not meet the primary endpoint of superiority over

anti-VEGF monotherapy in phase 3 trials [90]. In contrast,

dual inhibition of Ang-2 and VEGF-A aims at reinforcing/

restoring vascular stability by enhancing pericyte coverage,

EC–EC adhesion and reducing perivascular inflammation

along with sensitivity to VEGF, via inhibition of Ang-2.

Clinical trials are ongoing to determine the effect of

combined Ang-2/VEGF-A inhibition on vascular stabilisa-

tion. For retinal and choroidal diseases, three molecules

targeting the Ang/Tie pathway have been studied in phase 2

trials for DMO and nAMD. These include the VE-PTP

inhibitor AKB-9778 (Aerpio Pharmaceuticals, Inc.) [91],

anti–Ang-2 antibody nesvacumab and aflibercept combi-

nation therapy (Regeneron Pharmaceuticals, Inc.) [92] and

the bispecific anti–Ang-2/anti–VEGF antibody faricimab

(F. Hoffmann-La Roche Ltd.) [93, 94]. Efficacy of AKB-

9778 was assessed in patients with DMO and non-

proliferative DR. Despite overall improvements in central

subfield thickness (significant at month 3; P= 0.008) in

patients with DMO [95] and a trend in improvement of

Diabetic Retinopathy Severity Scale score in patients with

non-proliferative DR [91], there were no significant vision

gains [95]. The nesvacumab/aflibercept combination, which

was evaluated for treatment of DMO and nAMD, demon-

strated a safe profile and a positive trend toward anatomic
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and Diabetic Retinopathy Severity Scale score improve-

ment, but there were no visual gains versus monotherapy

[96, 97]. While AKB-9778 is being tested as a topical

formulation due to encouraging results in intraocular

pressure, the nesvacumab/aflibercept combination did not

progress to a phase 3 trial [91, 92]. Faricimab, a bispecific

antibody that independently binds and neutralises both

Ang-2 and VEGF-A, has demonstrated potential for sus-

tained efficacy in phase 2 trials and is currently undergoing

phase 3 clinical trials in patients with DMO and nAMD

[93, 98].

The key potential benefits of dual Ang-2/VEGF-A inhi-

bition in retinal diseases raises several new questions: which

clinical/imaging endpoints will effectively assess its effects

on vascular stability, inflammation, neurovascular unit

integrity and fibrosis early in the disease course? How much

dual Ang-2/VEGF-A inhibition is required to achieve desired

clinical outcomes? Measuring outcomes of dual Ang-2/

VEGF-A targeting might require adaptation versus current

state-of-the-art evaluation of anti–VEGF-A monotherapy.

Moreover, identification and characterisation of responsive

patient populations (e.g. those with chronic conditions) is an

important point to evaluate. Development of more subtle

assessment of disease outcomes, including inflammation and

fibrosis, as well as BRB breakdown, might be facilitated

through deep learning algorithms applied to high-resolution

optical coherence tomography-A and optical coherence

tomography-B data. Additionally, the role played by chronic

inflammation and mechanisms underlying development of

subretinal fibrosis warrant further research to gain a deeper

understanding of DMO and nAMD pathophysiology.

Further research and clinical trial results will add to our

understanding of potential disease-specific benefits of dual

Ang-2/VEGF-A inhibition.

Summary

What is known about this topic

● The Ang/Tie pathway plays an important role in the

maintenance of vascular stability, which is mediated by

a balance between the agonistic effect of Ang-1 on Tie2,

and the antagonist effect of Ang-2.
● Preclinical evidence suggests that modulation of the

Ang/Tie pathway, combined with VEGF-A inhibition,

can restore vascular stability by enhancing pericyte

coverage and BRB integrity, thus reducing vascular

leakage, pathological neovascularisation, and tissue

infiltration by inflammatory cells.
● In addition, Ang-2 inhibition also reduces proinflamma-

tory macrophage polarisation and vascular responsive-

ness to VEGF and other proinflammatory cytokines,

potentially contributing to prevention of sustained

retinal inflammation. Modulation of the Ang/Tie path-

way also may have anti-fibrotic effects.

What this study adds

● Combined Ang-2 and VEGF-A inhibition may permit

the homoeostatic benefits of a neovascular response to

hypoxia while attenuating the destructive effects of

uncontrolled vascular permeability characteristic of

macular and retinal neovascularisation in nAMD and

DR, respectively.
● Dual inhibition of Ang-2 and VEGF-A and its effect on

stabilisation of blood vessel permeability induced by

inflammation, hyperglycaemia and/or hypoxia may also

help consolidate benefits of anti-VEGF-A therapy on

macular oedema of various aetiologies, and thus

promote extended durability of therapy. Thus, dual

Ang-2/VEGF-A targeting may be superior to anti-VEGF

monotherapy.
● Modulation of the Ang-2/Tie pathway has contributed to

redefining the therapeutic goal in nAMD from the

destruction of CNV lesions to therapy aimed at vascular

stabilisation through suppression of CNV leakage.
● Harnessing the benefits of the dual inhibition approach

along with Tie2 activation by Ang-1 may enable

maintenance of the choriocapillaris and stabilisation of

the pathologic vasculature in nAMD by suppressing

CNV-induced leakage.
● Stable CNV could potentially act as a ‘surrogate

choriocapillaris’ when the existing vasculature becomes

compromised, and attenuate long-term complications.
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